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Abstract

This article studies dynamics in a model where agents forecast a one dimensional state

variable via ordinary least squares regressions on the lagged values of the state variable. We

study the stability properties of alternative transformations of the state variable that the

agent can endogenously set forth. We study the consequences on the economy�s stability of

the typical transformations that an econometrician would attempt, such as di¤erencing, de-

trending, or taking instantaneous concave transformations, such as logarithms. Surprisingly,

for the considered class of economies, we found that these transformations are destabilizing,

whereas alternative transformations, which an econometrician would never consider, such as

convex transformations, are stabilizing. Therefore, we ironically �nd that in our set-up, an

active agent, who is concerned about learning the economy�s dynamics and, in an attempt

to improve forecasting, transforms the state variable using the standard transformations, is

more likely to deviate from the steady state than a passive agent.

KEYWORDS: Temporary Equilibrium, Ordinary Least Squares Learning, Globally Stable

Formulations
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1 Introduction

A long held view about the axiom of perfect foresight is that while it is an important

conceptual tool for understanding those aspects of the formal content of economic models

that do not rely on agents making forecasting errors, it is an exceedingly strong assumption2

that can at best be justi�ed in a stationary environment. Whether an economy ends up

in a stationary environment in turn depends on how agents forecast and learn about the

dynamics. One way of modelling this adjustment process is via �bounded rationality�,3 as

exempli�ed by the temporary equilibrium approach, where forecasts are allowed to be based

on a given statistical procedure, with agents estimating some structural parameters from

past data.

The simplest stationary environment is a deterministic steady state. Recent studies,

such as Grandmont (1998), have shown that a steady state is locally unstable under learning

dynamics whenever an agent�s forecasting rule extrapolates a large enough set of trends in

deviations from the steady state. For example, the learning dynamics generated by ordinary

least squares (OLS, henceforth) learning, where agents forecast the endogenous state variable

via regressions on its lagged values, extrapolates all trends in past data and consequently

produces local instability. In the face of such instability, it is sensible to consider that a

Walrasian agent would modify the state variable to improve the forecasting capability of

her model. This practice is habitual in time-series econometrics, where series are routinely

di¤erenced, detrended or subjected to instantaneous transformations, such as logarithms.

This article asks whether such modi�cations might make the learning dynamics more stable

and lead to improved forecasts in the long run.

The formal model is one with a unique deterministic steady state which is unstable under

the perfect foresight dynamics. Agents will be assumed to generate a point forecast of the

future value of the state variable via OLS on its lagged values.4 With OLS on endogenous

2Radner (1982) writes �Although it is capable of describing a richer set of institutions and behaviour than

is the Arrow-Debreu model, the perfect foresight approach is contrary to the spirit of much of competitive

market theory� and goes on to state that �this approach seems to require of the traders a capacity for

imagination and computation far beyond what is realistic�.
3In support of the bounded rationality approach, Radner (1982) writes �In a theory of adjustment towards

rational expectations equilibrium, what are the appropriate assumptions about the agents�rationality during

the �learning process�? As agents revise their market models, the true market model changes in a way that,

in principle, depends on the revision rules of all agents. Thus, a theory of thorough -going rationality would

seem to point to a treatment of the learning and adjustment process as a sequential game with incomplete

and imperfect information. In my opinion, such an approach would be unrealistic and contrary to the spirit

of a process of adjustment and learning. A more realistic alternative would envisage some form of �bounded

rationality�during the adjustment process, which if stable would converge to a fully rational equilibrium".
4We will focus on the dynamics in a deterministic setting. The results are robust to small independent

and identically distributed shocks in the market clearing process. Throughout we restrict agents to point
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variables, the asymptotic shape of the underlying equilibrium map of the economy (which

summarizes the dependence of the current value of the state variable on its forecasted value)

determines what rates of growth the learning dynamics can sustain in the long run and

drives the stability of the learning dynamics. For instance, a linear equilibrium map is

known to generate instability for initial parameter estimates that are large enough. We

de�ne an Unstable Formulation (UF, henceforth) as one which essentially works like a linear

equilibrium map asymptotically and hence leads to divergent paths whenever the initial

parameter estimate is large enough. We also consider a bound on the asymptotic growth

rate of the equilibrium map that is shown to preclude the divergence to in�nity of the state

variable and the parameter estimates. An equilibrium map with this property is said to

induce a Globally Stable Formulation (GSF, henceforth) of the learning dynamics.5 The

article recognizes that, in a framework where an agent modi�es certain structural features

of her linear regression model in the face of instability, whether or not a GSF is induced

is an endogenous aspect of the learning dynamics, and examines the implications of this

endogeneity.

We examine the case of instantaneous transformations induced via a change of variable

on the state variable forecasted initially via the linear regression model and �nd, counter

intuitively, that the standard transformations used in time series analysis to stabilize the

data, namely concave transformations, tend to have a destabilizing e¤ect on the learning

dynamics. In contrast, su¢ ciently convex transformations, that appear to exaggerate the

divergent trends in the data, are shown to have a stabilizing e¤ect, in that they may induce

a GSF when the dynamics in the original variable are unstable. We also examine the case

where an agent starting with a linear regression model, reformulates the model on the �rst

di¤erences of the (logged) state variable or on the detrended state variable. In both cases,

we show that if the original formulation is unstable, then so is the new model, that is, neither

di¤erencing nor detrending are stability-enhancing.

In modelling learning in a decentralized Walrasian setting where agents are truly uncer-

tain about the dynamics of the system, a natural requirement to impose on the learning

scheme is that agents are willing to interact with market data and extrapolate a wide set

of trends, in particular, divergent trends from the steady state. Earlier studies (Chatterji

(1995), Grandmont (1998)) have pointed out that a greater willingness to learn in the above

sense, somewhat paradoxically, makes it less likely that agents will end up in the steady state.

This instability principle is a local phenomenon. While there exist formulations where the

forecasts. The issues examined here continue to be relevant, but are considerably more complicated when

expectations are stochastic.
5The notion of stability is a weak one. It merely ensures that the state variable does not diverge to

in�nity. Under an additional contracting condition on the equilibrium map, this notion of stability leads to

global convergence to the steady state.
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learning dynamics may remain bounded or even globally convergent to the steady state in

the long run (in spite of the local instability; see 2.1 below), there are arbitrarily long pe-

riods where the dynamics appear to be divergent. Our results imply, once again somewhat

paradoxically, that these stable con�gurations require that agents have to systematically

ignore the fact that their model appears to be an inadequate model for the (arbitrarily long)

�unstable�phase of the learning process where the dynamics appear to be exploding, and

desist from making the natural transformations, as these would eventually destabilize the

global dynamics via the e¤ect they induce on the asymptotic behaviour of the equilibrium

map. As a practical conclusion, this raises doubts on the usefulness of applying the stan-

dard econometric transformations that attempt to stabilize the series before forecasting. An

agent who disregards the local instabilities and stick to her initial model would end up in the

perfect foresight steady state. On the other hand, an agent attempting to actively learn the

true dynamics of the economy, will end up destabilizing the economy and will never arrive

at a perfect foresight equilibrium.

The article is organized as follows. Section 2 provides an overview and establishes the

basic model and concepts. Sections 3 and 4 consider the relation between stability and

transformations for the cases of instantaneous transformations and dynamic transformations

respectively. Section 5 concludes and o¤ers some suggestions for future research. All proofs

are gathered in Section 6. An Appendix speci�es a standard contracting condition under

which the dynamics are globally convergent to the steady state and provides some extensions.

2 Preliminaries

This section provides an overview of the paper, speci�es the model and the two main concepts

related to stability, and then establishes a preliminary result.

2.1 An Overview

We present here an informal exposition of the issues studied in the article and discuss

related literature. Let f : R ! R be the Temporary Equilibrium Map (henceforth, TEM)

that describes the dependence of the current value of the state variable on its forecasted

value, i.e. xt = f(xet+1). The steady state is unique and normalized to 0 and agents

recognize the steady state. The state variable can alternatively be represented, via a change

of variable, as y; where y = h(x) is a homeomorphism satisfying h(0) = 0. When agents

forecast the representation y of the state variable, the TEM becomes yt = g(yt+1) where

h(f(h�1(yet+1))) � g(yet+1): The (backward) perfect foresight dynamics when agents forecast
x are given by the map xt = f(xt+1), and when agents forecast y are given by the map yt =
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g(yt+1): The two maps are topologically conjugate (Holmgren (1996)) and therefore generate

equivalent dynamics. Thus if one assumes at the very outset that agents have perfect

foresight, it does not matter which variable the agents forecast. On the other hand, the

learning dynamics generated by a �xed forecasting rule depend on the speci�c representation

of the state variable on which the forecasting rule is formulated.

The literature on learning assumes that agents forecast the future in terms of the past.

Let z denote the representation of the state variable that agents forecast, and instead of the

perfect foresight postulate zet+1 � zt+1 for all t, consider the case where zet+1 is predicted on
the basis of its lagged values zj; j � t�1. For sake of illustration, suppose the representative
agent chooses the representation z of the state variable to forecast and uses the rule zt �
�zt�1: Assuming that at date t, information up to only t � 1 (a standard assumption in
the literature to avoid simultaneous determination of zet+1 and zt) is available, one obtains

the ��-extrapolation�forecasting rule zet+1 = �
2zt�1: If agents apply this ��-extrapolation�

forecasting rule to the representation x of the state variable, the learning dynamics are

given by the iterated map xt = f�(xt�1) � f(�2xt�1); while applying it to the representation
y = h(x) yields analogously yt = g�(yt�1) � g(�2yt�1):6 When h is non linear, the dynamics
of these two iterated maps in general are not equivalent, unless one imposes � = 1: (In this

case, the dynamics are the reverse of the perfect foresight dynamics and are equivalent to

each other). As Example 1 below demonstrates, the di¤erence may be drastic.

