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Abstract

Models stated as conditional moment restrictions are typically estimated in econometrics
by means of the generalized method of moments (GMM). The GMM estimation procedure
can render inconsistent estimates since the instruments are arbitrarily chosen and the method
relies on additional assumptions that imply unclear restrictions on the data generating pro-
cess. This article introduces a new, simple and consistent estimation procedure for these
models which is directly based on the definition of the conditional moments. The main fea-
ture of our procedure is its simplicity since its implementation does not require the selection
of any user-chosen number and statistical inference is straightforward since the proposed

estimator is asymptotically normal.
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1 Introduction

In many areas of econometrics such as panel data, dicrete choice, macroeconomics and fi-
nance, models are defined in terms of conditional moment restrictions. That is, the models
establish that certain parametric functions have zero conditional mean when evaluated at the
true parameter value. Commonly, these models are estimated using the Generalized Method
of Moments (GMM) that basically consists of the following two stages. First, choose a fi-
nite number of unconditional moment restrictions out of the infinite number implied by the
conditional moment restrictions. Second, define the estimator as the parameter value that
makes the empirical analogs of the selected unconditional moments closest to 0. In linear
models, any subset of linearly independent unconditional conditions (of dimension equal to
the dimension of the parameter vector) identifies globally the parameters of interest, and
hence, the GMM procedure provides consistent estimators for them. However, in many non-
linear models the selected unconditional moment restrictions may hold for several parameter
values. In these cases the arbitrarily chosen unconditional conditions do not identify globally
the parameters of interest, and hence, the GMM estimators are inconsistent. The next two
examples illustrate this idea.

Fzample 1. Assume that the random variable Y satisfies E(Y | X) = X% where 0 = 4,
and X is a symmetric around zero random variable whose fourth and sixth moments are
equal, such as a N(0,1/5). Now, the researcher specifies correctly the model E(Y | X) = X?
where § € © = [2,00), and sets out to estimate 65. The model implies that (Y — X?) is
orthogonal to any function g such that F ‘(Y — Xeo)g(X)‘ < 00 . Since there is only one
parameter, the researcher needs to select at least one function g(X). Let assume that she
selects the functions 1 and X. The problem is that these two instruments do not identify
the parameter value 6y = 4 since the value § = 6 also solves the system of equations
E(Y — X% = E((Y — X%)X) = 0. Of course, more arbitrary instruments could be added,
but it would always be simple to find a particular distribution for X, such that 6y and
additional values for 8 would satisfy the new set of orthogonality conditions.

Example 2. Assume that the random variable Y satisfies F(Y | X) = 05X + 0, X? where
X is a N(1,1) random variable and 6y = 5/4. In addition, suppose that V(Y | X) is constant.
Now, assume that the researcher properly specifies the model and, instead of an arbitrary
instrument, she chooses the optimal instrument, given by W = 20X + X2. In this case the
parameter 0 is not identified again, since the equation E[(Y — 0>°X — 0X2)W] = 0 is also
satisfied when 6 = —5/4.



These simple examples illustrate that the estimation procedure based on selecting an
arbitrary finite number of instruments (even the optimal ones) does not guarantee that the
parameters of interest are globally identified. Hence, in order to achieve global identifica-
tion, GMM needs to introduce the additional assumption that the selected unconditional
restrictions identify globally the parameter of interest. This additional assumption implies
additional restrictions on the marginal distribution of the conditioning variables which are
introduced for statistical convenience and without any relation to the underlying economic
(conditional) model. Thus, the introduction of these restrictions leads to the following
paradox: while the distribution of the conditioning variables should be irrelevant for the
estimation of conditional models, it turns out that this distribution is crucial for GMM
estimators because it guarantees global identification of the parameters of interest. In addi-
tion, applied researchers are typically unaware of these restrictions, and faced to estimating
(possibly highly complicated) nonlinear models, they just choose arbitrary instruments and
estimate by GMM assuming that the parameter vector is globally identified. Obviously, this
estimation procedure can lead to completely misleading inferences.

In this article we propose an alternative estimation procedure where the identification
problem does not arise, since the method is directly based on the conditional moment restric-
tions which define the parameters of interest. Implementing our procedure is very simple
since no additional user-chosen objects such as a smoothing number are needed. As far as
we know, ours is the first estimator proposed in the literature that is consistent and does not
require the introduction of additional user-chosen objects. Carrying out statistical inference
with our estimator is very simple since its asymptotic distribution is normal. The paper
is organized as follows. Section 2 introduces the framework and our estimator. Section 3
establishes the asymptotic theory and Section 4 concludes. The proofs are contained in the

Appendix.

