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Abstract
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1 Introduction

In this paper we revisit the question of whether relative performance-adjusted con-
tracts provide portfolio managers with adequate incentives to gather information. We
show that when portfolio managers are constrained in their ability to short-sell, rel-
ative performance-adjusted or linear ‘benchmarked’ contracts can provide incentives
for gathering more precise information. We also provide conditions under which they
emerge as optimal linear contracts contracts.

Relative performance-adjusted contracts are compensation schemes for which the
manager’s wage consists of a percentage on her portfolio’s net return over a given
benchmark index plus, possibly a performance-free rent. Benchmark-adjusted com-
pensation is allowed in the US by Section 205 of the Investment Advisers Act. Ac-
cording to the regulation, the fee must be a fulcrum fee where the incentive (penalty)
component rises or falls symmetrically with the performance of the fund. Addition-
ally, performance must be measured against an appropriate independent index, rather
than in absolute terms. Empirical evidence shows that, even if not in an explicit way,
the compensation of portfolio managers often depends upon their performance rela-
tive to a benchmark. A survey by Del Guercio and Tkac (1998) reports that 59%
of mutual fund investors compared fund performance to that of an index. This per-
centage is lower than that in the pension fund industry where virtually in all cases
manager’s portfolio performance is compared to an index. Sirri and Tufano (1997)
find that mutual fund investors seem to base their fund purchase decision on prior
performance information, but do so asymmetrically, massively investing in funds that
performed well (relative to a benchmark) the prior period but failing to flee lower
performing funds at the same rate.

Households invest money through managers possibly because managers are bet-
ter informed. So, can households use benchmarked contracts to screen managers
with better information? Bhattacharya and Pfleiderer (1985) have shown that linear
contracts, like the benchmarked contracts defined above, can indeed be used as a
mechanism to screen out ‘better informed’ managers. In this context, an interesting
question posed by Stoughton (1993) is whether linear contracts induce managers to
improve the ‘quality’ (meaning precision) of their information. Stoughton (1993) as
well as Admati and Pfleiderer (1997) show that benchmarked contracts do not provide
managers with incentives to collect better information.

In this paper we show that Soughton (1993) and Admati and Pfleiderer’s (1997) re-
sults are critically dependent on the assumption that manager’s capacity to short-sell
is unconstrained. We show that with short-selling constraints benchmarked contracts
can induce effort on the part of both risk-averse and risk-neutral managers to gather
better information. In our model, the non-incentive result occurs as a special case
when the short-selling constraints tend to infinity in the limit.

The intuition behind our result is as follows: In forming her optimal portfolio, a
manager whose reward depends on a benchmarked compensation scheme takes into
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account the percentage she gets to retain from the portfolio’s return. A change in
this percentage would not change her expected wealth because she can appropriately
change the composition of her portfolio. As a result, a change in her share of the
portfolio’s return cannot change any of her actions. However, this is only true if she
can short-sell to any extent she wants to. However, when she is constrained in her
ability to short-sell this is no longer true. Now, she may no longer be able to form
the portfolio she desires. Constrained in such a manner, the manager can increase
her expected wealth only by increasing the precision of her signal (i.e. by reducing
the variance of her returns). In our model, the manager can increase signal precision
by putting in more effort. The extent to which she will want to expend more effort
in gathering more precise information will depend on her compensation scheme, her
risk aversion and her marginal disutility of effort.

Provided the manager is short-selling constrained, would her client (the house-
hold) offer her a benchmarked contract? Further, would the client impose short-selling
constraints on the manager? For analytical tractability we pose these questions in a
setting where both the client and the manager are risk neutral.1 In this framework,
Heinkel and Stoughton’s (1994) model shows that benchmarking is optimal (in the
class of linear contracts) for a particular exogenously given short-selling constraint.
We show that, for any exogenously given short-selling constraint, the optimal lin-
ear contract is benchmarked and the manager receives all the marginal returns to
the portfolio.2 As the short-selling constraint goes to infinity the optimal contract
remains a benchmarked contract. In the limit, the contract achieves the first-best.
Therefore, the optimal contract does not impose any short-selling constraint, however
it is benchmarked. Further, the need to screen out managers vanishes. Note that this
is different from claiming that benchmarked constraints fail to achieve screening.

