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Abstract

This article considers testing for normality for correlated data. A common testing
procedure employs the skewness-kurtosis test statistic, which has an asymptotic chi-
square distribution when the considered series is uncorrelated. However, with time
series data it often happens that the model is not correctly specified, so the residual
series may exhibit serial correlation, and in other cases the researcher might not be
interested in modeling the serial correlation at all. The skewness-kurtosis test is invalid
in these situations because it does not take the serial correlation into account. In this
paper we propose a simple nonparametric modification of the skewness-kurtosis test
that is robust to the presence of serial correlation of a general form. The main feature
of our proposed test is its simplicity since it does not require the selection of any
user-chosen parameter such as a smoothing number or the order of an approximating
model.
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1 Introduction

There has been a recent interest in testing for normality for economic and financial data.
For instance, Bai and Ng (2001) test for normality in a set of macroeconomic series while
Bontemps and Meddahi (2002) emphasize financial applications. Kilian and Demiroglu
(2001) present a variety of cases where testing for normality is of interest for econometri-
cians. These applications include financial and economic ones where, for instance, assessing
whether abnormal financial profits or economic growth rates are normal is important for the
specification of financial and economic models. They also present methodological applica-
tions where testing for normality is a previous step for the design of some tests, such as tests

for structural stability or tests of forecast encompassing.

In econometrics, testing for normality is customarily performed by means of the skewness-
kurtosis test. The main reason for its widespread use is its straightforward implementation
and interpretation. The skewness-kurtosis test statistic is the sum of the square of the sam-
ple skewness and the excess kurtosis coefficients properly standardized by their asymptotic
variances in the white noise case, 6 and 24, respectively. Implementing the skewness-kurtosis
test is very simple since it compares the skewness-kurtosis test statistic against upper critical
values of a chi-squared distribution with two degrees of freedom (x32). This test is typically
applied to the residual series of dynamic econometric models, e.g. Liitkepohl (1991, Section
4.5).

In many empirical studies with time series data, the application of the skewness-kurtosis
test is questionable, though. The reason is that the previous asymptotic variances are correct
under the assumption that the model is correctly specified, implying that the sequence
under examination is uncorrelated. However, in many occasions, either the researcher might
specify incorrectly the model or she might not even be interested in modeling the serial
correlation. In both cases, when the considered data is correlated, the asymptotic variances
are no longer 6 and 24 but some functions of all the autocorrelations. In this situation the
skewness-kurtosis test is invalid since it does not control asymptotically the type I error.
There are two strategies to potentially perform an asymptotically valid test. The first
consists on carrying out a two step test where the skewness-kurtosis is applied after testing
that the considered series is uncorrelated. The second is done by modifying the skewness-
kurtosis test to account for the possibility of serial correlation. The former approach is

problematic because there is an obvious pre-test problem in such a sequential procedure



and, furthermore, testing for uncorrelatedness for non-Gaussian series is rather challenging,

see Lobato, Nankervis and Savin (2002).

In this paper we follow the latter approach and propose a modification of the skewness-
kurtosis test statistic that is valid for serially correlated data. The proposed test statistic is a
very simple modification of the skewness-kurtosis test statistic and it also has an asymptotic
X2 null distribution under weak dependent conditions. The modification is based on straight-
forward consistent estimators of the asymptotic variances of the sample skewness and the
sample excess kurtosis. Besides its simplicity, the main feature of our procedure is that, as
opposed to most of the literature concerning consistent variance estimation, e.g. Robinson
and Velasco (1997), we are able to provide consistent estimators without introducing any
user-chosen object such as a smoothing number, a kernel function or an approximating para-
metric model. These user-chosen tools are theoretical devices that are useful for establishing
asymptotic results, but they are a nuisance for the applied researcher who faces the problem
of choosing them for her particular problem. Certainly, in some cases asymptotic theory
has been established to justify the automatic selection of these tools using some optimality
criteria. However, these criteria are typically designed for estimation problems and they can

be questionable in a testing framework, see the discussion in Robinson (1998, p.1165).

