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ABSTRACT

The problem addressed in this paper is to test the null hypothesis that a time series
process is uncorrelated up to lag K in the presence of statistical dependence. We propose
an extension of the Box-Pierce Q test that is asymptotically distributed as chi-square
when the null is true for a very general class of dependent processes that includes non-
martingale difference sequences. The test is based on a consistent estimator of the
asymptotic covariance matrix of the sample autocorrelations under the null. The finite

sample performance of this extension is investigated in a Monte Carlo study.



1. INTRODUCTION

Box-Pierce (1970) proposed using the atistic to test the null hypothesis that the
first K autocorrelations of a covariance stationary time series are zero«BtatiStic is
the sample size times the sum of the squares of the first K sample autocorrelations.
Assuming the observations are independent and identically distributed, the asymptotic
covariance matrix of the vector of sample autocorrelations is the inverse of the sample
size times the identity matrix. Hence, under the nuljSaasymptotically distributed as
chi-square with K degrees of freedopnovidedthat the observations are independent
and identically distributed. The test can be extended to settings with statistical
dependence by using the true asymptotic covariance matrix of the sample
autocorrelations, or a consistent estimator, in place of the identity matrix.

This extension has been carried for time series generated by a martingale difference
sequence (MDS). For certain MDS processes, the asymptotic covariance matrix of the
sample autocorrelations is diagonal. This case has been repeatedly addressed in the
literature; see, for example, Taylor (1984), Diebold (1986) and Lo and MacKinlay
(1989). Guo and Phillips (1998) have extended the test for the case where the asymptotic
covariance matrix of the sample autocorrelations may be nondiagonal. This more general
MDS setting is of special importance for financial time series. For example, the
asymptotic covariance matrix of the sample autocorrelations is nhondiagonal for a
GARCH (1,1) model with asymmetric errors.

In this paper, we present an extension of the Box-Pierce test to the case where the

time series may be generated by a non-MDS process. Our test statistic is in the spirit of a



Lagrange Multiplier or score statistic because it is based on a consistent estimator of the
asymptotic covariance matrix of the sample autocorrelations under the null. Uncorrelated
time series can be generated by non-MDS models including certain bilinear models
(Granger and Terasvirta (1993)) and all-pass models (Breidt, Davis and Trindade (1999)).
An all-pass model is an ARMA model in which all the roots of the AR polynomial are
reciprocals of the roots of the MA polynomial. Both bilinear models and all-pass models
have been used in finance applications; for example, see Bera and Higgins (1997) and
Terdik (1999) for bilinear examples and Breidt, Davis and Trindade (1999) for all-pass
examples.

The performance of the standard Box-Pierge &3t and extensions of the €@st are
compared in Monte Carlo experiments. The examples used in the experiments include
MDS processes with diagonal and nondiagonal asymptotic covariance matrices of the
sample autocorrelations and non-MDS processes. The powers of the various extensions
of the () test are also investigated.

This paper is organized as follows. Our extension of thee€} is developed in
Section 2. The results of the Monte Carlo experiments on the probability of making a
Type | error are reported in Section 3 for MDS and non-MDS examples. The powers of
the tests are reported in Section 4. The concluding remarks are in Section 5.

2. EXTENSIONS OF BOX-PIERCE
Notation Let y, ..., yh, denote a real-valued covariance stationary time series with

meany. Define the lag-j autocovariance y) = E(% - L)( Y« - 4 ) and the lag-j

autocorrelation by(j) = (j)/ 0). Define the sample mean oy (1/ n)z t”:l y, and the



lag-j autocovariance by(j) = z;ﬂ(yt-;})(yt_j - )/ n. The usual estimator @j) is
r() = v ()/y(0).

Denote the vector of sample autocovarianceg agy(0),y (1),...y (K)), and the
vector of population autocovariancesyas (0), 1),..., UK))'. The vector of sample
autocorrelations is r =4(t.., rk)" and the vector of population autocorrelations is

p=(py,..,Pc ). The vector w= (Wy..., Wk;)" has as its k-th componentiwe (yi-p)(Y:-
k) for k =1,...K, andw,=(W,,,...,W,, ) ' has as its k-th componew,, = (- 1) (Yix- (1)

fork =1,...K.