The fact that short-selling constraints are not imposed in the risk-neutral case
does not imply that such a result should necessarily hold in the risk-averse case.
Note that in the risk-neutral case, even in the absence of short-selling constraints,
benchmarked contracts provide the manager with incentives to gather more precise
information. This, we show, cannot happen in the risk-averse case. Our conjecture
is that, in the latter case, the benefits of relaxing the short-selling constraint have to
be traded off against the loss of inducing the manager to collect better information.
At this point we may have both short-selling constraints and benchmarked contracts
in the optimal menu of contracts.

The rest of the paper is organized as follows. Section 2 will introduce the model.
The optimal portfolio of the risk-averse manager will be derived. It will be shown that
when borrowing constraints are present the manager’s optimal effort is, under certain
conditions, an increasing function of her share on the portfolio’s return. Section 3
analyzes the optimal contract offered by the risk- neutral client to the risk-neutral,

1In addition, since in this setting risk sharing is redundant, if benchmarking arises at all it will
be due to effort enhancing reasons.

2Our results should not be interpreted in a quantitative sense. They are only suggestive.
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short-selling constrained manager. The optimal contract will be explicitly derived.
For any value of the constraint, the optimal contract will be shown to be a bench-
marked contract. In the limit, the optimal contract is first-best and the need to screen
managers vanishes.

2 The risk-averse manager

Suppose a given investor endowed with a unit of wealth who faces an investment
opportunity set that consists just of two assets: a risky asset with known gross rate
of return x̃ and a bond paying a risk-less gross rate of return r. The investment
horizon is just one period. At the beginning of the period (t0) the investor decides
the optimal portfolio allocation so as to maximize her expected utility of wealth at t1.
Let θ denote the amount of money invested in the risky asset. Therefore, investor’s
(random) wealth at the end of the period will be

W̃ (θ) = (1− θ)r + θx̃. (1)

Given that the initial wealth of the investor is one unit, any θ strictly greater than
one or strictly smaller than zero would represent a leveraged position at investor’s
optimal portfolio: either she short-sells the risk-less bond (θ > 1) going long on the
risky asset or vice versa (θ < 0).

The optimal portfolio of the manager

The manager will be assumed to have valuable information for selecting stocks but
no information about the pervasive or market-wide factors that affect stock price
movements. In the literature of investment performance3 this is known as selectivity
versus timing ability. In our model there exists only one timing portfolio: the bond.
This represents the (informational) benchmark for households. The return on this
benchmark is therefore a known and fix constant that will be normalized to r =
0.4 The manager is supposed to have ‘private’ selectivity information concerning

3A partial list of references includes Fama (1972), Jensen (1972), Merton (1981), Admati, Bhat-
tacharya, Pfleiderer and Ross (1986) and Connor and Korajczyk (1995).

4In our model, the client is interested in ‘active’ management. This means she is only willing to
pay for valuable ‘private’ information she cannot learn herself. By normalizing the return on the
bond to zero the return on the manager’s portfolio is (implicitly) a benchmarked return. In other
words, if the manager behaves as a ‘passive’ investor (i.e. replicates the benchmark) her expected
performance-adjusted reward will be zero.

We could alternatively assume, like in Zwiebel (1995), the benchmark is a risky asset and that
only a zero-measure of managers invest in the non-benchmark asset. Then, assuming for instance
that asset’s returns are normally distributed, the common support of the real line for both returns
plus the zero-measure assumption allows the market to ignore the non-benchmark asset in forming
inferences. If there is a sufficiently large number of clients and managers the market will accurately
infer the (ex-post) benchmark’s return from the market average.
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the return on the risky asset. According to the standard definition of selectivity
information (see, e.g., Admati, Bhattacharya, Pfleiderer and Ross, ibid) this kind of
information is statistically independent of the return on the timing portfolio. In our
model, since the timing portfolio has been identified with a constant, the informational
advantage of the manager is thus defined as selectivity ability.

As it is standard in this literature, let us model the informational advantage of
the manager as a signal on the risky asset return shuch that

ỹ = x̃+ ε̃, (2)

with ε̃ the noise term. To simplify the notation (and without loss of generality) let
x̃ be now distributed as a standard normal variable. This is merely a normalization
that will help to keep the model as parsimonious as possible. We assume ε̃ ∼ N (0, σ2),
with σ2 < ∞ such that higher σ2 implies a less precise information signal. Finally,
the return on the risky asset and the noise term are assumed to be uncorrelated.