2 Notation and framework

Let Z; be a vector time series and for all ¢ let {Y;, X} be two subvectors of Z; (that could
have common coordinates). We consider Y; as a k-dimensional time series vector that may
contain endogenous and exogenous variables and a finite number of these variables lagged
and X; as a d—dimensional time series vector that contains the instrumental variables (again,
a finite number of these variables lagged can be included). The coordinates of Z; are related

by an econometric model which establishes that the true distribution of the data satisfies
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the following conditional moment restrictions
E(h(Yy, 6) | X)) =0, a.s.. (1)

for a unique 6y € © where © C R™. This conditional moment model is given to the
econometrician by economic theory. Equation (1) defines the parameter value of interest
0y which is unknown to the econometrician. The function h that maps R* x © into R! is
supposed to be known. In general, h(Y;, 0p) can be understood as the errors in a multivariate
nonlinear dynamic regression model. In this paper for simplicity we will consider the case
where [ = 1.

This model has been repeatedly considered in the econometrics literature and several
instrumental variables estimators have been proposed, see among others, Amemiya (1974,
1977), Jorgenson and Laffont (1974), Berndt, Hall, Hall and Hausman (1974), Burguete,
Gallant and Souza (1982), Hansen (1982), Newey (1990a, b). However, none of these refer-
ences addressed the identification problem commented above. For instance, Newey (1990a)
considered a similar model (see his equation (2.1) in p.810) in a more restrictive framework
(he considered i.i.d data with homoskedasticity) and focused on the optimality properties of
a selected estimator. However, he overlooked the identification problem by assuming that
the parameter vector is globally identified by the selected unconditional conditions, see his
assumption 3.3 (a) in p.817.

Recently, Donald, Imbens and Newey (2001) have addressed the identification problem
in a different setting. They consider efficient estimation of conditional moment restrictions
models. Their analysis is different from ours. They need to introduce a sequence of ap-
proximating functions such as splines or power or Fourier series and the researcher needs to
select the number of terms of these series to be considered in the analysis. This number is
a smoothing or bandwidth number that compared to the sample size has to verify certain
rate restrictions in order to achieve efficient estimation. This bandwidth number allows
their estimators to be root—n asymptotically normal and efficient, but it is unclear the sen-
sitivity of the estimator to the selection of this bandwidth number. On the contrary, our
approach does not require the introduction of an arbitrary user-chosen number to achieve an
asymptotically normal distribution. Although the asymptotic variance for the Donald et al.
(2001) estimator is lower than ours, statistical inference with this estimator can be sensitive
to the selection of the bandwidth number. Furthermore, their procedure restricts to the
1.1.d. setting, and for most of their results, the density of the conditioning variables has to

be bounded from zero on a compact, rectangular support. On the contrary, our procedure is
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very simple, allows for instruments with unbounded support and can be used for time series
data.

Another related reference is Carrasco and Florens (2000). They consider optimal GMM
estimation for the case where there is a continuum of moment conditions. Our estimator is
similar to theirs in spirit. However, our estimator cannot be written in their framework as
we will see below because our norm in the objective function is random and changes with
the sample size, whereas their norm is deterministic and constant. Carrasco and Florens’
estimator is efficient, but efficiency is achieved at the cost of introducing a user-chosen
smoothing number necessary to avoid a singularity problem associated with the inversion of
a linear bounded operator. As in the case of Donald, Imbens and Newey the sensitivity of
the estimator to that number is unknown.

Next, we introduce our estimator. As discussed in the previous section, the typical
estimation procedure based on selecting some orthogonality conditions does not guarantee
global identification of the parameters of interest. Hence, in this paper we propose an
alternative estimation procedure that uses the whole information about 6y contained in

expression (1). From Billingsley (1995, Theorem 16.10iii), note that
E(R(Y,00) | X) =0 a.s. & H(Oy,r) =0 for all x € RY (2)