We assume covariance stationarity and characterize dependence with the concept of
near epoch dependence (NED) on a mixing set. Notice that we do not require strict
stationarity, but we assume covariance stationarity in order for the autocovariances and
the autocorrelations to be properly defined. Even the assumption of covariance
stationarity could be dropped. In this case, the null hypothesis would be that the lag-j
autocorrelations are zero for allt and j= 1, ..., K. We note that our results can be
extended to some nonstationary time series (in fact, the theoretical references that we
employ are not restricted to the stationary framework), but, for simplicity, we only treat
the stationary case.

ASSUMPTION 1. Let ybe a covariance stationary process that satisfigs €4y for
some s> 4 and allt and ig-NED of size —1/2 on a procesgWhere V is ana-mixing
sequence of size —s/(s-4).

LEMMA 1. Under ASSUMPTION 1 the vector of sample autocovariances

satisfies the following Central Limit Theorem (CLT):



Jn(7-y)0 N(0,27C)
where C is the spectral density matrix at zero frequency of the weci@mnd has as its ij-

th element

6= 3 LECK =IO =B Yoo =B Yooy~ H) =
E®—H )0 ~HENg ~H ) Yea-; —H )L J= 01K .

Proof. First notice that

1 2 1 & .
T Wit +OP (I’] 1/2)

Jnp(k) = W, =~
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since the remaining terms have the same order of magnitudﬁ(.}ﬂ“s—u)2 and

(i-u) =0, (n"?). Since each of theyprocesses (normalized by the square root of the

variance of ) w,, ) satisfies Assumption 1 in De Jong and Davidson (1999), the CLT is

t=k+1
a particular case of the functional CLT (Theorem 3.2) in De Jong and Davidson (1999).

LEMMA 2. The vector/nr is asymptotically normally distributed with asymptotic

covariance matrix T where the ij-th element of T is given by

Tij = y(o)-z[qj -p(i)COj 'p(j)C@ +p(i)p(j)C00]. (1)

Proof. The CLT is obtained by a straightforward application of the delta method.
Assuming T is known, kit p = 0 can be tested using a test statistic of the form
nr'T “*r, which asymptotically follows a chi-square with K degrees of freedom when H

is true. A feasible test can be obtained either by replacing T by a known matrix or by

estimating T. The Box-PiercexQ@tatistic replace§ with the identity matrix.



Alternative TestsThe spirit of the LM, or score test, is to exploit the restrictions
imposed by the null. Underddthe matrix T simplifies td = {y(0)“C} where T has as

its ij-th element

d=o00

&= 2 BOHIOL =H)0a ~H)0hany ~H): 1= L0 K. @
The extension of the Qtest we propose is based on the stat@tic= nr"T'r Where'T' isa
consistent estimator af under H. As will be shown belowQx is asymptotically chi-
squared distributed with K degrees of freedom whgiisHrue.

An important case in economics and finance is where the time series is a martingale
difference sequence (MDS). For a MDS process, the only possible non-zero elements of
C are terms of the form B¢y)(yur- W (Yei - 4). In (2) these occur at d = 0. Guo and
Phillips (1998, Theorem 5) have developed a testothe GR test, for the MDS case.

In our context, the GPtest is a special case of Qg test wherec is replaced by the
sample analog of E£YL)*(Yei- H) (Y - H)-

The Q test can be specialized further by assuming@hat 0 except whend =0
and i = j, in which cas@ is diagonal and is denoted by T*. In this diagonal case,

ot ZEW, 20y~ = 1K, (3)
and the diagonal elements of T* are

T,* =c*;/ N0)°.
Following Lobato, Nankervis and Savin (1999), this modified Box-Pierce statistic is
denoted by . It is constructed by replacing the diagonal matrix T* by a consistent

estimatorT *:



