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ABSTRACT

       The problem addressed in this paper is to test the null hypothesis that a time series

process is uncorrelated up to lag K in the presence of statistical dependence. We propose

an extension of the Box-Pierce Q test that is asymptotically distributed as chi-square

when the null is true for a very general class of dependent processes that includes non-

martingale difference sequences. The test is based on a consistent estimator of the

asymptotic covariance matrix of the sample autocorrelations under the null. The finite

sample performance of this extension is investigated in a Monte Carlo study.
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1. INTRODUCTION

Box-Pierce (1970) proposed using the QK statistic to test the null hypothesis that the

first K autocorrelations of a covariance stationary time series are zero. The QK statistic is

the sample size times the sum of the squares of the first K sample autocorrelations.

Assuming the observations are independent and identically distributed, the asymptotic

covariance matrix of the vector of sample autocorrelations is the inverse of the sample

size times the identity matrix. Hence, under the null, QK is asymptotically distributed as

chi-square with K degrees of freedom, provided that the observations are independent

and identically distributed.  The test can be extended to settings with statistical

dependence by using the true asymptotic covariance matrix of the sample

autocorrelations, or a consistent estimator, in place of the identity matrix.

This extension has been carried for time series generated by a martingale difference

sequence (MDS). For certain MDS processes, the asymptotic covariance matrix of the

sample autocorrelations is diagonal. This case has been repeatedly addressed in the

literature; see, for example, Taylor (1984), Diebold (1986) and Lo and MacKinlay

(1989). Guo and Phillips (1998) have extended the test for the case where the asymptotic

covariance matrix of the sample autocorrelations may be nondiagonal. This more general

MDS setting is of special importance for financial time series. For example, the

asymptotic covariance matrix of the sample autocorrelations is nondiagonal for a

GARCH (1,1) model with asymmetric errors.

In this paper, we present an extension of the Box-Pierce test to the case where the

time series may be generated by a non-MDS process. Our test statistic is in the spirit of a
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Lagrange Multiplier or score statistic because it is based on a consistent estimator of the

asymptotic covariance matrix of the sample autocorrelations under the null. Uncorrelated

time series can be generated by non-MDS models including certain bilinear models

(Granger and Terasvirta (1993)) and all-pass models (Breidt, Davis and Trindade (1999)).

An all-pass model is an ARMA model in which all the roots of the AR polynomial are

reciprocals of the roots of the MA polynomial.  Both bilinear models and all-pass models

have been used in finance applications; for example, see Bera and Higgins (1997) and

Terdik (1999) for bilinear examples and Breidt, Davis and Trindade (1999) for all-pass

examples.

The performance of the standard Box-Pierce QK test and extensions of the QK test are

compared in Monte Carlo experiments. The examples used in the experiments include

MDS processes with diagonal and nondiagonal asymptotic covariance matrices of the

sample autocorrelations and non-MDS processes. The powers of the various extensions

of the QK test are also investigated.

This paper is organized as follows.  Our extension of the QK test is developed in

Section 2. The results of the Monte Carlo experiments on the probability of making a

Type I error are reported in Section 3 for MDS and non-MDS examples. The powers of

the tests are reported in Section 4. The concluding remarks are in Section 5.

2. EXTENSIONS OF BOX-PIERCE

Notation. Let y1, …, yn, denote a real-valued covariance stationary time series with

mean µ.  Define the lag-j autocovariance by γ(j) = E(yt - µ)( yt-j - µ ) and the lag-j

autocorrelation by ρ(j)  = γ(j)/γ(0).  Define the sample mean by n

tt 1
ˆ (1 / n ) yµ

=
= ∑ and the
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lag-j autocovariance by 
n

t t-jt=j+1
ˆ ˆ ˆ( j) (y - )(y ) / n.γ µ µ= −∑  The usual estimator of ρ(j) is

ˆ ˆr(j) = (j)/ (0).γ γ

 Denote the vector of sample autocovariances as ˆ ˆ ˆ ˆ( (0), (1),..., (K))γ γ γ γ= ’, and the

vector of population autocovariances as γ = (γ(0), γ(1),…, γ(K))’. The vector of sample

autocorrelations is r = (r1,…, rK)’ and the vector of population autocorrelations is

1 K( ,..., )ρ ρ ρ= ’.  The vector wt = (w1t,…, wKt)’ has as its k-th component wkt = (yt-µ)(yt-

k-µ) for k  =1,…K, and t 1t Ktˆ ˆ ˆw =(w ,...,w ) ’ has as its k-th component ktŵ  = (yt- µ̂ )(yt-k- µ̂ )

for k  =1,…K.

