
 
Bootstrapping the Box-Pierce Q test: A Robust Test of Uncorrelatedness 

 
Joel L. Horowitz 

 
Department of Economics, Northwestern University, Evanston, IL  60208-2600 

 
I. N. Lobato 

Centro de Investigación Económica, ITAM,  México 10700. 

                                                 John C. Nankervis 

Department of Economics, University of Surrey, Guildford,  GU2 5XH U.K. 

                                                     N. E. Savin 

Department of Economics, University of Iowa, Iowa City, IA 52242. 

 
November 25, 2001 

 
Abstract 

 
This paper describes a test of the null hypothesis that the first K autocorrelations of a 

covariance stationary time series are zero in the presence of statistical dependence. The test is 

based on the Box- Pierce Q statistic with bootstrap-based P-values. The bootstrap is implemented 

using a double blocks-of-blocks procedure with prewhitening. The finite sample performance of 

the bootstrap Q test is investigated by simulation. In our experiments, the performance is 

satisfactory for samples of n = 500. At this sample size, the distortions in the rejection 

probabilities are essentially eliminated. 
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1. Introduction 

The Box-Pierce (1970) QK statistic is commonly used to test the null hypothesis that the first K 

autocorrelations of a covariance stationary time series are zero. The QK statistic is asymptotically 

distributed as chi-square with K degrees of freedom when the null is true and the observations 

are independently and identically distributed. If the null hypothesis is true but the time series is 

statistically dependent, the QK test can produce seriously misleading inferences when the critical 

value or P-value is obtained from the chi-square distribution. Time series models that generate 

uncorrelated but statistically dependent observations have been widely used in economics and 

finance. The GARCH model for stock returns is a leading example.  In this paper, a block 

bootstrap procedure is used to estimate the distribution of the QK statistic when the data are 

uncorrelated but dependent. The paper presents the results of a Monte Carlo investigation of the 

numerical performance of this bootstrap procedure.  

The block bootstrap is a procedure for generating bootstrap samples from time series when a 

parametric model is not available. The blocking procedure consists of dividing the data into 

blocks and sampling the blocks randomly with replacement. Under mild regularity conditions, 

the block bootstrap provides a first-order approximation to the distribution of test statistics. In 

other words, the block bootstrap produces the right asymptotic distribution whereas the chi-

square approximation does not in the setting that we consider.  Romano and Thombs (1996) have 

proposed using the block bootstrap to make robust inferences about the individual 

autocorrelation coefficients in the presence of statistical dependence. 

When a test statistic is asymptotically pivotal, the block bootstrap provides approximations 

that are more accurate than the approximations of first-order asymptotic theory under certain 

regularity conditions (Hall, Horowitz and Jing (1995), Hall and Horowitz (1996), Andrews 

 2



(2001)).  However, the QK statistic is not asymptotically pivotal in the presence of statistical 

dependence.  Hence, there is no reason for supposing that the block bootstrap provides a higher-

order approximation to the distribution of the QK statistic.  

In this paper, the QK test statistic with block bootstrap-based P-values is used to test the null 

hypothesis that the first K autocorrelations are zero.  The QK statistic is not a studentized 

statistic.  Studentization requires a heteroskedastic and autocorrelation consistent (HAC) 

estimator of the covariance matrix of the correlation coefficients.  We use QK instead of a 

studentized test statistic because of computational considerations. At present, a Monte Carlo 

study with a studentized version is very time consuming.  In addition, the HAC estimator can be 

very imprecise as well as difficult to compute.  The imprecision of the HAC estimator may 

decrease the power of a test based on a studentized statistic.  

The blocking method employed here is the blocks-of-blocks (BOB) bootstrap of Politis and 

Romano (1992).  One reason for choosing this method is based on Monte Carlo evidence 

reported by Davison and Hinkley (1997, Table 8.2) for time series data.  This evidence suggests 

that the BOB bootstrap is less sensitive to the choice of block length than are alternative blocking 

methods such as the moving block bootstrap proposed by Künsch (1989).  Intuitively speaking, 

this advantage of the BOB bootstrap is due to the fact that it reduces the influence of edge effects 

produced by blocking.  The BOB bootstrap is, however, a modified version of the moving block 

bootstrap.  Hall, Horowitz and Jing (1995) and Lahiri (1999) show that the moving block 

bootstrap based-estimator is superior to the non-overlapping block bootstrap (Carlstein (1986)) 

and that both are superior to the estimator based on the stationary bootstrap of Politis and 

Romano (1994).  This provides a second motivation for the use of the BOB bootstrap instead of 

non-overlapping blocks or the stationary bootstrap.  Our Monte Carlo experiments results 
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confirm that the BOB bootstrap is rather insensitive to the choice of block length. Further, the 

difference between the true and nominal probabilities that a test rejects a correct null hypothesis 

(error in the rejection probability or ERP) is typically much smaller when the P-value of the QK 

test is based on the BOB bootstrap than when the P-value is based on the chi-square P-value.   

Beran (1988) gives conditions under which iterating the bootstrap can produce further 

reductions in the ERP when the data are a random sample and the statistic is asymptotically 

pivotal.  Specifically, bootstrap iteration increases the rate at which the ERP converges to zero.  

This does not happen with the block bootstrap.  Nonetheless, Monte Carlo evidence indicates 

that iterating the block bootstrap can reduce the finite-sample ERP of a test and the finite-sample 

difference between the true and nominal coverage probabilities of a confidence interval (error in 

the coverage probability or ECP).  See, for example, Politis, et al. (1997) and Romano and Wolf 

(2000).   

There is at present no theoretical explanation of the ability of the iterated block bootstrap to 

reduce finite-sample ERPs and ECPs.  One possible explanation is that block bootstrap iteration 

reduces the constants that multiply the rates of convergence of the ERP and ECP.  Another 

possibility is that block bootstrap iteration reduces the sizes of higher-order terms in asymptotic 

expansions of ERPs and ECPs.  Regardless of the underlying cause, the empirical evidence that 

block bootstrap iteration reduces the finite-sample ERP of a test motivates us to carry out 

experiments with the iterated blocks-of-blocks bootstrap (double blocks-of-blocks or DBOB 

bootstrap).  We find that the ERPs are usually lower with the DBOB bootstrap than with the non-

iterated BOB bootstrap (single blocks-of-blocks or SBOB bootstrap).  