R K
Q= nr[T % =n SOIY 7, @
J_
wheret; *is a consistent estimator gf:

r;0=[n"% v, =) (Y, — )?19(0)°].
5771

For the hypothesis that a single autocorrelation coefficient is zerothesis

equivalent to the GRest.
General Q TestA consistent estimator df is required to implement the general
@K test. A consistent estimator can be obtained ug{®yto estimatey(0) anda non-

parametric estimator of the mati@. Since the matri is the spectral density matrix at
zero frequency of the K dimensional vector processnaer H, a nonparametric

consistent time domain estimator®fis given by
= O0,_1 J e o
C=V k == K (=)W, W, 5
Z BZ@(J) n]ztz (ﬁ) t Vi (5)
where g(j) =@/ n)z W, W, with W, defined as abové,> 0 is the bandwidth parameter,
t

andk(e ) is the kernel or lag window. We assume that the kernel and the bandwidth
satisfy the following assumptions.
ASSUMPTION 2. The kerné{(s ) belongs t& whereK is the class of functions
K=&¢):0 - [-11]}
which is symmetric around zero, continuous at zero at all but a finite number of points

and satisfies

kO =1 [ [k(x)|dx<oo [ & )[8<eo



wherey (&) = (2rm)™ J’:o k (x)e®™ dx.
ASSUMPTION 3. The bandwidth sequence satisfies

im<+% =0,
n-efoon

Then the following lemma establishes the consistency of the nonparametric
estimator ofC .

LEMMA 3. Under the ASSUMPTIONS 1-3 and the null hypothesis

P L

Hk, C- C.

Proof: Notice thaf: and
%Z Z k(zf)wtw’t_j :
have the same probability limit and apply Theorem 2.1 in Davidson and De Jong (2000).
Hence, the following lemma establishes the asymptotic properties @thest,
namely its null asymptotic distribution and its consistency.

LEMMA 4. Under the ASSUMPTIONS 1-3 and under the null hypothegithEl

test statisticQ, converges in distribution to a chi-square distribution with K degrees of

freedom, and under # 0, Q, diverges.

Proof. The first part is obvious siné’eis consistent foll , that is, the covariance
matrix of the sample autocorrelations r under ki the second part, using the ergodic
theorem, the estimator 3f converges in probability to a positive definite matrix and at
least one element of r @s(1). Therefore;i)K diverges.

3. MONTE CARLO EXPERIMENTS UNDER THE NULL

10



This section reports estimates of the probability of making a Type | error fokthe Q
Q*x, GRcand @K tests based on critical values from the chi-square distribution with K
degrees of freedom. The estimated rejection probabilities are computed for two MDS
examples and two non-MDS examples. Three different hypotheses are considered: H
p() = ... =p(K) =0, K=1, 5, 10. Each hypothesis is tested at nominal levels 0.01,0.05
and 0.10. The estimates (empirical rejection probabilities) are calculated using 25,000
replications for sample sizes n = 200, 1,000 and 5,000. In the tables, an asterisk denotes
that the empirical rejection probability is significantly different at the 0.01 level from the
nominal rejection probability, where the significance is evaluated using a 0.01 level two-
sided asymptotic test.

The @K test requires a consistent estimator of the asymptotic covariance matrix of
the sample autocorrelations. In this section, we explore the finite sample performance of
two automatic data based covariance matrix estimation procedures that have been used in
the literature. The first procedure (AUTO) employs AR(1) prewhitening/recoloring on
each series and selects the bandwidth using formula (2.2) of Newey-West (1994) with
weights equal to one and lag truncation equal to 2(n200he second procedure uses
an autoregressive estimator of the covariance matrix where the order of each equation in
the VAR is selected automatically. Phillips and Lee (1994) have employed an ARMA
model in the scalar case and Den Haan and Levin (1997) a VAR in the vector case. We
report results for the vector procedure (VAR) with the AIC (Akaike (1973)) and the SC
(Schwarz (1978)) criteria. We set the maximum lag length as 3, 10 and 15 for sample
sizes n = 200, 1000 and 5000, respectively, and, for any equation in the VAR, the same

lag length is used for each element of the vector process.
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3.1 MDS Examples

Monte Carlo experiments are conducted using two examples based on a GARCH
(1,1) model, one with normal errors and one where the errors are centered chi-square with
3 degrees of freedom. The GARCH (1,1) modelisz.o; where zis an iid sequence
ando’= w+ ay:.1? + Bow1%, wherea andp are constants such that+ B < 1. This
condition is needed in order thatiyycovariance stationary. He and &svirta (1999)
show that the unconditional fourth moment péyists for GARCH (1,1) models if and
only if 2 + 20Pv, +avs < 1 wherev; = E|z[. We setw= 0.001,a = 0.05 and3 = 0.90.
With this parameter setting, the He and&rirta (1999) condition for the existence of
the fourth moment of,ys satisfied for both models we consider. Estimates from stock
return data suggest that+ 3 is close to 1 witf also close to 1; for example, see Bera
and Higgins (1997).

