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Abstract

This article considers the fractional Dickey-Fuller test for unit roots introduced

recently by Dolado, Gonzalo and Mayoral (2002). The implementation of this test

depends on a nuisance parameter that affects the power of the test. Since the arbi-

trary selection proposed by these authors is not optimal, in this article we investigate

optimality aspects of the class of tests indexed by this parameter and propose feasible

tests with good asymptotic and finite sample properties.

1 Introduction

Recently, Dolado, Gonzalo and Mayoral (2002, hereinafter DGM) have introduced a frac-

tional Dickey-Fuller (hereinafter, FDF) test for unit roots which extends the popular Dickey-

Fuller approach to fractionally integrated processes. In DGM’s simplest framework yt de-

notes a fractionally integrated process whose true order of integration is d, ∆dyt = εt, where

εt is i.i.d. with zero mean and finite variance. The fractional difference operator is defined
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by

∆αyt =
t−1X
i=0

πi(α)yt−i, t = 1, 2, . . . ,

for any real α, where the sequence πi(α) = (i + α − 1)!/(i!(α − 1)!) are the coefficients of
the binomial expansion.

The FDF test for the null hypothesis d = 1 versus either a simple alternative (d = dA)

or a composite alternative (d < 1), is based on the OLS estimation of the following model

∆yt = φ∆
d1yt−1 + ut, (1)

where d1 < 1 is a value chosen by the researcher. The FDF test statistic proposed by DGM

is the t ratio associated with the OLS estimate of φ,

t(d1) =

PT
2 ∆yt∆

d1yt−1bST (d1)
qPT

2 (∆
d1yt−1)

2
, (2)

where bS2
T (d1) =

1

T

TX
2

(∆yt − bφ∆d1yt−1)
2,

and T denotes the sample size. We emphasize that expression (2), which is equation (9)

in DGM, represents a class of test statistics by writing explicitly the input value d1 as

an argument of the test statistic. DGM arbitrarily recommend to use d1 = dA when the

alternative hypothesis is simple, and to use d1 = bd when the alternative is composite, wherebd is a trimmed version of a √T -consistent estimator for d, such that bd is strictly smaller
than 1 with probability one.

In order to gain a new perspective on the DGM framework, notice that in model (1), φ

represents the slope of the best proportional predictor of ∆yt given ∆
d1yt−1, that is,

φ = φ(d1) = plimT→∞
T−1

PT
t=1∆yt∆

d1yt−1

T−1
PT

t=1(∆
d1yt−1)2

.

The previous limits will be evaluated in Section 3. The key insight is that the parameter

φ is different for each d1, so its dependence on d1 has been stressed by writing it as φ(d1).

Notice that the null hypothesis implies φ(d1) = 0 for all d1 ∈ [0, 1), so the testing framework
is similar, for instance, to that considered in Section 2 in Hansen (1996). This situation is

nonstandard since d1 does not appear in the regression under the null hypothesis, so that d1

can be regarded as a nuisance parameter that is not identified under the null hypothesis. This

statistical problem has been addressed, among others, by Davies (1977, 1987), Andrews and
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Ploberger (1994) and Hansen (1996). These references propose tests statistics that consider

all the possible values that the nuisance parameter can take. However, building on the

results in DGM, it can be deduced that there is no need to employ all these values. In

fact, DGM prove that the asymptotic null distribution of t(d1) is pivotal when the nuisance

parameter d1 is any constant in [1/2, 1) or a (truncated)
√
T -consistent estimator for d = 1,

and that the t(d1) test is consistent when the nuisance parameter d1 takes any constant value

in [0, 1), (see Theorems 2, 3 and 5 in DGM). Hence, these results suggest that simple and

powerful tests can be derived by carefully choosing a single nuisance parameter d1 (although

DGM simply propose an arbitrary choice of d1 instead of pursuing an optimal selection).

In this article we analyze optimality aspects of the FDF test within the framework of

econometric problems where a nuisance parameter is not identified under the null hypothesis.

More precisely, we compute the asymptotic power function of the FDF test for each d1

under a sequence of local alternatives that converge to the null at the parametric rate and

derive an optimal selection for the d1 parameter, d
∗ ' 0.69, which is consistent against

these alternatives. For fixed alternatives we introduce the maximal squared correlation as

a criterion function to select d1. This criterion function allows the derivation of a feasible

and optimal implementation of the FDF test when a consistent estimator of d is available.

We show that model-free semiparametric estimators can be used, since a parametric rate is

not necessary as claimed by DGM. In practice, this result is important since semiparametric

estimators do not demand the correct specification of a parametric model.

The plan of the article is the following. In Section 2 we derive an optimal selection for

the d1 parameter under a sequence of local alternatives that converges to the null at the

parametric rate. Based on this framework, we also analyze testing procedures that consider

all the values of d1 in a given interval. Section 3 studies optimal tests for fixed alternatives

and contains a brief Monte Carlo exercise that compares the finite sample performance of

the considered tests. Section 4 concludes.

2 An optimal FDF test for local alternatives

In order to motivate the problem, in Table 1 we report the results of a small Monte Carlo

exercise. The data is fractionally integrated with d = {0, 0.1, ..., 0.9, 1} with Gaussian errors
and the selected d1 = {0, 0.1, ..., 0.9}. The sample size is 100 and the number of replications
is 30,000. Simulations have been carried out in Fortran 90 double precision. The set up

is similar to that employed by DGM in their Figures 1 and 2. Table 1 reports rejection
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percentages for the t(d1) tests based on 5% asymptotic critical values. Notice that when

d1 = d, t(d1) represents an unfeasible FDF test, as proposed by DGM, which does not take

into account the sampling variation associated with the estimation of d. There are two main

lessons from our Table 1. First, for any value of d1 the empirical power is essentially 1 for

the case when d < 0.5. Hence, for this sample size the most interesting case is when d ≥ 0.5.
Second, for the case when d ≥ 0.5 the optimal selection of d1 is not d, as DGM propose, but

a lower value. Inspection of Table 1 reveals that with respect to DGM’s selection of d1, the

empirical power can increase up to 35% by choosing optimally d1.