 4



The Markov conditional bootstrap (Horowitz, 2001) is an alternative to the block bootstrap 

when the process is a Markov process or can be approximated by one with sufficient accuracy. 

However, this procedure is not the focus of the paper. 

This paper investigates the numerical performance of the QK test when the P-value is 

obtained using the SBOB bootstrap and the DBOB bootstrap. We refer to tests that use SBOB 

and DBOB bootstrap P-values as SBOB and DBOB bootstrap tests, respectively.  In the Monte 

Carlo experiments, the data are generated by stochastic processes that are martingale difference 

sequences (MDS’s) as well as non-MDS processes. The MDS processes considered are a model 

used by Romano and Thombs (1996), a Gaussian GARCH model, and a non-Gaussian GARCH 

model. The motivation for entertaining non-MDS processes is the growing evidence that the 

MDS assumption is too restrictive for financial data; see El Babsiri and Zakoian (2001).  A 

nonlinear moving average model and a bilinear model are used to generate the non-MDS 

processes.   

Finally, the performance of the bootstrapped QK test is compared to that of other tests of 

uncorrelatedness. The other tests are the QK* test (Diebold (1986), Lo and MacKinlay (1989) 

and Lobato, Nankervis and Savin (2001a)), the GPK test (Guo and Phillips (1998)), and the ~QK 

test (Lobato, Nankervis and Savin (2001b)). The QK* and GPK tests are designed for time series 

generated by MDS processes. The QK* test assumes that the asymptotic covariance matrix of the 

sample autocorrelations is diagonal. The GPK test does not make the diagonality assumption and 

hence is more general than the QK* test.  The ~QK is asymptotically valid for both MDS and non-

MDS processes, and, hence, is a natural competitor to the QK test with bootstrap-based P-values. 

For expositional purposes, we refer to the QK*, GPK and ~QK tests as robust tests; they can be 

viewed as extensions of the QK test. 
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For the examples used in the experiments, our results show that the DBOB bootstrap 

reduces the ERP to nearly zero with sample sizes of 500 or more. Moreover, the DBOB 

bootstrap achieves lower ERPs than does the single BOB bootstrap.  Although we have no 

theoretical explanation for these results, we note that they add to existing Monte Carlo evidence 

that iterating the block bootstrap reduces ERPs and ECPs.  The development of a theoretical 

explanation for this phenomenon may be a worthwhile topic for future research.  

The remainder of the paper is organized as follows.  Section 2 describes the QK test with 

SBOB  and DBOB bootstrap-based P-values. Section 3 reports the empirical rejection 

probabilities of the QK test with SBOB and DBOB bootstrap-based P-values when the null is true 

for MDS examples and non-MDS examples. The empirical rejection probabilities of the QK*, 

GPK and ~QK tests based on asymptotic P-values are also reported. Section 4 compares the 

empirical power of the QK test based on DBOB bootstrap-based P values with the empirical 

power of the ~QK test based on asymptotic P-values. Concluding comments are in Section 5.  

Some technical computational issues are addressed in the Appendix. 

2. Bootstrap Test 

The bootstrap provides a first-order asymptotic approximation to the distribution of the QK 

test statistic under the null hypothesis.  Thus, the null hypothesis can be tested by comparing the 

QK statistic to a bootstrap-based critical value, or what is equivalent, by comparing a bootstrap-

based P-value to α, the nominal probability of making a Type I error. For this purpose, we use 

the SBOB and DBOB bootstrap with prewhitening to calculate the P-values. In the Monte Carlo 

experiments we compare the performance of the SBOB and DBOB bootstrap tests. The first 

objective of this section is to describe the calculation of bootstrap P-values for the QK test using 
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the SBOB and DBOB bootstraps. The second objective is to describe the prewhitening procedure 

employed.   

Preliminaries. Let y1, …, yn, denote a real-valued strictly and covariance stationary time 

series with mean µ.  Define the lag-j autocovariance by γ(j) = E(yt - µ)( yt+j- µ ) and the lag-j 

autocorrelation by ρ(j) = γ(j)/γ(0).  Define the sample mean, sample variance and sample 

autocovariance by m = , c(0)y / ntt =1

n∑  = (y - m) / nt
2

t =1

n∑  and c(j) = 

.  Then the usual estimator of ρ(j)(y - m)(y - m)t t + jt =1

n- j∑ / n  is r(j) = c(j)/c(0). 

Under general weak dependence conditions, the vector n ½ r = n ½ [r(1),…, r(K)]’ is 

asymptotically normally distributed with asymptotic covariance matrix V, where the ij-th 

element of V is given by                   

                               (1)                      -2
ij i 1,j 1 1,j 1 1,i 1 1,1v  = (0) [c - (i)c - (j)c  + (i) (j)c ]γ ρ ρ ρ ρ+ + + +

and 

        
c

       (2) 
K;0,1,...,ji,)};y)(y(E)y)(E(y            

)y)(y)(y)({E(y

j-dtdti-tt

j-dtdti-t

d

d
t1j1,i

=−−−−

−−−−−=

++

++

∞=

−∞=
++ ∑

µµµµ

µµµµ

see  Hannan and Heyde (1972) and Romano and Thombs (1996).  If V is known, HK: ρ = [ρ(1), 

… , ρ(K)]’ = 0  can be tested using a test statistic of the form nr’V -1r, which asymptotically is 

chi-square distributed with K degrees of freedom when HK is true. In practice, V is unknown. A 

feasible test can be obtained either by replacing V by a known matrix or by estimating V.   

The Box-Pierce QK statistic (Box-Pierce (1970) replaces V with the identity matrix. The 

QK* test replaces V with an estimator that is consistent under the null for MDS processes where 

the asymptotic covariance matrix of the sample autocorrelations is diagonal, and the GPK test 

replaces V with an estimator that is consistent under the null for MDS processes. The ~QK test 

 7



replaces V with an estimator that is consistent under the null for both MDS and non-MDS 

processes; for details, see Lobato, Nankervis and Savin (2001b).  

In this paper, HK is tested using the P-value of the QK statistic. Each sample of n 

observations y1,…,yn produces a specific value of QK, say t.  For any fixed number z, let S(z) =  

P(QK > z | HK ). The P-value associated with t is p = S(t). The exact symmetric test of HK rejects 

at level α if p ≡ S(t) < α.  The P-value can be calculated from some predetermined distribution or 

estimated by the bootstrap. We now show how to obtain an estimate of the P-value using the 

SBOB bootstrap and DBOB bootstrap. 