Example 1.Gaussian GARCH. s iid N(0, 1). For this procesg0) = E(y- u)? =
0.02, E(y u)*/0) 2= 0, E(y- W)*/0)% = 3.16, and T is diagonal.

Example 2.Chi-square (3) GARCH, & a demeaned and standardized iid chi-
square random variable with 3 degrees of freedom. In this case (the skewness is an
estimate) (0) = E(y- )? = 0. 02, E(y 1)*/®0) ¥2=1.72, and E¢yu)*/(0)*= 8.27 and
T is no longer diagonal.

The empirical rejection probabilities for the GARCH (1,1) examples are reported in
Table 1 for n = 200 and 1000. The main facts that emerge from these results are the
following: (i) At n = 200, the GRtest and the three versions of tE@ test tend to
perform poorly, especially for i The exceptions are the VAR (AIC) version of tE@

test for Gaussian GARCH and the VAR (SC) version for the chi-square (3) GARCH. (ii)
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At n = 1000, the GPtest tends to work satisfactorily for both Gaussian and chi-square
(3) GARCH and similarly for the VAR versions of tb‘}; test. AUTO tends to under-
reject, especially for |4, The results for the GRest and the VAR (SC) version of the
Q, test tend to be similar since the SC criterion tends to choose a zero lag, which,
asymptotically, is the correct lag for the VAR.

The results are not reported for n = 5000 since at this sample size the asymptotic
approximation to the finite sample distribution is accurate for thet€s® and the three
versions of the@K test. Notice that the distortions in the rejection probabilities of the Q
test are larger for n = 1000 than n = 200. In particular, theQ suffers from substantial
over-rejection for all hypotheses, especially fas.H
3.2Non-MDS Examples

This section investigates the finite sample performance of the tests for uncorrelated
non-MDS processes, a bilinear model and an all-pass model. The bilinear model is
described in Granger and Beavirta (1993) and the all-pass model in Breidt, Davis and
Trindale (1999). Both these models can produce time series having similar properties to
those of series produced by GARCH models, namely, where the autocorrelation function
of the level of the series is flat, but the autocorrelation function of the squares (absolute
values) of the series declines slowly. Neither the 1®st or the GRtest is
asymptotically valid for these two examples.

Example 3Bilinear Model. Let y=z + b z1y.,where {z } is a sequence of iid
N(0, 0 random variables. The process is uncorrelated, but not independent and is

covariance stationary provided thatd5< 1. The fourth moment of this process exists if

3b'c*< 1. We set b = 0.50 araf = 1.0. For this process, the first four momentsiare
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0, K0) = E(%- W)* = 0%/(1 - F 0%) = 1.33, E(y- 1) ®0) **= 0, E(y- 1)/®0)*=3(1 -
b'o%/(1 - 38'0*) = 3.46. See Granger and Andersen (1978) for more details with respect
to this example.

Example 4. All-Pass ARMA(1,1) Model. Let;(yp) — ®(yea-1) = (z — ¢z.1) where
{z,} is a sequence of iid random variables and whereO andp = 0.8. The yprocess is
uncorrelated, but not independent;ifznonnormal. The fourth moment qfiy finite
provided zhas a finite fourth moment. In our examplasztudent t with 10 degrees of
freedom. For this process, the first four momentsuared, Y0) = E(y- 1) = 1.95, E(y
1)3/0)*2= 0, and E(y 1)*/(0)?= 3.44. A special feature of this example (where the
process is linear and uncorrelated) is that T is the identity matrix; see Bartlett (1946).

Table 2 reports the empirical rejection probabilities for the non-MDS examples
samples of n = 1,000 and 5,000 since the asymptotic approximation is poor at n = 200.
For the bilinear example, the empirical rejection probabilities are given in the first and
second panel of Table 2. The st over-rejects by a large margin for the three
hypotheses. The®and GR tests perform similarly for the three hypotheses; both tests
substantially over-reject. The AUTO version@ﬁ test tends to be unsatisfactory. The
VAR versions tend to over-reject when n = 1,000, but they are satisfactory for all three
hypotheses when n = 5,000.