In fact, the same two conclusions also appear implicitly in Figure 2 in DGM where they

show that the empirical power increases by choosing d1 lower than d. Notice that in Figure

2 in DGM the true value d is denoted by d∗1. Since DGM’s results are based on just 1,000

replications, a first impression from DGM’s Figure 2 could be that sampling error is causing

the power variations. However, our Table 1 shows that sampling error cannot explain the

fact that the optimal d1 is not the true d.

It could be argued that the previous findings are questionable because in Table 1 there

is a considerable size distortion, especially for the case d1 = 0.5 (notice that the first column

of Table 2 in DGM also provides similar evidence). In order to confirm that the previous

findings are robust, we also calculated size-adjusted power. In Table 2 we report rejection

percentages for the t(d1) tests based on 5% empirical critical values for the same set up as

Table 1. Table 2 offers similar messages to Table 1. Mainly, compared with DGM’s selection

of d1, the empirical power can increase substantially by choosing d1 optimally.

From the previous simulation results it is clear that some criterion to select d1 optimally

is desirable. Robinson (1994) and Tanaka (1999) consider a sequence of local alternatives to

the null hypothesis and derive asymptotically uniformly locally most powerful tests under

the assumption of Gaussian errors. In the DGM framework a similar analysis is limited

since no distributional assumptions are imposed and the class of test statistics is given by

(2). However, we can still use the same principle and choose the value of d1 that maximizes

the power of t(d1) against local alternatives.

The following Theorem establishes the asymptotic distribution of the class of test statis-

tics t(d1) under the sequence of local alternatives d = 1 − δ/√T for all possible values of
d1.

Theorem 1. Under the assumption that the DGP is a fractional white noise defined as

DGP : ∆1−δ/√Tyt = εt1t>0 with δ ≥ 0,
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the asymptotic distribution of the test statistic t(d1) is given by:

(i) if 0 ≤ d1 < 0.5

t(d1)
w→

R 1

0
W−d1(r)dB(r)qR 1

0
W 2
−d1
(r)dr

, (3)

where W−d1(r) and B(r) are defined as in DGM;

(ii) if 0.5 ≤ d1 < 1

t(d1)
w→ N(−δh(d1), 1),

where

h(d1) =
Γ(d1)

d1

p
Γ(2d1 − 1)

,

Γ represents the gamma function and h(d1) achieves its maximum at d1 = d
∗ ' 0.69145.

The proof of the theorem is in the Appendix. Note that DGM’s Theorem 4 also analyzes

local alternatives but it just considers the case d1 = d = 1 − δ/√T . The implications of
this theorem are the following. First, for the case 0 ≤ d1 < 0.5 the asymptotic distribution

of t(d1) is the same as the corresponding one in Theorem 2 in DGM. Hence, choosing a

value for d1 in the interval [0, 0.5) delivers a test with trivial asymptotic local power against

a sequence of alternatives tending to the null at the T−1/2 rate. In fact, inspection of the

proof of Theorem 1(i) reveals that in order to have non-trivial power the sequence of local

alternatives has to tend to the null at the rate T−d1 that is slower than T−1/2. Second, to

our knowledge, the result that the Dickey-Fuller has trivial power against local fractional

alternatives converging to the null at any rate T−a, a > 0, is new. Third, for the 0.5 ≤ d1 < 1

case the noncentrality parameter is a function of d1 that achieves a maximum at d
∗, see the

plot of the function h(d1) in Figure 1. In the same plot we have added the horizontal

line
p
π2/6 that represents the noncentrality parameter achieved by the optimal Robinson-

Tanaka test. Notice that the two lines are quite close at d1 = d
∗, and that as d1 approaches

0.5, h(d1) tends to zero and has a vertical asymptote, reflecting the infinite efficiency loss

incurred by choosing d1 ≤ 0.5. In particular, since h(0.5) = 0, the test cannot detect root-T
alternatives when d1 = 0.5. However, it is simple to check that for the d1 = 0.5 case the test

can detect local alternatives converging to the null at the rate T−1/2 logT.

Therefore, the previous theorem indicates that an optimal, with respect to an asymp-

totic local power criterion, implementation of the FDF test requires selecting d1 = d
∗. An

alternative approach to the FDF testing procedure employs test statistics which take into

account simultaneously many values of the nuisance parameter d1. The distributional theory
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necessary for such analysis has been developed in other contexts for a sequence of local alter-

natives similar to the one considered above, see Davies (1977, 1987), Andrews and Ploberger

(1994) or Hansen (1996). In the rest of this section we briefly analyze this approach.

The main idea is to consider the statistic t(d1) as a stochastic process indexed by the

nuisance parameter d1. Under the DGP of Theorem 1, the asymptotic distribution of t(d1)

is pivotal for d1 ∈ D where D = [0.5, 1), hence we restrict our analysis to any closed interval
D1 = [d, d] that belongs to the interior of D. Notice that the case d1 = 0.5 has to be

excluded because of the discontinuity of the asymptotic theory. In order to derive the test

statistics and their asymptotic distribution theory, Theorem 2 below establishes the weak

convergence of the process t(d1) in the metric space of the continuous functions over the

set D1, C(D1), endowed with the uniform metric. Based on this theorem, test statistics

are constructed by selecting continuous functionals ϕ of t(d1). For instance, the two most

common are the Kolmogorov-Smirnov (KS), supD1|t(d1)| and the Cramer-von Mises (CvM),R
D1
t2(d1)dd1. The test based on supD1 |t(d1)| parallels the sup Wald test of Andrews and

Ploberger (1994), and also similar analysis can be applied to the sup LM and sup LR tests.