Our test can employ either frequency or time domain estimators of the asymptotic vari-
ances of the sample skewness and the sample excess kurtosis. Although the proposed test
is based on a time domain estimator, in the technical part in the appendices we stress a
frequency domain estimator since it is relatively easier to handle theoretically. In addition,

for conciseness of exposition, we only analyze the univariate case.

We end this section with a brief comment on two papers related to ours. First, Bai and
Ng (2001) also consider a modification of the skewness-kurtosis test statistic that is able to
account for serial correlation. However, they rely on standard consistent variance estimators
such as kernel methods, that present the difficulty of arbitrarily selecting some inputs, as
we have commented above. Second, Bontemps and Meddahi (2002) test for normality using
Hermite polynomials of arbitrary orders. In their framework, the skewness-kurtosis test
emerge when the considered Hermite polynomials are of orders 3 and 4. However, similarly to
Bai and Ng, Bontemps and Meddahi address the problem of serial correlation by employing
common variance estimators such as a kernel estimator which is briefly described at the

beginning of Section 4.

The plan of the article is the following. Section 2 presents the framework. Section 3



introduces the proposed test statistic and studies its asymptotic theory. Section 4 discusses
the proposed variance estimators. Section 5 examines the case where the considered series
are the residuals of regression and time series models. Section 6 considers the finite sample
performance of the proposed test in a brief Monte Carlo exercise. The technical material is

included in the Appendices.

2 Framework

Notation. Let x; be an ergodic strictly stationary process with mean p and centered mo-
ments denoted by p;, = E(z; — p)* for k natural, with i, = n Y7, (7, — T)* being the
corresponding sample moments where 7 is the sample mean and n is the sample size. In ad-
dition, v(j) denotes the population autocovariance of order j, v(j) = E[(z1 — p)(z14; — 1)),
and 7(j) is the corresponding sample autocovariance, 3(5) = n=' "1z, — 7) (Tey1j| — T).

Notice that p, = v(0). Let f()\) be the spectral density function of x;, defined by

v(j):/Hf()\)exp(ij)\)d)\ i=0,1,2,... (1)

where IT = [—7, 7], and let I(\) denote the periodogram I(\) = |w()\)|* where w()\) =
(2n) "1 /2320wy exp(itA). In addition, k,(ji,. .., j, 1) denotes the g-th order cumulant of

L1, Tiqjys- - - T14j,_, and the marginal cumulant of order ¢ is rk, = £,(0,...,0).

Null and alternative hypotheses. In principle, the null hypothesis of interest is that the
marginal distribution of x; is normal. For the independent case, omnibus tests for this
null hypothesis such as the Shapiro-Wilk (1965) which is based on order statistics, or tests
based on the distance between the empirical distribution function and the normal cumulative
distribution function such as the Kolmogorov-Smirnov or the Cramér von-Mises have been
proposed, see Mardia (1980) for a survey. For the independent case, these omnibus tests are
consistent, but it has been shown that their finite sample performance can be very poor, e.g.
Shapiro et al.(1968). For the weak dependent case, no such analysis exists because inference
with these omnibus test statistics is problematic since their asymptotic distributions are
nonstandard and case dependent. Hence, the standard application of these tests to weak
dependent time series sequences is invalid, see Gleser and Moore (1983). The only developed
test of which we are aware is the one by Epps (1987) which is based on the characteristic
function. However, Epps’ procedure is based on restrictive theoretical assumptions and in

practice its implementation is complicated.



Instead of testing that the marginal distribution function is normal, in practice the
common procedure tests whether the third and fourth marginal moments coincide with
those of the normal distribution. Equivalently, in terms of the cumulants, it is tested that
the third and fourth marginal cumulants are zero instead of testing that all higher order
marginal cumulants are zero. We follow this practice, and in this paper the considered null
hypothesis is

Ho : piz = 0 and p, = 3p3, (2)

that is, both the skewness and the excess-kurtosis are zero. The alternative hypothesis is

the negation of the null, that is,
Ho : iy # 0 or iy # 3p13. (3)
The skewness-kurtosis test statistic. The null hypothesis (2) is commonly tested using

the skewness-kurtosis test statistic, e.g. Bowman and Shenton (1975),
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which is typically compared against upper critical values of a x3 distribution. Apart from
the fact that Jarque and Bera (1987) have shown the optimality of this test within the
Pearson family of distributions, the popularity of this approach resides in its simplicity as
we mentioned above. In fact, nowadays most econometrics packages report customarily the

SK test which is called the Jarque-Bera test.