According to (2), and provided the distributional assumptions on x̃ and ε̃, ỹ is
normally distributed:

ỹ ∼ N
(

0,
1

H

)
, (3)

with H = (1 + σ2)−1 ≤ 1 the signal precision.
After receiving the signal and before any decision is made the manager updates

her believes about the conditional (on the signal realization) distribution of the risky
asset. By Bayes rule5

x̃ |y ∼ N (Hy, 1−H) . (4)

The manager has to put some effort e prior to learning the value of the signal.
Like in Stoughton (1993) it will be assumed that the variance of the signal’s noise is
a hyperbolic function of effort, such that

e =
1

σ2
.

This implies that the (posterior) precision of the manager’s private signal is an
increasing and concave function of effort. More concretely,

H(e) =
e

1 + e
. (5)

Given (5) equation (4) can be re-written as follows:

5We will follow the standard notation whereby a symbol with a tilde on top will represent the
variable and the same symbol, without a tilde, its realization.
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x̃ |y ∼ N
(

e

1 + e
y,

1

1 + e

)
.

Our analysis will be restricted to a very specific (though standard) type of the
contracts: linear performed-adjusted contracts. According to this type of contracts
the manager’s fee consits of a percentage 0 ≤ α ≤ 1 of the return on the portfolio
she manages on behalf of her client, the household. Together with this performance-
adjusted component the contract may include a (performace-free) fix wage F .

We set κ = 0 and κ = κ > 0. This means the manager is not allowed to short-sell
the risky asset. He is allowed, however, to short-sell the risfreee asset and leverage her
investment on the risky asset up to κ−1 (assuming κ > 1). In case κ < 1 the manager
is then obliged to invest at least 1 − κ in the riskfree asset. According to equations
(3) and (4), Ey[x̃ | y] = 0. Thus, since we normalized r = 0, this preserves the (ex-
ante) symmetry with regard to the shot-selling constraints.6 Therefore, confining the
analysis to one short-selling constraint will simplify the algebra without qualitatively
affecting the results.

We will assume that all the investment is carried out by the manager. The client
will offer the manager a contract (F, α, κ). Effort has a private disutility to the man-
ager given by the function V (a, e). We assume V (a, 0) = 0, Ve(a, 0) = 0, Ve(a, e) > 0,
Vee(a, e) ≥ 0 and Va(a, e) ≥ 0. The effort level choice of the manager is not observed
by the client. Given contract (F, α, κ), the manager chooses her optimal effort (and
thus precision) so as to maximize her unconditional expected utility. After receiv-
ing the information signal the manager will decide her (utility maximazing) optimal
portfolio allocation.

Proposition 1 Given the contract (F, α, κ), the unconditional net expected utility for
the risk-averse manager with CARA coefficient ‘a’ is7

Et0 [U
(
W̃

A
(e |F, α, κ)

)
] = exp{V (a, e)} f(e | F, α, κ), (6)

with

f(e |F, α, κ) =

− exp(−aF )

{
1

2
+
(

1

1 + e

)1/2 1

2
Φ

(
(aκα)2

e

)
(7)

+ exp

(
(aκα)2

2

)
1

2

[
1− Φ

(
(aκα)2

e
(1 + e)

)]}

the unconditional gross expected utility function.

6We could alernatively define κ = κ− κ > 0.
7M stands for manager. Φ represents the distribution function of a Chi-squared variable with

one degree of freedom.
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Proof: See the Appendix.

Given the contract (F, α, κ), the manager’s optimal effort choice e? solves

e? ∈ arg max
e

Et0 [U
(
W̃

A
(e |F, α, κ)

)
]. (8)

In order to prove that e? is an increasing function of α we need two previous
results. These results will be stated in Lemmma 1 and Lemma 2.

Let us define the operator J as8

J (e |F, α, κ) = Ve(a, e)f(e |F, α, κ) + fe(e |F, α, κ).