The basic result that justifies these tests is the following theorem.

Theorem 2. Under the assumption that the DGP is a fractional white noise defined as

DGP : ∆1−δ/√Tyt = εt1t>0 with δ ≥ 0,

for d1 ∈ D1,

t(d1)⇒W (d1)− δh(d1),

where =⇒ denotes weak convergence in the metric space C(D1) endowed with the uniform

metric, W (d1) is a zero mean Gaussian process with covariance kernel given by

CW (da1, d
b
1) =

Ã ∞X
i=0

πi(d
a
1 − 1)πi(db1 − 1)

! ¡
V (da1)V (d

b
1)

¢−1/2
,

where V (d1) =
P∞

i=0 π
2
i (d1−1) = Γ(2d1−1)/Γ(−d1)

2, and h(d1) is defined in the statement

of Theorem 1.

In particular, notice that under the null hypothesis

t(d1)⇒ W (d1), (4)

and that for each d1 ∈ D1 the asymptotic distribution of t(d1) is the standard normal,

agreeing with Theorem 1(ii).
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Given Theorem 2, it is immediate to derive the asymptotic distributions of the KS and the

CvM tests under the null and under local alternatives. Furthermore, since the asymptotic

distribution in (4) only depends on d1, and not on any feature of the data such as any

conditional moment, the asymptotic null distributions of these test statistics are pivotal,

and critical values can be easily estimated by Monte Carlo simulation. Alternatively, wild

bootstrap procedures as those described in Hansen (1996) are valid and simple to implement

in this context. Then, consistency of the tests follows by standard arguments. In the next

section we will investigate briefly the finite sample behavior of these tests.

3 An optimal FDF test for fixed alternatives

In the previous section we have selected d1 optimally by maximizing the asymptotic power

function of the test against a sequence of local alternatives. Next, we show that an equivalent

criterion to optimally set d1 is to maximize the squared correlation between∆yt and ∆
d1yt−1.

Recall that the criterion of maximizing the power against a sequence of local alternatives

leads to restrict the attention to the range d1 ∈ (0.5, 1), for which the asymptotic null

distribution of the t(d1) statistic does not depend on d1. Hence, maximizing the power is

equivalent to finding the value of d1 that maximizes t(d1)
2 for each sample. Equivalently,

denoting by R2(d1) the squared sample correlation between ∆yt and ∆
d1yt−1, that is,

R2(d1) =
T−1

PT
2 ∆yt∆

d1yt−1³
T−1

PT
2 (∆yt)

2
´ ³
T−1

PT
2 (∆

d1yt−1)
2
´ ,

the basic relation of simple regression theory,

t(d1)
2 = T

R2(d1)

1−R2(d1)
, (5)

implies that maximizing t(d1)
2 is equivalent to maximizing R(d1)

2.

Therefore, in order to introduce a criterion to select optimally d1, the natural one is the

population analog of R2(d1), that is, the squared population correlation between ∆yt and

∆d1yt−1, that we call ρ
2(d1). Denote the optimal d1 by d

∗
1 = argmaxd1 ρ

2(d1). Since d1 does

not appear on the variance of ∆yt,

d∗1 = argmax
d1

plimT→∞

³
T−1

PT
t=2∆yt∆

d1yt−1

´2

T−1
PT

t=2(∆
d1yt−1)2

= argmax
d1

³
limT→∞ T−1

PT
t=2Cov(∆yt,∆

d1yt−1)
´2

limT→∞ T−1
PT

t=2 V ar(∆
d1yt−1)

.
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Then, using that ∆dyt = εt, the objective function can be written as³
limT→∞ T−1

PT
t=2Cov

¡
∆1−dεt,∆d1−dεt−1

¢´2

limT→∞ T−1
PT

t=2 V ar (∆
d1−dεt−1)

.

Next, we calculate these expressions starting by the denominator. Using that ∆d1−dεt−1 =Pt
i=0 πi(d1 − d)εt−1−i,

lim
T→∞

T−1
TX
t=2

V ar
¡
∆d1−dεt−1

¢
= lim

T→∞
T−1

TX
t=2

t−2X
i=0

πi(d1 − d)2 =
∞X
i=0

πi(d1 − d)2 <∞

if

d1 − d > −0.5, (6)

and in this case,
P∞

i=0 πi(d1 − d)2 = Γ(2d1 − 2d + 1)/Γ(d − d1 − 1)2. Now, regarding the
numerator, using that ∆1−dεt =

Pt
i=1 πi(1− d)εt−i,

lim
T→∞

T−1
TX
t=2

Cov
¡
∆1−dεt,∆d1−dεt−1

¢
=

∞X
i=1

πi(1− d)πi−1(d1 − d).

Hence, as long as d1 − d > −0.5

d∗1 = argmax
d1

L(d, d1)

where

L(d, d1) =
(
P∞

i=1 πi(1− d)πi−1(d1 − d))2
Γ(2d1 − 2d+ 1)/Γ(d− d1 − 1)2 . (7)

Ideally, we would like to express analytically the objective function L(d, d1), and then de-

rive the function d∗1 = d∗1(d) that provides the optimal value of d1 for each value of d.