The SK test procedure is justified in the following grounds. When the considered series

x¢ i1s an uncorrelated Gaussian process, the following limiting result holds

[ 6us 0
\/ﬁ 3 —)dN 25 : (4)
iy — 373 0 24l

where the symbol —; denotes convergence in distribution. However, when x; is a Gaussian

process satisfying the weak dependent condition
> ()l < oo, (5)
5=0

the result (4) is replaced by



where

F® = 37 y(i)", (7)

for k = 3,4, see Lomnicki (1961) and Gasser (1975). Notice that condition (5) guarantees
that all F(*) are well defined since it entails that 3 |y(j)|" < oo, for all natural 7.

Hence, when the series exhibits serial correlation, the SK test is invalid since the de-
nominators of its components do not estimate consistently the true asymptotic variances in
(6), implying that asymptotically its rejection probabilities do not coincide with the desired

nominal levels under the null hypothesis.

Given the complicated form of the asymptotic variances in (6), Epps (1987) conjectured
that ”these moment results do not of themselves support an operational test of the Gaussian
hypothesis”. In the next section we show that Epps’ conjecture is wrong and provide a simple

and operational test for the null hypothesis (2).

3 The generalized skewness-kurtosis test

In the previous section we have seen that the SK test is invalid when the considered process
x; exhibits serial correlation. Looking at (6) two natural solutions appear. The first one
consists on modifying the SK test statistic by including consistent estimators of F) and F4)
in the denominators of its components. This solution is proposed in Gasser (1975, section
6) who suggested truncating the infinite sums which appear in the asymptotic variances.
However, he did not provide any formal analysis or any recommendation about the selection
of the truncation number. As we will see, our proposed procedure overcomes these difficulties
since it does not require the selection of any truncation number. The second solution is
estimating the unknown asymptotic variances with the bootstrap, that is, employing the
SK test statistic with bootstrap based critical values. In this paper we follow the first
approach because implementing the bootstrap in a time series context is problematic since
generally valid bootstrap procedures require the introduction of an arbitrary user chosen
number, typically a block length, e.g. Davison and Hinkley (1997, chapter 8). Furthermore,
in our case the bootstrap does not present a clear theoretical advantage since the SK statistic

is not asymptotically pivotal.

Before introducing our test statistic, let consider the following estimator of F*) which



is the sample analog of (7)

n—1
F% = 37 3()". (8)

j=1-n
In the next section we consider alternative versions of this estimator and study their large
sample properties, in particular, Theorem 1 establishes the consistency of F® for p®*)
for Gaussian processes that satisfy condition (5). Then, our proposed test statistic, the

Generalized SK statistic, is

G = ni; i n(fiy — 3f15)*
6F(3) 24F®)
The G statistic does not require the introduction of any user chosen number and, in view of

(6) and Theorem 1 in the next section, the proposed test for (2) consists on comparing the

G test statistic against upper critical values from a x3 distribution.

In the next assumption we introduce the class of processes under the alternative hypoth-
esis for which both F®) and F® converge to bounded positive constants, and hence the
G test is consistent. Notice that the conditions of Gasser (1975) which involve summabil-
ity conditions of cumulants of all orders are relaxed to cumulants up to order 16 using an

extension of Theorem 3 in Rosenblatt (1985, p.58).

Assumption A. The process x; satisfies Ex}® < oo, and for ¢ =2,3,...,16

Y Rl dg)l < oo, (9)
Jj1=—00 Jg—1=—00
and for k = 3,4,
o 511/2
Z[E‘(E:U'S |%—j)_ﬂlk‘ } < 00, (10)
=

where S_; denotes the o-field generated by zy, t < —j, and, for k = 3,4,
E(af — m)* + 2 B (26— m) (o — )] > 0. (11)
7=1

Assumption A is a weak dependent assumption that implies that the higher order spectral
densities up to the sixteenth order are bounded and continuous. For the case ¢ = 2, ex-
pression (9) implies that condition (5) holds. We require finite moments up to the sixteenth
order because we need to evaluate the variance of the fourth power of the sample autoco-
variances. Notice that condition (11) assures that the asymptotic variances of estimates are

positive.