For the all-pass ARMA (1,1) examples, panels three and four of Table 2 show that
the performance of theQest is excellent. This is explained by the fact that the T matrix
is the identity. The @ and GR tests perform similarly; both under-reject the null. All

three versions of théK test also tend to under-reject. The VAR (AIC) version, however,
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is noticeably better than the other two versions. And it only marginally under-rejects
when n = 5000.

Computing The random number generator used in the experiments was the very
long period generator RANLUX with luxury level p = 3; see Hamilton and James (1997).
Calculations were performed on a Silicon Graphit®8@0 system and on a Sun
Enterprise 3000 server using double precision Fortran 77. The program used for
VARHAC was a version of the program by den Haan and Levin
(http://weber.ucsd.edu/~wdenhaan/varhac.html) modified to run substantially faster. In
order to mitigate the effect of occasional extreme estimates the program was also
modified, using the procedure of Andrews and Monahan (1992), by setting the minimum
singular value of the recoloring matrix to be 0.005.

4. POWERS

This section reports the empirical powers of the tests in a small Monte Carlo study.
In the experiments, the times series are generated by an MA (1) process with uncorrelated
errors: y= u +6u.;. The processes generating tkie are those specified in Examples 1
to 4. Under the null hypothesi@= 0, yis uncorrelated. The values &fre selected so
that the alternative values pfl) range from 0.025 to 0.15. For the sake of brevity,
results are reported only for the 0.05 tests of the null hypothesasdH{ when n =
1000. To simplify the power comparisons, the critical values are adjusted so that
empirical rejection probabilities of the tests under the null are exactly 0.05.

The first two panels in Table 3 reports the empirical powers for the GARCH (1,1)
examples. The results show that the empirical powers are very similar for all the tests

with the powers being essentially equal to one(a} = 0.15. Hence, for these examples
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there is no appreciable loss of power When@tgetest is employed. The last two panels
present the empirical powers for three versions oﬁtpéor the bilinear and all-pass
ARMA (1,1) examples. In each example, the empirical powers are again similar.
5. DISCUSSION

This paper presents an omnibus test of uncorrelatedness in the presence of statistical
dependence. The proposed test statiéjg,which can be viewed as an extension of the
Box-Pierce Q statistic, is asymptotically chi-square distributed under the null. The finite
sample performance of three automatic data-based versions@,{ ttest are examined.
The study first considers examples based on GARCH (1,1) models. For these examples,
the comparison of interest is between the &t and th€), test since the GRtest is
designed for MDS processes. In this comparison, both tests tended to provide satisfactory
control over the probability of making a Type | error when the sample size was n = 1000,
but the control was unsatisfactory at n = 200.

The study next considered examples based on two non-MDS models, namely, a
bilinear model and an all-pass ARMA (1,1) model. As expected, the€3Psuffered
from distortions in the Type | error at n = 1000 and 5000. The distortions are substantial
for the bilinear example and relatively mild for the all-pass example. No version of the
@K test is satisfactory at n = 1000. The VAR (AIC) version works at n = 5000 for the
bilinear example, but only marginally so for the all-pass ARMA (1,1). The message is
that large samples are needed for asymptotic theory to provide a reasonable

approximation to the distribution of t@ statistic for non-MDS processes.
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In a small power study, the empirical powers of the @Bt and the three versions of
the @K test are similar for the GARCH examples; the empirical powers of the three

versions of the), test are also similar for each of the non-MDS examples.
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Table 1.Rejection Probabilities (Percent) of Tests: MDS Examples