Single Bootstrap. In order to implement the BOB bootstrap, we define a new (K+1)×(n-k) 

data matrix as (Y1, Y2 , . . . ,Yn-K) where Yi = (yi, yi+1, …, yi+K)′. For the lag K autocorrelation, for 

example,   

( )
n-K1 2

n-K1 2

nK+1 K+2

1 1 1y y ... yn-K1 2
...

K+1 K+1 K+1y y ... yn-K1 2

y y ... y
Y Y ... Y ...

y y ... y

 
 
 
 
 
 
 

 
 
 
 
 

= = . 

 
 Ignoring prewhitening, which reduces the number of observations from n to n-K, the bootstrap 

sample is obtained by resampling blocks from the K+1 dimensional series and creating a sample 

of length n from the blocks. Denote the block size by b, where n = hb. Let Bi be a (K+1)×b 

matrix given by Bi = Yi , …, Yi+b-1, where i = 1, …, q, and q = n-b-K+1.  The SBOB bootstrap 

test is obtained by the following algorithm: 

1. Sample randomly with replacement h times from the set {B1,…,Bq}. This  produces a   

    set of blocks B1*,…, Bh*.  These blocks are then laid end-to-end to form a new time  

     series matrix of order (K+1)×n, which is the bootstrap sample and is denoted by   

     Y* = ( Y1*,…, Yn*), where Yi* = ( ,… , )′ is a bootstrap replicate of Y*1
iy , *2

iy )*1K(
iy +

i.  
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2. Using the bootstrap sample, calculate the statistic  

    QK
 S =   where r

K
2

b
k=1

n [r*(k) - r (k)]∑ b(k) is defined below,          

                
n n n

1* 1* (k+1)* (k+1)* 1* 1* 2 (k+1)* (k+1)* 2 1/ 2
t t t t

t= 1 t= 1 t=1

*(k) = (y - y )(y - y ) /[ (y - y ) (y - y ) ]∑ ∑ ∑r   

 and  j*y =   ∑    y / nt
j*

t=1

n

.

 3.  Repeat steps 1 and 2 M1 times. 

Due to the use of overlapping blocks, some observations receive more weight than others 

in the set {B1,…, Bq}. As a result, the QK
S   statistic defined above is centered using the estimator 

rb(k) = Cov*(1, k+1)/[V*(1) V*(k+1)]1/2.  The terms in the expression for rb(k) are defined as 

follows: 1 k+1 1 k+1ov*(1,k 1) *(y y ) *(y ) *(y )E E E+ = −C ,  where E* denotes the 

expectation relative to the empirical distribution of the data. The formulae for these expectations 

are the following: 

V*(k) = Cov*(k,k)

b-1k k k k k
j n-K-j+1

j=1

1*(y ) y b(b-1)y (b-j)(y +y )
b(n-K-b+1)

E  = + − ∑ 
 

 with  
n-Kk k

j
j=1

1y y
n-K

= ∑ , 

and  

( ) b-1
1 k+1 1 k+1 1 k+1 1 k+1 1 k+1

j j n-K-j+1 n-K-j+1
j=1

1* y y y y b(b-1)y y (b-j)(y y + y yb(n-K-b+1)E  
 
 

= + − ∑  

with    
n-K

1 k+1 1 k+1
j j

j=1

1y y y yn-K= ∑ . 

The empirical distribution of the M1 values of QK
 S is the bootstrap estimate of the 

distribution of QK based on the single bootstrap.  The SBOB bootstrap p-value, denoted by pK*, 

is an estimate of p where pK*  = #( QK
 S > QK)/ M1. Given a nominal level of α, the SBOB 

bootstrap test of HK rejects if pK* < α.   
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The bootstrap test based on pK* has rejection probability α if P(pK*  < α| HK ) = α, that is, if 

the distribution of pK* is uniform on [0,1].  If the distribution is not uniform, there will exist 

some β such that P(pK* < β| HK ) = Fp* (β) = α.  The unknown β is the inverse of Fp* evaluated at 

α,  β = Fp* 
-1(α ).   This suggests that given an estimate of Fp*, we can obtain an estimate of β and 

hence the error in the P-value. The double bootstrap can be used to estimate Fp* and therefore β. 

Double Bootstrap.  A double bootstrap sample is obtained by resampling blocks from a 

bootstrap sample Y1*,…, Yn* and creating a new sample of length n from these blocks. Again, 

let the block size be b, where n = hb. Let Bi * be the block of b consecutive observations starting 

with Yi*; that  is, Bi* = Yi*, …, Yi+b-1*, where i = 1, …,q and q = n-b-K+1.  The DBOB 

bootstrap test is described by the following algorithm: 

 Do steps (1) and (2) above.  

1′.  For each single bootstrap sample, sample randomly with replacement h times from 

the set {B1*,…,Bq*}. This produces a set of blocks B1**,…, Bh**.  As above, these 

blocks are then laid end-to-end to form a new time series of length n, which is the double 

bootstrap sample Y** = (Y1**,…, Yn**) where  1** (K+1)**
i i iY ** = (y ,...,y ) .′

2′.  From the double bootstrap sample, calculate the statistic  

  QK
D = where  

2K

b
k=1

n [r**(k)- r *(k)]∑

n n n
1** 1** (k+1)** (k+1)** 1** 1** 2 (k+1)** (k+1)** 2 1/ 2
t t t t

t= 1 t= 1 t=1

r**(k) = (y - y )(y - y ) /[ (y - y ) (y - y ) ]∑ ∑ ∑   

  and  j**y =   ∑  Here ry / nt
j**

t=1

n

. b*(k) is computed by applying the procedure for obtaining  

  rb(k) to the SBOB sample. 

 3′.  Repeat Steps 1′ and 2′ M2 times.  

 10



 4′.  Repeat Steps 1, 2 and 3′ M1 times. 

For each one of the M1 single bootstrap samples, there are M2 values of the test statistic 

QK
D .  Hence, there are M1 double bootstrap P-values, denoted by pK**, where pK** = #(QK

D  > 

QK
S )/ M2.  The empirical distribution function of these M1  P-values, denoted by Fp** , is used as 

an estimate of Fp* .  So the estimate of β,  β* , is given by β*  = Fp** -1 (α ).  Accordingly, for a 

nominal rejection probability of α, the double BOB test of HK rejects if pK* < β*. Τhat is, the 

DBOB bootstrap test rejects if pKα* = Fp**(pK*) < α where pKα* is what Davison and Hinkley 

(1997) call the adjusted P-value. The adjusted P-value is estimated by #[ pK** ≤ pK* ]/M1;  this 

formula is also given by Hinkley (1989).  