Example 1. Let f(x) = ax, where 0 < a < 1. Consider the C1 change of variable

given by h(x) = ex
2 � 1 for x � 0 and h(x) = �(ex2 � 1) for x < 0. The TEM g also

has a unique �xed point 0 and by computation, g0(0) = a2 < a: Pick �2 > 1 such that

�2a2(= g0�(0)) < 1 < �
2a(= f 0�(0)): The unique �xed point 0 is locally repelling when agents

apply the forecasting rule zet+1 = �2zt�1 to x, but is locally attracting when agents apply

the same forecasting rule to y. (It is worth clarifying that g0�(0) 6= f 0�(0) as in this example
requires that h0(0) = 0: If h0(0) 6= 0; by the chain rule one necessarily has g0�(0) = f 0�(0)):N
If one moves away from the very restrictive assumption that constraints � to be one,

as indeed would be the case if � were a parameter that agents estimate using past data,

one should expect the learning dynamics to be qualitatively di¤erent in general. In this

article, we examine the case where � is time dependent and obtained via OLS on past

data. If the linear OLS model is formulated on the representation x; the forecasting rule

becomes xet+1 = �
2
t�1xt�1 where �t�1 is a convex combination of past growth rates xj=xj�1,

j � t�1; whereas if the OLS model is formulated on y = h(x), the forecasting rule becomes
6The forecasting rule on x is xet+1 = �2xt�1: When agents switch to forecasting y, the forecasting rule

is not h(�2xt�1); but is instead yet+1 = �2yt�1; i.e. we require linear forecasting (with the same factor �)

on the y variable. We therefore keep �xed the ��-extrapolation� forecasting rule and apply it to di¤erent

representations of the state variable.
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yet+1 = 
2t�1yt�1 where 
t�1 is a convex combination of past growth rates h(xj)=h(xj�1);

j � t � 1:7 We study the dynamics from a global viewpoint. Our analysis will not require

us to a¤ect the derivative of the TEM at 0 and therefore we will not restrict the analysis

to transformations that satisfy h0(0) = 0 as in the example above. What turns out to be

critical for the OLS learning dynamics is the rate at which the graph of the respective TEM

f; if agents forecast x, or g if agents forecast y, diverges to in�nity. The example below

elaborates on this.

Example 1 continued. Let f(x) = ax, where 0 < a < 1=2. Let y = h(x) = ex � 1
for x � 0 and h(x) = �(ex � 1) for x < 0. The TEM g (= ea ln(y+1) � 1, for x > 0) also

has a unique �xed point 0 and by computation, g0(0) = a: Importantly, g(y) = O(py) and
diverges slowly compared to the linear rate at which f diverges. The results of this article

will establish that OLS learning formulated on the variable y will lead to global convergence

to the steady state 0, while it is known from earlier work that OLS learning on x leads to

divergence to in�nity of the state variable whenever the initial parameter estimate is large

enough.N
The example shows that the OLS learning dynamics are quite sensitive to transformations

of the state variable that agents forecast. We examine the consequences on the economy�s

dynamics of the representative agent�s use of the standard data transformations econome-

tricians routinely employ to deal with nonstationarities. The analysis is driven by the non

linearities induced via these changes of variables. We �rst examine the stability implications

of instantaneous transformations and �nd that the standard concave transformations are

destabilizing. Depending on the agent�s beliefs about the structure of the nonstationarity,

there are two main approaches an econometrician may employ to achieve stationary data.

The �rst approach is called �trend-stationarity�(TS) and it means that the agent believes

that the data is stationary around a deterministic trend. In the simplest framework where

the deterministic trend is linear, this model entails that the agent believes that the state

variable has a constant growth rate, so that in order to achieve stationarity the agent should

just linearly detrend the data. In case the agent believes the trend is a polynomial of higher

order, stationarity is achieved by detrending the data, which requires that one substract from

the data the polynomial trend estimated by least squares. The second approach is called

�di¤erence-stationarity�(DS) and it means that the agent believes that the state variable

has an stochastic stationary growth rate. In this case it is said that the state variable has

a unit-root. DS has been very popular since the 80�s in econometrics, and in this case in

order to achieve stationarity the agent should di¤erence the (logged) data. In some cases

(when the growth rate is stochastic but nonstationary) �rst di¤erences are not enough and

7Since the steady state 0 is assumed to be known to the agents, no intercept is needed in the OLS

estimation.
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the series has to be di¤erenced twice. In both, TS and DS, cases, we will see that for an

economy with feedback, that is, where the actual motion of the economy depends on the

agent�s beliefs about the evolution of economy, neither di¤erencing nor detrending will in

general help the agent to learn properly the economy�s dynamics. A similar conclusion holds

for the case of log di¤erencing.

Related Literature. The remainder of this section brie�y describes the setting of the
article and clari�es its relationship to the literature on learning dynamics. We analyse the

temporary equilibrium dynamics generated by OLS in a framework where the state variable

is one dimensional and where agents forecast one period ahead, and focuses on some global

aspects of the dynamics in this set up.

By considering a model where agents forecasts are based on OLS learning, we follow a

well established tradition.8 Speci�cally, this paper belongs to a stream of literature which

recognizes the importance of including past realizations of the endogenous variables9 in the

data set; agents forecast by performing OLS on lagged values of the endogenous state vari-

able. The resulting formulation of the learning dynamics is of particular interest since it

justi�es the forecasting procedure employed by agents on the basis of a standard economet-

ric procedure, while capturing nicely an important feature of learning in decentralized or

Walrasian set ups, whereby agents extract all linear trends from past data and extrapolate

them into the future.10 While the issues studied in this paper apply to any learning scheme

that extrapolates trends that di¤er from unity from past data in deviations, it appears ap-

8See, e.g., Bray (1982), Bray and Savin (1986), Frydman (1982), Lucas (1986), Marcet and Sargent

(1989), Evans and Honkapohja (1998), Grandmont (1998), and Chatterji and Chattopadhyay (2000).
9See Marcet and Sargent (1989), Grandmont and Laroque (1991), Evans and Honkapohja (1998), Grand-

mont (1998), Chatterji and Chattopadhyay (2000). To see that this case is of relevance, it su¢ ces to consider

the nonstationary perfect foresight solutions to deterministic economies since by doing so one realizes that

often the only exogenous variables in a dynamic model are time and the lagged values of the state variable.

But then any useful regression model in such an environment must be based on detecting regularities in the

time series of the endogenous variable. The argument sketched above does not depend on the consideration

of a deterministic model. It is known that the inclusion of exogenous shocks which impinge on the funda-

mentals of a model need not always lead to solutions which can be written as functions of a �nite number of

past realizations of the exogenous shocks (see, e.g. Spear (1985)). In fact, for large classes of economies, the

only solutions in the stochastic case are ones in which a joint distribution over current and past endogenous

and exogenous variables is determined. i.e., it could be the case that every equilibrium displays �memory�

(see, e.g. Spear and Srivastava (1986)).
10As is emphasized by Grandmont (1998) in his critique of learning and convergence to rational expecta-

tions, this ought to be an important part of any learning story with a competitive sector where agents are

�small�and they cannot act collectively (by hypothesis) to either control or stabilize the economy and so

it is appropriate for them to extrapolate trends that past data show. It is therefore of interest to examine

learning schemes that do not arbitrarily restrict the set of trends competitive agents extrapolate into the

future from past data.
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propriate, for the reasons cited above, to examine in detail the case of OLS with endogenous

variables.

The dynamics under OLS are discontinuous11 at the steady state and are divergent for

an open set of initial conditions around the steady state (Grandmont and Laroque (1991),

Grandmont (1998)). Marcet and Sargent�s (1989) seminal article was the �rst to study

OLS learning on endogenous variables in a general multidimensional set up. Their analysis

brought to the fore the importance of the map that transforms beliefs into the actual growth

rate of the economy. They presented local stability results under stochastic dynamics with

a linear equilibrium map by constraining the parameter estimates to always lie in an appro-

priate bounded interval (via a Projection Facility) that e¤ectively rules out the divergence

subsequently uncovered by Grandmont and Laroque (1991). Evans and Honkapohja (1998)

dispensed with the Projection Facility and obtained bounds on the probabilities of local

convergence of the stochastic dynamics, showing thereby that it was possible to carry out

local analysis without a Projection Facility. Chatterji and Chattopadhyay (2000) studied

the deterministic global dynamics without imposing bounds on the parameter estimates and

showed that certain con�gurations of bounds on the range of the equilibrium map may en-

sure that the dynamics are globally convergent to the steady state.12 This paper studies

the global dynamics without imposing bounds either on the parameter estimates, or on the

domain or the range of the equilibrium map, and focusses on possible remedies to the diver-

gence phenomenon. Earlier work by Bray and Savin (1986), analysed the case where agents

question the validity of their OLS learning model using recursive least squares and the tra-

ditional Durbin-Watson serial correlation test. However, in their model OLS is performed

on a well behaved exogenous stochastic process, and the instability problem examined here

is consequently absent.13

11We note at the outset that in a framework where agents use di¤erentiable forecasting rules, one expects

the local stability results to depend on the speci�c parameterization chosen for the forecasting rule and the

variables used; this is justi�ed by the usual eigenvalue analysis with su¢ ciently rich parameterizations. An

early example formalizing this idea is Saari and Williams (1986) and a more recent one is Van Zandt (2003).

The analysis of this paper cannot be framed in these terms since the dynamical system one works with

is nondi¤erentiable and precludes the usual eigenvalue analysis and necessitates a global argument (in the

line of Chatterji and Chattopadhyay (2000) to understand the stability properties. The analysis of global

convergence in Evans and Honkapohja (1998) Theorem 2 does not apply to our framework; their assumption

D.2. rules out �feedback�in the dynamical system and in e¤ect they analyse a model where regressions are

performed on an exogenous variable.
12This seemingly contradictory �nding on the co-existence of local instability and global stability stems

from the non di¤erentiability of the learning dynamics at the steady state. Chatterji (2002) extends the

global stability �nding to the case where the economy is subjected to stochastic shocks, and provides a more

detailed exposition of the stability picture sketched here.
13This formulation restricts the set of trends agents extrapolate around the steady state; see Grandmont

(1998) for details.
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2.2 The Model

We consider a framework where the state variable is a real number. In the deterministic

version of the model, the economy will be assumed to have a unique steady state value. The

state variable is denoted Y ; the unique steady state value is denoted by Y �: Agents will be

assumed to know the steady state and one accordingly formulates the model in the deviation

y � Y � Y � of the state variable from the steady state value 0. The stochastic version of

the model speci�es at each date t, an independent identically distributed (henceforth, i.i.d.)

random term �t, also a real number, drawn from the interval [�; �]:

Dynamic interactions in the economy are captured by the TEM g : R� [�; �]! R that

links the forecasted value of the state variable (and the current realization of random term)

to the current equilibrium value of the state variable

yt = g(y
e
t+1; �t): (1)

The map g is assumed to be well de�ned.