Lemma 1 Provided a (local) maximum exist, e? maximizes the unconditional net
expected utilitity of the risk-averse manager with CARA coefficient ‘a’ if and only if

J (e? |F, α, κ) = 0, (9)

fe e
fe

(e? |F, α, κ) <
Ve e
Ve

(a, e?)− Ve(a, e?). (10)

Proof: The first-order condition for e? to be a local maximum of program (8) is:

Ee[U
(
W̃

A
(e? |F, α, κ)

)
] = exp{V (a, e?)}

[Ve(a, e
?)f(e? |F, α, κ) + fe(e

? |F, α, κ)] = 0. (11)

The second-order condition is:

Ee e[U
(
W̃

A
(e? |F, α, κ)

)
] = exp{V (a, e?)}

[Ve e(a, e
?)f(e? |F, α, κ) + Ve(a, e

?)fe(e
? |F, α, κ) + fe e(e

? |F, α, κ)] < 0. (12)

Provided a maximum exists, given the first-order condition (11) and the definition
of the operator J , equation (9) characterizes the ‘candidates’ for a local maximum
of problem (8).

From the first-order condition (11),

Ve(a, e
?) = −fe

f
(e? |F, α, κ). (13)

Substituing (13) in equation (12) we arrive at condition (10).

8Subscripts e, α and ee denote first partial derivative with respect to effort and α, respectively,
and second partial derivative with respect to effort.
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Q.E.D.

Equation (10) compares the ‘concavity’ of the manager’s unconditional gross ex-
pected utility function with the ‘convexity’ of the manager’s disutility function of
effort. Proof of Proposition 1 at the Appendix shows that f(e | F, α, κ) is an in-
creasing and concave function of effort. Therefore, under our assumptions on V (a, e),
equation (10) in Lemma 1 says that if the manager’s unconditional gross expected
utility function is sufficiently concave relative to the ‘convexity’ of the disutility func-
tion of effort then, provided a maximum exists, J (e? |F, α, κ) = 0 is a necessary and
sufficent condition for e? to be the manager’s optimal effort choice.

The following Lemma presents a result that will be necessary in proving Proposi-
tion 2.

Lemma 2 Let Φ(x) =
∫ x
0 φ(s) ds, x ≥ 0 represent the distribution function of Chi-

squared variable with one degree of freedom.

φ(s) =
1√
2π

exp{−s/2} s−
1
2

is the corresponding density function. Then, for any 0 ≤ x <∞,

φ(x)− 1

2
[1− Φ(x)] > 0. (14)

Proof: Let us define A(x) as follows:

A(x) =
1

2
[1− Φ(x)].

We will firt show that if φ(x) = A(x) for any 0 ≤ x <∞ this x is unique.
When x tends to zero,

lim
x→0

φ(x) = ∞,

(15)

lim
x→0

A(x) =
1

2
.

Taking derivatives of both functions:

φ′(x) = ∂
∂x
φ(x) = −1

2
φ(x)(1 +

1

x
),

A′(x) = ∂
∂x
A(x) = −1

2
φ(x).
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Therefore,

A′(x) > φ′(x) for all 0 ≤ x <∞. (16)

Both functions are continous over the whole domain of x. Given (15) and (16),
since limx→∞ φ(x) = limx→0A(x) = 0, we conclude that if φ(x) and A(x) ever cross
for any 0 ≤ x <∞ they just cross once.

Now we will show that they do not cross even once. We will prove it by con-
tradicition.

Let us assume there exits 0 ≤ x <∞ such that φ(x) = A(x).
Given the definition of both functions, this implies

1√
2π

exp{−x/2}x−
1
2 =

1

2

∫ x

0

1√
2π

exp{−s/2} s−
1
2 ds, (17)

0 ≤ x <∞. (18)

Integrating by parts the second the second term in equation (17) we obtain

∫ ∞
x

exp{−s/2} s−
3
2 ds = 0,

that can only be true when x→∞. But this contradicts (18).
Therefore, given (15), since both functions never cross for any 0 ≤ x < ∞,

Lemma 2 is proved.

Q.E.D.

Proposition 2 Let e? be the optimal effort choice of the risk-averse manager with
CARA coefficient ‘a’ when she is offered the contract (F, α, κ) with κ <∞. Then, e?

is increasing in α.

Proof: See the Appendix.
The intuitition behind Proposition 2 is as follows: Off-equilibrium, if the manager

wants to increase her expected payoff, she can either improve the accuracy of her
information (which is costly in terms of disutility) or borrow more money at a fixed
interest rate. It is clear that, as long as the manager is ‘liability unbounded’, she will
always be able to rebalance her optimal portfolio (via short-selling) for any α offered
by the client so as to keep her unconditional expected utility constant. In such a case
both raw and relative performance-adjusted linear contracts will fail to motivate the
manager in collecting better information. However, this is no longer the case when
the manager’s borrowing capacity is constrained. As a simplification assume that
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the manager can borrow only upto a certain limit at a fixed interest rate (or borrow
over the limit at an interest rate of infinity). Now, when the manager has limited
borrowing capacity, she might indeed want to gather more precise information. The
extent to which she will want to expend more effort in this regard will depend on her
compensation scheme, her risk aversion and her marginal disutility of effort.