We assume covariance stationarity and characterize dependence with the concept of

near epoch dependence (NED) on a mixing set. Notice that we do not require strict

stationarity, but we assume covariance stationarity in order for the autocovariances and

the autocorrelations to be properly defined. Even the assumption of covariance

stationarity could be dropped. In this case, the null hypothesis would be that the lag-j

autocorrelations are zero for all t and j= 1, …, K. We note that our results can be

extended to some nonstationary time series (in fact, the theoretical references that we

employ are not restricted to the stationary framework), but, for simplicity, we only treat

the stationary case.

ASSUMPTION 1. Let yt be a covariance stationary process that satisfies E|yt|
s < ∞ for

some s> 4 and all t  and is L2-NED of size –1/2 on a process Vt where Vt is an α-mixing

sequence of size –s/(s-4).

LEMMA 1. Under ASSUMPTION 1 the vector of sample autocovariances  γ̂

satisfies the following Central Limit Theorem (CLT):
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    ˆn ( - ) (0,2 C)Nγ γ π⇒

where C is the spectral density matrix at zero frequency of the vector tw  and has as its ij-

th element

- -

-

{ ( )( )( )( )

            ( )( ) ( )( )}; , 0,1, ..., .

d

ij t t i t d t d j
d

t t i t d t d j

c E y y y y

E y y E y y i j K

µ µ µ µ

µ µ µ µ

= ∞

+ +
= −∞

+ + −

= − − − − −

− − − − =

∑

Proof. First notice that

 
n n

-1/2
kt kt P

t =k+1 t =k+1

1 1
ˆ ˆn (k) = w w (n )

n n
Oγ = +∑ ∑

since the remaining terms have the same order of magnitude as 2ˆn ( )µ µ− and

-1/2
Pˆ( ) (n )Oµ µ− = . Since each of the wkt processes (normalized by the square root of the

variance of 
n

kt
t=k+1

w∑ ) satisfies Assumption 1 in De Jong and Davidson (1999), the CLT is

a particular case of the functional CLT (Theorem 3.2) in De Jong and Davidson (1999).

LEMMA 2. The vector nr  is asymptotically normally distributed with asymptotic

covariance matrix T where the ij-th element of T is given by

  -2
0 0 00  (0) [ - ( ) - ( )  ( ) ( ) ].ij ij j ic i c j c i j cτ γ ρ ρ ρ ρ= +                    (1)

Proof.  The CLT is obtained by a straightforward application of the delta method.

Assuming T is known, HK: ρ =  0 can be tested using a test statistic of the form

nr’T -1r, which asymptotically follows a chi-square with K degrees of freedom when HK

is true.  A feasible test can be obtained either by replacing T by a known matrix or by

estimating T.  The Box-Pierce QK statistic replaces Τ with the identity matrix.
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Alternative Tests. The spirit of the LM, or score test, is to exploit the restrictions

imposed by the null. Under HK, the matrix T simplifies to 
~
T = -2{ (0) C} where  Cγ � �  has as

its ij-th element

       

d

ij t t-i t d t d j
d

c E(y )(y )(y )(y ); i,j 1,...,K.

            

µ µ µ µ
=∞

+ + −
=−∞

= − − − − =∑�

                   (2)

The extension of the QK test we propose is based on the statistic 
~
QK = nr’

~�Tr where 
~�T is a

consistent estimator of 
~
T under HK.  As will be shown below, 

~
QK is asymptotically chi-

squared distributed with K degrees of freedom when HK is true.