Agents predict deviations yt (= Yt�Y �) of the state variable from its steady state value.
At date t; the agent is assumed to have a �belief�
t�1 about the ratio of the deviations of

the state variable across periods t � 1 and t. This belief is extrapolated twice, a standard
procedure in the literature, see Marcet and Sargent (1989), Grandmont (1998), Chatterji

and Chattopadhyay (2000), to generate the point forecast

yet+1 = 

2
t�1yt�1: (2)

The belief at date t, 
t�1 is a convex combination of all past growth rates yj+1=yj; j =

�L; :; ::; t� 2 in the state variable and is given by


t�1 =
t�2X
�L
�j
yj+1
yj
; where �j =

y2j
t�2X
�L
y2j

; provided
t�2X
�L
y2j 6= 0: (3)

The forecasting rule this paper considers would, for instance, arise if agents estimate the

best linear predictor of yt+1 given yt, that is, a linear model such as

yt+1 = 
yt + �t+1; (4)

where � is white noise and 
 is the slope parameter that agents estimate using the OLS

estimator based on all past realizations of y. Since the steady state is assumed known to the

agents, (4) does not contain an intercept. We work with the following recursive formulation

of OLS:


t = m(!t�1yt�1)
t�1 + [1�m(!t�1yt�1)]
yt
yt�1

(5)

9



!2t = m(!t�1yt�1)!
2
t�1 (6)

with m(z) = (1 + z2)�1, and subject to the initial conditions !20 = (
P�1

�L y
2
j )
�1; and 
0 =

(
P�1

�L yjyj+1)=(
P�1

�L y
2
j ).

The OLS learning dynamics are described by the TEM (1) in conjunction with the

forecasting rule (2) and the updating rules (5) and (6).

The stochastic TEM g will be assumed to satisfy

Assumption 1: The TEM g : R� [�; �]! R satis�es (i) E(g(0,�)) = 0 and (ii) for every

L>0, there exists y(L)>0 such that jg(y,�)j < y(L) for all y 2 [�L;L] and all � 2 [�; �]:
Example 2. Suppose bg : R! R satis�es bg(0) = 0 and the Lipschitz condition jbg(y)j < ajyj
for all y and some a > 0. (i) Now let g(yet+1; �t) � bg(yet+1) + �t, where �t 2 [��; �]; � > 0
and E(�) = 0: Then g satis�es assumption 1. (ii) Let g(yet+1; �t) � bg(yet+1)�t, where �t 2
[1� �; 1 + �]; � > 0 and E(�) = 1: Then g satis�es assumption 1.
A deterministic economy results when the random term �t is absent so that the TEM

becomes yt = g(yet+1): In this case the TEM will be assumed to satisfy

Assumption 2: The deterministic TEM g : R! R has 0 as a �xed point, g(0 ) = 0 ; and

satis�es the global Lipschitz condition 0 � b � jg(y)j=jyj � a for all y and some �xed a; b.

2.3 Globally Stable Formulations and Learning Dynamics

An important determinant of the stability of the learning dynamics is the set of beliefs that

agents hold about the rate of growth of the economy and extrapolate into the future. In

particular, the set of beliefs that the formulation of the learning dynamics can sustain will

be important. That is, if agents believe (or estimate) a growth rate 
 and extrapolate that

into the future, is it the case that the system grows at a rate which is at least as large as 
 in

the long run? The answer, not surprisingly, depends on the asymptotic rate of growth of the

TEM g. If g is linear, it is known from earlier work (Marcet and Sargent (1989), Grandmont

(1998)), that the learning dynamics can sustain all su¢ ciently high growth rates. The �rst

result of this paper shows that if the TEM does not diverge too fast, then the learning

dynamics cannot sustain arbitrarily high rates of growth. A bound on the rate of divergence

of the TEM is speci�ed in De�nition 1 below and a TEM that evokes it is said to induce

a Globally Stable Formulation (henceforth, GSF ) of the learning dynamics. For a given

function f(y), the condition f(y) = O(py); will mean that there exist constants M > 0

and N > 0, arbitrarily large but �xed, such that for jyj � M) jf(y)j � Npy:
De�nition 1. A TEM g that satis�es g(y) = O(py) is said to induce a Globally Stable
Formulation:14

14We are providing this de�nition for simplicity, since it su¢ ces for the article. A more general de�nition,
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By contrast, an Unstable Formulation (henceforth, UF ) occurs whenever the TEM grows

at least at a linear rate eventually.

De�nition 2: A TEM g is said to induce an Unstable Formulation of the learning dynamics

if there exist constants k > 0 and S > 0 such that either the condition jg(y)j > ky for y > S;
or jg(y)j > �ky for y < �S; or both hold.15

In a GSF, one gets for large jyj and j
j an inequality of the form

jg(

2y; �)

y
j < j
j

uniformly in � 2 [�v; �], which indicates that the actual growth induced by the belief 

is smaller than 
 in modulus. This is shown to disallow the learning dynamics to sustain

arbitrarily high rates of growth in the long run. In an UF, however, the inequality goes

the other way and the conclusion is the opposite. The Proposition below summarizes the

dynamic implications of the two de�nitions and the subsequent analysis focusses on how

these contrasting formulations may arise.

Proposition 1. Let the TEM g satisfy assumption 1 or assumption 2. (i) If g induces an

UF of the learning dynamics, then, along every sample path, there exist 
n and yn, such

that j
tj forms an increasing sequence for t � n; and jynj ! 1: (ii) If g induces a GSF on
the learning dynamics, then, along every sample path, jynj 9 1; j
nj 9 1; i.e., for every
trajectory of the learning dynamics, there exists a positive constant Q such that j
nj < Q
and jynj < Q in�nitely often.

3 Representations and Globally Stable Formulations

A GSF does not allow the learning dynamics to sustain high growth rates. This section ex-

amines the dependence of this feature of the learning dynamics on the speci�c representation

of the state variable, in the context of deterministic economies.16

A state variable can be given in�nitely many representations. To �x ideas, we arbitrarily

choose one representation x and call it the primitive. The TEM in this representation is

xt = f(x
e
t+1):

that allows for a random component with unbounded support, would state that �a TEM g that satis�es

g(y; �) = Op(
p
y) is said to induce a Globally Stable Formulation� where the condition f(y) = Op(

p
y)

means that for any arbitrarily large constantM > 0 and for any " > 0 there exists a constant C such that

jyj � M) P (jf(y)j > Cpy) < ": Given assumption 1, there is no loss of generality.
15Similarly, a more general de�nition that allow for stochastic component would state that the TEM g is

said to induce an Unstable Formulation of the learning dynamics if for any " > 0 there exist constants k > 0

and S > 0 such that for jyj > S; P (jg(y; �)j > k jyj) > 1� ":
16An extension to stochastic economies is provided in part 2 of the Appendix.
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It is referred to as the primitive TEM and is assumed to satisfy assumption 2. An alternate

representation of the state variable arises via a change of variable and is given by y = h(x)

where h is a smooth, one to one change of variable satisfying h(0) = 0, so that 0 remains the

steady state in the new representation as well. If the agent chooses to formulate the linear

regression model on the variable y, the ensuing point forecast is given by (2) and induces

the point forecast xet+1 = h
�1(yet+1); which yields xt = f(h

�1(yet+1)): Finally, one obtains the

TEM g; which summarises the dependence of the representation yt on its forecasted value

yet+1; as

yt = h(xt) = h(f(h
�1(yet+1))) � g(yet+1)

as is hypothesized in (1); (without the stochastic term): The TEM g will henceforth be

referred to as the TEM induced by the representation h:17

Notice that since h and f are not necessarily linear, the maps f and g may have di¤erent

rates of growth asymptotically and may therefore di¤er in the rates of growth that they can

sustain asymptotically. It is through this channel that the representation a¤ects whether or

not the learning dynamics can sustain high rates of growth in the long run.

A representation h(x) will be assumed to satisfy

Assumption 3: h: R! R is a homeomorphism that has 0 as a �xed point, h(0 ) = 0 :

This section speci�es su¢ cient conditions on h which induce an UF and a GSF respec-

tively. In particular, an agent can move from an UF to a GSF and vice versa. As a �rst

step, we observe that the two scenarios considered in this paper, respectively an UF, and a

GSF, are robust, in the following sense: if one starts from either of these formulations and

applies a transformation h that satis�es the Lipschitz condition outlined in assumption 4

below, one preserves the formulation in the representation g that h induces. We state the

assumption below and then the robustness property which is summarized as Proposition 2.

Assumption 4: h satis�es the global Lipschitz condition 0 < c < jh(x)j=jxj < d, for all x
and some �xed c; d:

17The change of variable h may arise from a change of variable applied to the levels of the primitive

state variable X. Agents �rst �x a representation Y = H(X) of the state variable on which they formulate

their forecasting model and the TEM in the representation Y accordingly becomes Yt = G(Y et+1) where

G = H � F �H�1; which is well de�ned since H is assumed to be monotone. We assume throughout that

the agents know the steady state value of the state variable. Thus, once H is �xed, agents know that the

steady state of the system is Y � = H(X�): It is appropriate under the hypothesis that the agents know the

steady state Y � = H(X�), to formulate the forecasting procedure directly on the deviation y of the state

variable from the steady state. The change of variable H in absolute levels induces the change of variable

h(x) in the variable x(= X �X�) using the identity

Y = h(X �X�) + Y � = H(X):

We will work with representations expressed in deviations y = h(x) and with the induced TEM g(yet+1):

12



Proposition 2. (i) Suppose that f satis�es assumption 2, is continuous and that f(x) =
O(
p
x), so that the identity map induces a GSF, and that h satis�es assumption 3 and

assumption 4. Then, the induced TEM g satis�es g(y) = O(py) and h, accordingly, induces
a GSF of the learning dynamics.

(ii) Suppose that f satis�es assumption 2, is continuous and the condition of De�nition

2 so that the identity map induces an UF, and h satis�es assumption 3 and assumption

4. Then, the induced TEM g satis�es the condition of De�nition 2 and ; accordingly, the

representation h induces an UF of the learning dynamics.

We now examine the role of eventually concave and eventually convex functions, (which

violate assumption 4), in reversing the qualitative features of the learning dynamics. To

understand how the eventual concavity or convexity of h translates to non linearities in

the induced TEM g, it is convenient to specialize the setting to an f; which in addition to

satisfying assumption 2, is eventually increasing, and f and h are twice di¤erentiable for

large jxj. This ensures that any representation h satisfying assumption 3 will induce a TEM
g that is eventually increasing. It will also be useful to assume that h is increasing. These

assumptions allow us to work with a formula that relates the risk aversion of h with the risk

aversion of the induced TEM g. Letting �(y) � h�1(y); one gets g = h � f � �: For a given
increasing function r(z) that is de�ned for z > 0, let Rr(z) denote its relative risk aversion.