Unfortunately, this is quite complicated for a general d. When d = 0, it is easy to see

from the original equations that the optimal selection of d1 is 0, justifying the optimality

of the standard Dickey-Fuller test over the Fractional Dickey-Fuller for the case d = 0. In

agreement with the results in Section 2, when d = 1 − δ/√T the optimal selection of d1 is

d∗1 = d∗ ' 0.69. For a general d, we have not been able to find an explicit expression for

the numerator of equation (7). However, we can approximate d∗1 = d
∗
1(d) numerically with

any level of precision, and in Table 3 we report the d∗1 function for some values of d and

a truncation at i = 105 in the infinite sum in (7). Confirming the results of the previous

Monte Carlo experiments, Table 3 shows that the optimal value for d1 is always below the

true d. Table 3 also indicates that the relation between d∗1 and d is essentially linear when

d ≥ 0.5, whereas for lower values of d there is some curvature. In Figure 2 we have plotted
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the results of Table 3, and we have added the regression line of d∗1(d) on d for d ≥ 0.5. This
fit is given by bd∗1(d) = −0.030+ 0. 717d using 10 values of d, 0.5(0.05)0.95, and a truncation
at i = 105 in the infinite sum in (7). The standard error of this estimation is 0.0004. Notice

that bd∗1(d)−d > −0.5, so that the condition (6) is always satisfied. In addition, in agreement
with the results of the previous section, bd∗1(1) is very close to d∗, the discrepancy is just due
to the numerical error in the approximation.

For the simple alternative case, the previous analysis indicates that d∗1 = 0 when dA = 0,

whereas when dA > 0 our simple proposal is to select bd∗1(dA) = −0.030 + 0. 717dA. For the
more interesting composite alternative case, notice that bd∗1(d) is still unfeasible, but similarly
to DGM we could replace d by a

√
T -consistent estimator in the expression of bd∗1(d). In fact,

a careful inspection of the proof of Theorem 5 in DGM shows that their results still hold

when the estimator bd of the true d satisfies T 1/4 logT
³
d̂− d

´
= op(1). This condition holds

for many semiparametric estimators for an appropriate choice of the bandwidth parameter,

see Velasco (1999a, b). DGM overlooked this result but it is very important because it means

that the FDF test is consistent even if the researcher does not specify correctly the parametric

model. Obviously, for the simple framework where yt follows a pure fractional process, a

parametric estimator, such as the Whittle estimator that we employ in the simulations

at the end of this section, is more efficient than a semiparametric estimator. The role of

a semiparametric estimator appears when this restrictive framework is relaxed and more

complicated data generating processes are allowed. In these cases, instead of the FDF test,

an Augmented FDF test that employs a semiparametric estimator should be used.

Hence, in order to derive a simple operational modification of the FDF test our proposal

is to implement the FDF test with

bd∗1(ed) = −0.030 + 0. 717ed (8)

where ed can be any consistent semiparametric estimator of d such as those proposed in
Velasco (1999a, b). Similarly to DGM, in practice, for a moderate sample size bd∗1(ed) will
always be below 1, but for very small sample sizes, a trimming such as the one proposed

by DGM in their equation (33) would be necessary. From now on, bd∗1(ed) will denote the
trimmed version.

The following lemma justifies this implementation of the FDF test.

Lemma. Under the null hypothesis ( d = 1), the t-ratio statistic associated to the parameter

φ in the regression

∆yt = φ∆
cd∗1( ed)yt−1 + ut, (9)
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where bd∗1(ed) is a trimmed version of equation (8), is asymptotically distributed as N(0, 1).

The proof of this lemma is omitted since it is similar to the proof of Theorem 5 in DGM.

The only difference is to realize that expression (A.48) in DGM is bounded as Op(T
1/4 log T )

rather than op(T
1/2), justifying the use of a semiparametric estimator. The intuition of the

lemma is also similar to DGM: under the null bd∗1(ed) will be close to d∗, and hence the
asymptotic standard distribution is the standard normal.

Our choice of d1 is asymptotically optimal for d ≥ 0.5, but it is natural to wonder about
the finite sample behavior of the considered tests. In the rest of the section we comment on

the results of a small Monte Carlo study. The framework is similar to that considered in

the simulations exercise of Section 2. The sample size is 100, d = {0.5, 0.6, 0.7, 0.8, 0.9, 1},
errors are Gaussian and the nominal level is 0.05. We considered FDF tests with several

selections for d1, namely a) d1 = d, denoted by FDF(d), b) d1 = d
∗, FDF(d∗), c) d1 = bd∗1(d),

FDF( bd∗1(d)), d) d1 = bd∗1(bdn), where bdn is the Whittle parametric estimator, FDF( bd∗1(bdn)),
and e) d1 = bd∗1(edm), where edm is the Gaussian semiparametric estimator with bandwidth m,
FDF( bd∗1(edm)). Regarding a) and c) notice that they represent unfeasible implementations of
the FDF test that assume that the true d is known and ignore the sampling error associated

with the estimation of d. Regarding d) and e) note that they could be calculated in two

different ways since both the Whittle parametric estimator and the Gaussian semiparametric

estimator could be applied to the original data or to the first differences of the data. We

tried both possibilities and the results were very similar. The only apparent difference is

that the size is slightly better controlled when the first differences are employed. The reason

of this difference is that for d = 1 the estimators based on the levels are not consistent

in their original form, see Velasco (1999b) and Velasco and Robinson (2000). In addition,

similarly to DGM, a trimming rule was introduced for calculating bdn and edm, such that these
estimators are always less or equal than 0.99. For edm, the selected bandwidth is m = n0.55,

which is sufficient for our asymptotic theory to hold. Finally, for the tests a) and c) we set

d1 = 0.99 for computing the size results.