An important case in economics and finance is where the time series is a martingale

difference sequence (MDS).  For a MDS process, the only possible non-zero elements of

~
C are terms of the form E(yt- µ)2(yt-i- µ)(yt-j - µ). In (2) these occur at d = 0. Guo and

Phillips (1998, Theorem 5) have developed a test of HK, the GPK test, for the MDS case.

In our context, the GPK test is a special case of the 
~
QK test where ~c ij is replaced by the

sample analog of E(yt- µ)2(yt-i - µ)(yt-j - µ).

The 
~
QK test can be specialized further by assuming that ~c ij = 0 except when d = 0

and i = j, in which case 
~
T is diagonal and is denoted by T*.  In this diagonal case,

2 2
j j t t jc* E(y ) (y ) ,  j  1,...,K,� �−= − − =                              (3)

and the diagonal elements of T* are

2
jj jj* c* / (0)τ γ= .

Following Lobato, Nankervis and Savin (1999), this modified Box-Pierce statistic is

denoted by QK*. It is constructed by replacing the diagonal matrix T* by a consistent

estimator �T* :
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QK*=  
K

-1 2
jj

j 1

ˆ ˆnr [T*] r n [r(j)] / 2 

=

′ = ∑                                          (4)

where *2̂ jj  is a consistent estimator of τjj*:

�τ jj ∗ = [
n

-1 2 2 2
t t j

t=j+1

ˆ ˆ ˆn (y ) (y ) / (0) ].µ µ γ−− −∑             

For the hypothesis that a single autocorrelation coefficient is zero, the Q1* test is

equivalent to the GP1 test.

.kGeneral Q Test�  A consistent estimator of 
~
T is required to implement the general

~
QK  test. A consistent estimator can be obtained using ˆ(0)γ to estimate γ(0) and a non-

parametric estimator of the matrix 
~
C.  Since the matrix 

~
C is the spectral density matrix at

zero frequency of the K dimensional vector process wt under HK, a nonparametric

consistent time domain estimator of 
~
C is given by

t t-j
j j t

j 1 jˆ ˆ ˆC= g(j) = ( )w w
n

k k
  ′  

∑ ∑∑�

" "
   (5)

where  g(j) = t t-j
t

ˆ ˆ(1/ n) w w′∑  with tŵ  defined as above, " > 0 is the bandwidth parameter,

and k(• ) is the kernel or lag window. We assume that the kernel and the bandwidth

satisfy the following assumptions.

ASSUMPTION 2. The kernel k(• ) belongs to K where K is the class of functions

         { ( ) : [ 1,1]}K k= • → −�

which is symmetric around zero, continuous at zero at all but a finite number of points

and satisfies

          (0) 1, | (x) | dx , | ( ) | dk k ψ ξ ξ
∞ ∞

−∞ −∞

= < ∞ < ∞∫ ∫
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where 1( ) (2 ) (x) dx.i xk eξψ ξ π
∞−

−∞
= ∫

ASSUMPTION 3.  The bandwidth sequence satisfies

          
n

1
lim 0.

n→∞
+ ="

"

Then the following lemma establishes the consistency of the nonparametric

estimator of 
~
C.

LEMMA 3. Under the ASSUMPTIONS 1-3 and the null hypothesis

HK, ˆ p

C C→� � .

Proof:  Notice that ̂C�  and

t t-j
j

1 j
( )w w

n t

k ′∑∑
"

.

have the same probability limit and apply Theorem 2.1 in Davidson and De Jong (2000).

Hence, the following lemma establishes the asymptotic properties of the 
~
QK  test,

namely its null asymptotic distribution and its consistency.

LEMMA 4. Under the ASSUMPTIONS 1-3 and under the null hypothesis HK, the

test statistic KQ�  converges in distribution to a chi-square distribution with K degrees of

freedom, and under ρ ≠ 0, KQ� diverges.

Proof. The first part is obvious since 
~�T is consistent for 

~
T, that is, the covariance

matrix of the sample autocorrelations r under HK. In the second part, using the ergodic

theorem, the estimator of 
~
T converges in probability to a positive definite matrix and at

least one element of r is OP(1).  Therefore, 
~
QK  diverges.