 Davison and Hinkley (1997) strongly recommend the use of adjusted P-values. Politis, 

Romano and Wolf (1997) use what they call calibrated confidence intervals to obtain the correct 

coverage probability for parameters of dependent processes. Double bootstrap tests are the 

hypothesis testing analogs of calibrated confidence intervals.  The performance of adjusted P-

values and calibrated confidence intervals are the motivation for using the double-bootstrap test 

in our setting. As noted in the introduction, the refinement provided by prepivoting (double 

bootstrap) in the iid case is not available in the case of dependent data.  

Pre-whitening. We investigated the performance of the bootstrap with and without pre-

whitening of the data series.  The details of the pre-whitening procedure are described below.  

The rationale for pre-whitening is that it reduces the sample autocorrelations to asymptotically 

negligible levels, thereby making the sample satisfy HK approximately.   The results of our 

Monte Carlo experiments reveal that pre-whitening usually either reduces the ERP of the DBOB 

test or leaves the error unchanged.  However, in one experiment, the test of H5 with the bilinear 

model described in Section 5, pre-whitening increases the ERP.  In Section 4 we present only the 
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results of the experiments with pre-whitening. The results of experiments without pre-whitening 

are available upon request.  

The pre-whitening is carried out by regressing yt on K lags, that is, by using an AR(K) 

regression, where K is the maximum number of autocorrelations to be tested. The residuals from 

the AR(K) regression are used as the pre-whitened series, which acts as the sample in bootstrap 

resampling. To calculate the SBOB bootstrap test with prewhitening we first fit an AR(K) to the 

original data to obtain the residuals, e .  From the residuals we calculate the sample 

autocorrelations.  For SBOB, (K+1)×b blocks are resampled from E = (E

t t ˆ= y - yt

t

K+1,…,En-2K) where Ei = 

(ei, …, e i+K)’ to obtain the (K+1)×n bootstrap sample E* = (E1*,…,En*). This bootstrap sample 

is used in place of  Y* in steps 1 to 3 in calculating the SBOB bootstrap test. 

For DBOB we first prewhiten the SBOB sample by fitting an AR(K) to the (K+1) × n 

elements of E* (or equivalently using appropriate weighting of repeated elements). In order to 

prewhiten DBOB we consider an augmented (2K+1) × n matrix E* calculated as above. We then 

fit an AR(K) using E* in which each of the elements in the lower (K+1) rows is regressed on the 

K higher elements in the column. Each element et in the lower (K+1) rows of E* is replaced by 

 to form the prewhitened SBOB sample U* = (Ut t ˆu = e - e 1*,…, Un*) from which the 

autocorrelations are calculated.  For DBOB, (K+1)×b blocks are resampled from the matrix U* 

to form the (K+1)×n matrix U**.  This bootstrap sample is used in place of Y** in steps 1′ to 4′ 

in calculating the DBOB bootstrap test.  

3.  Monte Carlo Evidence  

This section examines the performance of the SBOB and DBOB bootstrap tests with 

prewhitening in a set of Monte Carlo experiments.  The examples used in the experiments 
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include three MDS processes and two non-MDS processes. We first review the simulation 

evidence for the MDS examples. 

MDS Examples 

The first MDS example is motivated by experiments conducted by Romano and Thombs 

(1996).  This illustrates how the tests perform for a simple one-dependent MDS process where 

the asymptotic covariance matrix of the sample autocorrelations is diagonal under HK. The 

second and third examples illustrate how the tests perform for a GARCH (1,1) model when the 

errors are normally distributed and when they are distributed as a centered chi-square variable 

with 3 degrees of freedom.  Under HK, the asymptotic covariance matrix of the sample 

autocorrelations is diagonal when the errors are normal and nondiagonal when the errors are chi-

square (3).  

The tests with SBOB and DBOB bootstrap-based P-values are calculated using M1 = 999 

and M2 = 249 replications. However, for the double bootstrap tests, stopping rules are used in 

order to reduce the computation time. Due to these rules, the actual number of bootstrap 

replications required is reduced by up to a factor of 15. The stopping rules are briefly described 

in the Appendix.  For further details see Nankervis (2001). 

The tables in this section report the empirical rejection probabilities of bootstrap tests of HK: 

ρ(1) = … = ρ(Κ) = 0, K = 1, 5, 10, for samples of n = 500. The empirical rejection probabilities 

for the bootstrap tests are calculated using 5,000 replications.  The results for the bootstrap tests 

are reported for three block lengths, b = 4, 10 and 20.  

The empirical rejection probabilities are also reported for the QK, Q*K, GPK and ~QK tests 

based on asymptotic P-values. The empirical rejection probabilities of the asymptotic tests are 

calculated using 25,000 replications. The performance of the asymptotic tests provides a 
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benchmark for measuring the improvement achieved by the bootstrap tests. The ~QK test is 

implemented using the VARHAC procedure described in Lobato, Nankervis and Savin (2001b).  

The random number generator used in the experiments was the very long period generator 

RANLUX with luxury level p = 3; see Hamilton and James (1997).  Calculations were 

performed on a Silicon Graphics R10000 system and a 500 MHz PC using double precision 

Fortran 77. 

Example 1.  Diagonal Case. Let yt = zt•z t-1 where {zt} is a sequence of iid N(0,1) random 

variables.  The yt process is uncorrelated with ρ(k) = 0 for all k, but not independent.  For this 

process, γ0 = E(yt- µ)2 = 1, E(yt- µ)3/ γ0 
3/2 = 0,  E(yt- µ)4/ γ0 

2 = 9, and V is the identity matrix 

except that v11 = 3. Romano and Thombs (1996) generated a sample of n = 1000 for this 

sequence and applied the single moving block bootstrap using M1 = 200 replications and a block 

length of b = 40.  

The numerical results of the Monte Carlo experiments for the above diagonal MDS example 

are summarized in Table 1.  The main features of the results for Example 1 are the following: 

(i) The QK test based on asymptotic P-values over-rejects by a very large margin: the 

maximum absolute difference (MAD) between the empirical and nominal rejection 

probability is about 0.12 when the nominal rejection probability is 0.01 and 0.23 

when it is 0.10. 