Hi Hs Hio
1 5 10 1 5 10 1 5 10
GARCH (1,1) with Normal Errors, n = 200
Q 1.4* 6.0* 11.3* 1.7* 7.0* 12.5* 1.9* 6.9* 12.4*
Q* 1.0 4.9 10.1 1.0 4.9 9.8 11 5.0 9.34
GP 1.0 4.9 10.1 0.6* 4.1* 8.9* 0.4* 3.0* 7.4*
AUTO 0.7* 4.8 10.1 0.5* 3.6* 8.1* 0.2* 1.9* 5.3*
VAR(AIC) 0.6* 4.4* 9.7 0.9 4.9 10.1 1.0 4.4* 9.4*
VAR(SC) 0.7* 4.4* 9.7 0.7* 4.4* 9.2* 0.4* 3.3* 7.7*
GARCH (1,1) with Normal Errors, n = 1000
Q 1.6* 6.5* 12.2* 2.1* 7.9* 14.4* 2.3* 8.5* 154
Q* 1.0 4.9 9.9 1.0 4.8 9.9 11 4.8 9.7
GP 1.0 4.9 9.9 0.9 4.7 9.8 0.8 4.3% 9.24%
AUTO 1.0 4.9 9.7 0.8 4.4* 9.5 0.6* 3.6* 8.1*
VAR(AIC) 0.9 4.7 9.7 0.9 5.0 10.2 0.9 4.6 9.8
VAR(SC) 1.0 4.9 9.9 1.0 4.8 10.0 0.8 4.4% 9.4%
GARCH (1,1) with Chi-square (3) Errors, n = 200
Q 1.9* 7.4* 13.6* 2.9* 9.2 | 15.7* 3.4* 9.8 16.4*
Q* 11 5.4 11.0% 1.2 5.7* 11.2* 1.5* 6.1* 11.7*
GP 1.1 5.4 11.0* 0.6* 4.5* 9.9 0.5* 3.7* 8.3*
AUTO 0.8 4.8 10.0 0.7* 3.6* 8.0* 0.5* 2.2* 5.2*
VAR(AIC) 0.6* 4.4* 10.1 1.0 4.7 10.0 1.8* 5.8* 10.9*
VAR(SC) 0.7* 4.5* 10.1 0.9 4.9 104 11 4.8 9.6
GARCH (1,1) with Chi-square (3) Errors, n = 1000
Q 2.8* 9.5 15.8* 5.7* 14.8* | 22.6* 7.0* 17.0* | 25.9*
Q* 11 5.1 9.9 1.4 5.9* 11.2* 1.3* 5.7 10.9*
GP 1.1 5.1 9.9 1.2 5.6* 10.7 0.9 4.7 9.9
AUTO 0.8 4.8 9.8 0.8 4.4* 9.2* 0.5* 3.2* 7.5%
VAR(AIC) 0.8 4.7 9.7 0.9 4.8 10.1 0.8 4.3* 9.3*
VAR(SC) 0.9 4.8 9.8 1.2 5.5* 11.0* 1.2 5.4 11.0

k

Notes The number of replications is 25,000. An asterisk denotes that the empirical
rejection probability is significantly different at the 0.01 level from the nominal rejection
probability, where the significance is evaluated using a 0.01 level two-sided asymptotic

test.
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Table 2. Rejection Probabilities (Percent) of Tests: Non-MDS Examples

Hi Hs Hio
1 5 10 1 5 10 1 5 10
Bilinear, n = 1000
Q 5.6* 14.9* | 22.4* 6.4* 16.3* 25.0* 4.5* 12.8*| 20.6*
Q* 2.0* 7.9* 14.3* 2.1* 7.8* 14.1* 1.7* 6.7* 12.5*%
GP 2.0* 7.9*% 14.3* 1.8* 7.4* 13.6* 1.2 5.8* 11.6*
AUTO 1.1 5.8* 11.5* 1.0 5.0 10.3 0.6* 4.0* 8.7*
VAR(AIC) 0.9 4.9 10.0 1.2 5.5* 11.1* 1.2 5.4 10.81
VAR(SC) 1.2* 5.9* 11.4* 1.5*% 6.6* 12.3* 1.2 5.9* 11.4*
Bilinear, n = 5000
Q 6.1* 15.1* | 23.0* 6.6* 17.0* 26.2* 4.7* 13.8*| 22.4*
Q* 2.1* 8.1* 14.2* 1.9* 7.9* 14.2* 1.7* 6.5* 13.3*
GP 2.1* 8.1* 14.2* 1.8* 7.7* 14.1* 1.5* 6.5* 12.8*
AUTO 1.3* 5.9* 11.2* 1.2 5.7* 10.8* 1.0 4.8 10.0
VAR(AIC) 1.0 4.9 10.0 1.1 5.2 10.4 1.1 5.3 10.4
VAR(SC) 1.0 4.7 9.7 1.1 5.3 10.4 1.2 5.9% 11.2¢
All-Pass ARMA (1,1), n =1000
Q 0.9 4.8 9.8 0.9 4.7 9.7 0.9 4.8 9.6
Q* 0.7* 3.9* 8.5* 0.7* 3.8* 8.4* 0.8 4.2* 8.7*
GP 0.7* 3.9* 8.5* 0.7* 3.8* 8.3* 0.6* 3.9* 8.3*
AUTO 0.7* 4.3* 9.2* 0.6* 4.0* 8.5* 0.5* 3.6* 8.1*
VAR(AIC) 0.7* 4.4* 9.3* 0.8 4.2* 9.0* 0.8 4.4* 9.4*
VAR(SC) 0.7* 4.1* 8.7* 0.7* 4.0* 8.5* 0.6* 4.0* 8.4*
All-Pass ARMA (1,1), n = 5000

