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Abstract
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Introduction

Extensive empirical investigation has established the following facts about the long-run relationships

between in°ation, ¯nancial market conditions, and real activity.

(1) There is a negative long-run relationship between in°ation and real economic performance,

at least at su±ciently high levels of in°ation.4

(2) There is a positive correlation between economic performance and (a) the volume of bank

lending activity, (b) the quantity of bank liabilities issued, and (c) the volume of trading in equity

markets. (King and Levine, 1993a,b; Levine and Zervos, 1998; Atje and Jovanovic, 1993).

(3) At low-to-moderate long-run rates of in°ation, there is a strong negative correlation between

in°ation and (a) the volume of bank lending activity, (b) the quantity of bank liabilities issued,

and (c) the volume of trading in equity markets. However, at higher rates of in°ation these partial

correlations essentially disappear. (Boyd, Levine and Smith, 1996).

(4) For countries with low-to-moderate rates of in°ation, there is a pronounced negative corre-

lation between in°ation and real equity returns. For countries where in°ation is su±ciently high,

this correlation vanishes. (Nelson, 1976; Fama and Schwert, 1977; Gultekin, 1983; Boyd, Levine

and Smith, 1996).

(5) As economies develop, equity markets generally become more important relative to banks.

(Gurley and Shaw, 1960; Levine 1997).

Our purpose in this paper is to develop a theoretical model that is capable of confronting this

4 Barro (1995) asserts that there is evidence of a negative relationship at all rates of in°ation. Bruno and Easterly

(1998) and Bullard and Keating (1995) ¯nd support for the notion that this negative relationship emerges only when

rates of in°ation exceed some threshold. Levine and Renelt (1992) and Clark (1997) also question whether there is a

uniformly negative relationship between in°ation and real activity independently of the prevailing rate of in°ation.
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full set of observations. Such a model, clearly, must have several features. First there must be a

role for intermediaries, as well as equity (secondary capital) markets, and the level of intermediary

and equity market activity must be related to long-run real performance. Second, money must play

a role in the economy, and changes in monetary policy (that a®ect the long-run rate of in°ation)

must be capable of a®ecting long-run real activity, as well as ¯nancial market conditions.

In order to produce an economy with these features, we utilize an overlapping generations model

with production, similar to that of Diamond (1965). However, we modify Diamond's model in

several important respects. First, we allow for the existence of multiple technologies for producing

capital. Some of these technologies are simple in nature, meaning that (a) anyone can operate them,

(b) they produce capital quickly, and (c) they are subject to no informational asymmetries. Others

are more complex, meaning that (a) only a subset of individuals can operate them, (b) they involve

a relatively lengthy gestation period,5 and (c) informational asymmetries arise. More speci¯cally,

we assume that capital production using long-gestation technologies is subject to a standard costly

state veri¯cation (CSV) problem.

The second central feature of the analysis is that agents employing long-gestation production

technologies require some external ¯nance in order to operate their projects. In particular, we

assume that the long-gestation technology can be operated only on a relatively large scale; a scale

that requires agents to invest more than just their own funds. In contrast, the short-gestation

technology can be operated at any scale. As a result, no external ¯nance is required to utilize it.6

5 The importance of long gestation periods in capital production has been emphasized by authors from Bohm-

Bawerk (1891) to Kydland and Prescott (1981). The speci¯c model we adopt resembles Bencivenga, Smith and Starr

(1995, 1996) in the nature of the gestation lags in capital production.

6 Hicks (1969) identi¯es the central feature of the industrial revolution to be the employment of large scale

technologies requiring the provision of external ¯nance for their operation.
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However, whenever long-gestation capital production technologies are in use, external ¯nance is a

necessity. Given the presence of the CSV problem, this external funding will naturally be provided

through intermediaries (Diamond, 1984; Williamson, 1986). As a consequence, intermediary activity

will play an important role in the allocation of investment, and in the determination of long-run

real activity levels.

Third, given our assumptions on agents' life-cycles and the gestation of certain capital invest-

ments, agents utilizing long-lived capital production technologies will ¯nd it necessary to sell claims

to the ownership of the capital they produce in secondary capital markets. Hence, whenever these

technologies are in use, capital formation and equity market activity must be positively related, at

least under certain technical conditions that we deduce.

These features of the economy create a role for agents to trade equity, and to hold intermediary

liabilities. In addition we will obviously assume that the government issues a third asset that can

be held by agents - ¯at money. Here, as in Diamond (1965) or Tirole (1985), we simply treat money

as an additional asset that can be held by any agent; it plays no special role in transactions. Thus,

in equilibrium, the real return on money must be equated to the real return on competing assets.

However, this feature of the model is not central to our analysis; it would be straightforward to

create a role for money in transactions - and an additional role for banks - along the lines described

by Champ, Smith and Williamson (1996) or Schreft and Smith (1997). We do not follow this route

for two reasons. First, the simpler Diamond-Tirole formulation matches quite well the empirical

relationship between in°ation and real equity returns. And second, the Diamond-Tirole model

generally gives rise to a Mundell-Tobin e®ect - that is to a positive relationship between in°ation

and long-run output levels - in the absence of the other features we have introduced. Thus our

formulation makes it clear that these features are essential in allowing our model to confront all of
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the empirical observations described above.

Under the assumption that the supply of outside money grows at a constant, exogenously selected

rate, we provide conditions under which there will be two or more steady state equilibria. These

steady states are di®erentiated by their capital stocks and levels of real activity, as well as by

the level of activity in their ¯nancial markets. In the low-capital-stock steady state agents will

utilize either the commonly available or the long-gestation capital production technology. In the

former case clearly no ¯nancial market activity is necessary. In the high-capital-stock steady state,

on the other hand, production of capital will occur using the long-gestation technology; hence

both intermediaries and equity markets will be active. For this steady state, we are able to state

conditions under which higher steady state levels of real activity are associated with higher volumes

of both bank lending and equity market activity. We also state conditions under which equity

market activity rises relative to bank lending activity as the steady state capital stock rises.

With respect to in°ation, we show that higher rates of money creation (steady state in°ation)

lead to lower levels of real activity, in the high-capital-stock steady state. They also reduce the

real return on all assets, including equity, and higher money growth is (under conditions we state)

detrimental both to bank lending activity and to the volume of trading in equity markets. Moreover,

it is also possible to state conditions under which the negative relationship between in°ation and

long-run real activity becomes more pronounced at higher rates of in°ation, as many have argued

is true empirically.