(ii) The DBOB bootstrap eliminates the distortions in the rejection probabilities for the 

first two hypotheses: the MAD is about 0.003 at 0.01 and 0.011 at 0.10. For the third 

hypothesis the distortions are almost eliminated: MAD is about 0.003 at 0.01 and 

0.017 at 0.10 
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(iii) The SBOB bootstrap substantially reduces the distortions in the empirical rejection 

probabilities for all hypotheses.  

(iv) The SBOB and DBOB tests are roughly insensitive to the choice of the block length, 

which confirms the findings of Davison and Hinkley (1997) for the BOB bootstrap.  

The asymptotic QK* test tends to work satisfactorily for all three hypotheses. The 

asymptotic GPK test tends to under-reject for all three hypotheses, especially for H10. The  

asymptotic ~QK test under-rejects for all three hypotheses: the MAD is 0.005 at 0.01 and 0.014 at 

0.10.  Note that the asymptotic confidence intervals for the rejection probabilities are tighter for 

the asymptotic tests than for the bootstrap tests because the performance of the asymptotic tests 

is investigated using 25,000 replications.  

Example 2.  Gaussian GARCH. Let yt = zt•σt,  {zt} is an iid N(0, 1) sequence and 

σt
2= ω + α0yt-1

2 + βσt-1
2, where α0 and β are constants such that α0 + β < 1. This condition is 

needed to insure that yt is covariance stationary. He and Terasvirta (1999) show that the 

unconditional fourth moment of yt exists for GARCH (1,1) models if and only if β2 +2α1βν2 + 

α1ν4 <1 where νi = E|zt|i.  Estimates from stock return data suggest that α0 + β is close to 1 with 

β also close to 1; for example, see Bera and Higgins (1997). We set ω = 0.001, α0 = 0.05 and 

β = 0.90. With this parameter setting, the He and Terasvirta (1999) condition for the existence of 

the fourth moment of yt is satisfied. The yt process is uncorrelated with ρ(k) = 0 for all k, but not 

independent.  For this process, γ0 = E(yt- µ)2 = 0.1, E(yt- µ)3/ γ0 
3/2 = 0, E(yt- µ)4/ γ0 

2  =  4.5, and 

V is diagonal where the diagonal elements follow the recursion vjj
  = (1−α0 −β) + (α0+ β)vj−1,j−1

  

where v11 = 6.303. Lobato, Nankervis and Savin (2001a) have also used this example. 

Example 3.  Chi-square (3) GARCH.  This GARCH (1,1) model is the same as in Example 2 

except that now zt is a demeaned and standardized chi-square random variable with 3 degrees of 
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freedom. The He and Tersasvirta (1999) condition is also satisfied when zt is a chi-square (3) 

random variable. In this case (the skewness is an estimate), γ0 = E(yt- µ)2 = 0.1, E(yt- µ)3/ γ0 
3/2 = 

1.85,  E(yt- µ)4/ γ0 
2 = 10.9 where V is no longer diagonal.  

The numerical results for the GARCH (1,1) models are summarized in the first and second 

panels of Table 2. The QK test based on asymptotic P-values over-rejects by a large margin. In 

Table 1 the largest over-rejections occurred for H1 while in Table 2 they occurred for H10. The 

DBOB bootstrap essentially eliminates the distortions in the rejection probabilities when the null 

is true for all three hypotheses. The distortions are much reduced by the SBOB bootstrap.  

The asymptotic QK* test works satisfactorily for all three hypotheses for the Gaussian 

GARCH model; it tends to over-reject somewhat for GARCH with chi-square (3) errors.  The 

asymptotic GPK test works for satisfactorily for H1 for Gaussian GARCH and for H1 and H5 for 

GARCH with chi-square (3) errors; otherwise, it tends to under-reject. The asymptotic ~QK test 

works satisfactorily for H1 and H5 for Gaussian GARCH and for all three hypotheses for 

GARCH with chi-square (3) errors.  

Non-MDS Examples 

The first uncorrelated non-MDS process is generated by an nonlinear moving average 

model, and the second is generated by a bilinear model. These nonlinear models are described in 

Tong (1990, pp.114-115) and also in Granger and Ter svirta (1993). For these two examples, the 

asymptotic matrix of the sample autocorrelations is nondiagonal under the null. 

a

Example 4.  Nonlinear Moving Average Case.  Let yt = z t-1• zt-2•(z t-2 + z t + c) where {zt} is 

a sequence of iid N(0, 1) random variables and c = 1.0.  The yt process is uncorrelated with r(k) = 

0 for all k, but not independent. For this process, γ0 = E(yt- µ)2 = 5 , E(yt- µ)3/ γ0 
3/2 = 0, E(yt- 

µ)4/ γ0 
2 = 37.80.  
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Example 5.   Bilinear Case.  Let yt = z t + b• zt-1•y t-2 where {zt} is a sequence of iid N(0, σ2) 

random variables b = 0.50 and σ2 = 1.0. The yt process is uncorrelated with ρ(k) = 0 for all k, but 

not independent and is covariance stationary provided that b2 σ2 < 1.  The fourth moment of this 

process exists if 3b4σ4 < 1. For this process, the first four moments are µ = 0, γ0 = E(yt - µ)2 = 

σ2/(1 - b2 σ2) = 1.333, E(yt - µ)3/ γ0 
3/2 = 0,  E(yt - µ)4/ γ0 

2 = 3(1 - b4σ4)/(1 - 3b4σ4) = 3.462. 

Granger and Andersen (1978) give further details for this example. Bera and Higgins (1997) 

have fitted a bilinear model to stock return data. 

Table 3 summarizes the numerical results for the two non-MDS examples. The main 

conclusion from Table 3 is that the DBOB bootstrap tends to substantially reduce the distortions 

in the rejection probabilities for both of the non-MDS examples, especially for H5  and  H10. This 

is despite the fact that the nonlinear moving average model produces massive distortions in the 

rejection probabilities of the asymptotic QK test: the MAD is about 0.25 at 0.01 and 0.36 at 0.10. 

The distortions are considerably less for the bilinear model, but they are large nonetheless. The 

SBOB bootstrap substantially reduces the distortions in the rejection probabilities, but it tends to 

over-reject, more so for the nonlinear moving average example than for the bilinear example.  