3. MONTE CARLO EXPERIMENTS UNDER THE NULL
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This section reports estimates of the probability of making a Type I error for the QK,

Q*K, GPK and 
~
QK  tests based on critical values from the chi-square distribution with K

degrees of freedom. The estimated rejection probabilities are computed for two MDS

examples and two non-MDS examples. Three different hypotheses are considered: HK:

ρ(1) = … = ρ(Κ) = 0, K = 1, 5, 10. Each hypothesis is tested at nominal levels 0.01,0.05

and 0.10. The estimates (empirical rejection probabilities) are calculated using 25,000

replications for sample sizes n = 200, 1,000 and 5,000. In the tables, an asterisk denotes

that the empirical rejection probability is significantly different at the 0.01 level from the

nominal rejection probability, where the significance is evaluated using a 0.01 level two-

sided asymptotic test.

The 
~
QK  test requires a consistent estimator of the asymptotic covariance matrix of

the sample autocorrelations.  In this section, we explore the finite sample performance of

two automatic data based covariance matrix estimation procedures that have been used in

the literature. The first procedure (AUTO) employs AR(1) prewhitening/recoloring on

each series and selects the bandwidth using  formula (2.2) of Newey-West (1994) with

weights equal to one and lag truncation equal to 2(n/100)2/9. The second procedure uses

an autoregressive estimator of the covariance matrix where the order of each equation in

the VAR is selected automatically. Phillips and Lee (1994) have employed an ARMA

model in the scalar case and Den Haan and Levin (1997) a VAR in the vector case. We

report results for the vector procedure (VAR) with the AIC (Akaike (1973)) and the SC

(Schwarz (1978)) criteria. We set the maximum lag length as 3, 10 and 15 for sample

sizes n = 200, 1000 and 5000, respectively, and, for any equation in the VAR, the same

lag length is used for each element of the vector process.



12

3.1 MDS Examples

Monte Carlo experiments are conducted using two examples based on a GARCH

(1,1) model, one with normal errors and one where the errors are centered chi-square with

3 degrees of freedom. The GARCH (1,1) model is yt = zt•σt where zt is an iid sequence

and σt
2= ω + αyt-1

2 + βσt-1
2, where α and β are constants such that α + β < 1. This

condition is needed in order that yt is covariance stationary. He and Ter��asvirta (1999)

show that the unconditional fourth moment of yt exists for GARCH (1,1) models if and

only if β2 + 2αβν2  + αν4 < 1 where νi = E|zt|
i.  We set ω = 0.001, α = 0.05 and β = 0.90.

With this parameter setting, the He and Ter��asvirta (1999) condition for the existence of

the fourth moment of yt is satisfied for both models we consider. Estimates from stock

return data suggest that α + β is close to 1 with β also close to 1; for example, see Bera

and Higgins (1997).

Example 1.  Gaussian GARCH. zt is iid N(0, 1). For this process, γ(0) = E(yt- µ)2 =

0.02, E(yt- µ)3/γ(0) 
3/2 = 0, E(yt- µ)4/γ(0) 

2  =  3.16, and T is diagonal.

Example 2.  Chi-square (3) GARCH. zt is a demeaned and standardized iid chi-

square random variable with 3 degrees of freedom. In this case (the skewness is an

estimate), γ(0) = E(yt- µ)2 = 0. 02, E(yt- µ)3/γ(0) 3/2 = 1.72,   and E(yt- µ)4/γ(0)2 = 8.27 and

T is no longer diagonal.

The empirical rejection probabilities for the GARCH (1,1) examples are reported in

Table 1 for n = 200 and 1000. The main facts that emerge from these results are the

following: (i) At n = 200, the GPK test and the three versions of the 
~
QK  test tend to

perform poorly, especially for H10.  The exceptions are the VAR (AIC) version of the 
~
QK

test for Gaussian GARCH and the VAR (SC) version for the chi-square (3) GARCH.  (ii)
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At n = 1000, the GPK test tends to work satisfactorily for both Gaussian and chi-square

(3) GARCH and similarly for the VAR versions of the 
~
QK  test. AUTO tends to under-

reject, especially for H10.  The results for the GPK test and the VAR (SC) version of the

~
QK  test tend to be similar since the SC criterion tends to choose a zero lag, which,

asymptotically, is the correct lag for the VAR.