In addition to the FDF tests we also include the KS and the CvM tests considered in

Section 2 and Tanaka’s (1999) LM test. For the KS and CvM tests we tried two types

of critical values, asymptotic and bootstrap, calculated for d1 ∈ [0.51, 0.7], because in our
framework any value higher than 0.69 is not optimal for any possible alternative. Since the

performance with the bootstrap was slightly better we just report the bootstrap results.

Similar to Hansen (1996), for the bootstrap approximation we replace the numerator of the
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FDF t(d1) statistic by
TX
2

∆yt∆
d1yt−1vt,

where the {vt} is an i.i.d. sequence of zero mean and unit variance random variables,

independent of yt, and independent in each bootstrap replication. In these experiments

300 bootstrap replications have been computed, and a uniform grid of 30 values for d1 ∈
[0.51, 0.7] has been employed. Regarding the selection of vt, Hansen employs the standard

N(0, 1), whereas we employ a Bernoulli variate where P (vt = 0.5(1−
√
5)) = (1+

√
5)/2

√
5

and P (vt = 0.5(1 +
√
5)) = 1 − (1 + √5)/2√5. This selection has been employed before

(see Mammen (1993) or Stute, González-Manteiga and Presedo-Quindimil (1998)), and it

presents the advantage that the third moment of vt is equal to 1, and hence, the first three

moments of the bootstrap series coincide with the three moments of the original series.

Finally, we also tried the ExpLM test of Andrews and Ploberger (1994), but these results

are not reported since they were very similar to those of CvM.

Table 4 reports the Monte Carlo size (d = 1) and power (d < 1) of the previous tests

based on 5% asymptotic critical values for all tests except for the KS and CvM tests whose

figures are based on 5% bootstrap-based critical values. For this table and the next the

number of replications is 10,000 for the bootstrap KS and CvM and 100,000 for all the

other tests. Regarding the size results, notice that for all the variants of the FDF test the

empirical rejection probabilities under the null are higher than the nominal size. In partic-

ular, FDF( bd∗1(edm)) presents a severe size distortion for this sample size. On the contrary,
all the non-FDF tests appear to be conservative. Hence, in Table 5 we also report the fig-

ures based on empirical critical values (size-adjusted power) for all tests. The main findings

from these tables are the following. First, all the FDF tests appear to be more powerful

than the non-FDF tests. Second, compared to FDF(d), FDF(d∗) fares relatively well when

the alternatives are close to the null, as could be expected. Third, comparing the different

implementations of the FDF test, it is very interesting to see that the unfeasible version of

the FDF test proposed by DGM, FDF(d), is dominated by all the other implementations

of the FDF tests in terms of power. In particular, when d = 0.8 or 0.9, power can increase

in relative terms between 20% and 30% by using FDF( bd∗1(d)) instead of FDF(d). Fourth,
regarding the tests that employ all the values of the nuisance parameters, KS and CvM,

the results are very similar with a slight advantage of KS. These results suggest that there

is no need to employ this type of tests that considers all the range of d1, since an optimal

selection for d1 is available.
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These findings are based on a very simple DGP. Additional Monte Carlo experiments for

more complicated DGP’s are needed. However, two preliminary conclusions arise from this

finite sample evidence. First, the FDF(d∗) test is a very sensible option since it performs

fairly well in finite samples and has the advantage of being very simple to implement. Second,

if a consistent estimator for d is available, more power in finite samples can be achieved by

using alternative versions of the FDF test.

4 Conclusions

Similar to the Dickey-Fuller test, the FDF correlation test proposed by DGM is likely to

become very popular among applied researchers. In this article we have analyzed the FDF

test with a model where a nuisance parameter, d1, is not identified under the null hypothesis.

In this framework two approaches can be considered. The first approach employs tests

statistics that use a unique value of d1. The second approach employs all values in an

interval.

The FDF test belongs to the first approach. In their original proposal, DGM arbitrarily

select the value of d1, so that their implementation of the FDF test is not theoretically

optimal, and in practice, their arbitrary selection of d1 may lead to a severe loss of power

in finite samples. In this article we have addressed the issue of optimally selecting the value

of d1. Optimality considerations demand the introduction of a criterion function. Since one

of the main advantages of the FDF approach is that it does not require the introduction of

a particular parametric model or distribution, a natural criterion is ρ2(d1), the population

squared correlation between the dependent and independent variables of regression (1).

Using this criterion function, we have derived optimal tests that are consistent against

alternatives that converge to the null at the parametric rate.

In the spirit of the second type of tests, we have analyzed two popular test statistics,

the Kolmogorov-Smirnov and the Cramer-von Mises. However, in our case there is no

apparent theoretical reason to justify the use of these statistics because the asymptotic

null distribution of the statistic t(d1) is pivotal, leading to an optimal solution for the d1

parameter in terms of d. In addition, we have shown that a semiparametric estimator

of d can be plugged into the FDF test, rendering unnecessary the full specification of a

parametric model. An optimality analysis similar to Andrews and Ploberger (1994) merits

further study, but it is beyond the scope of this article.
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Finally, we stress that we have just analyzed the case where the DGP is a pure fractionally

integrated process and where the employed test is the FDF test. Similarly to DGM, in

practical applications it is important to allow for more complicated DGP’s where the errors εt

may be weakly serially correlated. In this situation, we could follow DGM’s recommendation

and apply the augmented FDF test. Following the arguments in DGM, we presume that

the asymptotic null distribution of the t ratio statistic associated to the coefficient of the

regressor ∆
cd∗1( ed)yt−1 is still the standard normal, as long as the number of included lags of