The asymptotic QK* test tends to perform satisfactorily for the nonlinear moving average 

example, except for H1. For this example, the asymptotic GPK test tends to under-reject, except 

for H1. Turning to the bilinear example, the asymptotic QK* and GPK tests tend to over-reject for 

H1 and H5.  However, the GPK test performs satisfactorily for H10.  The asymptotic ~QK test 

performs satisfactorily for the nonlinear moving average example in some cases, but over-rejects 

the H1 and H5 hypotheses in the bilinear case.  

4. Power Experiments  
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In many of our experiments, the empirical rejection probabilities of the QK test with DBOB 

bootstrap-based P-values and the QK
~  test with asymptotic P-values were close to the nominal 

rejection probabilities.  Hence, a comparison of the powers of these two tests is empirically 

relevant. For completeness, the powers of the QK* and GPK tests with asymptotic P-values are 

also compared to the powers of DBOB QK test. We studied the power properties of these tests by 

conducting Monte Carlo experiments where the data generation process was given by the 

moving average process wt = yt + θyt-1 and where yt was generated by the uncorrelated processes 

used in Examples 1 and 4 above.  The value of θ was chosen so that the lag-1 autocorrelations 

took the values 0.05, 0.1, 0.2 and 0.3. The experiments were carried out using 5000 replications 

with M1 = 999 and M2 = 249 and three block lengths, b = 4, 10 and 20.  

Table 4 reports the results of experiment where 0.05 is the nominal rejection probability of 

the tests. Note that for reasons explained by Horowitz and Savin (2000), the P-values of the KQ~ , 

QK*, GPK tests and the DBOB QK test are not corrected to be exactly 0.05 under the null.  The 

main features of the results are the following: 

(i) Under the alternative hypothesis, the powers of the DBOB QK test are generally 

similar to those of asymptotic ~QK test for H1 but are often substantially larger for 

H5  and  H10.  

(ii) The powers of the asymptotic QK* and GPK tests are similar to those of the 

asymptotic ~QK test. 

(iii) The powers of the DBOB QK test are much less sensitive to K than the powers of 

the asymptotic ~QK test. 

(iv) The powers of the DBOB QK test are insensitive to the block length under the 

alternative as well as under the null hypothesis. 
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5. Discussion 

The starting point for this study is the proposal by Romano and Thombs (1996) to use the 

bootstrap to make inferences about the individual autocorrelation coefficients. In this paper, the 

null hypothesis of uncorrelatedness is tested using the QK test with bootstrap-based P-values. The 

bootstrap was implemented using both a single and double blocks-of-blocks procedure with 

prewhitening. Monte Carlo experiments were conducted to investigate the true rejection 

probability of the QK test with block-of-blocks bootstrap-based P-values. The examples used in 

the experiments included three MDS processes and two non-MDS processes.  

The main Monte Carlo findings for experiments under the null hypothesis are threefold. 

First, for samples of size 500, there were large distortions in the empirical rejection probabilities 

when the QK test was based on asymptotic P-values. Second, for martingale difference 

sequences, the double blocks-of-blocks bootstrap essentially eliminates the distortions in the 

empirical rejection probabilities that are present when the QK test is based on the asymptotic P-

values.  For non-martingale difference sequences, the double blocks-of-blocks bootstrap does not 

entirely eliminate the distortions, but the distortions are much reduced. Third, the results tend to 

be robust to the choice of the block length.  On the basis of this evidence, we recommend using 

the double blocks-of-blocks bootstrap procedure with prewhitening.  

We conducted a Monte Carlo investigation of the asymptotic QK*, GPK and ~QK tests for 

uncorrelatedness.  These first two tests are designed for the case where the time series is 

generated by a MDS process, and the last is asymptotically valid for both MDS and non-MDS 

processes.  Roughly speaking, the asymptotic QK*, GPK and ~QK tests performed similarly when 

the null hypothesis is true. This said, the GPK test tended to under-reject compared to the QK* 

and ~QK tests.  
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Finally, we investigated the power of the QK test with bootstrap-based P-values against the 

power of the ~QK test. Because the ~QK test is asymptotically valid for both MDS and non-MDS 

process, it is a natural competitor to the QK test with bootstrap-based P-values. The empirical 

powers of the QK test with bootstrap P-values were similar to or better than those of the ~QK test. 

In particular, the empirical powers of the QK test with bootstrap P-values were substantially 

higher than those of the ~QK test when both the number of autocorrelations being tested was large 

(K ≥ 5) and the autocorrelations under the alternative were substantially different from zero. The 

poor power of the ~QK test may be explained by the imprecision of the HAC estimator of the 

covariance matrix of the sample autocorrelations. 

Our recommendation is subject to qualification that the performance of the bootstrap is 

sensitive to the kurtosis of the time series process.  We have chosen examples for which the 

kurtosis is moderate, but relevant for economics and financial time series. It is easy to construct 

examples where the kurtosis is several orders of magnitude larger than in our examples. As is 

well known, high kurtosis can cause the bootstrap test to perform poorly.  

A further qualification is that we have not attempted a detailed investigation of Andrews’ 

and Ploberger’s (1996, hereinafter AP’s) tests of the hypothesis that a series is iid against the 

alternative that it is ARMA(1,1).  AP present Monte Carlo evidence indicating that their tests are 

more powerful than the QK test when the alternative model is, in fact, ARMA(1,1).  However, 

AP obtained critical values for their tests only under the null hypothesis of an iid series.  We 

carried out Monte Carlo experiments using the series yt = zt•z t-1 , zt ~ N(0,1), which is 

uncorrelated but not iid.  We found that when AP’s 0.05-level critical values are used and the 

sample size is either 500 or 20,000, AP’s tests reject the hypothesis ρ(1) = 0 with probability 

exceeding 0.20.  Thus, AP’s tests with AP’s critical values are not reliable procedures for testing 
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the hypothesis that a series is uncorrelated though not necessarily serially independent.  It may be 

possible to overcome this problem by using the bootstrap to obtain critical values for AP’s tests.  

Doing this, however, presents theoretical and computational challenges whose solution is beyond 

the scope of this paper.  The investigation of the properties of AP’s tests with bootstrap critical 

values is left for future research.  
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Appendix: Bootstrap Stopping Rules 

To reduce the computation time for the double bootstrap tests we use a number of stopping 

rules. These stopping rules are implemented by first doing the M1 single bootstrap calculations, 

saving all single bootstrap samples, estimated coefficients and test statistics.  The single 

bootstrap P-values, pK* are then calculated. We then do a maximum of M1 sets of double 

bootstrap replications where each set corresponds to one of the M1 single bootstrap samples.   In 

each of these sets we do a maximum of M2 double bootstrap replications. 