The following formula relates the relative risk aversion of g(y) (restricting the discussion to

y > 0) to the relative risk aversion of h(x) and will be useful in the sequel,

Rg(y) =
y�0(y)
�(y)

[Rf(�(y)) +Rh(f(�(y)))
f 0(�(y))�(y)
f(�(y))

�Rh(�(y))]: (7)

It is instructive to consider the e¤ect of the non-linearities of h on the induced TEM g

when the primitive TEM f is linear. Observe therefore that if f(x) = ax, the formula (7)

simpli�es to

Rg(y) =
y�0(y)
�(y)

[Rh(a�(y))�Rh(�(y))]: (8)

One sees that a linear h, or indeed one with constant relative risk aversion does not cause

the induced TEM g to be concave. In fact, if 0 < a < 1, the concavity of h is inversely

related to the concavity of g. This also makes apparent the potential �stabilizing�e¤ect that

a �very convex�h may have starting from a linear TEM f where 0 < a < 1. Indeed if the

relative risk aversion of h is a su¢ ciently rapidly increasing function, one might achieve that

the relative risk aversion of g is positive and large enough so as to induce a GSF. Concave

transformations on the other hand, have a �destabilizing�e¤ect, that is, they can transform

an f that induces a GSF (under the identity transformation) into a g that induces an UF.

The following sections elaborate on these features.
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3.1 Representations that induce Stability

In this subsection we transform, via an h, an UF into a GSF. Consider a linear primitive

TEM f given by f(x) = ax where a is a positive constant. Under the additional assumption

that f is a contraction, i.e 0 < a < 1, we identify a condition on h that causes the induced

TEM g to satisfy g(y) = O(py):
Furthermore, an identical conclusion holds even if the primitive f is non linear but it

is eventually a contraction, i.e jf(x)j=jxj < a < 1 for jxj large. This follows from the next

inequality, which holds, for large jyj, for any f satisfying assumption 2 and h satisfying
assumption 3:

jh(f(h�1(y)))j
jyj � jh(ah�1(y))j

jyj :

If h is a su¢ ciently convex function of jxj eventually, one gets jg(y)j to be a su¢ ciently
concave function of jyj so as to satisfy the condition g(y) = O(py) eventually and thereby
induce a GSF. Noting that the Relative Risk aversion of the map g(y) =

p
y is 1=2; it is

straightforward to verify that the condition Rg(y) � 1=2 su¢ ces to establish that g(y) =

O(py): Since we are working with a linear TEM, the formula for Rg(y) is given by (8).
These observations are summarized below as a proposition without proof.

Proposition 3. Let f satisfy assumption 2, be twice di¤erentiable for large jxj, and satisfy
in addition the following contracting property: jf(x)j � ajxj for some 0 < a < 1 and jxj
large. Let h be an increasing (respectively, decreasing) transformation, satisfying assump-

tion 3 and twice di¤erentiable for large jxj, such that h+(x) = h1(x) (resp, �h1(x)) and
h� (x) = �h2(�x) (resp, h2(�x)) where h1(z) and h2(z) map R+ to R+; and are eventually
su¢ ciently convex functions so that y�0(y)

�(y)
[Rhj(a�(y)) � Rhj(�(y))] exceeds 1=2 eventually

for j=1,2. Then the induced TEM g satis�es g(y) = O(py) and h consequently induces a
GSF.

The example below gives an explicitly parameterized functional form for h(x) to show

that enough convexity of h leads to a GSF being induced whenever the underlying TEM f

is eventually a contraction. As argued earlier, it su¢ ces to establish this for a TEM f that

is linear and a contraction.

Example 3. Let f(x) = ax with 0 < a < 1. We now verify the existence of maps h that lead
Rg(y) to eventually exceed 1=2: Consider the following family of increasing transformations,

indexed by n, where for x � 0; h+(x) = ex
n � 1 and h�(x) = �h+(�x) for x < 0: The

formula for Rg(y) reduces to

Rg(y) =
y

y + 1
[1� an]

Since a < 1, for n large enough, the above eventually exceeds 1
2
as required for g(y) = O(py):

Figure 1 represents this transformation for the case n = 2; and Figure 2 plots the initial
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TEM with a = 0:5 and the induced TEM.

Figure 1. Convex transformation.

Figure 2. Initial TEM (thin) and induced TEM

(thick).

3.2 Representations that induce an UF

Here we provide a set of conditions on the primitive f and the representation h that ensures

that the induced TEM g describes an UF of the learning dynamics. It su¢ ces to ensure that

g is eventually monotone, diverges in modulus and its �rst derivative is bounded away from

zero eventually. Indeed these conditions ensure that g eventually lies, for the case where the

derivative is bounded away from zero by a positive number, above a line �y; � > 0; for y

large enough. An analogous conclusion holds if the derivative is bounded away from zero

by a negative number. These are summarized in the proposition below, a formal proof of

which is omitted.

Proposition 4. Assume f satis�es assumption 2 and h satis�es assumption 3. (i) Sup-
pose that f is eventually increasing and either f (y) > 0 for y >C, or f (y) < 0 for y < �C,
or both, for some C> 0 . Then, the induced TEM g is also increasing and satis�es either

g(y) > 0 for y >C, or g(y) < �C, or both. If instead, f is eventually decreasing and either
f (y) < 0 for y >C, or f (y) > 0 for y < �C, for some C> 0 , or both hold, then the induced
TEM g is decreasing and satis�es either g(y) < 0 for y >C, or g(y) > 0 for y < �C, or
both.

(ii) If in addition the induced TEM g is increasing (respectively, decreasing), satis�es

g(y) > 0 for y > C(resp, y < �C); and if g(y) � g(y) where g0(y) > c > 0 (resp,
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g0(y) < �c < 0) for some constant c and y large enough, then g satis�es g(y) > �y (resp,
��y) for y large enough, for some positive constant � ; and accordingly induces an UF of the
learning dynamics. If g is decreasing (resp, increasing), satis�es g(y) < 0 for y > C(resp,

y < �C); and if g(y) � g(y) where g0(y) < c < 0 (resp, g0(y) > c > 0) for some constant c
and y large enough; then g satis�es g(y) < ��y (�y) for y large enough, for some positive
constant � ; and accordingly h induces an UF of the learning dynamics.

It turns out that increasing and eventually concave representations h induce an UF

starting from a primitive TEM f that eventually grows at some some minimal rate, so

as to satisfy the condition that its graph lie above the graph of a function of the form of

Kx�; � > 0: The Corollary below states this possibility.

Corollary 1. Let f satisfy assumption 2 and grow eventually at least as fast as f(x) =
Kx�; � > 0; that is f(x) � f(x) = Kx� for x > M , where M and K are positive con-

stants. Then, there exist increasing representations h satisfying assumption 3 and eventually

concave, that induces an UF. Speci�cally, suppose h(x ) = ln(1 + x ) for x � 0: Then, the

induced TEM g satis�es g(y) � g(y) � ln(1 +K(ey � 1)�) for y large with g0(y) > c > 0
eventually, and induces an UF of the learning dynamics.

In Figure 3 we have plotted the transformation ln(1 + x ); and in Figure 4 we have

plotted the initial TEM with � = 0:4 and K=1, and the TEM induced by the logarithmic

transformation.
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Figure 3. Concave transformation.
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Figure 4. Initial TEM (thin) and

induced TEM (thick).

Remark 1. The transformation h(x ) = ln(1 + x ) for x � 0 has its relative risk aversion
increasing and equal to 1 asymptotically. It can be veri�ed using (7) that it su¢ ces to work

with an h that has constant relative risk aversion that is no less than 1. For example, if
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h(x) = K lnx+c; for x �M > 0; K > 0, then Rh = 1 for x large and h accordingly induces

an UF of the OLS dynamics. (One can verify that if Rh is of the form 1� �; 0 < � < 1; as
would arise for instance via h(x) = Kx�; for x �M > 0; one is left with a concave g which

does not ensure an UF). One could sharpen the result further by assuming that f(x) grow

slower than assumed and be given, for instance, by f(x) = K lnx: One then needs to assume

a greater degree of concavity of h to reach an identical conclusion. Analogous statements

hold for a primitive TEM that is decreasing.

3.3 Destabilization via Concave Representations

A standard econometric practice to stabilize a time series sequence consists of applying

the logarithm to the original series of the state variable. The previous result shows that

in a learning model, such as the one we consider, applying this transformation does not

attenuate the instability. Therefore, in the presence of local instability, an agent following

this practice, termed an active agent, would never stabilize the system, whereas a passive

agent who would not attempt any transformation would do. Figure 5 shows this case. In

particular, we have plotted for an initial linear TEM f(x) = ax; a = 1=2, the estimated

�beliefs�about the growth rates of the state variable for an active and a passive agent. Note

the steady convergence for the passive agent and the exponential increase for the active

agent.

Let 
xt and 

y
t refer to the parameter estimate using the initial data xj+1=xj; j = �L; :; ::; 2

and h(xj+1)=h(xj); j = �L; :; ::; 2 respectively.
We emphasize the destabilizing e¤ect of concave transformations via the following corol-

lary.

Corollary 2. Let f satisfy assumption 1, the global contraction condition jf(x)j < ajxj
for all x and, in addition, that it eventually satis�es f 1(x) � f(x) � f 2(x) for x > S >

0 where the bounds grow eventually at least as fast as f j(x) = Kx�j ; �j > 0 with 0 <

�1 < �2 < 1=2: Then, OLS formulated on x is globally stable, i.e., (xt; 
xt ; !t) ! (0; 
x; !)

with j
xj � 1: There exist increasing concave transformations h(x) s.t OLS formulated on

y = h(x) leads to an UF with yt ! 1 whenever the initial parameter estimate 
y0 is large

enough. In particular, one obtains instability for initial conditions that satisfy 
x0 > 

y
0:

The condition �2 < 1=2 above ensures that a GSF is induced by the TEM f . In the

Appendix we show that this condition along with the contracting condition that is imposed in

the Corollary above, ensures that learning dynamics formulated on x are globally convergent

to the steady state. On the other hand, if agents forecast y = h(x), then under the conditions

on h speci�ed in the Corollary 2, Corollary 1 applies and one gets an UF with the dynamics

of the state variable diverging to in�nity for large enough 
y0: In particular, the parameter
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estimate 
y0 obtained after applying a concave transform may be less than the original

parameter estimate 
x0 ; but nevertheless leads to divergent dynamics. In conclusion, the

agent´s e¤orts to transform the data, so as to dampen the divergent trends in the original

data, may be destabilizing for the system.
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Figure 5. Estimated beliefs for passive agent (solid) and active agent (dotted).