The following lemma establishes the asymptotic properties of the G test.
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Lemma 1. a) Under the null hypothesis and for Gaussian processes that satisfy condition
(5), G —4 x3. b) Under the alternative hypothesis (3) and under Assumption A, the test

based on G is consistent.

The asymptotic null distribution is straightforward to derive given the consistency of F®)
for F*) that is proved in Theorem 1 in the next section. The proof of b) is omitted since

k)

it follows easily using that under the alternative hypothesis F( converges to a bounded

positive constant (by (9) and (11)), while the numerator of G diverges.

4 Consistent variance estimators

Following the literature on nonparametric estimation of asymptotic covariance matrices, the

standard approach to estimate consistently F*) employs a smoothed estimator such as
n—1
> wAG). (12)
j=1—-n

In (12) the weights {w,} are usually obtained through a lag window {w; = w(j/M)} such
that the weight function w(-) verifies some regularity properties and M is a smoothing
number which grows slowly with n. Note that the introduction of the smoothing number
leads to estimators whose rate of convergence is usually slower than the parametric rate.
We stress that in this approach the weights {w;} provide a nonstochastic dampening on the
7(4)k for large j. Due to this dampening, the estimator in (12) is consistent for (7) as it
happens in the case k = 0, where f(0) is consistently estimated by autocorrelation robust

estimators, e.g. Robinson and Velasco (1997).

As commented in the introduction, the main problem with the smoothing approach is
that statistical inference can be very sensitive to the selection of the user-chosen weights;
in our context, the discussion in Section I in Robinson (1998) is especially relevant. In the
absence of a clear and rigorously justified procedure to select the smoothing number in our

testing framework, we prefer to analyze estimators which do not require any smoothing.

Our first estimator F®) introduced in equation (8) also admits a frequency domain
version, see Appendix A. For technical reasons, in this paper we consider a second estimator

that can be motivated by writing F*) in terms of the spectral density function of the z;



process using (1)

FO o= Y ()= Y ﬁ{ [ Fen) explijon)den

j=—00 j=—0o0 h=1 .
= on [ ft et o) T n)du (13)
h=1

The sample analog of the previous equation renders the following alternative estimator for
F)

ﬁ(k)_(Qﬂ)knil... S TN Yo T(N: VI(N\s -+ )\ 14
- k—1 Z Z ( ]1) ( ]k—l) ( J1 + + ]k'—l)’ ( )
Ji=1

n Je-1=1
where \; = 27j/n. The estimator F® can also be written in the time domain by plugging

n—1

TO) = 5= > exp(ith)3(), j #0,modn, (15)

t=1—n

into equation (14). After some algebra, in Appendix A it is shown that
= = k-1
FO = % 46 (3 + 4 — [t} (16)
t=1—-n

Notice that both expressions for F®) are numerically identical, but in the appendices, for
technical reasons, we stress the frequency domain version (14). Expression (14) guarantees

that F®) is positive in finite samples.

The next theorem states the consistency of F® and F® for F®). This theorem is the

main technical contribution of the paper. Its proof is in Appendix B.

Theorem 1. Under the null hypothesis, for Gaussian time series processes that satisfy con-

dition (5), (a) F®) = F®) 4 0,(1) and (b) F® — F®) = o (1) for k = 3,4.

At first look, consistency of F® and F® could be surprising since no smoothing pa-
rameter has been introduced. Robinson (1998) analyzed a special regression model where
smoothing was not necessary for establishing consistency of asymptotic covariance matrix es-
timators. The reason was that the specific form of the covariance matrix that he considered,
see his equation (1.2), allowed for a stochastic dampening of some sample autocovariances
by other sample autocovariances. The time domain versions (8) and (16) provide a similar
intuition where the powers of the sample autocovariances provide the stochastic dampening

factors.