Stopping Rule 1: If pK* = 1 for any K then pKa* = #(pK** ≤ pK*)/M1 = 1 and there is no need 

for double bootstrap calculations.  This occurs about N/M1 times in every N Monte Carlo 

experiments where the null hypothesis is true. 

Stopping Rule 2: The adjusted P-value is calculated as #(pK** ≤ pK*)/M1 = #( #(QK
D  
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>QK
S)/M2 ≤ pK*)/M1.  We can express  #(QK

D >QK
S)≤ M2pK* as ≤ M∑

=

>
2M

1i

S
K

D
iK )QI(Q

∑
=

>
2m

1i

D
iKI(Q

2pK*.  

We avoid unnecessary replications by stopping after m2 replications if  either 

exceeds M

S
K )Q

2pK* or cannot exceed M2pK* in the remaining M2 - m2 double bootstrap replications 

for each single bootstrap sample.  Under the null, this has the effect of reducing the number of 

double bootstrap replications by approximately one half in our experiments. 

Stopping Rule 3: Since we report rejection probabilities for a maximum nominal level of 

0.1, we stop doing double bootstrap replications if the adjusted P-value must exceed 0.1; i.e. stop 

after m1 sets of double bootstrap replications if ∑  exceeds 0.1MI(p ** p *)Ki K
i

m

≤
=1

1

1.  Under the 

null, this has the effect of requiring only about M1/3 sets of double bootstrap replications. 

The effectiveness of Stopping Rule 3 is enhanced by doing the calculations for the sets of 

double bootstrap replications in an order corresponding to decreasing size of QK
S.  The purpose 

of this ordering is to exploit the negative correlation between pK** and QK
S so that  

more quickly exceeds the limit 0.1MI(p ** p *)Ki K
i

m

≤
=
∑

1

1

1 if this limit is to be exceeded.  In our 

experiments this re-ordering and Stopping Rule 3 had the combined effect of requiring only 

about M1/6 sets of double bootstrap replications when the null hypothesis was true. 

Nankervis (2001) finds that using the above stopping rules give rise to similar 

computational savings in the case where the null hypothesis is not true. The combined effect of 

all these rules is that we require only from M1M2/15 to M1M2/11 double bootstrap replications in 

our experiments. 
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Table 1 
 Rejection Probabilities (Percent) of Tests: Diagonal MDS, n = 500a 
   H1      H5      H10    

Tests 1 5 10 1 5 10 1 5 10 
 Diagonal One-Dependent Homoskedastic Case 
QK 12.3 24.8 33.3 6.4 15.0 22.4 4.5 11.6 18.4 

SBOB QK          
b = 4 2.0 7.0 12.4 1.3* 5.7** 10.8* 1.0* 4.8* 10.3* 
b = 10 2.4 8.1 13.3 1.5 6.3 12.3 1.2* 5.8** 11.7 
b = 20 2.9 8.9 14.3 1.7 7.3 13.5 1.4** 6.7 13.6 

DBOB QK          
b = 4 1.3* 5.6* 10.8* 0.9* 4.5* 9.2* 0.7* 3.8 8.3 

b = 10 1.0* 6.2 11.1** 0.9* 4.9* 9.9* 0.9* 4.6* 9.7* 
b = 20 1.1* 6.2 11.0** 0.9* 5.2* 10.5* 0.9* 5.3* 10.8* 
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QK* 0.7 4.8* 9.7* 0.9* 4.5 9.5** 0.9* 4.6 9.3 
GPK 0.7 4.8* 9.7* 0.5 3.9 8.8 0.4 3.4 7.8 
~QK 0.5 4.2 9.3 0.7 4.3 9.3 0.7 3.8 8.6 
a Notes: The number of replications for the QK test with BOB bootstrap-based P-values is 5000. 
The number of replications for the asymptotic QK, QK*, GPK and ~QK tests is 25,000. One asterisk 
denotes acceptance of the nominal rejection probability by a 0.05 symmetric asymptotic test, and 
two asterisks denote acceptance by a 0.01 symmetric asymptotic test. 

 

 

 

 

 

 

 

 

 

 

Table 2 
 Rejection Probabilities (Percent) of Tests: GARCH(1,1) Models, n = 500 a  
  H1     H5     H10   

Tests 1 5 10 1 5 10 1 5 10 

 GARCH(1,1) with Normal Errors 
QK 1.5 6.5 12.2 1.9 7.5 13.9 2.2 8.0 14.4 

SBOB QK          
b = 4 1.0* 5.7** 10.8* 0.8* 5.0* 10.3* 1.0* 4.9* 9.8* 
b = 10 1.3* 6.3 11.6 1.0* 5.5* 11.4 1.0* 5.4* 11.0* 
b = 20 1.8 7.0 12.6 1.2* 6.2 12.9 1.0* 5.8** 12.6 

DBOB QK          
b = 4 0.9* 5.2* 10.3* 0.7* 4.6* 9.1** 0.9* 4.1 8.0 
b = 10 1.0* 5.4* 10.3* 0.8* 5.0* 10.0* 0.8* 4.7* 9.6* 
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b = 20 1.2* 5.7** 10.9** 1.0* 5.3* 10.8* 0.9* 4.8* 10.1* 
QK* 0.9* 5.0* 9.9* 1.0* 4.9* 9.7* 1.0* 4.9* 9.5** 
GPK 0.9* 5.0* 9.9* 0.8 4.5 9.4 0.7 3.8 8.5 
~QK 0.8** 4.9* 9.9* 0.8** 4.5 9.5** 0.6 4.2 8.8 
 GARCH(1,1) with Chi-Square(3) Errors 

QK 2.4 8.6 14.8 4.2 12.6 19.9 5.5 14.3 22.1 

SBOB QK           
b = 4 1.4 6.2 11.8 0.9* 5.7** 11.4 1.3* 5.1* 10.1* 
b = 10 1.7 6.7 12.5 1.2* 6.7 13.2 1.1* 5.5* 11.7 
b = 20 2.1 7.5 13.5 1.5 7.3 14.7 1.2* 6.3 13.3 

DBOB QK          
b = 4 1.0* 5.4* 10.2* 0.5 4.5* 9.7* 0.8* 4.0 8.1 
b = 10 1.0* 5.5* 10.7* 0.7* 5.2* 10.9** 0.8* 4.6* 9.3* 
b = 20 1.2* 5.7** 11.6* 0.8* 5.2* 11.4 0.9* 4.6* 10.0* 
QK* 1.1* 5.1* 10.1* 1.1* 5.5 10.9 1.3 5.8 10.8 
GPK 1.1* 5.1* 10.1* 0.9* 4.9* 10.1* 0.7 4.4 9.3 
~QK 1.0* 5.0* 10.1* 1.1* 5.3* 10.8 0.9* 5.0* 10.3* 
a Notes: See Table 1. 