∆yt in the augmented regression is large enough to capture asymptotically all the serial

correlation in the errors. Notice that in this case a semiparametric optimal implementation

of the augmented FDF test would demand, in principle, the introduction of two user-chosen

numbers: one reflects the number of lags included in the augmented FDF regression, and the

other necessary to estimate consistently d, and hence, to estimate consistently the optimal

d∗1(d). We stress that a semiparametric estimator is especially relevant for this general

framework, since specifying a correct model for the autocorrelation of the errors εt can be

particularly difficult. In this case, optimal augmented FDF tests are consistent against

alternatives that converge to the null at the parametric rate. This feature is shared by

the optimal tests developed by Robinson (1994) or Tanaka (1999). However, compared

to them, optimal augmented FDF tests present the advantage of not requiring the correct

specification of a parametric model.
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d1 \ d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 100 100 100 100 100 91.7 67.2 37.2 15.9 5.34

0.1 100 100 100 100 100 98.1 81.8 48.2 19.3 5.38

0.2 100 100 100 100 100 99.7 91.9 59.7 23.1 5.55

0.3 100 100 100 100 100 100 96.3 68.3 26.1 5.53

0.4 100 100 100 100 100 100 97.8 74.1 29.0 5.53

0.5 100 100 100 100 100 99.9 98.1 78.4 33.3 6.31

0.6 100 100 100 100 100 99.7 96.4 75.4 32.5 5.91

0.7 100 100 100 100 99.9 99.1 93.5 70.2 30.0 5.51

0.8 100 100 100 100 99.7 97.7 89.4 64.1 27.3 5.37

0.9 100 100 100 99.8 99.0 95.6 83.6 57.8 24.5 5.27

Table 1. Monte Carlo size (d = 1) and power (d < 1) of the FDF t(d1) tests: Percentage of

rejections based on 5% asymptotic critical value. Series follow a FI(d) with Gaussian errors.

Sample size is 100. Number of replications is 30,000.

d1 \ d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 100 100 100 100 99.4 91.1 66.1 36.2 15.2

0.1 100 100 100 100 100 97.9 80.9 46.8 18.5

0.2 100 100 100 100 100 99.7 90.9 57.2 21.5

0.3 100 100 100 100 100 99.9 95.8 66.2 24.5

0.4 100 100 100 100 100 99.9 97.3 72.0 27.1

0.5 100 100 100 100 100 99.9 97.1 74.3 29.1

0.6 100 100 100 100 100 99.6 95.7 72.8 29.6

0.7 100 100 100 100 99.9 99.0 92.9 68.2 28.1

0.8 100 100 100 100 99.6 97.6 88.6 62.5 26.0

0.9 100 100 100 99.8 98.9 95.4 82.9 56.8 23.7

Table 2. Monte Carlo power of the FDF t(d1) tests: Percentage of rejections based on

5% empirical critical values. Series follow a FI(d) with Gaussian errors. Sample size is 100.

Number of replications is 30,000.
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d 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d∗1 0.000 0.0619 .1261 .1921 .2600 .3294 .4001 .4716 .5437 0.6158 0.6515

Table 3. The function d∗1(d) computed from (7) with a truncation at i = 105.

d 0.5 0.6 0.7 0.8 0.9 1

FDF(d) 100 99.7 93.7 64.1 25.1 5.37

FDF(d∗) 99.9 99.3 94.0 71.1 30.6 5.59

FDF( bd∗1(d)) 100 100 98.2 77.6 32.2 5.57

FDF( bd∗1(bdn)) 100 99.5 94.8 71.8 30.6 5.65

FDF( bd∗1(edm)) 99.8 99.8 97.0 76.5 34.3 6.93

KS 100 99.0 90.7 58.6 19.3 4.70

CvM 99.8 98.5 89.4 58.3 19.3 4.42

TAN 99.9 99.0 91.2 62.9 24.5 4.64

Table 4. Monte Carlo size (d = 1) and power (d < 1) of the FDF tests with several

selections for d1, the KS, the CvM and Tanaka’s test: Percentage of rejections based on 5%

asymptotic critical values for all tests and bootstrap-based critical values for KS and CvM.

Series follow a FI(d) with Gaussian errors. Sample size is 100. The number of replications

is 10,000 for KS and CvM and 100,000 for all the other tests.

d 0.5 0.6 0.7 0.8 0.9

FDF(d) 100 99.7 93.4 63.5 24.4

FDF(d∗) 99.9 99.1 93.2 68.9 28.4

FDF( bd∗1(d)) 100 100 97.8 75.5 30.0

FDF( bd∗1(bdn)) 100 99.4 94.1 69.6 28.5

FDF( bd∗1(edm)) 99.8 99.6 95.2 70.4 28.1

KS 99.9 99.5 93.1 62.4 21.2

CvM 99.9 99.2 92.4 63.4 21.8

TAN 99.9 99.1 91.9 64.5 25.7

Table 5. Monte Carlo power of the FDF tests with several selections for d1, the KS, the

CvM and Tanaka’s test: Percentage of rejections based on 5% empirical critical values. Se-

ries follow a FI(d) with Gaussian errors. Sample size is 100. The number of replications is

100,000.
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Figure 1. Asymptotic efficiency of the FDF and LM tests: plots of h(d1) and
p
π2/6.
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Figure 2. Plots of the points (d, d∗1(d)) of Table 3, and the lines d1 = bd∗1(d) and
d1 = d

∗ ≡ 0.69.
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5 Appendix

For simplicity, in this appendix we assume that the variance of εt is one.