Finally we spend some time analyzing the properties of equilibrium dynamics, in a neighborhood

of each steady state. We are able to show that the low-capital-stock steady state is a saddle;

hence there are always equilibrium paths that approach it. In addition, we illustrate by example

that the high-capital-stock steady state may be either a source or a saddle. If it is a saddle, it
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too can potentially be approached from some combination of initial conditions. Our examples

further demonstrate the possibility that the stability properties of the high-capital-stock steady

state depend upon the rate of money growth.7 As the rate of money creation rises, it can transpire

that the high activity steady state is transformed from a saddle to a source. Hence it can no longer

be approached, and if the economy converges to a steady state, it must converge to the low activity

steady state. Consequently, for economies whose in°ation rate exceeds some critical level, the only

\relevant" steady state may be the low activity one. Thus economies with high enough rates of

in°ation can display discretely lower long-run levels of real and ¯nancial market activity than their

low in°ation counterparts. Moreover, economies in low activity steady states (those with high rates

of in°ation) will display a much di®erent correlation pattern between in°ation and ¯nancial market

conditions than will economies in high activity steady states (those with lower rates of in°ation).

What accounts for the existence of multiple steady states, and for the other ¯ndings we have

described? In this economy, a steady state equilibrium has the property that the return on loans

and the return on equity must equal the prevailing real rate of return on money.8 This is given,

in a steady state, by the exogenously determined rate of money growth. In the presence of the

CSV problem, the return on loans depends on two factors: the marginal product of capital, and the

quantity of internal ¯nance provided.9 Thus the required rate of return on loans can be obtained

either by having a relatively low stock of capital, along with a relatively high marginal product of

7 Boyd and Smith (1998) and Huybens and Smith (1998) obtain some analytical results on this point in much

simpler, but related models.

8 Again we emphasize that this feature of the economy is not essential to our results. What is necessary is that

higher in°ation lowers long-run real returns. Negative associations between in°ation and real returns on a variety of

savings instruments are well-documented empirically.

9 The latter point was ¯rst made by Bernanke and Gertler (1989).
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capital, a low level of income, and a low level of internal ¯nance; or by having a relatively high

stock of capital, a correspondingly high level of internal ¯nance, but a low marginal product of

capital. These two methods of delivering a particular rate of return typically yield two steady state

equilibria. The high activity steady state will also have a high level of internal ¯nance, and the

higher the steady state capital stock, the higher will be the amount of internal ¯nance provided.10

If the steady state real return is lowered by an increase in the steady state rate of in°ation, in

the high activity steady state the result is a decline in the quantity of internal ¯nance provided.

This produces the required decline in the real return on loans. It also exacerbates the severity of

the CSV problem and leads to more extensive rationing of credit. As a result, the capital stock

falls. And, under the conditions we describe, so does the volume of ¯nancial market activity. Thus

this model can potentially account for all of the observations cited above.

The paper proceeds as follows. Sections 1 and 2 describe the environment and the nature of

trade in the model. Section 3 analyzes steady state equilibria. Section 4 discusses steady state

¯nancial market activity and its relation to in°ation. Section 5 brie°y discusses local dynamics,

while section 6 concludes.

1 The Model

We examine an economy consisting of an in¯nite sequence of two-period lived, overlapping gener-

ations. Each generation is identical in size and composition, and contains a continuum of agents

with unit mass. Throughout, we let t = 0; 1; ::: index time.

At each date a single ¯nal good is produced using a constant returns to scale technology with

10 Hamid and Singh (1992) document that, as an empirical matter, countries with high income levels also - on

average - have high fractions of capital investments that are ¯nanced internally.
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capital and labor as inputs. Let Kt denote the time t capital input, and Lt denote the time t labor

input of a representative ¯rm. Then its ¯nal output is F (Kt; Lt). We will assume that F is a CES

production function with elasticity of substitution greater than 1, that is F (K;L) ´ [®K½ + ¯L½]
1
½ ;

with 0 < ½ < 1. Thus F is increasing in each argument and strictly concave. In addition, if k ´ K=L

is the capital-labor ratio, and if f(k) ´ F (k; 1) = [®k½ + ¯]
1
½ is the intensive production function,

then f 0 > 0 > f 00 holds 8k, and in addition lim
k!0

f 0(k) = 1.

Agents are assumed to care only about old age consumption and, in addition, all agents are risk

neutral. Thus all young period income is saved.

There are potentially three assets in our economy, money and investments in the two di®erent

technologies for converting ¯nal goods into capital. The two capital production technologies are

indexed by j = 1; 2: Technology j = 1 is a simple capital production technology: one unit of the ¯nal

good invested at t returns R1 > 0 units of capital at t + 1: Technology j = 2 is a more complicated

capital production technology, which has the following properties. First, only a fraction ± 2 (0; 1)

of the population - which we will call potential borrowers - has access to this technology. The

remaining fraction (1 ¡ ±) of the population - which we will call lenders - does not have access to

the complicated capital production technology. Second, the technology is indivisible: each potential

borrower has one investment project which can only be operated at the scale q: Third, when this

technology is utilized, two periods are needed to obtain mature capital. Fourth, the return on

investments in technology 2 is random. More speci¯cally, then, q > 0 units of the ¯nal good

invested in technology 2 at t yield zq units of capital in progress (CIP) at t + 1, and R2zq units

of capital at t + 2: The random variable z is iid (across borrowers and periods), and is realized at

t + 1. We let G denote the probability distribution of z, and assume that G has a di®erentiable

density function g with support [0; ¹z]. Let ẑ be the expected value of z. Finally, we assume that
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this technology is subject to a standard CSV problem of the type introduced by Townsend (1979):

only the project owner can costlessly observe z, while any agent other than the project owner can

observe z only by bearing a ¯xed cost of ° > 0 units of capital in progress (CIP).11

Capital produced by the simple investment technology is a perfect substitute for capital produced

in the alternative fashion. Moreover, we assume that the capital stock depreciates completely after

being used in production.

With respect to endowments, all young agents are endowed with one unit of labor, which is

supplied inelastically, and agents are retired when old. Individuals other than the old of period zero

have no endowment of capital or ¯nal goods, while the initial old agents have an aggregate capital

endowment of K0 > 0; and an aggregate endowment of capital in progress, CIP0 > 0.

2 Trade

2.1 Factor Markets

We assume that capital and labor are traded in competitive markets at each date. Then, letting wt

denote the time t real wage rate and ½t the time t capital rental rate, the standard factor pricing

relationships obtain:

½t = f 0(kt) (1)

wt = f(kt) ¡ ktf
0(kt) ´ w(kt): (2)

Clearly w0(k) > 0 holds.

11 That is, in verifying the project return, ° units of CIP are used up. This assumption is responsible for the simple

form assumed by the expected return to lenders under credit rationing [see equation (15) below].
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2.2 Credit Markets

All young agents at t supply one unit of labor inelastically, earning the real wage rate wt. However,

we will assume that this young period income does not su±ce to run a capital production project

of type j = 2:

Assumption 1 q > w(kt) for all \relevant" values of kt:

Thus, potential borrowers must obtain external ¯nancing to invest in technology 2. Let bt denote

the amount borrowed (in real terms) at t by the operator of a funded type 2 project ; clearly

bt = q ¡ w(kt): (3)

We can think of this borrowing as being intermediated (Williamson, 1986).