In the frequency domain, (13) provides a complementary explanation. Recall that in
time series the standard problem is that the relevant asymptotic variance depends on the
spectral density function evaluated at a unique point, typically the zero frequency, f(0).
However, in our case (13) shows that the asymptotic variance, F*)  is a convolution of the
spectral density function, instead of a single value. Intuitively, in the first case a user-chosen
smoothing number is required to estimate the local quantity, f(0), whereas in our case no

such number is needed because we are estimating a global quantity.

5 Residual testing

The previous sections analyze the case where raw data are under examination. However, in
practice the test is commonly applied to the residuals of regression or time series models.
Again, two approaches can be used: first, the G test that we propose and second, employing
the SK statistic with bootstrap based critical values. The bootstrap has been employed
by Kilian and Demiroglu (2000). However, as commented in Section 3, application of the
bootstrap is not an obvious task in a time series context. Kilian and Demiroglu perform a
parametric bootstrap that could be justified if the model were correctly specified, although
in this case the SK test would also be asymptotically valid. However, in the absence of the
knowledge of the true data generating process, a parametric bootstrap is invalid, that is,
there is no guarantee that the type I error is controlled properly asymptotically. As com-
mented above, bootstrap procedures generally valid in time series require the introduction of
a user chosen number, typically a block number, complicating statistical inference in finite

samples.

Next, we introduce a general assumption that validates the use of the G statistic applied
to the residuals of many dynamic econometric models where the correlation structure is not
correctly specified or it is not specified at all. In this section, z; denote the residuals of the

regression or time series model, and z; denote the true disturbances.

Assumption B. Let the Gaussian process xy satisfy (5) and let e, = vy — & satisfy

> er = 0,y(1), and Zn:ef = 0,(n~1/"). (17)

n
1 t=1

t—

The first condition in (17) guarantees the consistency of the estimates of F(*) based on

residuals while the second guarantees that the residual SK test has the same asymptotic

10



distribution as the original SK test. The previous Assumption B is very general and covers
many interesting cases such as linear regressions with possible trending stochastic and de-
terministic regressors which satisfy Grenander’s conditions and weakly dependent errors. In
this case e, = (3 — 3)'Z;, where Z, is a p-dimensional sequence of regressors, so (17) implies
that Y1, e? = (8 — B)Z'Z(B — B) = O,(1), allowing for the components of 3 to have
different convergence rates. A leading example with stochastic 7, is a regression between
cointegrated variables. For stationary Z;, another interesting application is when z; are the
residuals obtained through possibly misspecified AR(p) regressions, that is, Z; = y; — B,Zt
with Z, = (yi—1,...,yt—p)’, and \/ﬁ(B — ) = O,(1) for some vector [ such that the poly-
nomial f(w) = 1 — ¥5_, #;w’ has no roots on or inside the unit circle. For this case, if
Assumption B holds for y,;, the limit process z; = y; — 3'Z; = [(L)y; inherits the weak
dependence properties of y;, but notice that z; is autocorrelated unless y; follows an AR(q)

process with ¢ < p.

In Appendix C we prove the following theorem which shows that the use of residuals

does not affect the consistent studentization that we propose in this paper.

Theorem 2. Under the null hypothesis (2) and Assumption B, for k = 3,4,

n—1
Z fAY:i‘ Z ’Y:r + OP )
1-n

Finally, using the previous theorem and Holder’s inequality, it is straightforward to prove
the next lemma which establishes that the asymptotic null distribution of the GG test statistic
applied to the residuals of many dynamic econometric models whose correlation structure
is ignored or misspecified is still x2, and that the G test is consistent under the broad class

of alternatives considered in Assumption B.

Lemma 2. Let G be the test statistic G calculated from residuals ;. a) Under the null
hypothesis (2) and Assumption B, G =y X2. b) Under the alternative hypothesis (3) and

Assumptions A and B, the test based on G is consistent.

11



6 Finite Sample Performance

This section compares briefly the finite sample behavior of the previous tests. Under the null
hypothesis we generate data from an AR(1) process x; = ¢x;_1 + ¢; where ¢, is independent
and identically distributed N(0,1) and the autoregressive parameter ¢ takes three values:
—0.5,0, and 0.5.