The incentive result stated at Proposition 2 is driven by our assumption on the
manager’s short-selling constraint κ < ∞. Corollary 1 shows that the non-incentive
results in Soughton (1993) and Admati and Pfleiderer (1997) are embeded in our
model as a special case when κ→∞.

Corollary 1 Let e? be the optimal effort choice of the risk-averse manager with
CARA coefficient ‘a’ when she is offered the contract (F, α, κ). Then, if κ → ∞,
e? is independent of α.

Proof: From equation (13) in Lemma 1, the first-order condition of the manager’s
optimal effort can be written as

Ve(a, e
?) = −fe

f
(e? |F, α, κ).

It is easy to prove that

lim
κ→∞

fe
f

(e? |F, α, κ) =
1

2(1 + e?)
,

independent of α. Therefore, since Ve(a, e
?) is also independent of α it follows

that, when κ→∞, the manager’s optimal effort e? is independent of α.

Q.E.D.

3 The optimal contract

Last section showed that, differently from Soughton (1993) and Admati and Pfleiderer
(1997), linear contracts can induce information gathering effort on the part of the
risk-averse manager when the short-selling capacity of the later is constrained. In
our model, the non-incentive result occurs as a special case when the short-selling
constraints tend to infinity in the limit.

This section addresses the following question: Provided the manager is short-
selling constrained, would her client (the household) offer her a benchmarked con-
tract? As in Heinkel and Stoughton (1994), we will set the optimal contract problem
in a risk-neutral framework where both the manager and the household are risk-
neutral. This is done for two reasons: First, for the sake of simplicity. Second, we are
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interested in whether benchmarked contracts would optimally arise for reasons other
than risk-sharing.

In a risk-neutral environment characterized by moral hazard, we show that when
the manager is short-selling constrained the optimal linear contract is benchmarked
and the manager receives all the marginal returns to the portfolio. Our results con-
firm Heinkel and Stoughton (1994) for all borrowing limits. Additionally, as the
short-selling constraint goes to infinity the optimal contract remains a benchmarked
contract. At the limit, the contract achives the first-best and the need to screen out
managers vanishes. This finding is to be differentiated from the claim that bench-
marked contracts cannot screen agents. Our result stresses the point that, at the limit,
the need to screen agents vanishes as benchmarked contracts deliver the first-best.

In this section we will assume that signal precision and effort are related according
to the following function:

H(e) =

{
λe if e < 1

λ

1 otherwise,
(19)

with λ > 0 the effort efficency parameter. Equation (19) assumes that (in prin-
ciple) perfect accuracy can be achieved for a finite level of effort. This is just a
simplifying assumption that will be shown to be harmless for our results. Given the
latest equation manager’s effort can always be expressed as a function of signal’s
precision, namely

e(H) =
1

λ
min{1, H}. (20)

Equation (20) will be called the effort function.
In the analysis to follow all the results will be expressed in terms of precision

instead of effort. This will simplify the notation.

A. The manager’s optimal portfolio

The client will offer to the manager a contract (F, α, κ). Optimal effort (and thus
precision) choice given contract (F, α, κ) maximizes the manager’s unconditional ex-
pected utility. After receiving the information signal the manager will then decide
her (utility maximazing) optimal portfolio allocation. In this section we will assume
that effort has a private disutility to the manager and that is measured in cost terms
as given by the effort function (20).9 The effort level choice is not observed by the
client.

Proposition 3 Given contract (F, α, κ), the unconditional expected utility for the
risk-neutral manager with effort efficiency parameter λ is

9This means we assume V (a, e) = e.
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E
[
U
(
W̃M(H)

)]
=


F + ακ√

2π
H1/2 −H/λ if H < 1

F + ακ√
2π
− 1/λ otherwise.

(21)

Proof: See the Appendix.
We show now that the unconditional expected utilility of wealth for the risk-neutral

manager, E[W̃M(H)], is a concave function in H, the signal precision.
Taking the first derivative of (21) with respect to H yields

∂

∂H
E[W̃M(H)] =


ακ

2
√

2π
H−1/2 − 1/λ if H < 1

0 otherwise.