where H(0,z) = E(h(Y,0)I(X < x)) is the integrated regression function (Brunk, 1970)
and the indicator function I{X < z) equals 1 when each component in X is less or equal
than the corresponding component in x; and equals 0 otherwise. In addition, from (1),
P(E(h(Y,0)] X)=0) < 1 when 0 # 0y, and then H(0,z) # 0 in a non null set of the
sample space of X. Therefore, denoting by Px the probability distribution function of the
random vector X, [ H (0o, x)*dPx(z) =0 but [ H(0,z)*dPx(z) > 0 V0 # 0p. Equivalently,
let S denote a random vector with probability distribution function Px and independent
of (Y, X), then E(H(f,S)?) > 0 with equality if and only if # = 6. Hence, by the law of

iterated expectations we can write
Oo = argreréi({)lE (E[(MY,0)I(X <S) | S]2> = argreréig/E2 [(R(Y,0)I(X < s)]dPx(s).
(3)
Now, calling n the sample size, n= 'Y " h(Y;,0)1(X; < s) and n 'Y, | ¢*(X,) are the
sample analogs of E(h(Y,0)I(X < s)) and [ ¢*(s)dPx(s) respectively. Then, we propose
estimating 0y by the sample analogue of (3), that is,

2
R . 1 n n
0 = argmin — > (Z h(Ye, 0)1(X, < Xe)) :

{=1 t=1
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In the next section we establish the asymptotic theory of the proposed estimator.

3 Asymptotic Theory

We start by enumerating the assumptions necessary for the consistency and asymptotic nor-
mality of our estimator. In what follows |-| denotes the Fuclidean norm in the corresponding
Euclidean space, and we assume that all the considered functions are Borel measurable.

Assumption Al. E|h(Y;,0)| < oo for all 0 € ©, and E(h(Y:,0) | X;) = 0 a.s. if and only
if 0 = 0.

Assumption A2. 7, is ergodic and strictly stationary.

Assumption A3. h(y,-) is continuous in © for each y in R* and for all § € © there exists
pg > 0 such that F [sup{“(;,@/kpe}m@ L (Y, 0) — h(Y;,0)]] < oo

Assumption A4. © C R™ is compact.

Assumption A5. h(Y;,00) given X, has a bounded conditional density function which is
continuous on any conditioning argument.

Assumption A6. h(-,0) is once continuously differentiable in a neighbourhood of 6y

h (Y:,0)

and satisfies that F [SUPGENO } < 0o where Ny denotes a neighbourhood of 6y and

h (Y:, 0) = 0h(Yy,0)/00.

Assumption A7. h(Yy,0p) is a martingale difference sequence with respect to { X5, s < t}.

Assumption AR. 0y € int(O).

Assumption A9. 7, satisfies that £ |h(Y7, 80)]4+5 < 00, for some 6 > 0.

Assumption Al defines the model and identifies globally 4. This identification condi-
tion is given by the economic theory. Assumption A3 is a smoothness condition which is
weaker than the Lipschitz condition in Assumption 3 in Donald, Imbens and Newey (2001).
Assumption A5 imposes boundedness of the conditional density while assumptions 3 and 4
in Donald, Imbens and Newey (2001) impose boundedness of conditional moments restrict-
ing some forms of conditional heteroskedasticity. Assumption A6 is a standard smoothness
assumption that is weaker than Assumption 4 in Donald, Imbens and Newey (2001) which
require twice continuous differentiability. Assumptions A2 and A7 bound the amount of
dependence in the sample. These assumptions are very weak and allow for many types
of weak and strong dependence for the process 7Z;. Regarding assumption A9, notice that
for the independent sampling case the condition E |h(Y7, 80)]4+5 < oo could be relaxed to

Eh(Ys, QO)]2 < 00. Opposite to standard GMM, all our assumptions refer to the uncon-



ditional or to the conditional distribution of h, and nothing is imposed on the marginal
distribution of X,.

Next, we state the consistency and asymptotic normality theorems. Their proofs are in
the Appendix.

Theorem 1. Under assumptions Al-A4 0 —as Do

Theorem 2. Under assumptions A1-A9

V(@ — 00) — < / HH dPX> / F BrdPx

where H (t) = E(h (Y,00)I(X < t)) and Br denotes a centered Brownian motion with
covariance structure given by T'(¢,s) = E(h*(Y,00)[(X <t A s)).

Using the previous theorem and the fact that the integrated weighted Brownian motion
follows a normal distribution (see, for instance, Tanaka (1996, Chapter 2)) the following
corollary holds.

Corollary. Under assumptions A1-A9

V(0 — 6) —4 N(0,9Q),

where

_ </ o de>1//;1(9;1) 1 (22)T (21, 9) APy (1) dPy () </ HI dPX>1.