4 Di¤erencing and Detrending

In this section we consider the case where instead of applying an instantaneous transforma-

tion h(x) to the data, the agent either di¤erences or detrends the state variable. These two

are the most common transformations that time series econometricians apply to nonstation-

ary data to induce stationarity, according to whether the series are supposed to be DS or

TS.

First, consider that the agent reformulates the forecasting model in terms of the di¤er-

ences of the current value of the state variable from its lagged value. Thus, the agents model

is of the form (4) with yt = xt � xt�1 and forecasts and parameter estimates continue to be
given by (2) and (3) respectively. The forecast yet+1 induces the forecast x

e
t+1 = yet+1 + x

e
t

with xet = y
e
t + xt�1: We retain the assumption that information up to t � 1 is available at

the time of forecasting xet+1; and this gives

xet+1 = [

2
t�1 + 
t�1]yt�1 + xt�1:

Assuming for exposition that the primitive TEM is linear and given by xt = axet+1; one

obtains

yt = a

2
t�1yt�1 +R(
t�1; yt�1; xt�1);
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where R(
t�1; yt�1; xt�1) = a
t�1yt�1 + [a� 1]xt�1: As could be expected, di¤erencing leads
to stability in some cases. For instance, for a linear TEM in which the beliefs converge

monotonically from above to 1=a: However, di¤erencing is not, in general stability enhancing.

One can show that if the initial parameter estimate 
0 is su¢ ciently large, one gets the

inequality yt > a
2t�1yt�1 which is an UF and accordingly the instability problem shows up

again. Thus, di¤erencing the data is not stability enhancing in a meaningful sense. The

Proposition below summarizes this fact for any primitive TEM that induces an UF.

Proposition 5. Assume the primitive TEM f satis�es assumption 1 and induces an UF

of the learning dynamics. Suppose now agents formulate OLS learning on �rst di¤erences

yt = xt � xt�1. Assume that the initial conditions x0; :::; x�L are such that x0 and x�1
satisfy j(x0=x�1)j > 1 + �; where � >0, and the parameter estimate 
0 (given by (3) with
yt = xt�xt�1) is large enough.18 Then, under the dynamics with OLS learning formulated on
y; j
tj forms a strictly increasing sequence and the induced jxtj sequence diverges to in�nity.
Next, consider that the agent detrends the state variable using a polynomial and formu-

lates the forecasting model in terms of the resulting residuals. For simplicity, we assume that

there is no uncertainty associated to the estimation of the parameters of the polynomial.

Thus, the agents model is of the form (4) with yt = xt � Pn(t) where Pn(t) =
Pn

j=0 �jt
j,

and forecasts and parameter estimates continue to be given by (2) and (3) respectively. The

forecast yet+1 induces the forecast x
e
t+1 = y

e
t+1 + Pn(t + 1). We retain the assumption that

information up to t � 1 is available at the time of forecasting xet+1: Assume for illustration
that the primitive TEM is linear and given by xt = axet+1: Then,

yt = a

2
t�1yt�1 +Rn(t); (9)

where Rn(t) = [aPn(t+ 1)� Pn(t)]. Assume that the agent starts to detrend the data at
time t0; then similarly to above, there exists an initial value 
t0 large enough such that the

system yt = a

2
t�1yt�1 would lead to yt growing exponentially, so that Rn(t), which is just

a polynomial, does not a¤ect its eventual behavior. Thus, polynomial detrending is not

stability enhancing. The Proposition below summarizes this fact.

Proposition 6. Assume the primitive TEM f satis�es assumption 1 and induces an UF of

the learning dynamics. Suppose at some date t0 the representative agent decides to detrend

the data and formulate OLS learning on the detrended data yt = xt � Pn(t). Then, if


t0 > max

(
1

2a
+
1

2a

s
1� 4aRn(t0 + 1)

yt0
;
jRn(t0 + 2)j
jRn(t0 + 1)j

)

�j � 0 for all j
18See the proof for more details.
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and

a < (1 +
1

t0
)�n (10)

then yt diverges exponentially to in�nity.

Note that the role of condition (10) is to assure that Rn(t) < 0 for all t > t0. Although

the previous proposition just identi�es a particular set of conditions that induce instability,

instability is a general outcome. In fact, we have performed a variety of simulations for

alternative initial speci�cations and we have not been able to �nd a single case in which

the series yt would not diverge. Note, from equation (9), that divergence either takes an

exponential form, when the leading term is a
2t�1yt�1; or it takes a polynomial form, when

the leading term is Rn(t):

In practice, the most common transformation in time series takes �rst di¤erences on the

logarithm of the original data. We assume that the primitive variable satis�es a positivity

constraint in levels, that is, X � 0; and has a unique steady state value X�: In the next

two examples we examine this combined transformation for a linear TEM and for a concave

TEM.

Example 4. Assume that the initial TEMwhen expressed in levelsX eventually behaves

like

Xt = b+ aX
e
t+1

where a and b are positive constants. Notice that the steady state X� is no longer 0 but

b=(1�a): Now assume that the agent considers the standard transformation in econometrics,
where the logarithms are applied to the data in levels rather than in deviations,

Yt = log(Xt=Xt�1): (11)

In this case the unique steady state for the new Yt variable is 0: Notice that the law of

motion for Yt satis�es

Yt = log(
b

Xt�1
+ a exp(Y et+1 + Y

e
t )):

When Xt�1 = b=(1� a); the steady state value, then

Yt = log(1� a+ a exp(Y et+1 + Y et ))

so that the steady state corresponds to Y = 0: When Xt�1 is very large compared to b;

the map will approximately be Yt � log a + (Y et+1 + Y
e
t ): In fact, for Xt�1 > 0; one has

Yt > log a+ (Y
e
t+1 + Y

e
t ). In this case, assuming agents apply the forecasting rule (2) to Y;

Y et+1 = 

2
t�1Yt�1 and Y

e
t = 
t�1Yt�1; (12)

so that

Yt > log a+ (

2
t�1 + 
t�1)Yt�1:
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The above law of motion is akin to an UF. Indeed for Yt�1 > 0 and �xed, if 
t�1 is large

enough, one gets the con�guration

Yt+j
Yt�1+j

> 
t�1+j > 1; for j � 1

so that Yt diverges and 
t forms an increasing sequence. N
The previous example shows that applying the most typical transformation to a time

series, namely taking di¤erences in the logged data, is not in general stability enhancing. In

fact, the next example conveys a stronger message: even with an initial TEM that evokes

a GSF, this combined transformation leads to the possibility of divergence to in�nity of the

transformed state variable.

Example 5. Consider again a state variable in levels, X � 0; with a unique steady state
value X�: Assume that the TEM in this representation eventually behaves like

Xt = K
�
Xe
t+1

��
where 0 < � < 1=2.

Suppose �rst that agents formulate their forecasting model onX: Following the procedure

employed in this article, we express the linear forecasting model (2) in deviations x from the

known unique steady state X�, xt = Xt�X�: It follows then that the TEM, when expressed

in deviations, becomes eventually

xt = K
�
xet+1 +X

��� �X�:

Since we have assumed � < 1=2; this TEM satis�es the requirement of a GSF. The

dynamics under OLS formulated on x therefore do not allow xt to diverge to in�nity.

Now suppose the agent considers the transformation (11) and the agent�s beliefs are

given by applying (2) to Y to obtain (12). Then, if at some point t0 the beliefs satisfy


t0 > �1=2 + 1=2
p
1 + 4=�, then Yt constitute a nonstationary process. This result is

immediate by noticing that

Xt�1 = K
1

1��
exp(Y et+1 + Y

e
t )

�
1��

exp(Yt)
1

1��

so that Yt follows a linear second order di¤erence equation

Yt+1 = �(1 + 
t + 

2
t )Yt � �(
t�1 + 
2t�1)Yt�1

and a su¢ cient condition for the explosiveness of this process is that
���(
t�1 + 
2t�1)�� > 1,

that is, 
t�1 > �1=2 + 1=2
p
1 + 4=�:N
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Therefore, taking di¤erences in the logged data can be destabilizing even in the con�gu-

ration of Example 5. Similarly to Section 3.3, the results from the previous example can be

extended to more general settings where the initial TEM is eventually bounded below and

above by power functions with power coe¢ cients bounded above by 0.5, and in addition, it

satis�es an appropriate contracting condition. For these general cases, learning dynamics

formulated on the original variable leads to global convergence to the steady state, whereas

the learning dynamics formulated after taking di¤erences in logged data leads to divergence

to in�nity. The situation is equivalent to the one graphed in Figure 5: an active agent would

fare worse in terms of convergence to the steady state than a passive agent.

5 Concluding Remarks

In this article, we have modelled learning in a Walrasian set up in the sense that agents

do not recognize the consequences of their actions on the market clearing prices or the de-

pendence of the prices on the actions and forecasts of other agents. The only information

available to the agents are past values of the only endogenous state variable, the price. Even

in the simple set up examined here, this information structure is, in principle, compatible

with the agents learning and converging to the steady state.19 Agents generate a point

forecast of future prices using past prices via OLS and we examine the resulting dynamics.

Earlier studies have shown that there is a tendency for the resulting dynamics to be diver-

gent. This article has attempted to introduce some sophistication in the learning process, in

that, a representative agent attempts actively to improve the forecasting ability of her model

by considering several transformations of the state variable within the framework of OLS

learning. We �nd that for a class of economies, standard transformations used in econo-

metrics, like di¤erencing, detrending or concave transformations like taking logarithms, are

not stability enhancing. As a practical conclusion, an active agent, who employs the stan-

dard econometric transformations to induce stability, may eventually fare worse than one

that passively sticks to a �xed formulation in spite of bad forecasts in the short run. More

work is needed before we obtain a better understanding of what assumptions on individ-

ual behaviour may actually underlie the perfect foresight approach to dynamic economics.

Our somewhat negative �ndings however cast doubts on whether perfect foresight is at all

compatible with decentralized Walrasian behaviour20 in the learning phase of an economy.