If potential borrowers attempt to obtain external funding they do so by announcing loan contract

terms. These announced contract terms are either accepted or rejected by intermediaries: borrowers

whose terms are accepted then receive funding and operate their projects. A loan contract consists

of the following objects. First, there is a set of project return realizations At for which veri¯cation of

the project return occurs at t. Veri¯cation of project returns does not occur if z 2 Bt ´ [0; ¹z]¡At.
12

Second, if z 2 At, then it is possible to make the contractual repayment contingent on the project

return. Thus if z 2 At we denote the promised payment (per unit borrowed) by Rt(z). On the

other hand, if z 2 Bt then the loan payment cannot meaningfully depend on the project return,

and the loan contract o®ers an uncontingent payment of xt (per unit borrowed) for all z 2 Bt. All

payments speci¯ed by any contract are in real terms.

12 We thus abstract from stochastic state veri¯cation. In a similar context, Boyd and Smith (1994) show that the

welfare gains from stochastic monitoring are trivial when realistic parameter values are assumed.
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Loan contracts o®ered by borrowers are either accepted or rejected by intermediaries who -

without loss of generality - we can think of as making all loans. Thus intermediaries take deposits,

make loans, and conduct the monitoring of project returns. We assume that any lender can establish

an intermediary. In equilibrium intermediaries will be perfectly diversi¯ed, earn zero pro¯ts, and

have a nonstochastic return on their portfolios.13

Since agents are two-period lived, a young borrower who initiates a capital investment of type

j = 2 will seek to sell his \immature" capital in a secondary market. Let ut denote the price of one

unit of capital in progress (CIP) at time t:

Intermediaries accept deposits taking the gross real return that must be paid on them - rt between

t and t + 1 - as given, and they act as if they can obtain any desired quantity of deposits at that

rate. It follows that intermediaries are willing to accept loan contract o®ers yielding an expected

return no less than rt. Thus loan contract o®ers must satisfy the expected return constraint

Z

At

[Rt(z)bt ¡ ut+1°]g(z)dz + xtbt

Z

Bt

g(z)dz ¸ rtbt: (4)

In particular, expected repayments must at least cover the intermediary's cost of funds - rtbt - plus

the real expected monitoring cost

ut+1°

Z

At

g(z)dz:

The expected monitoring cost depends on ut+1, of course, because ° units of capital in progress

are expended when project returns are veri¯ed. Finally, project owners must have the appropriate

incentives to correctly reveal when a monitoring state has occurred. This requires that

Rt(z) · xt; z 2 At: (5)

13 As a result, intermediaries need not be monitored by their depositors. See Krasa and Villamil (1992) for a

consideration of intermediaries that cannot perfectly diversify risk.
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In addition, contractually speci¯ed repayments must be feasible for the borrower, so that

Rt(z) · ut+1zq

bt
; z 2 At (6)

xt · inf
z2Bt

[
ut+1zq

bt
]: (7)

Equations (6) and (7) state that repayments never exceed the real value of the CIP yielded by an

investment project, which in state z is ut+1zq at t + 1.

Borrowers announce contract terms in order to maximize their own expected utility subject to

the constraints (4)-(7). Therefore, announced loan contracts at date t will be selected to maximize

ut+1ẑq ¡ bt

Z

At

Rt(z)g(z)dz ¡ xtbt

Z

Bt

g(z)dz

subject to these constraints.

At an optimum, borrowers o®er a standard debt contract (modi¯ed for the presence of internal

¯nance). In particular, the borrower either repays xt (principal plus interest) or else defaults. In

the latter case the lender veri¯es the project return, and retains the proceeds of the project net of

monitoring costs. Formally,

Proposition 1 Suppose q > bt. Then the optimal contractual loan terms satisfy

Rt(z) =
ut+1zq

bt
; z 2 At (8)

At = [0;
xtbt

(ut+1q)
) (9)

rt =
Z

At

·
Rt(z) ¡ ut+1°

bt

¸
g(z)dz + xt

Z

Bt

g(z)dz: (10)

The proof of Proposition 1 is standard,14 and we omit it here.

14 See Gale and Hellwig (1985) or Williamson (1986, 1987).
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For future reference, substituting (8) and (9) into (10) yields

Z

At

·
Rt(z) ¡ ut+1°

bt

¸
g(z)dz + xt

Z

Bt

g(z)dz

= xt ¡
µ

ut+1°

bt

¶
G

µ
xtbt

(ut+1q)

¶
¡ ut+1q

bt

xtbt
(ut+1q)Z

0

G(z)dz ´ ¼

·
xt;

bt
ut+1

¸
= rt: (11)

The function ¼ gives the expected return to a lender as a function of the gross loan rate, xt, the

amount of external ¯nance required, bt, and the future relative price of CIP, ut+1.

It will be useful in what follows to put some additional structure on the function ¼. In particular,

we will assume the following.

Assumption 2 g(z) + (°q )g
0(z) ¸ 0; for all z 2 [0; ¹z]:

Assumption 3 ¼1[0; ( bt
ut+1

)] > 0:

Assumption 2 implies that ¼11 < 0. Assumptions 2 and 3 imply that the function ¼ has the

con¯guration depicted in ¯gure 1. Evidently, given bt=ut+1, there is a unique value of xt which

maximizes the expected return that can be o®ered. We denote this value by x̂(bt=ut+1), where the

function x̂ is de¯ned implicitly by

¼1

·
x̂

µ
bt

ut+1

¶
;

bt
ut+1

¸
´ 1 ¡

µ
°

q

¶
g

·
x̂

µ
bt

ut+1

¶
bt

(ut+1q)

¸
¡ G

·
x̂

µ
bt

ut+1

¶
bt

(ut+1q)

¸
´ 0: (12)

Equation (12) and assumption 3 imply that

x̂

µ
bt

ut+1

¶
bt

(ut+1q)
´ ´ (13)

where ´ > 0 is a constant satisfying 1¡ (°q )g(´) ¡ G(´) ´ 0. When all potential borrowers o®er the

interest rate x̂(bt=ut+1); project return veri¯cation occurs i® z 2 [0; ´).
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2.3 Credit Rationing

A well known feature of the environment just described - which was originally noted by Gale and

Hellwig (1985) and Williamson (1986, 1987) - is that it permits the existence of unful¯lled demand

for credit. In particular, if all borrowers desire to operate their projects at date t, the total (per

capita) demand for funds is ±q. The total per capita supply of saving is w(kt) at t. Therefore credit

demand must exceed credit supply, and hence credit must be rationed, if the following assumption

holds for all t ¸ 0.