Our proposed estimator is consistent and asymptotically normal but inefficient. It is
difficult to compare 2 with the minimum asympotic variance for a general case. For the
simplest linear location model with independents errors, Q is 20% higher than the asymptotic
variance of the sample mean. In order to perform statistical inference the matrix 2 needs

to be estimated consistently. A simple consistent estimator of ) is its sample analogue

(%Xn:[{n (XZ)H; (Xz)> zn:zn:Hn (XZ)H; (X)) Ty (X5, X5) ( ZH” ) I, XZ)>

i=1 j=1

where H, (t) =n 'S0 1 (Ye, O)I(X; < 1)) and Ty, (£, 5) = n L S0, h2(Y:, 0)I(X; < tAs)).

4 Discussion

There are two approaches to estimate consistently models stated with conditional moment

restrictions. The first approach, which we follow in this article, substitute the conditional
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restriction by an infinite number of unconditional moment restrictions that fully character-
izes the conditional restrictions. In our case, the infinite unconditional restrictions arise by
considering the expectation of the function of interest times a class of indicators functions
indexed by a set of nuisance parameters. Alternative classes of functions, such as the ex-
ponentials, could have been employed, see Bierens (1990) and Carrasco and Florens (2000).
The second approach fits the conditional expectation that defines the model by means of
nonparametric methods. This approach has been followed by Donald et al. (2001), where
they consider a variety of nonparametric estimators such as orthogonal series or splines. The
main difference between both approaches resides in the number of unconditional restrictions
effectively employed in finite samples. Whereas an infinity (continuum) of moment restric-
tions is employed in the first approach, the second approach employs a finite number of
them where this number is determined by a smoothing parameter. The main adavantage of
introducing this smoothing number is that it allows to derive estimators that are asymptot-
ically efficient. However, in the absence of automatic data-dependent methods for selecting
this smoothing number, such as cross-validation procedures, a researcher faces the difficulty
of selecting it for her particular case. In many cases, statistical inference 1s very sensitive to
this selection.

Asymptotically efficient estimators can also be derived in the first approach. However,
deriving them would also require the introduction of a bandwidth parameter necessary to
avoid a singularity problem, see Carrasco and Florens (2000). The estimator proposed in this
article is consistent and very simple to implement since it does not require the introduction
of any user chosen object such as the order of a lag or a bandwidth number. It possesses
the additional advantages of being applicable to a wide variety of time series data, allowing
for instruments with unbounded support and imposing mild smoothness conditions on the
function that defines the model. Finally, the techniques employed in this article are different
from those used in the second approach. We end with three suggestions on further research.

First, similar to the GMM literature, specification test for conditional moment models
could be developed by using procedures similar to the ones employed in this paper, see
Dominguez and Lobato (2002). Second, one of the main points of this paper is to show
that the GMM procedure to estimate conditional moment models is fundamentally flawed
because it imposes the additional assumption that the selected instruments identify globally
the parameters of interest. However, if this additional assumption holds, the GMM estimator
is consistent for the true 6y. Then, it is of interest to test the null hypothesis that the GMM

estimator is consistent for fy. This could be tested with a Hausman-type test which would

8



measure the distance between our estimator and the GMM estimator. Finally, since the
proposed estimator is asymptotically pivotal, employing the bootstrap would lead to obtain

an asymptotic refinement.
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5 Appendix

Unless stated the summatories run from 1 to n.
Proof of the Theorem 1. Call H,(0,2) = n 1>, h(Y;,0)I(X; < z). In Section 2 we
have shown that [ H(0,z)?dPyx(z) has a unique minimum at 6. Then, using theory of

M-estimators we just have to show that
/ H,(0,7)%dP,(x) —,s / H(0,x)*dPx(x) uniformly in 0,

where B, (z) = n 'Y."  I(X; = z). This result holds applying the Continuous Mapping

Theorem if it can be shown that
H,(0,2) —4.s H(0,x) uniformly in (z, 0).