(22)

If H → 1 then the expected utility of wealth converges to an upper bound given
by F + ακ√

2π
− 1/λ. If H approaches zero then the marginal expected utility tends to

infinity.
Deriving (22) with respect to H again we obtain

∂2

∂H2
E[W̃M(H)] =


− ακ

4
√

2π
H−3/2 < 0 if H < 1

0 otherwise.

(23)

Therefore setting (22) equal to zero will yield manager’s optimal precision as a
function of α and κ,

H(α, κ) = min
{

1,
(
λακ
2
√

2π

)2
}
. (24)

Equation (24) will be called the precision function. Notice that the precision
function is independent of F . Let us conclude the manager’s problem by normalizing
her reservation utility to zero.

B. The client’s problem

At time t0 the client will offer a contract (F, α, κ) to the manager. The client does not
observe the signal realization. Neither she observes λ, the manager’s effort efficiency
parameter. However, she can deduce manager’s conditional portfolio (44) as a function
of λ. Moreover, she knows the signal distribution (3). Therefore she can calculate
her conditional (on the manager’s precision) expected utility as well as the manager’s
precision as a function of λ.

The manager will carry on all the investment. Given the conditional distribution
of the return on the risky asset (4), the client’s conditional wealth expectation and
variance will be10

10C stands for client.
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E[W̃C(H)] = (1− α)
∫
<
θ(y) E[x̃ |y] g(y |H) dy − F, (25)

V ar[W̃C(H)] = (1− α)2
∫
<
θ2(y) V ar[x̃ |y] g(y |H) dy, (26)

with g(y |H) the density function of the signal distribution (3).
Solving (25) we obtain the expected utility of wealth for he risk-neutral client

E
[
U
(
W̃C(H)

)]
=


(1− α) κ√

2π
H1/2 − F if H < 1

(1− α) κ√
2π
− F otherwise.

(27)

The optimal contract will solve

max
F,α,κ

Et0
{
U
[
W̃C (F,H(α, k))

]}
(28)

s.t. H(α, κ) = min
{

1,
(
λακ
2
√

2π

)2
}
,

Et0
{
U
[
W̃M (F,H(α, κ))

]}
≥ 0,

1 ≥ α ≥ 0.

Two question arises from problem (28): Provided the manager is short-selling con-
strained, would her client (the household) offer her a benchmarked contract? Further,
would the client impose short-selling constraints on the manager?

Proposition 4 shows that when the manager’s borrowing capacity is exogenously
constrained the optimal contract is benchmarked regardless of the value of κ, the
short-selling bound. Corollary 2 answers the second question: It the limit, the con-
tract achieves the first-best and the need to screen out manager vanishes.

Proposition 4 For any κ̂ such that the signal precision is not perfect, the optimal
contract offered by the risk-neutral client to the risk-neutral manager with effort effi-
ciency parameter λ > 0 will be (F (κ̂), 1, κ̂) with

F (κ̂) = −
(

κ̂

2
√

2π

)2

λ. (29)

Proof: See the Appendix.

Corollary 2 When κ̂ → ∞ the optimal contract is benchmarked and achieves the
first-best.
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Proof: From proof of Proposition 4 at the Appendix we know that, given κ̂ > 0, there
exists a contract (F (κ̂), α?, κ̂) such that the optimal precision choice of the manager
is an increasing function of κ̂:

H(α?, κ̂) =

(
λκ̂

2
√

2π

)2

.

Thus, when κ̂ → ∞11 then H(α?, κ̂) → 1. In other words: By increasing κ̂ (i.e.
relaxing the manager’s short-selling constraint) the manager’s precision increases.

Given equation (29), limκ̂→∞ F (κ̂) = −∞. Since optimal α? = 1 for all κ̂ then

limκ̂→∞(F (κ̂), α?, κ̂) = (−∞, 1,∞). (30)

Equation (30) shows that, in the limit, the optimal contract is benchmarked .
Plugging equation (30) into equations (21) and (27) we see that when κ̂ → ∞ (and
thus H(α?, κ̂)→ 1) both the client’s and the manager’s unconditional expected utility
of wealth are unbounded. The first-best is achieved in the limit.

Q.E.D.

Appendix

This Appendix provides proofs of Propositions 1, 2, 3 and 4.