The results are not reported for n = 5000 since at this sample size the asymptotic

approximation to the finite sample distribution is accurate for the GPK test and the three

versions of the 
~
QK  test. Notice that the distortions in the rejection probabilities of the QK

test are larger for n = 1000 than n = 200. In particular, the QK test suffers from substantial

over-rejection for all hypotheses, especially for H10.

3.2 Non-MDS Examples

This section investigates the finite sample performance of the tests for uncorrelated

non-MDS processes, a bilinear model and an all-pass model. The bilinear model is

described in Granger and Ter��asvirta (1993) and the all-pass model in Breidt, Davis and

Trindale (1999).  Both these models can produce time series having similar properties to

those of series produced by GARCH models, namely, where the autocorrelation function

of the level of the series is flat, but the autocorrelation function of the squares (absolute

values) of the series declines slowly. Neither the QK* test or the GPK test is

asymptotically valid for these two examples.

Example 3. Bilinear Model.  Let yt = zt + b zt-1yt-2 where {zt } is a sequence of iid

N(0, σ2) random variables. The yt process is uncorrelated, but not independent and is

covariance stationary provided that b2 σ2 < 1.  The fourth moment of this process exists if

3b4σ4 < 1. We set b = 0.50 and σ2 = 1.0. For this process, the first four moments are µ =
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0, γ(0) = E(yt - µ)2 = σ2/(1 - b2 σ2) = 1.33, E(yt - µ)3/ γ(0) 
3/2 = 0,  E(yt - µ)4/γ(0) 

2 = 3(1 -

b4σ4)/(1 - 3b4σ4) = 3.46. See Granger and Andersen (1978) for more details with respect

to this example.

Example 4. All-Pass ARMA(1,1) Model. Let (yt – µ) – φ(yt-1-µ) = (zt – φ-1zt-1) where

{zt } is a sequence of iid random variables and where µ = 0 and φ = 0.8. The yt process is

uncorrelated, but not independent if zt is nonnormal. The fourth moment of yt is finite

provided zt has a finite fourth moment.  In our example, zt is Student t with 10 degrees of

freedom. For this process, the first four moments are µ = 0, γ(0) = E(yt- µ)2 = 1.95, E(yt-

µ)3/γ(0) 
3/2 = 0,  and E(yt- µ)4/γ(0) 

2 = 3.44.  A special feature of this example (where the

process is linear and uncorrelated) is that T is the identity matrix; see Bartlett (1946).

Table 2 reports the empirical rejection probabilities for the non-MDS examples

samples of n = 1,000 and 5,000 since the asymptotic approximation is poor at n = 200.

For the bilinear example, the empirical rejection probabilities are given in the first and

second panel of Table 2. The QK test over-rejects by a large margin for the three

hypotheses.  The QK* and GPK tests perform similarly for the three hypotheses; both tests

substantially over-reject. The AUTO version of 
~
QK  test tends to be unsatisfactory. The

VAR versions tend to over-reject when n = 1,000, but they are satisfactory for all three

hypotheses when n = 5,000.

For the all-pass ARMA (1,1) examples, panels three and four of Table 2 show that

the performance of the QK test is excellent. This is explained by the fact that the T matrix

is the identity. The QK* and GPK tests perform similarly; both under-reject the null. All

three versions of the 
~
QK  test also tend to under-reject. The VAR (AIC) version, however,
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is noticeably better than the other two versions. And it only marginally under-rejects

when n = 5000.

Computing. The random number generator used in the experiments was the very

long period generator RANLUX with luxury level p = 3; see Hamilton and James (1997).