19This need not be the case in more general models. Hellwig (1982) points out that Markovian processes

with rational expectations need not exist unless the state space of the economy is expanded to include past

endowments and expectations. A sensible formulation of a Walrasian agents learning problem in this set

up is an important challenge.
20One alternative approach would be to model the learning phase as a dynamic strategic market game

where agents explicitly take into account the price formation rules (as in Chatterji and Ghosal (2004)) but
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We �nally mention some possibilities for further work. We have considered the standard

econometric practice in which the agent, by inspecting the evolution of the time series of

interest, decides to stabilize the data by the use of some transformation. Alternatively,

an agent could base her decisions on the outcome of speci�cation tests. These tests can

be carried out in a variety of forms. In this article we have considered that the agent�s

beliefs are based on a simple linear autoregression of order one. Using this model as the null

hypothesis, there are a variety of speci�cation tests the agent could attempt. For instance,

she could consider testing that the order of the autoregression is one against a higher order.

In this case she could perform a simple Wald or Lagrange Multiplier (henceforth, LM) test in

the augmented model. Alternatively, she could question the linearity of the autoregression

and employ general omnibus speci�cation tests, such as those in Lobato (2003). In case

the agent had some other alternative speci�c nonlinear model in mind, she could employ

likelihood ratio tests. Another possibility is testing whether the autoregression of order

one has constant or time-varying parameters, in this case LM tests are the simplest to

implement. Finally, following the spirit of this article, the agent could stick to a linear

autoregresion of order one with time constant parameters and test the necessity of the

alternative transformations considered. In this respect, the simplest approach would again

be the construction of LM tests such as those in Coulson and Robins (1987) and Wooldridge

(1994), see also Atkinson and Lawrance (1989) for a comparison between competing tests.

6 Proofs

As a �rst step, we note the fact summarized in Lemma 1. A veri�cation of this can be found

in the proof of Proposition 1 of Chatterji and Chattopadhyay (2000) and is accordingly

omitted.

Lemma 1. Along any trajectory, the inequality

j
tj � 1 +
y2t

2
t�1X
�L
y2j

is satis�ed.

Proof of Proposition 1. The proof of divergence to in�nity of the state variable under
an UF is a standard replication of known arguments (Grandmont 1998) and is omitted.

We prove that if g satis�es Assumption 2, then the dynamics of the state variable and the

are uncertain about the strategies employed by others, or more generally, model learning in accordance with

the literature on learning in games (Fudenberg and Levine 1998). A full blown strategic approach would be

subject to the Radner critique (footnote 3).
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parameter estimate do not diverge to in�nity. An identical proof holds for the case when g

satis�es Assumption 1.

Step (i) Consider a sample path such that j
2nynj < L in�nitely often for some constant
L > 0: By assumption 1, j
2nynj < L implies that jyn+1j =jg(
2nyn)j < y(L) and so jyn+1j <
y(L) in�nitely often where y(L) is a positive constant. Next, by Lemma 1, j
nj < 1 + �,

where � > 0; in�nitely often. (To verify this, notice from the right hand side of the inequality

stated in Lemma 1, that if
n�1X
�L
y2j converges, then it must be the case that yn ! 0 and the

conclusion follows, while if
n�1X
�L
y2j diverges, then for for any � > 0; if n is su¢ ciently large,

one gets in�nitely often the inequality y2t

"
2
n�1X
�L
y2j

#�1
< y(L)2

"
2
n�1X
�L
y2j

#�1
< � as required.)

If one sets Q =maxfy(L); 1 + �g; then j
nj < Q and jynj < Q in�nitely often and the proof

is complete.

Step (ii): Suppose now that j
2nynj diverges. If jyn+1j < y(L) in�nitely often for some
positive constant y(L), then the analysis of case (i) above applies; one has therefore j
nj < Q
and jynj < Q in�nitely often, so that j
2nynj cannot diverge. So assume jyn+1j diverges as
well. Since g(y) = O(py); there exist constants M > 0 and N > 0, arbitrarily large but

�xed, such that jyj � M ) jg(y)j � Npy: Since j
2nynj and jynj diverge, there exists T
such that j
2T+tyT+tj >M and jyT+tj > max fM; 4N 2g for all t � 0: It follows that for all
t � 0

jg(
2T+tyT+t)j
jyT+tj

� N j
T+tj
jyT+tj

1
2

� 1

2
j
T+tj:

Since 
t+1 is a convex combination (with positive weights) of 
t and
g(
2t yt)

yt
, one gets

j
T+t+1j � j
T+tj for all t � 0 and so j
T+tj forms a decreasing sequence for t � 1: This im-
plies in particular that along any sequence, the sequence of parameter estimates j
tj remains
bounded by a quantity b
 > 0: This in turn leads to the inequality

jyT+t+1j
jyT+tj

=
jg(
2T+tyT+t)j

jyT+tj
� N b


jyT+tj
1
2

:

Now consider � such that 0 < � < 1. For some T 0, jyT 0+tj � Nb
=� for all t � 0. It follows
that, for all t � 0, jyT 0+t+1jjyT 0+tj

< � and we must conclude that yt ! 0. This contradicts the

hypothesis that jynj is unbounded. Thus this case cannot occur and we must always have
jyn+1j < y(L) in�nitely often for some positive constant y(L) and the proof is complete.N
Proof of Proposition 2. We �rst prove part (i) of the Proposition. Assume h is in-
creasing. By hypothesis, f(x) = O(

p
x); which implies that for large jxj; jf(x)j < L

p
x,

where L > 0. Observe that f(h�1(y)) satis�es �L
p
jh�1(y)j < f(h�1(y)) < L

p
jh�1(y)j:
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Since jh�1(y)j < 1
c
jyj; the one gets �L

q
jyj
c
< f(h�1(y)) < L

q
jyj
c
; which since h is in-

creasing leads to h(�L
q

jyj
c
) < h(f(h�1(y))) < h(L

q
jyj
c
): Finally since jh(x)j < djxj, one

gets �dL
q

jyj
c
< h(f(h�1(y))) < dL

q
jyj
c
which proves that h(f(h�1(y))) = g(y) = O(py):

Analogous arguments apply for an h that is decreasing.

We now prove part (ii) of the Proposition. Assume h is increasing. (a) Suppose jf(x)j > kx
for x > S > 0. Since f is continuous, either f(x) > kx for x > S or f(x) < �kx for
x > S. Suppose f(x) > kx for x > S and let y > h(S). Then f(h�1(y)) > 0: Furthermore,

f(h�1(y)) > kh�1(y) > 0: One then obtains g(y) � h(f(h�1(y))) > h(kh�1(y)) > h(k
d
y) >

ck
d
y: One thus has g(y)

y
> k � ck

d
for y > h(S): Suppose next that f(x) < �kx for x > S:

Then f(h�1(y)) < �bh�1(y) < 0 for all y > h(S) and one gets g(y) � h(f(h�1(y))) <

h(�kh�1(y)) < h(�k
d
y) < � ck

d
y = �ky: (b) Suppose jf(x)j > kx for x < �S < 0. If f(x) >

�kx for x < �S < 0; by an identical argument as in case (a), for y < h(�S), one obtains
g(y) � h(f(h�1(y))) > h(�kh�1(y)) > h(�k

d
y) > � ck

d
y = �ky: Finally, suppose f(x) < kx

for all x < �S < 0: One gets here g(y) � h(f(h�1(y))) < h(kh�1(y)) < h(k
d
y) < ck

d
y = ky

for y < h(�S): Thus if h is increasing, the induced TEM g satis�es the requirement of

De�nition 1. Analogous arguments apply for an h that is decreasing. This completes the

proof of the proposition. N
Proof of Proposition 5. For simplicity, we consider the case where the primitive TEM
satis�es f(x) > ax for x large with a > 0 (the other possibilities for an UF are treated

analogously) and that the initial conditions x0; :::; x�L are such that there exists � > 0

such that j(x0=x�1)j > 1 + �; and the parameter estimate 
0, given by (5), is large enough
so that it satis�es that 
0 > �1

2
+ 1p

a

q
5
4
+ 1

�
: We have xe2 = [
20 + 
0]y0 + x0; which for

large x0 gives x1 > axe2 (since the TEM satis�es f(x) > ax for x large) and accordingly
y1
y0
> a
20 + a
0 +

[a�1]x0
y0

. We �rst establish that y1
y0
> a
20 for a 
0 that satis�es the previous

conditions. This is equivalent to showing that a
0 +
[a�1]x0
y0

> 0: Noting that y0 = x0 � x�1
and rearranging terms, the required inequality becomes x0

x�1
> a
0

a
0+a�1
: Since we assume

that x0
x�1

> 1 + �; with � > 0; the inequality holds. This ensures that 
1 which is a convex

combination of 
0 and
y1
y0
will exceed 
0. We show next that the condition

x0
x�1

> 1 + � and


0 > �1
2
+ 1p

a

q
5
4
+ 1

�
implies that x1

x0
> 1 + �. We have x1

x0
> 1 + � i¤ y1

x0
> �: Next, y1

x0
=

a(
20+
0)(1�
x�1
x0
)+ (a�1) and we have the inequality y1

x0
> a(
20+
0)(1� 1

1+�
)+ (a�1) =

a(
20+ 
0)�+ (a� 1); which exceeds � as required when 
0 satis�es the previous conditions.
Therefore, under the stated condition, x1

x0
> 1 + � and 
1 > 
0; and, by induction, the

sequence xt diverges to in�nity and 
t forms an increasing sequence.

Proof of Proposition 6. We consider the case where the primitive TEM satis�es f(x) > ax

for x large and a > 0. The other possibilities for an UF are treated analogously. Assume

without loss of generality that 
t0 and yt0 are both positive. We will show that 
t for
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t = t0 + 1; :::; form an increasing sequence so that yt diverges exponentially to in�nity.

First, note that the stated conditions guarantee that Rn(t) < 0 for all t � t0 because

Rn(t) =
Pn

j=0 �j[a(1 + t
�1)j � 1]tj: Second, note that a necessary and su¢ cient condition

for 
t0+1 > 
t0 is that yt0+1 > 
t0yt0 and using that yt0+1 > a
2t0yt0 + Rn(t0 + 1), the

condition yt0+1 > 
t0yt0 holds when 
t0 >
1
2a
+ 1

2a

q
1� 4aRn(t0+1)

yt0
: For the second period,

we need to verify that 
t0+2 > 
t0+1, that is, yt0+2 > 
t0+1yt0+1: Similarly as above, note

that this holds as long as 
t0+1 >
1
2a
+ 1

2a

q
1� 4aRn(t0+2)

yt0+1
; but this condition holds because

we know from the �rst period that 
t0+1 > 
t0 >
1
2a
+ 1

2a

q
1� 4aRn(t0+1)

yt0
; and using that

jRn(t0+2)j
yt0+1

< jRn(t0+1)j
yt0

; which follows from the fact that yt0+1 > 
t0yt0 and the condition

that 
t0 >
jRn(t0+2)j
jRn(t0+1)j : Then, recursively note that a necessary and su¢ cient condition for


t+1 > 
t is that yt+1 > 
tyt and using that yt+1 > a
2tyt + Rn(t + 1), the condition

yt+1 > 
tyt holds when 
t >
1
2a
+ 1
2a

q
1� 4aRn(t+1)

yt
: Finally, notice that the stated conditions

guarantee that the sequence jRn(t+ 1)j =yt forms a decreasing sequence. To see this, note
that jRn(t)j =yt�1 > jRn(t+ 1)j =yt is equivalent to yt=yt�1 > jRn(t+ 1)j = jRn(t)j and, while
yt=yt�1 is bounded below by 
t�1; the sequence jRn(t+ 1)j = jRn(t)j decreases monotonically
to 1 as t tends to in�nity using the Cauchy-Schwartz inequality.
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Appendix

Part 1 of this appendix provides conditions for the global convergence of the learning

dynamics to the steady state. Part 2 extends the analysis of Section 3 of the paper to

a stochastic formulation. Part 3 examines a set up where the domain of the problem is

bounded. Part 4 gathers some proofs.