Assumption 4 ±q > w(kt):

When credit rationing exists, however, it also must be the case that

xt = x̂

µ
bt

ut+1

¶
: (14)

Equation (14) asserts that all potential borrowers are o®ering the interest rate that maximizes a

prospective lender's expected rate of return. As a result, rationed (unfunded) potential borrowers

cannot obtain credit simply by o®ering an alternative set of loan contract terms, since doing so

reduces the expected return perceived by (all) lenders. Thus if assumption 4 and equation (14) hold

at date t, credit rationing is an equilibrium outcome. We focus here on economies where credit is

rationed at all dates.15

15 When credit is rationed, the probability that any project will have to be monitored, ex post, is simply G (´). Thus

the monitoring probability - and, by implication, the probability of bankruptcy - is independent of any endogenous

variables. The result is a substantial technical simpli¯cation, as is illustrated by the relatively simple expression in

equation (15) describing the expected return received by a lender.

Of course credit rationing is clearly a widespread phenomenon in developing countries (McKinnon, 1973), and there

is substantial evidence of signi¯cant rationing of credit even in the United States (Japelli, 1990). Therefore this does

not seem to be an empirically unreasonable assumption.
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2.3.1 Payo®s Under Credit Rationing

We now describe the expected payo®s received by lenders and (funded) borrowers when credit is

rationed. For lenders, equations (11) and (14) imply that the expected return on bank deposits

(and loans) at t satis¯es

rt = ¼

·
x̂

µ
bt

ut+1

¶
;

bt
ut+1

¸
´ ut+1q

bt

8
>>><
>>>:

x̂

µ
bt

ut+1

¶
bt

(ut+1q)
¡

µ
°

q

¶
G

·
x̂

µ
bt

ut+1

¶
bt

(ut+1q)

¸
¡

x̂bt
(ut+1q)Z

0

G(z)dz

9
>>>=
>>>;

´ ut+1q

bt

2
4´ ¡ (

°

q
)G(´)¡

Ź

0

G(z)dz

3
5 : (15)

In particular, the return on savings between t and t + 1 is proportional to the ratio ut+1=bt when

credit rationing obtains.

It is also possible to show that the expected utility of a funded borrower at t under credit

rationing is given by

ut+1ẑq ¡ rt+1bt ¡ ut+1°G

·
x̂

µ
bt

ut+1

¶
bt

(ut+1q)

¸
´ ut+1q

·
ẑ ¡ (

°

q
)G(´)

¸
¡ rt+1bt:

Since any potential borrower could always forego investing in his project and deposit his income

in a bank instead, all potential borrowers can guarantee themselves the utility level rt+1wt. Thus

(potential) borrowers wish to operate their projects (under credit rationing) i®

ut+1q

·
ẑ ¡ (

°

q
)G(´)

¸
¡ rt+1bt ¸ rt+1wt: (16)

We now de¯ne

Á ´ ẑ ¡ (
°

q
)G(´)

Ã ´ q

2
4´ ¡ (

°

q
)G(´)¡

Ź

0

G(z)dz

3
5 : (17)

The parameter Á is the expected project yield per unit invested, net of CIP consumed by monitoring,

under credit rationing. The parameter Ã determines the expected return on deposits under credit
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rationing, since

rt = Ã
ut+1
bt

´ Ã
ut+1

[q ¡ w(kt)]
: (18)

We now observe that (16) is satis¯ed i®

Áut+1 ¸ rt: (19)

Equations (18) and (19) imply that

Á[q ¡ w(kt)] ¸ Ã (20)

must hold for all t ¸ 0 in order for borrowers to wish to operate their projects. Given assumption

4, a su±cient condition for (20) to obtain is that

(1 ¡ ±)Áq ¸ Ã: (21)

2.4 Money

The initial old at time zero are endowed with the initial per capita money supply M¡1 ¸ 0.

Thereafter, the money supply grows at the constant (gross) rate ¾ ¸ 1, which the government

selects once and for all at t = 0. Therefore

Mt+1 = ¾Mt; t ¸ ¡1: (22)

We let the government have an endogenous real expenditure level of gt (per capita) at time t.16 The

government budget constraint implies that

gt =
Mt ¡ Mt¡1

pt
: (23)

16 The analysis would be unaltered if monetary injections ocurred via lump-sum transfers to old lenders.
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Letting mt ´ Mt=pt denote the per capita stock of real balances, (22) and (23) imply that

gt = (
¾ ¡ 1

¾
)mt:

3 General Equilibrium Conditions and Steady States

In this section, we present equilibrium conditions and examine steady state equilibria in which

the same capital production technology (j), is in use permanently. We then present conditions

determining the equilibrium choice of investment technology. We begin with the case where the

short-gestation capital production technology is in use.

3.1 Steady State Equilibria when the Production Technology j=1 is Utilized

When the economy produces only type j = 1 capital, an equilibrium in which capital investments

coexist with money at all dates must satisfy the no-arbitrage condition

R1f
0(kt+1) =

pt
pt+1

; t ¸ 0: (24)

By de¯nition,

pt
pt+1

´ mt+1

mt

Mt

Mt+1
´ mt+1

¾mt
; (25)

so that (24) can be rewritten to yield

R1f
0(kt+1) =

mt+1

(¾mt)
; t ¸ 0: (26)

In addition, \sources" and \uses" of funds must be equal in equilibrium. If we let it denote the per

capita quantity of resources invested in capital production at t, then an equality between sources
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and uses of funds requires that

w(kt) = it + mt; t ¸ 0;

since young agents save all of their wage income. Of course,

kt+1 = R1it; t ¸ 0;

and therefore

mt = w(kt) ¡ kt+1
R1

; t ¸ 0: (27)

In steady state, equations (26) and (27) reduce to

R1f
0(k) =

1

¾
; (28)

m = w(k) ¡ k

R1
: (29)

Given our assumptions on the production technology f; it is clear that a unique monetary steady

state ks exists when the economy produces only type j = 1 capital.

3.2 Steady State Equilibria when the Production Technology j=2 is Utilized

When the economy produces only type j = 2 capital, an equilibrium in which money is valued, and

in which loans to capital producers are made at all dates requires that the returns on these two

assets must be equalized,

rt = Ã
ut+1

[q ¡ w(kt)]
=

pt
pt+1

; t ¸ 0: (30)
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Furthermore, in order for young lenders at time t + 1 to buy CIP at the price ut+1 , it must be the

case that, in equilibrium, these claims to capital ownership yield the same return as bank deposits

or money between periods t + 1 and t + 2: Therefore

R2f
0(kt+2)

ut+1
= rt+1 =

pt+1
pt+2

; t ¸ 0 (31)

must be satis¯ed as well. Equations (30) and (31) then imply the following equilibrium condition

rtrt+1 = Ã
R2f

0(kt+2)
[q ¡ w(kt)]

=
pt

pt+1

pt+1
pt+2

; t ¸ 0: (32)

Using equation (25), (32) can be rewritten as

Ã
R2f

0(kt+2)
[q ¡ w(kt)]

=
1

¾2
mt+2

mt
; t ¸ 0: (33)