Along with the null hypothesis (2), we consider also testing the null that the skewness
is zero by using the first components of the SK and G statistics. Namely we compute
the skewness test statistic S = nji3/6fi3 and the generalized skewness test statistic G.S =
nfiz/6F® and compare them with upper critical values from a x2. We have not reported
the results of a kurtosis test because of the well-known slow convergence of the sample
kurtosis to the normal asymptotic distribution even in the white noise case, e.g. Bowman
and Shenton (1975, p.243). In Table I we report the empirical rejection probabilities for the
tests for three sample sizes, n=100, 500 and 1000, and three nominal levels, a=0.10, 0.05

and 0.01. In these experiments 5,000 replications are carried out.

The main conclusions derived from this table are the following. First, the S test is not

reliable since it severely under-rejects when ¢ = —0.5 and substantially over-rejects when

00
J=1

¢ = 0.5. This result could be expected because when ¢ is negative > 7;’? is negative,
leading to overestimation of the asymptotic variance, and then to under-rejection of the S
test; while when ¢ is positive the opposite effect occurs. The most interesting evidence is the
magnitude of these distortions that are very large for ¢ = —0.5 and all sample sizes, while
for ¢ = 0.5 the distortions are increasing steadily with the sample size. On the contrary,
for the G'S test the empirical rejection probabilities are very close to the nominal levels for
all the parameter values and all sample sizes. Finally, the SK test, which is the sum of the
skewness test and the kurtosis test, inherits their characteristics. Notice that for the specific
case where ¢ = —0.5, there is a fair amount of compensation between the skewness and
kurtosis, making the distortions of the SK test much smaller that those of its components.
The G test inherits the slow convergence from the kurtosis, but using the white noise case

as benchmark, it appears to be robust to the presence of serial correlation.

We also conducted power experiments for data generated by the previous AR(1) model
for five different distributions: standard log-normal, student’s t with 10 and 20 degrees of
freedom, x? and x3,. Table IT reports the power results for three sample sizes, n=50, 100,

200, for a test with a 5% nominal level. In these experiments 2,000 replications are carried

12



out. Table IT indicates that the sign of the autocorrelation has no relevance in terms of
power. As could be expected for heavily skewed distributions such as the lognormal or the

X%, the empirical rejection probabilities are close to one even for very moderate sample sizes.

We end with a suggestion on further research. In this section we have seen that for
small sample sizes, due to the slow convergence of the sample kurtosis coefficient, the GG
test presents significant size distortions even in the white noise case. One potential way of
improving the finite sample performance is by using the bootstrap. Since the G test statistic
is asymptotically pivotal, it can be expected that application of the bootstrap will deliver
an asymptotic refinement. Hence, it would be interesting to study the implementation of

the G statistic with bootstrap based critical values.

7 Appendices

Appendix A

This appendix provides the alternative versions of F® and F®), First, the F®) egti-

mator can be written in the frequency domain as follows

Pk ,gn&(j)k: ni:l h;{/ﬂ[(vh)exp(i]’vh)dvh}

j=1-n

I
b

=
Il

1 j=1-n

n—1
{/H I(vh)dvh} exp{ij(vi + -+ +vp)}
= - [:Ef:f('Ul) . 'I{E,j(’Uk)Dn('Ul + -t Uk)d?)l s d’l}k,

where D, (v) = Y021, exp(ijv) satisfies [;; Dy (v)dv = 21 and D, (v) — 2r6(v = 0) as n —
00, where 0 represents the Dirac’s delta function. Hence, for n large we obtain the following
approximate expression for F® in the frequency domain

F®) 27r/ Lia(\) - Lo s (M) Lo (A o+ 4 M)y - d gy (18)

k-1
Equation (14) is the natural discrete approximation of (18).