1. Global Stability.

A formulation that induces a GSF does not allow the state variable yt and the parameter

estimate 
t to diverge to in�nity. This of course does not imply convergence to the steady

state 0. If one now imposes conditions that guarantee that the induced TEM g is a contrac-

tion, in addition to imposing a GSF, then one obtains global stability with all sequences yt
converging to the steady state and the parameter estimates converging to a �nite limit. We

assume in this section that the underlying TEM f; in addition to satisfying assumption 1,

is a contraction, i.e., jf(x)j < ajxj; 0 < a < 1:
Consider now the TEM g induced by an h that induces a GSF. The TEM�s f and g

are related via the topological conjugacy g = h � f � h�1 where h is smooth monotone
change of variable satisfying h(0) = 0. By topological conjugacy, the iterated dynamics of

the maps f and g must be qualitatively similar. Thus, if f generates trajectories xt ! 0;

then trajectories yt generated by g must also satisfy yt ! 0: For the OLS learning dynamics

to have convergent dynamics, it is important to work with maps that satisfy a contracting

condition.21 We next specify a simple su¢ cient condition on h; namely the symmetry of h

around the steady state 0, that will ensure that the induced TEM g will inherit a contracting

property from the primitive TEM f:

Assumption 5. Let h be symmetric around 0 in the sense that h(x) = �h(�x) for all x:
The symmetry condition speci�ed above (which is by no means necessary) along with

the following regularity condition guarantees that the induced TEM g has a nice contracting

property which is described in Lemma 2 below.

Assumption 6. Assume that f and h are continuously di¤erentiable around 0 and that the
pair h and f satis�es the following regularity condition

jg0(0)j � jlimy!0
h(f(h�1(y)))

y
j 6= 1:

21It does not however follow that the contracting property jf(x) < ajxj; 0 < a < 1, that f is assumed to
possess, is necessarily inherited by g. It may for instance, be the case that g does not satisfy a contracting

condition jg(y)j < a0jyj, for any value of 0 < a0 < 1, but still generates trajectories yt that converge to zero
by virtue of the nth iterate of g, gn satisfying the contracting condition jgn(y)j < a0jyj for 0 < a0 < 1.

29



Lemma 2. Assume f satis�es assumption 2 and a < 1; so that f is a global contraction.

Let h satisfy assumption 3 and assumption 5. Then the induced TEM g = h � f � h�1

satis�es jg(y)j < jyj for all jyj > 0: If one assumes in addition that the pair h and f satisfy
assumption 6 ; one obtains the existence, for any compact interval [�Q;Q], of a constant
a(Q) satisfying 0 < a(Q) < 1, such that jg(y)j < a(Q)jyj for all y 2 [�Q;Q].
One can now establish the following global convergence result.

Proposition 7 Assume f satis�es assumption 1 and a < 1; so that f is a global contraction.
Let h, satisfying assumption 3 (i) induce a GSF, and (ii) induce the condition that for any

compact interval [�Q;Q], there exist a constant a(Q) satisfying 0 < a(Q) < 1, such that
jg(y)j < a(Q)jyj for all y 2 [�Q;Q]: Then the OLS learning dynamics formulated on
y = h(x) are globally convergent to the steady state, i.e., for all initial conditions, one has

(yt; 
t; !t)! (0; 
; !) with j
j � 1:
Remark 2. This proposition generalizes the global stability proposition 2 of Chatterji and
Chattopadhyay (2000). The latter required bounds on the range of the TEMwhich have been

dispensed with in Proposition 7; indeed global stability can obtain for a TEM g satisfying

g(y) = O(py); whose range consequently does not diverges �too fast�. Importantly, as
Proposition 3 makes clear, one may start with a TEM whose range diverges to in�nity at

a rate faster than a linear rate, and yet obtain global stability if agents forecast a suitably

transformed variable y = h(x) that induces a GSF and satis�es in addition assumption 5

and assumption 6. Conversely, there exist TEM�s g which satisfy g(y) = O(py) and the
contracting property, but which can be destabilized by an appropriate representation as

speci�ed in the previous section. However, the global stability �nding of Proposition 2(CC)

being driven by bounds on the range of the TEM survives for any representation h that

preserves the contracting property. N

2. An Extension to Stochastic TEM�s.

The main ideas of section 3 extend to stochastic economies. We focus on the case where

the primitive TEM has, for simplicity, an additive stochastic component and is accordingly

given by

xt = f(x
e
t+1) + �t

where f satis�es assumption 1 as before and f�tg is a sequence of mean zero (non-degenerate)
i.i.d random variables whose support lies in the compact interval [��; �]: We restrict atten-
tion for convenience to a representation h that is increasing and satis�es assumption 3. As

observed earlier, f satis�es assumption 1. Assume in addition the following contracting

property: jf(x)j � ajxj for some 0 < a < 1 and jxj large. The induced TEM here is given
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by the relation

yt = h(xt) = h[f(h
�1(yet+1)) + �t] � g(yet+1; �t)

and consequently satis�es the inequality

jytj = jh[f(h�1(yet+1)) + �t]j � jh[a(h�1(yet+1)) + �]j

To show that the induced TEM g(y; �t) = O(py); we focus on the positive part of the
mapping as before and so it su¢ ces to work with the map bg(y) � h[a(h�1(y)) + �] and

establish that it satis�es bg(y) = O(py): The relative risk aversion of this map is given by
the formula

Rbg(y) = y�0(y)
�(y)

[Rh(a�(y) + �)
a�(y)

a�(y) + �
�Rh(�(y))]

where as before �(y) � h�1(y): This formula resembles (8) and essentially the same stabi-
lizing mechanism is at play here. Therefore, an h that is su¢ ciently convex in the sense of

Proposition 3 leads to a GSF as well. Example 6 below veri�es these conditions where the

primitive TEM is linear.

Example 6. Let the TEM be given by the stochastic relation f(x) = ax + �t with 0 <

a < 1=2. The TEM now violates the requirement f(x) = O(
p
x): One has a UF of the

learning dynamics if agents forecast x. We now verify the existence of a representation h

that induces a TEM that satis�es the condition bg(y) = O(py). Let h(x) for x large be given
by h(x) = ex�K: For x < 0; the map h(x) is de�ned by symmetry as h(x) = �h(�x). The
formula for Rbg(y) for y large reduces to

Rbg(y) = y

y +K
[1� a]

Since a < 1
2
, the above eventually exceeds 1

2
as required for bg(y) = O(py):

Remark 3. Under additional assumptions, one can obtain a global stability result for sto-
chastic TEMs as well. For instance, consider the formulation of Example 6. Assume that h

is linear, for some � > 0; h(x) = �x for 0 � jxj � Z; then the TEM in some interval around

0 takes the conveniently additive form

yt = g(y
e
t+1) + �t

where g(yet+1) = h[f(h�1(yet+1)] and �t = ��t: If in addition to inducing a GSF, one has

the contracting condition that there exist positive constants W and a < 1 such that

jh[ah�1(y)]j < ajyj for all y and jbg(y)j < ajyj for all jyj > W , along with the condition

that h be linear in a large enough interval, i.e. Z be large enough, the stochastic dynamics

eventually get trapped in a region where the above additive formulation applies. (Indeed in

the formulation of Example 6 above, one needs to choose Z > maxf(1�a)�1�; (1�a)�1��g
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and let h(x) = �x for 0 � x � Z; be weakly convex for all z > Z and �nally, as imposed in
the example, let h(x) for x large be given by h(x) = ex �K and for x < 0; the map h(x)

be de�ned by symmetry as h(x) = �h(�x):) One can then adapt the method of Chatterji
(2002) to prove a global stability result wherein 
t ! 0 almost surely and yt in the limit is

white noise around the steady state.N

3. An Extension to Bounded Domains.22

In economic models, it is often the case that the state variable is bounded. These

bounds may stem from positivity conditions of feasibility conditions etc. To incorporate

such situations into the analysis, we examine the case where the range of h is bounded.

Qualitatively similar results appear here under a mild regularity condition. A version of

the GSF arises here by virtue of the fact that as agents perform regressions on a bounded

variable, the parameter estimate is tied down in the limit, along sequences that approach

the boundary of the bounded set.

We restate the basic assumptions in this setting as follows. The primitive TEM f now

is not necessarily de�ned on the entire real line.

Assumption 7. The TEM f : D = (�d;1) ! R , where -1 � �d < 0; has 0 as a �xed
point, f (0 ) = 0 ; is continuously di¤erentiable, and satis�es the global Lipschitz condition

0 � b � jf (x)j
jxj � a for all x .

Assumption 8. h: D ! V � (�v; v); where v; v > 0; is a continuously di¤ferentiable,

monotone change of variable that has 0 as a �xed point, h(0 ) = 0 .

The forecasting model when formulated on the variable y = h(x); now admits the possi-

bility that the forecast generated by equation (2) falls outside the interval V; the admissible

domain for the forecasts given that the agents forecast y. To prevent this one has to specify

bounds on the forecasts.