Proof of Proposition 1

Under the contract (F, α, κ) offered by the client, the manager’s random wealth con-
ditioned on the signal y will be:

W̃
M

(y) = F + αθx̃ |y − V (a, e). (31)

After receiving the information signal y the manager solves for her optimal port-
folio θ as follows:

max
θ(y)

Et0 [U
(
W̃

M
(y)
)
]

s.t. 0 ≤ θ ≤ κ.

According to (31) manager’s final wealth is nomally distributed. Thus, since
the agent is assumed to have a CARA utility function, manager’s optimal portfolio
decision problem becomes:

11Actually, given the effort function (20), this is going to be true for any κ̂ ≥ 2
√

2π
λ .
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max
θ

F + αθ
e

1 + e
y − 1

2
aα2θ2 1

1 + e

s.t. 0 ≤ θ ≤ κ.

Let us use L(θ, λ0, λκ) to denote the Lagrange functional of the last problem, with
λ0, λκ ≥ 0 the Lagrange multipliers.

Since the latest program is concave, by the Kuhn-Tucker theorem, the optimal
portfolio θ? satisfies (provided a maximum exists):

∂

∂θ
L(θ?, λ?0, λ

?
κ) = 0

0 ≤ θ? ≤ κ,

together with the binding conditions

θ?λ?0 = 0
(θ? − κ)λ?κ = 0.

This system of equations yields two corner solutions and an interior solution:

1. Lower bound corner solution:


θ? = 0
λ?0 = − e

1+e
αy

λ?κ = 0

2. Interior solution (α > 0):


θ? = 1

α
e
a
y

λ?0 = 0
λ?κ = 0

3. Upper bound corner solution:


θ? = κ
λ?0 = 0

λ?κ = e
1+e

α
(
y − aκα

e

)
.

The optimal portfolio θ? can be as written as a function of the information signal
y as follows (assuming α > 0):

θ(y) =



0 if y < 0

1
α
e
a
y if 0 ≤ y ≤ aκα

e

κ if y > aκα
e
.

(32)

14



After substituing (32) into the expected utility function of the manager we obtain
her conditional (net) expected utility of wealth

Et0 [U
(
W̃

A
(y)
)
] =



− exp{−aF + V (a, e)} if y < 0

− exp{−a
(
F + e2

2a(1+e)
y
)

+ V (a, e)} if 0 ≤ y ≤ aκα
e

− exp{−a
(
F + e

1+e
ακ

(
y − aκα

2e

))
+ V (a, e)} if y > aκα

e
.

(33)

Then, integrating (33) over y we obtain manager’s unconditional expected utility
of wealth:

Et0 [U
(
W̃

A
(e |F, α, κ)

)
] =

− exp {−aF + V (a, e)}
{

1

2
+
(

e

1 + e

)1/2 ∫ aκα
e

0

1√
2π

exp{−e
2
y} dy

+ exp{(aκα)2

2
}
(

e

1 + e

)1/2 ∫ ∞
aκα
e

1√
2π

exp{− e

2(1 + e)
(y + aκα)2} dy

}
.

After a little of algebra, we arrive at equation (6), the manager’s unconditional
net expected utility.

We will prove now that the gross unconditional expected utility of wealth f(e |F, α, κ)
is an increasing and concave function of effort.

Taking the first derivative of (7) yields

fe(e |F, α, κ) =
∂

∂e
f(e |F, α, κ) =

1

4
exp{−aF}

(
1

1 + e

)3/2

Φ

(
(aκα)2

e

)
> 0. (34)

Finally, deriving again with respect to e:

fe e(e |F, α, κ) =
∂2

∂e2
f(e |F, α, κ) =

−1

4
exp{−aF}

[
3

2

(
1

1 + e

)5/2

Φ

(
(aκα)2

e

)

+
aκα√

2π

(
1

e(1 + e)

)3/2

exp{−(aκα)2

2e
}

 < 0.

Q.E.D.
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Proof of Proposition 2

Since e? is optimal, by Lemma 1

J (e? |F, α, κ) = 0.

By the implicit function theorem

∂

∂α
e? = −Jα

Je
(e? |F, α, κ). (35)

From (10) in Lemma 1, if e? is the manager’s optimal effort when she is offered
the contract (F, α, κ) then

Je(e? |F, α, κ) < 0. (36)

Therefore, given (35), Proposition 2 will be proved if we show that Jα(e? |F, α, κ) > 0.
Let us first study the sign of fα(e? |F, α, κ).

fα(e? |F, α, κ) =

a(aκ)2exp{aF +
(aκα)2

2
}
{
φ

(
(aκα)2

e?
(1 + e?)