As before, it must also be the case that \sources" and \uses" of funds are equated. If ¹t denotes

the fraction of potential borrowers who are funded at t; then the \uses" of funds in real terms at t

is ±q¹t, plus the real value of CIP purchased by young agents at time t, plus real balances; that is

±q¹t + ±q¹t¡1Áut + mt: \Sources" of funds are simply per capita savings; that is w(kt): Therefore

w(kt) = ±q¹t + ±q¹t¡1Áut + mt (34)

must hold at all dates. Since kt+2 = R2Áit = R2Á±q¹t, equation (34) can be rewritten as

w(kt) =
kt+2
R2Á

+
kt+1
R2

ut + mt; t ¸ 0: (35)
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Moreover, equation (31) implies that ut = R2¾f 0(kt+1) (mt=mt+1) : Substituting this result in (35)

yields

mt = w(kt) ¡ kt+1¾f 0(kt+1)
µ

mt

mt+1

¶
¡ kt+2

R2Á
; t ¸ 0: (36)

For an economy which produces only type j = 2 capital, equations (33) and (36) describe the

evolution of any equilibrium sequences fkt;mtg when credit is rationed. In a steady state, this

dynamical system reduces to

s
R2Ã

f 0(k)

[q ¡ w(k)]
=

1

¾
= r; (37)

m = w(k) ¡ k¾f 0(k) ¡ k

R2Á
: (38)

We now de¯ne the function H(k) by

H(k) ´ f 0(k)

[q ¡ w(k)]
: (39)

Then, in a steady state equilibrium where only type j = 2 capital is produced, the per capita capital

stock satis¯es the following condition:

H(k) =
1

R2Ã¾2
: (40)

It will clearly be necessary to establish some properties of the function H. These are stated in

Lemma 1.

Lemma 1 The function H satis¯es

(a) lim
k!0

H(k) = 1

(b) lim
k!k̂

H(k) = 1 where k̂ ´ w¡1(q)

(c) H0(k) · (¸)0 i® k · (¸)f¡1(q), and

(d) kH(k) > (=;<)1 i® k > (=;<)f¡1(q):
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The proof of Lemma 1 is presented in appendix A.

Lemma 1 implies that the function H has the con¯guration depicted in ¯gure 2, and it is clear

from this picture and equation (40) that there are potentially two steady states, kc1 and kc2, when

the economy produces only type j = 2 capital.

3.3 The Equilibrium Choice of Capital Production Technology

Whether type j = 1 or type j = 2 capital will be produced in equilibrium depends on the respective

rates of return on these alternative capital production technologies. More precisely, we can state

the following proposition.

Proposition 2 In a steady state equilibrium, type j = 2 capital will be produced i®

f 0(k)[q ¡ w(k)] <
R2Ã

(R1)
2 :

The proof of proposition 2 is presented in the appendix B.

Corollary 1 Let k be de¯ned by

f 0(k)[q ¡ w(k)] =
R2Ã

(R1)
2 :

Then type j = 1 capital will be produced in steady state if k < k; while type j = 2 capital will be

produced in steady state if k > k:

Proof. Clearly the expression f 0(k)[q ¡ w(k)] is a decreasing function of k. In combination with

proposition 2, this establishes the result.

We can now distinguish between two cases.

Case 1: k < f¡1(q): This is the situation depicted in ¯gure 3. For case 1, the following proposition

is immediate from an examination of ¯gure 3.
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Proposition 3 (a) Suppose that
¡
R2Ã¾2

¢¡1
> H[f¡1(q)]. Then there are exactly two steady state

values of k, denoted by k1 and k2 in ¯gure 3. If R1f
0(k) · 1=¾, then k1 satis¯es (28). If R1f

0(k) >

1=¾, then k1 is given by the smallest solution to (40). In each case k2 is the largest solution to (40).

(b) Suppose that
¡
R2Ã¾2

¢¡1
< H[f¡1(q)]. Then there is no monetary steady state with credit

rationing.

Figure 4 depicts the consequences (for the steady state capital stock) of an increase in the rate

of money creation, when case 1 obtains. As is apparent from the ¯gure, an increase in the money

growth rate (the steady state in°ation rate), increases the steady state capital stock in the low-

capital stock steady state, but decreases the steady state capital stock in the high-capital-stock

steady state. The relationship between the rate of money creation and the steady state capital

stock for case 1 is presented in ¯gure 5.

Case 2: k > f¡1(q): This is the situation depicted in ¯gure 6. For case 2, the following proposition

can be deduced from that ¯gure.

Proposition 4 (a) Suppose that 1=¾ > R1f
0(k). Then there are exactly two steady state values of

k, denoted by k1 and k2 in ¯gure 6. The value k1 satis¯es (28) while k2 is the largest solution of

(40).

(b) Suppose that 1=¾ < R1f 0(k). Then there is no monetary steady state with credit rationing.

The result of increasing the money growth rate (the steady state in°ation rate) is depicted in ¯gure

7. As in case 1, an increase in the rate of money creation increases the steady state capital stock in

the low-capital stock steady state, but decreases the steady state capital stock in the high-capital-

stock steady state. The relationship between the rate of money creation and the steady state capital

stock for case 2 is presented in ¯gure 8.
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It remains to state conditions under which the steady state level of real balances is positive.

For steady states with the type 1 capital production technology in use, our assumptions on f(k)

imply that real balances are necessarily positive - in the steady state - if R1w(k) > k is satis¯ed.

For steady state equilibria where the type 2 capital production technology is utilized, real balances

will be positive necessarily if w(k2) ¡ ¾k2f
0(k2) > k2= (ÁR2) holds. Moreover, for steady states

determined by (40) it is necessary to verify that (i) credit is rationed, and (ii) borrowers prefer to

borrow rather than lend. The former condition will be satis¯ed if k2 < ÁR2±q holds, while the latter

will be satis¯ed if Á[q ¡ w(k2)] ¸ Ã obtains.

From this initial analysis it is clear that our economy is capable of reproducing several of the

empirical facts laid out in the introduction. First, the high-capital-stock steady state displays a

negative relationship between in°ation and real activity [see point (1) of the introduction]. Moreover,

in case 1 it is easy to verify that this relationship becomes more pronounced at high rates of in°ation.

Second, as is apparent from equation (37), the real return on equity holdings, r, is negatively related

to in°ation [see point (4) of the introduction]. Indeed, the real return on equity falls one-for-one

with increases in the in°ation rate. This is consistent with the large empirical literature that ¯nds

an essentially zero correlation between in°ation and nominal equity returns (Nelson, 1976; Fama

and Schwert, 1977; Gultekin, 1983; Boyd, Levine and Smith, 1996). And ¯nally, a high level of real

activity is associated with a high level of internal project ¯nance, as is true empirically (Hamid and

Singh, 1992).