Second, in order to obtain the time domain expression of F*) we just plug in (15) into

equation (14) to get

N 1 n—1 . n—1 . n—1 .
k= P > Aty) Yoo Altk—) > A(te)
n t1=1—-n tp_1=1—n tr=1—n



% zn: z": exp {Z (tl)\jl + - +tk—1)\jk—1 +tk()\j1 +eeet )\jk—l))}

1 n—1 . n—1 . n—1 .
= YooAt) Y Altk—r) V() (A + Ary) -+ 0 (M, + Ary),s
ti=1—-n tp—_1=1—n tp=1—n

where ¢,,(A) = 37—, exp(itA). Finally, using that ¢,,(\;) = 0if \; = 27j/n, j # 0modn and
$,(0) = n, we obtain (16).

Appendix B
Proof of Theorem 1(a)

We just report the analysis for F®) because the one for F® is similar, but notationally
more involved. We prove consistency by checking the sufficient conditions that F® ig

asymptotically unbiased and that its variance goes to zero as n — oo.

First, we consider the expectation of F®),

£ = OS5 B0 1010y, + 0.

Using the definition of I()),

E T T(Ng) (A, + Az
= F [w()\jl)w(_)\jl)w()\jQ)w(_)\jQ)w()\jl + )‘j2)w(_)‘j1 - )‘j2)] (19)

= Z cum(vy) - - - cum(vy),

where the summation in v runs for all possible partitions v = v; U---Uv,, ¢ = 1,2, 3 of the
6-tuple
{vs —dvs Jos —Jos J1+ J2, —J1 — J2} (20)
such that v; = {v;(1),...,v;(p;)} and 37, p; = 6, and where cum(v;) stands for
cum(w(Ay;(1))s - - -, W(Av;(py))), see Brillinger (1981, pp. 20-21).
In order to evaluate the expectation (19), by Gaussianity the only cumulants different

from zero are second order cumulants, ko, with ¢ = 3. Hence

1 n—1 n—1
B[F®)] = = 2/3 II [f(/h‘)%(ﬂi + A1) P (Avi2) — ,ui)d,ui] , (21)
N ji=1h=1 | w3 =123

where the sum in 3 is for all the different 3-tuples vy U vy U vy of pairs v; = (v;(1),4(2))

formed with all the permutations of the coefficients in (20). In fact, following Brillinger

14



(1981, Theorem 4.3.1), the only relevant combinations in the sum in x3 are those for which

vi(1) + vi(2) = Omodn, i = 1,2,3. Therefore, using that |¢,(x)] < 2min{|u|~", n}, see
Zygmund (1977, pp.49-51), and the continuity of f()\) implied by (5), we obtain that (21) is

BIF®] = S A4S [ T [P (s = N d] f +00)

where ® (1) = (27n) |6, ()| and Jy; 82 (u)dp = 1.

Second, we study the variance of F®),
Var[F¥] = cum(F®, F®) =3 cum(vy) - - - cum(v,).

Now, we need to consider all the indecomposable partitions v = v, U---Uv,, ¢=1,...,6
of the following array with 12 elements,

Jio=q Je —J2 JitJ2 —Ji— e (23)
Jo—a Jp —Ja v tJa —Ji—Ja

By Gaussianity, the relevant partitions only involve six second order cumulants, that is,

Var[F®] =

(24)
where the sum in &5 is for all the different 6-tuples v = vy U- - -Uwg of pairs v; = (v4(1), v4(2))
constructed in such a way that at least one v; in v has elements in each of the rows of the
array (23) to guarantee an indecomposable partition. Following the same arguments, the
only terms that contribute to the leading term of the variance of F®) are those in (24)
characterized by a restriction v;(1) + v;(2) = Omodn, for just one i € {1,...,6} (e.g.
j1 = —j1). Then, taking into account all the possible partitions (6 x 3) and using the
continuity of f, the variance of F® is

n—1 n—1 n—1

VarlF®) = LT85 5SS P00 S ) F O + A FOh 4+ )+ o)

J1=1j2=1j3=1

= O(n ') =o(1) (25)
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as n — co. Hence, from (22) and (25) we conclude that F®) = FG) 4 ¢,(1).