Start by defining ht(Y;,0) = max{0, h(Y:,0)} and h™ (Y;,0) = h(Y:, 0) — h* (Y}, 0). Assump-
tion A3 implies that F [Sup{H@*@’\er}ﬁ@ |ht (Y, 0) — h+(Yt,§/)H < 0o and similarly for h~.
If we establish the Uniform Law of Large Numbers for h*t and for h~, the result trivially

holds for h, so without loss of generality we can assume that h > 0. Define

Zo0mp) = s |AYLOI(X, < 2) — h(Y, 0)I(X, < )],
{llo—0"l<py}ri®
and
h(Z,0,p) = sup hi(Z:, 0., p).
Note that

WZ0.0) =  sup  [h(Ye,0) = h(Y:,0)

{ll6=0"l<pp}r®
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By the Monotone Convergence Theorem, since for all 6, E(Zt, 0,p) is decreasing in p, then
lim, o+ F [E(Zt, 0, p)] = 0. Now, define 1 (0, p) = Eh(Z,,0,p). The proof goes as following,
Fix £ > 0, then V0, Jp, > 0 such that H(0,p,) < . Next, call B(0,p,) the ball with center
0 and radius py, by compactness 3{B(01,py,), ..., B(Ok, py, )} with finite k that covers ©.
Notice that k does not depend on x. Hence,

sup sup |~ Z WYy, 0)I(X, < x) — B(h(Y,0)[(X < a:))‘
< sup min sup 1 Z h(Yy, 0)1( X < x)— 1 Z h(Y:,0,)1( X, < x)
# I oo <pg, Jr0 "
+E(R(Y,0;)1(X < x)) — E((Y,0)(X < x))
oo 3 B(Y;L 01X, < 2) — B(A(Y, 0,)1(X < x>>‘}
< Sl;-pjg}}nk {‘%Z h1<Zt7 eju €, p@j) + H<8j7 p@j)
o DRGNS ) = BRI < x>>‘}
< max —Zh Z, 0 J,pg

Zh Yy, 0)1(X, < x) — B(MY,0,)1(X <),

where we have applied the definition of pe; 10 the second term of the right hand side. Then,

lim sup sup
n—oo ¢ PeO

DS A0GOI(X, < 2) = BAOIX S x>>‘

< max lim —Zh Z, 0 ],pg

kn—oo 1,

4+ max lim sup |—
j=1l,..kn—oo ,

Z hY;, 0)I(X, < z) — B(h(Y,0,)I(X < a:))‘
t
= max H(0;,p,.)+c+0 a.s,
j=1,..k 7

applying the Glivenko-Cantelli Theorem, and finally note that H (6, pgj) < ¢ by the defini-
tion of py. . Then, it follows that

lim sup sup
=00 ¢ feO

- Zh Y, 0)I(X, < 2) — E(h(Y,0)[(X < 2))| <




Therefore, the result follows because ¢ was selected arbitrarily.

Proof of the Theorem 2. The first order conditions of the minimization problem are

XJth@m&sm

Now introducing the notation h(f) = h(Y;,0) and he (0) = (Y%, 0), using A8 the mean
value theorem implies that for some random A € [0,1] and 0= Ao + (1— )\)g,

XJZMQM&§&>

=0.

[Z WYy, 0)1(X, < X,)

+ G0 — 0) = 0.

[Zm%m&s&>

where

Gn=>_ [Z he (0)1(X, < X,)

[Z@@m&s&>

Then,

=3 [% S he (00)I(X, < X‘v’)} [% > i h(0o) (X < Xg)}

\/E@_ bo) = n3G

Then, the result follows from the continuous mapping theorem, Lemmas 1 and 2 below and
.2
using assumption A6 that guarantees that n 3G, — .. f H dPx.

Lemma 1: Let 0" be a consistent estimator of #y. Under assumptions A1-A9
1 : : :
— Z he (0)I(Xy < z) =44 B (h (00)I(X < a:)) =H (x) uniformly in z.
n
t

The proof of this Lemma is omitted since it is a trivial extension of the Glivenko-Cantelli
Theorem.

Lemma 2: Under assumptions A1-A9
1
NG > hi(00)1(X, < x) = Br
t

where = denotes weak convergence in D[R]?, and D[R] is the natural extension of D[0,1]%
in the sense of Stute (1997) and D|0,1]¢ is defined in Bickel and Wichura (1971), Neuhaus
(1971) or Straf (1970).

Proof of Lemma 2. For simplicity, let introduce the notation H,(z) = H, (0o, z). Accord-
ing to Bickel and Wichura (1971), we need to show that the finite dimensional distributions
of the process /nH, (x) are asymptotically normal with the appropriate covariance matrix

and that the process /nH, (x) is tight.
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Convergence of finite-dimensional distributions refers to the weak convergence of vectors
of the form (y/nH, (z1), VrnH, (z3),..../nH, (z})), for arbitrary k € N and z; € R?, i =
1,2,... k. This result can be obtained using the Corollary 3.1 in Hall and Heyde (1980).