Proof of Theorem 1. We start with the proof of (ii).

We start introducing some notation. Let

∆yt = ∆
−θT εt1t>0 = εt +

t−1X
1

πi(−θT )εt−i,

where θT = −δT−1/2, and π1(−θT ) = θT , π2(−θT ) = 0.5θT (1 + θT ) ≈ −0.5δT−1/2, and in

general πj(−θT ) ≈ −j−1δT−1/2. Also,

∆d1yt−1 = ∆
−ηT εt−11t>1 = εt−1 +

t−2X
1

πi(−ηT )εt−1−i,

where ηT = 1 − d1 − δT−1/2, so that π1(−ηT ) = ηT ≈ 1 − d1, π2(−ηT ) = 0.5ηT (1 + ηT ) ≈
0.5(1− d1)(2− d1) and so on.

First, consider the numerator of t(d1) scaled by T
−1/2,

QT (d1) = T−1/2

TX
2

∆yt∆
d1yt−1

= T−1/2
TX
2

Ã
εt +

t−1X
1

µ
1

i

−δ√
T

¶
εt−i

! Ã
εt−1 +

t−2X
1

πi(−ηT )εt−1−i

!
+ op(1)

= T−1/2
TX
2

Ã
εt +

µ −δ√
T

¶
εt−1 +

t−2X
1

µ
1

(i+ 1)

−δ√
T

¶
εt−i−1

! Ã
εt−1 +

t−2X
1

πi(−ηT )εt−1−i

!
+op(1)

= T−1/2
TX
t=2

Ãµ −δ√
T

¶
ε2
t−1 +

t−2X
i=1

µ
1

(i+ 1)

−δ√
T

¶
πi(−ηT )ε2

t−i−1

!
(10)

+T−1/2

TX
2

εt

Ã
εt−1 +

t−2X
1

πi(−ηT )εt−1−i

!
(11)

+T−1/2
TX
2

µµ −δ√
T

¶
εt−1

¶ Ã
t−2X

1

πi(−ηT )εt−1−i

!
(12)

+T−1/2

TX
2

Ã
t−2X

1

µ
1

(i+ 1)

−δ√
T

¶
εt−i−1

! Ã
t−2X
i6=j=1

πi(−ηT )εt−1−j

!
+ op(1). (13)
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The last two terms, (12) and (13), in the previous expression are op(1) using similar

reasoning to that in the proof of Theorem 4 in DGM. The term (10) is

−δ
T

TX
t=2

Ã
ε2
t−1 +

t−2X
i=1

1

(i+ 1)
πi(−ηT )ε2

t−i−1

!
→p −δK(d1)

where

K(d1) = lim
T→∞

1

T

TX
t=2

Ã
t−2X
i=0

πi(−ηT )
i+ 1

!
=

∞X
i=0

πi(d1 − 1)
i+ 1

.

Using a standard central limit theorem, the term (11) is

1√
T

TX
2

Ã
εtεt−1 +

t−2X
i=1

πi(−ηT )εtεt−1−i

!
→d N(0, V )

where

V = lim
T→∞

1

T

TX
2

E

Ã
εtεt−1 +

t−2X
i=1

πi(−ηT )εtεt−1−i

!2

= lim
t→∞

E

Ã
εtεt−1 +

t−2X
i=1

πi(d1 − 1)εtεt−1−i

!2

= 1 + lim
t→∞

t−2X
i=0

πi(d1 − 1)2 =
∞X
i=0

πi(d1 − 1)2.

Hence, QT (d1) →d N(−δK(d1),
P∞

i=0 πi(d1 − 1)2).
Second, consider the denominator of t(d1) scaled by T

−1/2. It is straightforward to show

that bS2
T (d1)→p 1, and, given the above expression for ∆

d1yt−1, by a law of large numbers it

is easy to see that

1

T

TX
2

¡
∆d1yt−1

¢2 →p lim
t→∞

E

Ã
εt−1 +

t−2X
1

πi(d1 − 1)εt−1−i

!2

=
∞X
i=0

πi(d1 − 1)2.

Hence,

t(d1)→d N

Ã
−δK(d1)pP∞
i=0 πi(−ηT )2

, 1

!
.

Finally, direct calculations lead to K(d1) = 1/d1 and to

∞X
i=0

πi(−ηT )2 =
Γ(2d1 − 1)
Γ(d1)2

.
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Next, we prove part (i). As above, it is straightforward to show that bS2
T (d1) →p 1. First,

we analyze the numerator of t(d1) scaled by T
d1−1,

T d1−1
TX
2

∆yt∆
d1yt−1 = T

d1−1
TX
2

Ã
εt +

t−1X
1

µ
1

i

−δ√
T

¶
εt−i

!
(wt−1 + zt−2) (14)

where

wt−1 = εt−1 +
t−2X

1

πi(d1 − 1)εt−1−i

and

zt−2 =
t−2X

1

(πi(−ηT )− πi(d1 − 1)) εt−1−i.

There are four terms in (14). The first is the same that was derived in Theorem 2 in DGM

T d1−1

TX
2

εtwt−1
w→

Z 1

0

W−d1(r)dB(r).

The second has zero mean and verifies that

T d1−1

TX
2

εtzt−2 →p 0.

The third term is

T d1−1

TX
2

t−1X
1

µ
1

i

−δ√
T

¶
εt−iwt−1 = T d1−1

TX
2

t−1X
1

µ
1

i

−δ√
T

¶
εt−i

Ã
εt−1 +

t−2X
1

πi(d1 − 1)εt−1−i

!