)
− 1

2

[
1− Φ

(
(aκα)2

e?
(1 + e?)

)]}
.

From Lemma 2 we know that, for any contract (F, α, κ),

φ

(
(aκα)2

e?
(1 + e?)

)
− 1

2

[
1− Φ

(
(aκα)2

e?
(1 + e?)

)]
> 0

and, therefore, the manager’s unconditional gross marginal utility of wealth is
positive.

Given the definition of the operator J ,

Jα(e? |F, α, κ) = Ve(a, e
?)fα(e? |F, α, κ) + fe α(e? |F, α, κ). (37)

From (34) is easy to see that fe α(e? | F, α, κ) > 0. Ve(a, e
?) ≥ 0 by assumption.

Finally, we just proved that fα(e? |F, α, κ) > 0. Hence, according to (37),

Jα(e? |F, α, κ) > 0.

Equations (35) and (36) complete the proof.

Q.E.D.
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Proof of Proposition 3

Manager’s optimal conditional portfolio solves the following problem:

max
θ

Et0
[
U
(
W̃M(θ |y)

)]
s.t. 0 ≤ θ ≤ κ, (38)

with

W̃M(y) = F + α θ x̃ |y − e (39)

the manager’s conditional wealth net of effort cost.
Given equation (20) effort disutility e can be expressed as a function of the signal

precision H. Thus, the manager’s conditional net wealth can be re-written as

W̃M(y) = F + α θ x̃ |y − 1

λ
min{1, H}. (40)

The expectation and variance of (40) are

E[W̃M(y)] = F +
(
αθy − 1

λ

)
min {1, H}, (41)

V ar[W̃M(y)] = α2θ2max {0, 1−H}. (42)

Since the manager is assumed to be risk-neutral, problem (38) becomes:

max
θ

F +
(
αθy − 1

λ

)
min {1, H}

s.t. 0 ≤ θ ≤ κ. (43)

From (43) we derive manager’s optimal conditional portfolio

θ(y) =

{
0 if y ≤ 0
κ otherwise.

(44)

Equation (44) shows that the optimal coditional portfolio of the risk-neutral man-
ager is always binding, whatever the signal is.

Substituing (44) into (41) and integrating over y we arrive at equation (21).

Q.E.D.
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Proof of Proposition 4

Let us fix κ = κ̂ > 0 in problem (28). Given the precision function (24) the optimal
contract (F ?, α?, κ̂) is such that

(F ?, α?, κ̂) ∈ arg max
F,a

(1− α)
ακ̂2

4π
λ− F (45)

s.t. F +
(

ακ̂
2
√

2π

)2
≥ 0

1 ≥ α ≥ 0.
(46)

Since the function (45) and both constraints in (46) are concave in (F, α) the latest
is a concave program and the optimal (F ?, α?), provided a maximum exists, can be
fully characterized by the Kuhn-Tucker theorem. Let us first define the Lagrangian
operator as

L(F, α | κ̂) = (1− α)α
κ̂2

4π
λ− F + γ1

F +

(
ακ̂

2
√

2π

)2

λ

+ γ2α + γ3(1− α), (47)

with γ ≡ (γ1, γ2, γ3) ≥ 0 the corresponding vector of multipliers.
If a maximum exists, optimal contract (F ?, α?, γ?) satisfies

∂L
∂F

(F ?, α? | κ̂) = 0,

∂L
∂α

(F ?, α? | κ̂) = 0,

F ? +

(
α?κ̂

2
√

2π

)2

λ ≥ 0,

1 ≥ α? ≥ 0;

together with the binding conditions

γ?1α
? = 0,

γ?2(1− α?) = 0,

γ?3

F ? +

(
α?κ̂

2
√

2π

)2

λ

 = 0.

Solving this system of equations yields

18



F ? = F (κ̂),

α? = 1,

γ?1 = 1,

γ?2 = γ?3 = 0.

Therefore, α? and the optimal Lagrange multipliers are independent of κ̂. More-
over, since α? > 0 the optimal contract will be benchmarked for any value of κ̂.

Given α? and κ̂ equation (24) implies,

H(α?, κ̂) =

(
λκ̂

2
√

2π

)2

< 1. (48)

Q.E.D.
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