Q 1.1 5.1 10.0 0.9 4.8 9.6 1.0 4.9 9.8
Q* 0.8 4.1* 8.4* 0.7* 3.9* 8.2* 0.8 4.2* 8.7*
GP 0.8 4.1* 8.4* 0.7* 3.9* 8.2* 0.7* 4.1* 8.6*
AUTO 1.0 4.7 9.4 0.8 4.4* 8.9* 0.8 4.3* 9.0*
VAR(AIC) 0.9 4.7 9.4* 0.7* 4.5* 9.2* 0.9 4.6 9.4*
VAR(SC) 0.8 4.3* 8.7* 0.7* 4.1* 8.5* 0.7* 4.1* 8.7*

Notes See Table 1.
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Table 3. Empirical Powers (Percent) of 0.05 Adjusted Tests, n = 1000

Hi Hs
p(1) .025 .050 .075 .100 .125 .150 .025 .050 .075 .100 .125 150
GARCH (1,1) with Normal Errors
Q* 11.1| 30.6| 59.6] 83.8§ 96.p0 993 7.32 163 350 60.2 82.3 95.2
GP 11.1] 30.6| 59.6 83.8 96/0 993 7.2 16.2 351 60.8 83.2 954
AUTO 10.9| 30.4| 59.1 83.7 95.p 994 7.16 13.8 3B.7 59.1 819 949
VAR(AIC) |10.9| 30.4| 59.0f 83.3 95.7 99.p 7.10 185 32.8 5.2 79.9 93.7
VAR(SC) | 10.9| 30.6] 59.4 83.f 96,0 99|4 7.87 16.3 3p.0 §0.4 82.8 P4.9
GARCH (1,1) with Chi-square (3) Errors
GP 7.63| 23.4 504 78.2 94p 99|0 56 11.3 2p.4 49.1 y4.7 P1.8
AUTO 7.84| 23.9| 51.4 78.4 93.F 98)9 580 116 2.8 489 113.8 90.2
VAR(AIC) |7.96| 23.3| 50.2| 76.4 92.6 98 6.02 121 26.0 4B5 71.8 88.0
VAR(SC) | 7.74| 23.2 50.4 77.4 929 98|4 598 121 2p6.1 495 713.8 P04
Bilinea
AUTO 7.29| 18.6| 38.6 62.982.7| 94.3 594 11.% 23.p 42)6 647 83.0
VAR(AIC) | 7.12| 18.0| 37.6 61.§82.1| 93.8 6.0 10.9 21.p 388 604 79.9
VAR(SC) | 7.06| 18.0, 37.4 60.8 811 93|2 6.8 12.3 245 439 66.3 B4.2
All-Pass ARMA (1, 1)
AUTO 11.6| 33.8( 64.7 87.7 97.F 998 771 176 381 65.2 86.7 97.1
VAR(AIC) |11.7| 33.4| 64.4] 874 97.6 99 8.5 183 389 6p9 §g7.2 97.2
VAR(SC) 11.9| 34.00 65. 88.0 97[ 998 7.81 1€|3.3 3p.4 g6.6 87.7 P6.9

Notes The number of replications is 25,000. The critical values are adjusted so that
empirical rejection probabilities of the tests under the null are exactly 0.05.
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