= −δT d1−3/2
TX
2

t−2X
i=1

πi+1(d1 − 1)
i

.

If d1 > 0 this term is Op(T
d1−1/2) = op(1), while if d1 = 0 the term is Op((log T )T

d1−1/2) =

op(1).We emphasize the rate of convergence to zero, since it is the main input to determine

the rate of convergence at which a sequence of local alternatives has to tend to the null so

that the t(d1) has non-trivial power in the 0 ≤ d1 < 0.5 case.

Finally, the fourth term

T d1−1
TX
2

Ã
t−1X

1

µ
1

i

−δ√
T

¶
εt−i

!
zt−2

is Op(T
d1−1/2) = op(1) if d1 > 0, and when d1 = 0 it is Op((log T )T

d1−1/2) = op(1), as above.

Hence, the numerator of t(d1) scaled by T
d1−1 verifies that

T d1−1

TX
2

∆yt∆
d1yt−1

w→
Z 1

0

W−d1(r)dB(r).
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Second, we examine the denominator of t(d1) scaled by T
d1−1. As above, we write ∆d1yt−1 =

wt−1 + zt−2. Then,

T 2d1−2
TX
2

¡
∆d1yt−1

¢2
= T 2d1−2

TX
2

(wt−1 + zt−2)
2 . (15)

Expression (15) has three terms. The first one is the one that appears in Theorem 2 in

DGM

T 2d1−2
TX
2

w2
t−1

w→
Z 1

0

W 2
−d1
(r)dr.

The second term is equal to

T 2d1−2
TX
2

z2
t−2 = T

2d1−2
TX
2

Ã
t−2X

1

(πi(−ηT )− πi(d1 − 1)) εt−1−i

!2

.

Using the mean value theorem πi(−ηT )− πi(d1 − 1) = δπ0i(d1 − 1)/
√
T + O(T−1i−d1 log2 i)

as T →∞ and i→∞, and then

T 2d1−2
TX
2

z2
t−2 = δ2T 2d1−3

TX
2

Ã
t−2X

1

π0i(d1 − 1)εt−1−i

!2

+ op (1)

= Op
¡
T−1 log2 T

¢
= op(1)

since π0i(d1 − 1) ∼ C i−d1 log i.

Finally, the last term in expression (15) is

T 2d1−2

TX
2

wt−1zt−2

= T 2d1−2
TX
2

Ã
εt−1 +

t−2X
1

πi(d1 − 1)εt−1−i

! Ã
t−2X

1

(πi(−ηT )− πi(d1 − 1)) εt−1−i

!

= Op

Ã
T 2d1−3/2

TX
1

πi(d1 − 1)π0i(d1 − 1)
!
= Op

¡
T−1/2 log T

¢
= op(1).

Hence, the theorem follows.

Proof of Theorem 2. First, we consider the numerator of t(d1) scaled by T
−1/2. We want

to show that for d1 ∈ D1

QT (d1)⇒ Q(d1)− δ/d1,

where Q(d1) is a zero mean Gaussian process with covariance kernel given by

CQ(da1, d
b
1) =

∞X
i=0

πi(d
a
1 − 1)πi(db1 − 1).
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The finite dimensional distributions of each of the terms in which we decomposed QT , (10)

to (13), have been analyzed in Theorem 1. Thus, it only remains to check their tightness.

We start by analyzing in detail the second component of QT (d1). Using the Cramer-Wold

device, (11) converges in distribution for each finite set J of values of d1 to N(0, V (J)),

where Vab(J) = C
Q(da1, d

b
1). Now, define Xt(d1) = εtεt−1+

Pt−2
i=1 πi(−ηT )εtεt−1−i. In order to

prove tightness, it is sufficient to show that, for and any da1, d
b
1 ∈ D1,

E

Ã
1√
T

TX
2

¡
Xt(d

a
1)−Xt(db1)

¢!2

≤ K|da1 − db1|γ (16)

for some γ > 1, where K > 0 is a generic constant that does not depend on T or
¡
da1, d

b
1

¢
.

Then, using the i.i.d. property of the εt, the left hand side of (16) equals

σ4

T

TX
t=2

t−2X
i=1

³
πi(d

a
1 − 1− δ/

√
T )− πi(db1 − 1− δ/

√
T )

´2

. (17)

Using the Mean Value Theorem for πi(·), (17) is bounded by

K

T

TX
t=2

t−2X
i=1

|da1 − db1|2
i2

log2 i ≤ K|da1 − db1|2.

Next, define Zt(d1) = ε
2
t−1 +

Pt−2
i=1(i + 1)

−1πi−1(−ηT )ε2
t−i−1. The first term of QT (d1),(10),

converges in probability to 0 uniformly in D1, because it is op(1) for each d1, and it is tight

using that

E

Ã
−δ
T

TX
t=2

¡
Zt(d

a
1)− E [Zt(da1)]− Zt(db1) + E

£
Zt(d

b
1)

¤¢!2

≤ K|da1 − db1|2,

and because

sup
d1∈D1

|E [Zt(d1)] +K(d1)| = o(1).

The last two components of QT (d1), (12) and (13), are also op(1) uniformly in d1 ∈ D1,

using similar arguments and the proof of Theorem 4 in DGM.

In addition, it is straightforward to show that supd1∈D1
bS2
T (d1)→p 1, and that

sup
d1∈D1

¯̄̄̄
¯ 1T

TX
2

¡
∆d1yt−1

¢2 − V (d1)

¯̄̄̄
¯ →p 0.

Finally, the theorem follows by the Continuous Mapping Theorem.
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