Let the forecast ensuing from (2) be denoted as

eyet+1 = 
2t�1yt�1 (13)

Unrestricted use of (13) leads to the possibility that values of y lying outside the permissible

interval V are forecasted, a possibility which can arise in the model when V is a bounded

interval and not the entire real line. In case v is �nite, to ensure that forecasts of y do

not fall below �v, the lower bound for V , we truncate (13) at �kt where 0 < kt < v and

yj � �kt for j = t � 1; t � 2; :; 0; ::;�L, so that the lower bound �kt is less than all past
realizations of the state variable up to period t� 1. Furthermore, if yt � �kt then kt+1 =kt,
while if yt < �kt then �kt+1 2 (�v; yt) so that the lower bound for the subsequent period,
22The material presented here is based on Chatterji and Chattopadhyay (2002).
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�kt+1, is updated if and only if the subsequent observation yt falls below �kt. So kt is a
parameter at date t and depends upon information available up to date t � 1. A similar

procedure is adopted to ensure that the forecast for Y does not exceed v in case v is �nite:

Here we truncate (13) at kt where 0 < kt < v and yj � kt for j = t�1; t�2; :; 0; ::;�L: Here
too kt is a parameter at date t which is updated analogously to some quantity in (yt; v) if

and only if yt exceeds kt: Formally

yet+1 = eyet+1 if eyet+1 2 [�kt; k t ]
yet+1 = �kt(kt) if eyet+1 < �kt(eyet+1 > kt)

The following is a heuristic description of how a GSF arises in this set up and implies

that yt 9 �v(v): The hypothesis yt ! �v implies that the sequence 
t�1; being is a convex
combination of past ratios yt�j=yt�1�j; j � 1; tends to 1 and the forecasts in the limit are

yet+1 ' yt�1: The case yt ! �v can only arise if limye!�v g(y
e) = �v: It is convenient to

extend the map g to �v by continuity so as to obtain the limiting �xed point g(�v) = �v:
The derivative of the map g evaluated at this limiting �xed point cannot be lesser than 1 in

modulus since the primitive TEM f will be assumed to be contracting for large x. (In�nity is

therefore repelling in the dynamics induced by f and since f and g are topological conjugates,

�v; the image of in�nity under the change of variable h, cannot be attracting under g.) This
observation, in conjunction with the mild that regularity condition limy!�v(v) g

0(y) exists

and is not equal to 1, implies that �v is a locally repelling �xed point of the dynamics
de�ned by g: This rules out convergence to �v: We emphasize that the formal proof of this
result is independent of the speci�c choice of the bounds on the forecasting procedure.

Proposition 8. Assume f satis�es assumption 7 and in addition the following contracting
property for large jxj: jf(x)j � ajxj for some 0 < a < 1 and jxj large. If h satis�es
assumption 8 with h(x) ! �v(v) as x ! 1; and the regularity condition [g(y) ! �v or
g(y) ! v as y ! �v(v)] ) limy!�v(v) g

0(y) exists and is not equal to 1 holds; then the

OLS learning dynamics formulated on y(= h(x)) 2 V satis�es the property that for every

sequence generated by the learning dynamics, yt 9 �v(v); or equivalently, xt(= h�1(yt)) < eQ
in�nitely often.

A GSF as de�ned in Section 2, where there are no bounds on the domain or the range

of the TEM, works via non linearities that do not allow the dynamics to sustain arbitrarily

high parameter estimates. In this setting with bounds, the regularity condition causes a

�xed point of the form �v or v to be repelling and therefore does not allow the dynamics
to sustain the parameter estimate of 1 in the limit. While it might appear that a GSF

appears here under a mild regularity condition, this added generality is what one gains for

making the more restrictive hypothesis that regressions are performed on a bounded state

variable, which e¤ectively ties down parameter estimates as the state variable approaches
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the boundary of the set.

We �nally sketch an Example to illustrate the workings of a model where the primitive

state variable has a positivity constraint.

Example 7. An Overlapping Generations Economy.

Consider a standard version of the Overlapping Generations Model model in which one

good is available in every period, there is a �xed stock M of money and one agent is born

every period and lives for two periods. We consider the learning dynamics when the utility

function of a young agent is given by u(c1; c2) =logc1c2. Let pc and pm be the prices of

the consumption good and money respectively. In order to decide how much to consume in

the �rst period of life, a young agent has to forecast the relative price for the next period.

Assume �rst that agents forecast the nominal price level Xt � pc=pm: The TEM in the

nominal price level turns out to be a¢ ne and is expressed as

Xt = aX
e
t+1 + c (14)

where Xt > 0 and 0 < a < 1 and c > 0, and the Golden Rule steady state value is given by

X� = c=(1� a). Since this steady state will be assumed known to agents, it is appropriate
to represent the TEM in deviations x(� X �X�) from the steady state as

xt = f(x
e
t+1) � axet+1 (15)

where xet+1 2 D � (�X�;1):
Now assume that agents forecast the real balance Y � pm=pc instead of the nominal

price. The TEM when expressed in the variable Y is

Yt =
Y et+1

a+ cY et+1
(16)

with Y � = X��1 = c�1(1 � a). Note that now 0 is a �xed point of (16) even though its
inverse image under H, namely +1, is not a �xed point of (14); denote this additional �xed
point as Y . Here too it is appropriate to represent the TEM in deviations y(� Y �Y �) from
the steady state as

yt = g(y
e
t+1)

where yet+1 2 D � (�Y �;1):
Notice that x and y are linked via the change of variable y = h(x) where h is de�ned via

the identity Y = h(X �X�)+Y � = H(X) with Y = H(X) = 1=X. The two TEMs f(xet+1)

and g(yet+1) are accordingly linked via the identity h(f(h
�1(yet+1))) � g(yet+1): Note that as

x!1; h(x)! �Y �: One extends the map g to �Y � by continuity, wherein �Y � becomes
a �xed point of g even though +1, is not a �xed point of (15); also g0(�Y �) = 1=�a > 1:
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Now suppose agents generate the forecast xet+1 via OLS on lagged values of x: Then one

has xet+1 = �
2
t�1xt�1 and so xt = �a�2t�1xt�1: For x > 0 and �

2
t�1 su¢ ciently large, one has

xt=xt�1 > �a�2t�1: Consequently, (see Marcet and Sargent (1989) and Grandmont (1998)),

�2t�1 forms an increasing sequence while xt ! 1. Thus the formulation of the learning
dynamics in this case is compatible with arbitrarily large parameter estimates along with

the state variable diverging to in�nity, which here implies that consumption goes to autarky.

When agents forecast the variable y instead via OLS so that yet+1 = 

2
t�1yt�1; Proposition 8

applies and the �xed point �Y � that corresponds to autarky turns out to be unstable under
the learning dynamics, so that yt 9 �Y �: In fact, one can show that the learning dynamics
converge to steady state y = 0 for all initial conditions so that one has in this case global

convergence to the golden rule steady state.23 N
4. Proofs.

Proof of Lemma 2. Assume without loss of generality that h is increasing and suppose,
for the moment, that y > 0. Then, using that h(0) = 0; one gets h�1(y) > 0: The con-

tracting condition jf(x)j<ajxj for 0 < a < 1 implies that jf(h�1(y))j < ah�1(y): Since

h is increasing, one obtains h(jf(h�1(y))j) < h(ah�1(y)) < y; since, using that a < 1;

h(ah�1(y)) < h(h�1(y)) = y: Then, jg(y)j
y
< 1 using that jg(y)j < h(jf(h�1(y))j): By symme-

try, an identical argument applies for y < 0, and one obtains thereby the inequality jg(y)j
jyj < 1

as required. The case where h is decreasing is treated analogously. One thus has in all cases

jg(y)j < jyj for all y 6= 0: Since f and g are topologically conjugate, the dynamics around
0 are equivalent. Since f is a contraction, jf 0(0)j < 1; this implies that jg0(0)j � 1: The

regularity condition then implies that jg0(0)j < 1: This in conjunction with the fact that

jg(y)j < jyj for all y implies the existence, for each [�Q;Q], of a constant a(Q) satisfying
0 < a(Q) < 1, such that jg(y)j < a(Q)jyj for all y 2 [�Q;Q]: N
Proof of Proposition 7. As a �rst step, we note the fact summarized in Lemma 3, the
proof of which is a straightforward adaptation of the proof of Proposition 1 of Chatterji and

Chattopadhyay (2000) and is accordingly omitted.

Lemma 3. Consider a TEM g : R! R; with g(0) = 0 that satis�es the following Lipschitz

condition: for every positive number L, there exists a positive constant a(L) such that

jg(y)j � a(L)jyj for all jyj < L. Suppose that for some n; j
nj and jynj are such that
j
nj < 1

a(Q)
and j
nj2 < 1

a(Q)
where Q > maxfj
n2ynj; jynjg: Then, for t � n; the sequence

j
nj is decreasing and (yt; 
t; !t)! (0; 
; !) with j
j � 1:
23This result is valid for a class of preferences in a set up where (i) the con�guration of endowments and

preferences is such that, at constant prices, the agent wishes to transfer income from youth to old age, i.e.,

the Samuelson case; this ensures that equilibria in which �at money has a positive exchange value exist;

and, (ii) consumption when old is a normal good. The discussion in section 2 applies, and there is always

local instability for an open set of initial conditions. For details see Chatterji and Chattopadhyay (2002).
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By Proposition 1, we know that there exists a constantQ; one has that jynj < Q in�nitely
often. Pick Q > Q. By assumption, a(Q) < a(Q) 12 < 1 and therefore 1 < 1

a(Q)
1
2
< 1

a(Q) :

Select � > 0 such that Q > (1 + �)2Q and (1 + �) < 1

a(Q)
1
2
: Here too, as in step (i) of the

proof of Proposition 1, Lemma 1 implies that j
nj < 1 + � in�nitely often . So eventually
for some n, one gets j
nj < 1

a(Q)
1
2
< 1

a(Q) for Q > maxfj
n2ynj; jynjg; and by Lemma 3,
(yt; 
t; !t)! (0; 
; !) with j
j � 1 for t � n: N
Proof of Proposition 8. The regularity conditions imply that g0(�v)(� limy!�v g0(y)) >
1. This implies that �v is a locally repelling �xed point of the iterated dynamics de�ned
by the map g. The hypothesis yt ! �v implies that the sequence 
t ! 1 and the sequence

yet+1 ! �v. Since yet converges to �v;one has (from the fact that �v is a locally repelling
�xed point of the dynamics de�ned by g) that yt > �0yet+1 > y

e
t+1 for 0 < �

0 < 1 eventually.

So, if yet+1 � �kt, then yt � �kt also. It follows that kt+1 =kt and since 
t converges to 1,
one also has ~yet+2 = 
2tyt > yet+1 � �kt for t su¢ ciently large. Hence yet+2 = ~yet+2, so that

yet+2 � �kt. An induction argument lets us contradict the hypothesis that yet+1 converges to
�v and this rules out yt ! �v. A similar argument rules out case yt ! v:N
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