Proof of Theorem 1(b)

Notice that

A ~

FO—F® = 3 40— t) +---+ > 4030 — [t
t=1-—n t=1—n
n—1 n—1
= 23 AW A0 = [t) + -+ 2D (A0 — [t (26)
t=1 t=1

because 4(n) = 0. Then, setting M = n'/2, the first element in (26) is equal to

S A= 42 S A = 1), (27)

t=M+1

(...
Il
—

Now, E4(n —t)? = O(M?n~?) for 0 < t < M, and using the same methods of the proof of
Theorem 1(a), it is easy to see that for p = 2,4, 6,

BA(t)" = O(y(8)" +n~""%).

Hence, we obtain that for k = 3,4

t=1

_ ( {’Y + n172(k71)} M3n2> 1/2)

= O M3/2n’1) =o(1).

Next,
n—1 n—1 1/2
ElS 40 - ( S B T i - t)?)
t=M+1 t=M+1 t=M+1
where Z?_]\14+1 Ey(t)2k=1) = (Zt v s YOHEY £ *k)}) =o(1) asn — oo for k = 3,4,
and Y070 B(n — 1) = O (X1 (1) +071}) = 0 (1+ 5 (1)) = O(1).

Hence, both terms on the right hand side of (27) are 0,(1). Similar reasoning can be used

to show that the remaining terms in (26) also asymptotically negligible, and conclude that
F) _ k) — 0,(1).
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Appendix C

Write
n—|j| n—|jl 1 "=l
V(1) = %.00) = — Z etlr—|j| + — Z etTy—|j| + — Z Ci—1j| Tt
_ G+ BG)+CO),
say. Thus,
n—1 n—1
)= % {1o0)" + 49,()°A0G) + - -+ A'(G) + B () + C*(h) }
j=1l-n j=1l-n

n—1 2

Hence, using from Appendix B that 377} 4,(j)* = O,(1) and the Cauchy-Schwartz inequal-

ity, we only need to show that

First,

n—1 n—lj| :
> A = ;4 5 (Z €t |J)

j=1-n j=1-n
n 4
< o (z) — 0,(n7) = oy(1).
t=1

where we have used Assumption B.

Second,

n—1 n—1 n—|jl
12_:34(1') = i,z [Z e

< on! [mmiefr = 0,(n™") = o(1).

where we have employed the Cauchy-Schwartz inequality. The analysis of 37! C*(j) is

omitted because it is similar to that of 37! B4(j).
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Tables

Table I. Empirical rejection probabilities at the 0.10, 0.05 and 0.01 nominal levels for (a)
the S test and the GS test and for (b) the SK test and the G test. Data follow a Gaussian
AR(1) process with parameter ¢. Sample size is denoted by n.

100 500 1000
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

(a) Skewness

-0.5 S .056 .025 .005 .063 .027 .005 .064 .026 .005
GS .093 .047 .011 .103 .052 .010 .101 .051 .009

0 S .092 .047 .011 .105 .056 .009 .104 .053 .012

GS .097 .051 .012 .105 .056 .010 .104 .054 .013

05 S 117 .064 .019 .146 .080 .023 .152 .090 .025
GS .095 .048 .012 .100 .052 .011 .105 .054 .012

(b) Skewness and Kurtosis

-0.5 SK .051 .032 .015 .079 .043 .016 .082 .044 .010
G .065 .039 .014 .090 .047 .014 .095 .047 .011

0 SK .069 .045 .021 .094 .048 .014 .095 .047 .014

G .070 .045 .021 .094 .048 .014 .095 .048 .014

05 SK .080 .050 .023 .120 .071 .025 .138 .082 .026
G .063 .040 .015 .084 .045 .014 .094 .053 .014

18



Table II. Empirical rejection probabilities at the 0.05 nominal levels for the G test. Data

follow an AR(1) process with parameter ¢ and various distributions.

n 50 100 200
o) -05 0 05 -05 0 05 -05 0 0.5
Lognormal .915 .996 .918 1.00 1.00 1.00 1.00 1.00 1.00
10 104 179 108 159 294 163 243 421 234
t20 057 .097 .058 .092 .133 .073 .125 .201 .108
X3 893 997 913 1.00 1.00 1.00 1.00 1.00 1.00
X% 224 412 212 437 785 431 769 .991 765
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