What is the economic intuition behind these results? An increase in the money growth rate,

ceteris paribus, reduces the steady state return on money. Hence, for money and other assets to be

held simultaneously, the return on these assets has to decrease as well. For steady states in which

all capital is produced using technology 1, and which therefore satisfy (28), this implies an increase
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in the steady state capital stock. For steady states in which all capital is produced using technology

2, and which thus satisfy (40), the decrease in the return on money likewise has to be accompanied

by a decrease in the return on loans, as well as a decrease in the return to equity holdings. Given

the presence of the CSV problem, the consequences of this observation depend on the nature of

the steady state equilibrium that obtains. In the low-capital-stock steady state, a decrease in the

rate of return on money implies an increase in the steady state capital stock. When the capital

stock increases, the level of internal ¯nance of investment projects rises as well, which by itself

tends to mitigate the CSV problem and increase the return on loans. However, on the downward

sloping portion of the function H(k), the higher level of internal ¯nance fails to compensate for the

reduction in the marginal product of capital. Hence an increase in the per capita capital stock leads

to the required fall in the rates of return on loans and equity holdings. In the high-capital-stock

steady state the same two e®ects are at work. However, on the upward sloping portion of H(k), the

consequences of a change in the level of internal ¯nance dominate the consequences of a change in

the marginal product of capital. Therefore a higher steady state rate of in°ation leads to a fall in

the steady state capital stock. The implied reduction in the provision of internal ¯nance more than

o®sets the e®ect of the increase in the marginal product of capital, and again the rate of return on

loans and equity falls in the necessary way.

4 Financial Market Activity and In°ation

We now proceed to discuss the volume of ¯nancial market activity in steady states, and to examine

how this is related both to the level of real activity, and to the rate of in°ation. We are able to

show that under certain technical conditions, equity market and bank lending activity are both

positively related to the level of real activity in the high-capital-stock steady state of our economy.
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This accords well with the empirical facts presented in point (2) of the introduction. Moreover,

we show that as the level of real activity increases in that steady state, the importance of equity

market activity relative to bank lending activity increases as well, which accounts for the empirical

regularity mentioned in point (5) of the introduction. Of course, when case 2 obtains, no equity

market activity or bank lending activity takes place in the low capital stock steady state.

In the next section we will also show that - at least in case 2 - the low-capital-stock steady state

is always a saddle. In addition we will provide a set of examples with the following features. When

the rate of money creation is su±ciently low, the high-capital-stock steady state is a saddle, with

a two-dimensional stable manifold. As a result, the high activity steady state can be approached

from some combination of initial conditions. Then, over some range of money growth rates, higher

rates of money creation can - in the high activity steady state - lead to a reduction in the level of

real activity, equity market activity and bank lending activity, and to a decline of the importance

of equity markets relative to bank lending. However, once the steady state rate of in°ation reaches

some critical level, the high-capital-stock steady state is transformed from a saddle to a source.

Consequently the high activity steady state cannot be approached, and the low-capital-stock steady

state is the only economically relevant steady state equilibrium of our economy. An increase in the

money growth rate above some critical level is therefore accompanied by a sharp decrease in real

activity, if a steady state is attained, while ¯nancial markets shut down altogether when case 2

obtains. Further increases in the rate of money creation then have no additional e®ects on the level

of ¯nancial intermediation or equity market activity. These results accord well with the evidence

presented in point (3) of the introduction. Once the rate of in°ation exceeds some threshold level,

the association between further increases in in°ation and ¯nancial market activity disappears.

For the remainder of the analysis, we will focus on economies where case 2 obtains. Thus, we
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will henceforth adopt the following assumption.

Assumption 5 k > f¡1(q):

We now introduce two measures of steady state ¯nancial market activity, with the ¯rst repre-

senting the level of equity market activity, and with the second representing bank lending activity.

Our measure of equity market activity, E, represents the real value of CIP sold in secondary capital

markets relative to the size of the economy, that is

E (k) ´ Á±¹qu

f(k)
:

In e®ect, then, the function E (k) represents the ratio of the total value of trading in secondary

capital markets to GDP, for each possible value of the capital stock consistent with technology

2 being in use. Since in steady state, Á±¹q = k
R2

; while u = f 0(k)
p

R2= [ÃH(k)], an alternative

expression for this ratio is given by

E (k) =
kf 0(k)

f(k)

s
1

R2ÃH(k)
: (41)

In addition, we introduce a measure of bank lending activity, B, which represents the real value

of intermediated lending relative to the size of the economy for each value of the capital stock

consistent with technology 2 being in use. B is given by

B (k) ´ ±¹ [q ¡ w(k)]

f(k)
:

Of course ± is the fraction of potential borrowers in the population, of whom a fraction ¹ actually

receive credit, while each funded borrower receives a loan of q¡w(k). Hence per capita bank lending

is given by ±¹ [q ¡ w(k)], and B (k) expresses the volume of bank lending to the private sector relative

to GDP. An alternative expression for B (k) is obtained by noting that ±¹ = k= (R2Áq), so that

B (k) =
kf 0(k)

R2Áqf(k)

1

H(k)
: (42)
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Finally, we introduce a measure of the relative importance of equity market versus banking activity,

EB (k) =
E (k)

B (k)
= Áq

s
R2H(k)

Ã
: (43)

We can now state the following proposition.

Proposition 5 Let ky be de¯ned by kyf 0(ky)
[q¡w(ky)] = (1+½)

(1¡½) ; and let kyy be de¯ned by kyyf 0(kyy)
[q¡w(kyy)] = 1

(1¡½) :

Then

(a) f¡1(q) < kyy < ky

(b) E0(k2) > 0 i® k2 < ky ,

(c) B0(k2) > 0 i® k2 < kyy, and

(d) EB0(k2) > 0:

The proof for proposition 5 appears in appendix C. Obviously, for economies which produce only

type j = 1 capital, E = B = 0:

We now present some examples which illustrate the e®ect of an increase in the steady state

rate of in°ation on the steady state levels of output, equity market activity, bank lending activity

and on the relative importance of equity markets versus intermediated lending. Our examples set

f(k) =
¡
0:1025k0:5 + 1:5

¢2
, q = 3, g(z) = 1=¹z with ¹z = 33:33, ° = 75:49, R1 = 10; R2 = 1, and

in addition ± > 0:99 holds. For these parameter values, Á = 10:5 and Ã = 3. Moreover, k = 5:42,

while f¡1(q) = 5:12, so that case 2 obtains:

Example 2 For ¾ = 1:25, the low-capital-stock steady state is k1 = 4:89 and the high-capital-stock

steady state is k2 = 8:94. For the high-capital-stock steady state, E = 0:212, B = 0:02525, and

EB = 8:4:

Example 3 For ¾ = 1:26, the low-capital-stock steady state is k1 = 4:99 and the high-capital-stock
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steady state is k2 = 8:55. For the high-capital-stock steady state, E = 0:209, B = 0:02517, and

EB = 8:3:

So, as the rate of money creation and the steady state rate of in°ation increase from 25 to 26 percent,

real activity in the low-capital-stock steady state increases, while output in the high-capital-stock

steady state decreases. As real activity in the high-capital-stock steady state decreases, so does

the level of equity market and bank lending activity. At the same time, the importance of equity

market activity relative to bank lending activity decreases as well.