In order to prove tightness, some definitions are required. Let {Wn (t):teRY n=1,2, }
be a sequence of stochastic processes in some metric space of functions G. Then, {W,} is
tight if and only if for any 6 > 0 there exists a compact set K C G depending on é, such
that

sup P (W, e K) >1—6. (4)

Let Dy = (s',t!] = x¢_,(s},t1], and Dy = (s2,%] = x9_,(s2,t2] be two intervals in R%
Then, Dy and Ds are neighbor intervals if and only if for some j € {1,2,...,d}, (s;,1;] #

(s?,t?], Xnzi(8t, 1) = Xpzi(s2,t2] and t} = s?, that is, if and only if they are next to each
other and share the j-th face. Fach stochastic process indexed by a parameter in R? has an

associated process indexed by the intervals that is defined as

1 1
W (Dp) = Z e Z(—l)dfzjef W, (] +ei(t] —s]),- -+, 8, +eath, — s3)); h=1,2

e1=0 eq=0

In this proof we verify Kolmogorov-Chentsov ‘s criterion that is a sufficient condition for (4)
according to Bickel and Wichura (1971).
In what follows we will simplify further the notation by writing h; instead of h¢(6p). In

our case, the process

where I (D;) = I (X, € D;). Then
B (Vi (D))" (Vi (D2))")

t=1 s=1 u=1 v=1

Using that h; is a centered MDS, the non-zero terms are those such that the greater subindex

appears at least twice. Moreover, notice that when a subindex appears three times, the
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corresponding term is zero because )1 and )y are disjoint sets. For the same reason, terms

like [h21, (Dy) I; (Do)] [huly (D1)] [, (Dy)] are also zero. Therefore,

B (v, () (it (02)") = 52 4 37 (210 (z )

n

e lSenwar (S o)

t=1

Under the assumptions of the Theorem, these expectations exist. Note that both terms are
analyzed similarly since the only difference is the index set D;. Before continuing with the
proof we need to introduce some new notation. Let ); and ()5 be two random vectors of
different dimensions on the same probability space. Borrowing the notation from set theory
we call Q1 \ Q2 a random vector on the same probability space that keeps the coordinates
in )7 that do not appear in ()3 and drops the other coordinates. In addition, denote
=mingn{Y;\ Y, , =Y, Vr> s}, that is, £ denotes the minimum lag such that the most
past coordinate in Y; predates the most recent coordinate in Y;_,.

Using that (EZ 1 az) < lzl , a2, the first term is bounded by
ZE {Z [Pt e (Da)] [ dis (D2)]} (5)
t=1

—I-Z—iE Z [h?]t (Dl)} (Z [hs s <D2)]> : (6)

First, consider any term in (5). Define the random variable vector Vi, s = (V;’ltf /7 5>
where V;’ltfs = Xi\ Zt s and 0*(V;y ) = E (h? | Vit s) then, for any s =1, ....d,
E{ R (D)) [hiodes (D2)]} = E{[0” (Viges) Lo (D1)] [hi_odes (D2)] }
= E{E [0 (Vius) Lo (D1) | Zios] [h7dos (D2)]}

k[ [ o et DY Vies e DOV €1 [ s (0]

where Dy = D%l) X D%Q) is arranged according to the decomposition of X; = [Vt’ltf s Xt \ V;’ltf 5}
and th1tis’ | Zis (e) denotes the density of V;’ltf s conditional on Z; ;. Using Fubini’s theorem

and Holder s inequality, the last expression is bounded by
/ B (e Z ) (XA € DP) [ Lo (D)] iy, 7 (@) de
Dl
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2 1) /0 ies
< /(1) <E [02 (e, 7 )1 (Xt \ Vt"ltfs e D ) h?,s} > de - (El,_,(Ds)) J(148)
Dl

< Mg (Dl U D2> [MQ (Dl U D2>]5/(1+5)

with 0 < 6 < 1, where

L\ 1/(148)
s (D1UDy) = / <E [02 (e, Zs )1 (Xt \ V5 € DP) h?fs:| > de

p{V

and

Ho (Dl U DQ) :E]tfs (Dl U DQ) .

Hence, the Kolmogorov-Chentsov criterion is satisfied.
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