Calculations were performed on a Silicon Graphics R10000 system and on a Sun

Enterprise 3000 server using double precision Fortran 77.  The program used for

VARHAC was a version of the program by den Haan and Levin

(http://weber.ucsd.edu/~wdenhaan/varhac.html) modified to run substantially faster.  In

order to mitigate the effect of occasional extreme estimates the program was also

modified, using the procedure of Andrews and Monahan (1992), by setting the minimum

singular value of the recoloring matrix to be 0.005.

4. POWERS

This section reports the empirical powers of the tests in a small Monte Carlo study.

In the experiments, the times series are generated by an MA (1) process with uncorrelated

errors: yt =  ut +θut-1.  The processes generating the ut’s are those specified in Examples 1

to 4. Under the null hypothesis, θ = 0, yt is uncorrelated. The values of θ are selected so

that the alternative values of ρ(1) range from 0.025 to 0.15. For the sake of brevity,

results are reported only for the 0.05 tests of the null hypotheses H1 and H5 when n =

1000. To simplify the power comparisons, the critical values are adjusted so that

empirical rejection probabilities of the tests under the null are exactly 0.05.

The first two panels in Table 3 reports the empirical powers for the GARCH (1,1)

examples. The results show that the empirical powers are very similar for all the tests

with the powers being essentially equal to one at ρ(1) = 0.15. Hence, for these examples
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there is no appreciable loss of power when the 
~
QK  test is employed. The last two panels

present the empirical powers for three versions of the 
~
QK  for the bilinear and all-pass

ARMA (1,1) examples. In each example, the empirical powers are again similar.

5. DISCUSSION

This paper presents an omnibus test of uncorrelatedness in the presence of statistical

dependence. The proposed test statistic, 
~
QK , which can be viewed as an extension of the

Box-Pierce QK statistic, is asymptotically chi-square distributed under the null. The finite

sample performance of three automatic data-based versions of the 
~
QK  test are examined.

The study first considers examples based on GARCH (1,1) models.  For these examples,

the comparison of interest is between the GPK test and the 
~
QK  test since the GPK test is

designed for MDS processes. In this comparison, both tests tended to provide satisfactory

control over the probability of making a Type I error when the sample size was n = 1000,

but the control was unsatisfactory at n = 200.

 The study next considered examples based on two non-MDS models, namely, a

bilinear model and an all-pass ARMA (1,1) model. As expected, the GPK test suffered

from distortions in the Type I error at n = 1000 and 5000. The distortions are substantial

for the bilinear example and relatively mild for the all-pass example. No version of the

~
QK  test is satisfactory at n = 1000. The VAR (AIC) version works at n = 5000 for the

bilinear example, but only marginally so for the all-pass ARMA (1,1). The message is

that large samples are needed for asymptotic theory to provide a reasonable

approximation to the distribution of the 
~
QK  statistic for non-MDS processes.
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In a small power study, the empirical powers of the GPK test and the three versions of

the 
~
QK  test are similar for the GARCH examples; the empirical powers of the three

versions of the 
~
QK  test are also similar for each of the non-MDS examples.
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Table 1. Rejection Probabilities (Percent) of Tests: MDS Examples