5 Local Dynamics

We now turn brie°y to an analysis of the local stability properties of steady state equilibria. This

analysis permits us to formalize some of the discussion in the previous section and - in particular -

it allows us to illustrate how increases in the rate of in°ation can transform the high activity steady

state from a saddle to a source. We have already described the implications of this observation.

For equilibria with k · k, only the short-gestation capital production technology is utilized. It

is then immediate that the behavior of our economy is identical to the behavior of the Diamond

(1965) model. As a result, given our focus on case 2 economies, the low-activity steady state is

necessarily a saddle (Azariadis, 1993, Chapter 26).

When k ¸ k holds, on the other hand, the long-gestation capital production technology is

employed and matters are substantially more complicated. To see this, notice that equations (33),

and (36) describe the equilibrium evolution of the sequences fkt;mtg under credit rationing. The

pair of equations (33) and (36) is obviously a system of two second order di®erence equations, which
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can be alternatively represented as follows. Let

kt+1 = yt, (44)

and

mt+1 = zt: (45)

Then (33) can be written as

yt+1 = R2Á

·
w(kt) ¡ yt

mt

zt
¾f 0(yt) ¡ mt

¸
; (46)

while (36) becomes

zt+1 = R2Ã¾2mt

f 0
n
R2Á

h
w(kt) ¡ yt

mt
zt

¾f 0(yt) ¡ mt

io

[q ¡ w(kt)]
; t ¸ 0: (47)

We now linearize the dynamical system consisting of equations (44) - (47) in a neighborhood of

(any) steady state equilibrium (k;m; y; z). Then we have

(kt+1 ¡ k; mt+1 ¡ m;yt+1 ¡ y; zt+1 ¡ z)0 = J(kt ¡ k;mt ¡ m; yt ¡ y; zt ¡ z)0

where J is the Jacobian matrix

J =

2
6666666666664

@kt+1
@kt

@kt+1
@mt

@kt+1
@yt

@kt+1
@zt

@mt+1

@kt

@mt+1

@mt

@mt+1

@yt

@mt+1

@zt

@yt+1
@kt

@yt+1
@mt

@yt+1
@yt

@yt+1
@zt

@zt+1
@kt

@zt+1
@mt

@zt+1
@yt

@zt+1
@zt

3
7777777777775

;

with all partial derivatives evaluated at the appropriate steady state. Expressions for these deriva-

tives are given in appendix D.
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The characteristic equation for J takes the form

¸2
½·

@yt+1
@yt

¡ ¸

¸ ·
@zt+1
@zt

¡ ¸

¸
¡ @zt+1

@yt

@yt+1
@zt

¾
¡ ¸

½
@yt+1
@mt

@zt+1
@yt

¡ @zt+1
@mt

·
@yt+1
@yt

¡ ¸

¸¾
+

¸

½
@yt+1
@kt

·
@zt+1
@zt

¡ ¸

¸
¡ @zt+1

@kt

@yt+1
@zt

¾
+

@yt+1
@kt

@zt+1
@mt

¡ @zt+1
@kt

@yt+1
@mt

= 0: (48)

We have not made any signi¯cant progress in providing a general characterization of the local

stability properties of steady state equilibria when k ¸ k. However, we have produced a series of

numerical examples that illustrate the e®ect of an increase in the money growth rate on the stability

properties of the high-capital-stock steady state.

As in the previous section, our examples assume that f(k) =
¡
0:1025k0:5 + 1:5

¢2
, q = 3, g(z) =

1=¹z with ¹z = 33:33, ° = 75:49, R1 = 10; R2 = 1, and that ± > 0:99 holds. For these parameter

values, Á = 10:5 and Ã = 3. And, as before, k = 5:42, while f¡1(q) = 5:12, so that case 2 obtains:

Example 4 For ¾ = 1:25, the parameters of the economy coincide with those for example 1, and

the steady state equilibrium values of interest are described there. In addition, at the high-capital-

stock steady state, mod(¸1) = mod(¸2) = 1:41; and mod(¸3) = mod(¸4) = 0:99, so the steady state

is a saddle, with a two-dimensional stable manifold. Paths approaching the steady state oscillate as

they do so.

Example 5 For ¾ = 1:30, the low-capital-stock steady state has k1 = 5:36 and the high-capital-

stock steady state has k2 = 6:34: For the high-capital-stock steady state, E = 0:19, B = 0:02363,

and EB = 8:07: Moreover, at the high-capital-stock steady state, ¸1 = ¡1:81; ¸2 = ¡1:14; and

mod(¸3) = mod(¸4) = 1:01, so the steady state is a source.

Thus, for this set of examples, low rates of money growth result in a determinate steady state.

In particular, there exists a unique dynamical equilibrium path that approaches the high activity
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steady state. However, as the money growth rate (and the steady state rate of in°ation) increase,

the economy crosses a \threshold" and the high-capital-stock steady state becomes a source. The

equilibrium behavior of the economy must change dramatically, and if the economy approaches

any steady state, that must obviously be the low-capital-stock steady state. Then not only will

real activity be low, but so will ¯nancial market activity. Moreover, further increases in in°ation

- at least in a case 2 economy - can have no incremental e®ects on the volume of ¯nancial market

activity. These predictions of the model are quite consistent with a number of the empirical ¯ndings

noted in the introduction.

In addition, as example 3 illustrates, dynamical equilibrium paths approaching the high activity

steady state can easily display endogenously arising volatility that dampens only very slowly. This

is not possible here unless banks and secondary capital markets are active. Thus, as argued by

Keynes (1936) and Friedman (1960) - and many others - the operation of the ¯nancial system can

readily give rise to endogenous °uctuations along perfect foresight equilibrium paths.

6 Conclusions

As an empirical matter, there is a strong positive association between measures of both bank lending

activity and the volume of trading in equity markets - on the one hand - and real activity on the

other. In addition, in°ation and real activity are negatively correlated, particularly for economies

with relatively high rates of in°ation. It is also true that in°ation and the development of the

¯nancial system are very negatively correlated, as are in°ation and real equity returns. Finally,

there is some empirical evidence in favor of thresholds: once the rate of in°ation exceeds some

critical level and stays there, there are strong observed reductions in the level of real activity

(\in°ation crises," in Bruno and Easterly's terminology), and the empirical relationship between

31



in°ation and ¯nancial market activity °attens substantially.

We have attempted here to produce a theoretical framework that can - at least under some

con¯gurations of parameter values - account for these ¯ndings and the other observations noted

in the introduction. Any model capable of doing so must contain - at a minimum - the following

features. There must be a role for banks, secondary capital markets, and money, and at least some

factors that increase the rate of in°ation must also a®ect real activity, the ¯nancial system, and the

real rate of return on equity. The model must also contain a mechanism explaining why matters

change when the rate of in°ation exceeds some critical value.