 

 

 

Table 3 
 Rejection Probabilities (Percent) of Tests: Non-MDS, n = 500 a 
  H1   H5  H10  

Tests 1 5 10 1 5 10 1 5 10 
 Nonlinear Moving Average Case  
QK 26.1 38.9 46.9 19.1 31.2 39.0 14.7 24.6 32.3 

SBOB QK           
b = 4 3.6 11.6 19.0 2.3 8.3 15.6 1.5 6.3 12.6 
b = 10 4.3 12.2 19.6 2.6 9.6 17.0 1.4 7.1 13.7 
b = 20 4.6 12.9 20.6 2.7 10.5 18.4 1.7 8.0 15.3 

DBOB QK          
b = 4 1.3* 7.0 13.1 0.8* 5.2* 10.2* 0.7* 3.9 8.1 
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b = 10 1.3* 6.3 12.5 0.9* 5.8** 10.8* 0.9* 4.5* 8.9** 
b = 20 1.6 7.3 12.9 1.1* 5.9 11.6 1.0* 4.7* 9.7* 
QK* 1.3 7.2 14.6 1.0* 5.2* 10.9 1.1* 5.1* 10.0* 
GPK 1.3 7.2 14.6 0.5 4.0 9.3 0.7 3.3 7.9 
~QK 0.7 4.4 9.9* 1.3 4.9* 9.9* 1.9 5.5 10.2* 
 Bilinear Case  
QK 5.7 14.2 21.6 6.2 15.5 23.7 4.6 12.3 19.8 

SBOB QK           
b = 4 2.5 8.9 15.6 1.8 7.6 13.7 1.3* 6.0 11.5 
b = 10 2.4 8.1 14.4 2.0 7.7 14.2 1.3* 6.1 12.5 
b = 20 2.5 8.7 15.1 2.1 8.4 15.1 1.3* 6.6 13.8 

DBOB QK          
b = 4 2.0 7.2 13.6 1.3* 6.2 11.4 0.9* 4.4* 9.3* 
b = 10 1.4** 5.9 11.4 1.1* 5.9 11.5 0.9* 4.6* 9.9* 
b = 20 1.2* 6.1 11.7 1.4** 6.1 11.9 0.8* 4.9* 10.6* 
QK* 2.1 7.7 14.0 2.0 7.4 13.4 1.7 6.6 12.1 
GPK 2.1 7.7 14.0 1.5 6.6 13.1 1.0* 5.1* 10.3* 
~QK 1.4 6.3 12.3 1.6 6.8 13.0 1.1* 5.4** 10.9 
a Notes: See Table 1. 

 

 

 

Table 4  
 Powers (Percent) for the 0.05 Nominal , Q*KQ K, GPK and Double Bootstrap QK Tests, n = 500 a 

One-Dependent 
Homoskedastic Case 

Nonlinear 
Moving Average Case ρ                Tests 

 
H1 H5 H10 H1 H5 H10 

ρ  = 0.0 
KQ  4.2 4.3 3.8  4.4 4.9* 5.5 

 Q*K 4.7* 4.6** 4.4  7.3 5.0* 4.9* 
 GPK 4.7* 3.9 3.5  7.3 3.7 3.2 
 DBOB QK        
 b = 4 5.8** 4.6* 3.5  6.8 5.9 3.5 
 b = 10 5.8** 5.2* 4.1  6.5 6.0 3.7 
 b = 20 6.0 5.7** 4.4*  6.4 6.4 4.0 
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ρ = 0.05 
KQ  8.3 6.1 5.0  4.7 4.8 5.6 

 Q*K 9.6 6.2 5.9  7.6 4.9 4.7 
 GPK 9.6 5.4 4.2  7.6 4.1 3.8 
 DBOB QK        
 b = 4 10.6 8.5 6.2  6.3 6.0 4.0 
 b = 10 10.4 9.2 6.8  5.9 6.3 4.3 
 b = 20 10.3 9.2 7.2  6.2 6.5 4.8 
         

ρ  = 0.1 
KQ  23.4 13.4 9.3  11.3 7.2 7.1 

 Q*K 25.1 13.1 10.7  16.0 8.1 7.1 
 GPK 25.1 11.6 7.8  16.0 8.1 6.1 
 DBOB QK        
 b = 4 26.4 20.9 16.0  14.0 12.5 9.4 
 b = 10 26.2 21.6 17.1  13.2 12.5 10.1 
 b = 20 25.8 21.2 18.5  13.4 12.5 10.3 
         

ρ = 0.2 
KQ  74.5 52.6 37.2  45.2 24.8 17.6 

 Q*K 76.6 49.1 37.3  51.6 26.2 20.1 
 GPK 76.6 48.3 40.0  51.6 28.4 18.7 
 DBOB QK        
 b = 4 75.1 68.2 61.1  51.2 45.6 38.9 
 b = 10 73.5 67.9 61.1  47.6 45.3 39.7 
 b = 20 72.3 67.2 61.0  45.9 44.4 40.1 
         

ρ = 0.3 
KQ  98.2 92.3 81.5  79.0 60.0 42.7 

 Q*K 98.6 91.3 80.4  84.0 56.3 44.1 
 GPK 98.6 91.4 78.4  84.0 59.8 42.4 
 DBOB QK        
 b = 4 97.5 96.0 93.5  80.3 78.1 76.9 
 b = 10 96.8 95.4 94.0  77.0 76.8 76.7 
 b = 20 95.6 95.3 93.5  74.2 75.6 75.8 

a Notes: The number of replications for the QK test with BOB bootstrap-based P-values is 5,000. The number of 
replications for the Q , Q*K K, GPK tests is 25,000. 
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