H1 H5 H10

1 5 10 1 5 10 1 5 10

GARCH (1,1) with Normal Errors, n = 200

Q 1.4* 6.0* 11.3* 1.7* 7.0* 12.5* 1.9* 6.9* 12.4*

Q* 1.0 4.9 10.1 1.0 4.9 9.8 1.1 5.0 9.3*

GP 1.0 4.9 10.1 0.6* 4.1* 8.9* 0.4* 3.0* 7.4*

AUTO 0.7* 4.8 10.1 0.5* 3.6* 8.1* 0.2* 1.9* 5.3*

VAR(AIC) 0.6* 4.4* 9.7 0.9 4.9 10.1 1.0 4.4* 9.4*

VAR(SC) 0.7* 4.4* 9.7 0.7* 4.4* 9.2* 0.4* 3.3* 7.7*

GARCH (1,1) with Normal Errors, n = 1000

Q 1.6* 6.5* 12.2* 2.1* 7.9* 14.4* 2.3* 8.5* 15.4

Q* 1.0 4.9 9.9 1.0 4.8 9.9 1.1 4.8 9.7

GP 1.0 4.9 9.9 0.9 4.7 9.8 0.8 4.3* 9.2*

AUTO 1.0 4.9 9.7 0.8 4.4* 9.5 0.6* 3.6* 8.1*

VAR(AIC) 0.9 4.7 9.7 0.9 5.0 10.2 0.9 4.6 9.8

VAR(SC) 1.0 4.9 9.9 1.0 4.8 10.0 0.8 4.4* 9.4*

GARCH (1,1) with Chi-square (3) Errors, n = 200

Q 1.9* 7.4* 13.6* 2.9* 9.2* 15.7* 3.4* 9.8 16.4*

Q* 1.1 5.4 11.0* 1.2 5.7* 11.2* 1.5* 6.1* 11.7*

GP 1.1 5.4 11.0* 0.6* 4.5* 9.9 0.5* 3.7* 8.3*

AUTO 0.8 4.8 10.0 0.7* 3.6* 8.0* 0.5* 2.2* 5.2*

VAR(AIC) 0.6* 4.4* 10.1 1.0 4.7 10.0 1.8* 5.8* 10.9*

VAR(SC) 0.7* 4.5* 10.1 0.9 4.9 10.4 1.1 4.8 9.6

GARCH (1,1) with Chi-square (3) Errors, n = 1000

Q 2.8* 9.5 15.8* 5.7* 14.8* 22.6* 7.0* 17.0* 25.9*

Q* 1.1 5.1 9.9 1.4 5.9* 11.2* 1.3* 5.7 10.9*

GP 1.1 5.1 9.9 1.2 5.6* 10.7 0.9 4.7 9.9

AUTO 0.8 4.8 9.8 0.8 4.4* 9.2* 0.5* 3.2* 7.5*

VAR(AIC) 0.8 4.7 9.7 0.9 4.8 10.1 0.8 4.3* 9.3*

VAR(SC) 0.9 4.8 9.8 1.2 5.5* 11.0* 1.2 5.4 11.0*

Notes: The number of replications is 25,000. An asterisk denotes that the empirical
rejection probability is significantly different at the 0.01 level from the nominal rejection
probability, where the significance is evaluated using a 0.01 level two-sided asymptotic
test.
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Table 2. Rejection Probabilities (Percent) of Tests: Non-MDS Examples