We have produced a model that has all of these features. To do so, we have started with a quite

conventional neoclassical growth model (Diamond, 1965), and introduced into it two technologies

for producing capital. One is very simple: it has a relatively short gestation period and anyone

can operate it. The other is more complex. Only certain people can run it, it must be operated

on a large scale, it involves a relatively lengthy gestation period for capital, and it has attached

to it a CSV problem. The combination of the CSV problem and the long-gestation period of this

technology implies that its use must be accompanied by banking and secondary capital market

activity.

In this framework we have described conditions under which there are exactly two steady state

equilibria (with credit rationing): one with a relatively low and one with a relatively high capital

stock. In the high-capital stock steady state, both banks and equity markets are active. The same

thing may or may not be true of the low-capital stock steady state. Moreover, we have shown that

in°ation and real activity must be negatively correlated in the high activity steady state. It can

also easily happen that this negative relationship will become more pronounced at relatively high

levels of in°ation. In addition, we have stated conditions such that real activity and the volume of
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¯nancial market activity are positively correlated in the high activity steady state. When this is

the case, obviously in°ation and ¯nancial market activity will be inversely related as well.

Finally, we have illustrated that the high-capital-stock steady state may be a saddle for low rates

of money growth. However, once the rate of money creation (in°ation) exceeds some critical level,

the high activity steady state can be transformed from a saddle to a source. Thus, thresholds can

easily exist: the behavior of the economy must di®er dramatically depending on whether the steady

state rate of in°ation is above or below this threshold level. This implication of the model is again

consistent with several pieces of empirical evidence described above.

In addition to explaining several established observations, our model yields some new testable

implications of its own. For instance, in a case 1 economy, the model predicts that the correlations

among in°ation, ¯nancial market conditions, and real activity will di®er strongly across three dis-

tinct situations: (i) k < k, (ii) k 2 (k; f¡1(q)); and (iii) k > f¡1(q): In a case 2 economy, these

correlations will change as k < k or k > k hold. Of course these implications of the analysis might be

di±cult to test in practice, as the critical values k and f¡1(q) might be hard to identify empirically.

Admittedly, in order to obtain all of these results we have had to make some strong assumptions.

A particularly strong assumption has been placed on the production technology: we have assumed

that capital and labor are highly substitutable in production (½ > 0). It would be interesting to

derive modi¯cations of the analysis that would allow us to relax this sort of condition in the future.
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APPENDIX

A. Proof of Lemma 1

Part (a) of Lemma 1 is immediate from lim
k!0

f 0(k) = 1 and assumption 1. Part (b) is also obvious.

For (c), it is easy to verify that

H 0(k) = ¡f 00(k)
[f(k) ¡ q]

[q ¡ w(k)]2
;

establishing the result. Part (d) follows from

kH(k) ´ kf 0(k)

[q ¡ w(k)]
=

kf 0(k)

[q ¡ f(k) + kf 0(k)]
:

B. Proof of Proposition 2

Type j = 2 capital will be produced in steady state i® the internal rate of return on investments

in technology 2 exceeds that on investments in technology 1. From equations (28) and (37), this

condition obtains i®
s

R2Ã
f 0(k)

[q ¡ w(k)]
> R1f

0(k): (49)

Rearranging terms in equation (49) establishes the result.

C. Proof of Proposition 5

(a) Given our assumption that 0 < ½ < 1; it follows that 1 < 1
(1¡½) < (1+½)

(1¡½) ; which implies

1 < kyyf 0(kyy)
[q¡w(kyy)] < kyf 0(ky)

[q¡w(ky)] : From Lemma 1 it is then obvious that f¡1(q) < kyy < ky, which

establishes part (a).

(b) Di®erentiating equation (41) and rearranging terms yields kE
0(k)

E(k) = w(k)
f(k)¡1

2kw0(k)
n
q¡w(k)+kf 0(k)
[kf 0(k)[q¡w(k)]]

o
.

Therefore, E0(k) > 0 holds i® kf 0(k)[q¡w(k)]
f(k) > 1

2

h
kw0(k)
w(k)

i
[q ¡ w(k) + kf 0(k)] : Since f(k) has the

CES form f(k) = [®k½ + ¯]
1
½ , with 0 < ½ < 1, it is straightforward to show that E0(k) > 0 i®

kf 0(k)
[q¡w(k)] < (1+½)

(1¡½) = kyf 0(ky)
[q¡w(ky)] : Lemma 1 then implies that ky > f¡1(q) is satis¯ed. Therefore, since

k2 > f¡1(q) necessarily holds it follows that E0(k2) > 0 obtains i® k2 < ky.
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(c) Di®erentiating equation (42) and rearranging terms, we obtain kB0(k)
B(k) =

h
w(k)
f (k)

i
¡ kw0(k)

[q¡w(k)] :

Therefore, B0(k) > 0 obtains i® [q¡w(k)]
f (k) > kw0(k)

w(k) : Since f(k) = [®k½ + ¯]
1
½ , with 0 < ½ < 1, it is

easy to show that B0(k) > 0 holds i® kf 0(k)
[q¡w(k)] < 1

(1¡½) = kyyf 0(kyy)
[q¡w(kyy)] : Lemma 1 then clearly implies

that kyy > f¡1(q) holds. In addition, since k2 > f¡1(q); it follows that B0(k2) > 0 is satis¯ed i®

k2 < kyy.

(d) H 0(k2) > 0 necessarily holds and the result is then immediate from (43).

D. Elements of the Jacobian

The elements of the Jacobian matrix are given by the following expressions:

@kt+1
@kt

= 0 (50)

@kt+1
@mt

= 0 (51)

@kt+1
@yt

= 1 (52)

@kt+1
@zt

= 0 (53)

@mt+1

@kt
= 0 (54)

@mt+1

@mt
= 0 (55)

@mt+1

@yt
= 0 (56)

@mt+1

@zt
= 1 (57)

@yt+1
@kt

= R2Áw0(k) (58)

@yt+1
@mt

= ¡R2Á

·
1 + ¾

kf 0(k)

m

¸
(59)

@yt+1
@yt

= R2Á¾
£
w0(k) ¡ f 0(k)

¤
(60)

@yt+1
@zt

= R2Á¾
kf 0(k)

m
(61)

@zt+1
@kt

= m
w0(k)

f 0(k)

·
1

R2Ã¾2
+ R2Áf 00(k)

¸
(62)
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@zt+1
@mt

= 1 + R2Ám
w0(k)

kf 0(k)

·
1 + ¾

kf 0(k)

m

¸
(63)

@zt+1
@yt

= ¡R2Á¾mf 00(k)

·
1 ¡ w0(k)

f 0(k)

¸
(64)

@zt+1
@zt

= ¡R2Á¾w0(k): (65)
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