H1 H5 H10

1 5 10 1 5 10 1 5 10

Bilinear, n = 1000

Q 5.6* 14.9* 22.4* 6.4* 16.3* 25.0* 4.5* 12.8* 20.6*

Q* 2.0* 7.9* 14.3* 2.1* 7.8* 14.1* 1.7* 6.7* 12.5*

GP 2.0* 7.9* 14.3* 1.8* 7.4* 13.6* 1.2 5.8* 11.6*

AUTO 1.1 5.8* 11.5* 1.0 5.0 10.3 0.6* 4.0* 8.7*

VAR(AIC) 0.9 4.9 10.0 1.2 5.5* 11.1* 1.2 5.4 10.8*

VAR(SC) 1.2* 5.9* 11.4* 1.5* 6.6* 12.3* 1.2 5.9* 11.4*

Bilinear, n = 5000

Q 6.1* 15.1* 23.0* 6.6* 17.0* 26.2* 4.7* 13.8* 22.4*

Q* 2.1* 8.1* 14.2* 1.9* 7.9* 14.2* 1.7* 6.5* 13.3*

GP 2.1* 8.1* 14.2* 1.8* 7.7* 14.1* 1.5* 6.5* 12.8*

AUTO 1.3* 5.9* 11.2* 1.2 5.7* 10.8* 1.0 4.8 10.0

VAR(AIC) 1.0 4.9 10.0 1.1 5.2 10.4 1.1 5.3 10.4

VAR(SC) 1.0 4.7 9.7 1.1 5.3 10.4 1.2 5.9* 11.2*

All-Pass ARMA (1,1), n =1000

Q 0.9 4.8 9.8 0.9 4.7 9.7 0.9 4.8 9.6

Q* 0.7* 3.9* 8.5* 0.7* 3.8* 8.4* 0.8 4.2* 8.7*

GP 0.7* 3.9* 8.5* 0.7* 3.8* 8.3* 0.6* 3.9* 8.3*

AUTO 0.7* 4.3* 9.2* 0.6* 4.0* 8.5* 0.5* 3.6* 8.1*

VAR(AIC) 0.7* 4.4* 9.3* 0.8 4.2* 9.0* 0.8 4.4* 9.4*

VAR(SC) 0.7* 4.1* 8.7* 0.7* 4.0* 8.5* 0.6* 4.0* 8.4*

All-Pass ARMA (1,1), n = 5000

Q 1.1 5.1 10.0 0.9 4.8 9.6 1.0 4.9 9.8

Q* 0.8 4.1* 8.4* 0.7* 3.9* 8.2* 0.8 4.2* 8.7*

GP 0.8 4.1* 8.4* 0.7* 3.9* 8.2* 0.7* 4.1* 8.6*

AUTO 1.0 4.7 9.4 0.8 4.4* 8.9* 0.8 4.3* 9.0*

VAR(AIC) 0.9 4.7 9.4* 0.7* 4.5* 9.2* 0.9 4.6 9.4*

VAR(SC) 0.8 4.3* 8.7* 0.7* 4.1* 8.5* 0.7* 4.1* 8.7*

Notes: See Table 1.
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Table 3. Empirical Powers (Percent) of 0.05 Adjusted Tests, n = 1000

H1 H5

ρ(1) .025 .050 .075 .100 .125 .150 .025 .050 .075 .100 .125 .150

GARCH (1,1) with Normal Errors

Q* 11.1 30.6 59.6 83.8 96.0 99.3 7.32 16.3 35.0 60.2 82.3 95.2

GP 11.1 30.6 59.6 83.8 96.0 99.3 7.22 16.2 35.1 60.8 83.2 95.4

AUTO 10.9 30.4 59.1 83.7 95.9 99.4 7.16 15.8 33.7 59.1 81.9 94.9

VAR(AIC) 10.9 30.4 59.0 83.3 95.7 99.2 7.10 15.5 32.8 57.2 79.9 93.7

VAR(SC) 10.9 30.6 59.4 83.7 96.0 99.4 7.37 16.3 35.0 60.4 82.8 94.9

GARCH (1,1) with Chi-square (3) Errors

GP 7.63 23.4 50.4 78.2 94.0 99.0 5.76 11.3 25.4 49.1 74.7 91.8

AUTO 7.84 23.9 51.4 78.4 93.7 98.9 5.80 11.6 25.8 48.9 73.8 90.2

VAR(AIC) 7.96 23.3 50.2 76.8 92.6 98.1 6.02 12.1 26.0 48.5 71.8 88.0

VAR(SC) 7.74 23.2 50.2 77.4 92.9 98.4 5.98 12.1 26.1 49.5 73.8 90.4

Bilinear

AUTO 7.29 18.6 38.6 62.9 82.7 94.3 5.94 11.5 23.6 42.6 64.7 83.0

VAR(AIC) 7.12 18.0 37.6 61.8 82.1 93.8 6.01 10.9 21.5 38.8 60.4 79.9

VAR(SC) 7.06 18.0 37.5 60.8 81.1 93.2 6.28 12.3 24.5 43.9 66.3 84.2

All-Pass ARMA (1, 1)

AUTO 11.6 33.8 64.7 87.7 97.7 99.8 7.71 17.6 38.1 65.2 86.7 97.1

VAR(AIC) 11.7 33.4 64.4 87.4 97.6 99.8 8.05 18.3 38.9 65.9 87.2 97.2

VAR(SC) 11.9 34.0 65.0 88.0 97.7 99.8 7.81 18.3 39.4 66.6 87.7 96.9

Notes: The number of replications is 25,000. The critical values are adjusted so that
empirical rejection probabilities of the tests under the null are exactly 0.05.


