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ABSTRACT

This paper considers testing that an economic time series follows a martingale dif-
ference process. The martingale difference hypothesis has been typically tested using infor-
mation contained in the second moments of a process, that is, using test statistics based
on the sample autocovariances or in the periodograms. Tests based on these statistics are
inconsistent since they just test necessary conditions of the null hypothesis. In this paper we
consider tests that are consistent against all fixed alternatives and against Pitman ‘s local
alternatives. Since the asymptotic distributions of the tests statistics depend on the data
generating process, the tests are implemented using a modification of the wild bootstrap pro-
cedure. The paper justifies theoretically the proposed tests and examines their finite sample
behavior by means of Monte Carlo experiments. In addition we include an application to

exchange rate data.

1 Introduction

In Economics it is frequently assumed that an economic time series follows a martingale
difference sequence (MDS) given some information set. For instance, it is a common impli-

cation in Rational Expectations models (see, for instance, Hall (1978)). A MDS process is
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defined as a process that has constant mean (usually zero) given some information set (that
typically includes just its past values). Testing the MDS assumption is rather challenging.
In Econometrics the common way of testing this property has been testing that the process
is uncorrelated. Hence, in the time domain the test statistics typically employed have been
based on the sample autocorrelations while in the frequency domain they have been based
on the periodograms. The test statistic most commonly employed has been the Box and
Pierce (1970) Q statistic for testing that a process is uncorrelated of a given order p (that is,
the first p autocorrelations are equal to zero). For the general case of testing that a process
is uncorrelated of any order, alternative statistics have been proposed by Durlauf (1991),
Anderson (1993) or Hong (1996).

Notice that all these procedures do not test that the considered process is a MDS but
that it is uncorrelated. This distinction is crucial when nonlinear dependence is present, as
it commonly happens with financial data. For processes with bounded second moment, a
MDS is an uncorrelated sequence, but an uncorrelated sequence is not necessarily a MDS.
An uncorrelated process cannot be forecasted using linear functions of lagged values, while
a MDS cannot be forecasted using either linear or nonlinear functions of past values. Hence,
for uncorrelated non-MDS processes the previous tests have no asymptotic power (see, for
instance, examples in Section 4). The fact that these tests are inconsistent can be under-
stood since they only employ information contained in the second moments of the process.
Contrary to these commonly employed tests, this paper provides consistent tests for the null
hypothesis that the process has constant conditional expectation given the information set
composed by the current value of some exogenous variables and some finite numbers of lags
of both the own process and some exogenous variables.

Consistent tests for the MDS assumption can be established using recently developed sta-
tistical theory on specification testing. There are basically two approaches to constructing
consistent tests. First, to employ tests based on checking an infinite number of orthog-
onality conditions (see, for instance, Bierens (1984, 1990), Stute (1997), Andrews (1997),
Bierens and Ploberger (1997) and Koul and Stute (1999)). Second, to employ tests based on
smoothed nonparametric estimates of the conditional expectation function (see, for instance,
Hérdle and Mammen (1993), Hong and White (1995), Zheng (1996) and Li (1999)).

Test statistics based on the first approach do not demand the selection of user-chosen
tuning parameters. However, they have the disadvantage of (typically) having non-standard
asymptotic null distributions. This is not a serious drawback, though, since critical values

can be estimated by the bootstrap. In addition, these tests are consistent against Pitman “s



local alternatives but inconsistent against certain local alternatives to the null, see Rosenblatt
(1975) or Horowitz and Spokoiny (1999).

Tests based on the second approach have the advantages of having standard asymp-
totic null distributions and being consistent against Rosenblatt’s (1975) local alternatives,
but three inconveniences. First, they require stronger smoothness assumptions on the data
generating process (DGP). Second, they have asymptotically no power against Pitman’s
alternative hypotheses tending to the null at the parametric rate. Third, their main disad-
vantage is that they require a user-chosen smoothing parameter and, in practice, statistical
inference is quite sensitive to the selection of this number.

For these reasons, in this paper we employ a test based on the first approach. Since
the asymptotic distribution of the considered test statistic depends on the specific DGP,
standard asymptotic inference procedures are not feasible. In this paper we propose and
justify rigorously to estimate the distribution of the test statistic by using a modification of
the wild bootstrap.

The organization of the paper is the following. In Section 2 we review the different
approaches to construct consistent tests, and motivate the selection of our test statistics
which are introduced in Section 3. Section 4 analyzes the bootstrap tests and in Section
5 we present a Monte Carlo study of their finite sample performance. Section 6 reports
an empirical application to exchange rates and Section 7 concludes and establishes some

directions of further research. Proofs are in the Appendix.

2 Consistent Hypothesis Testing

Let (y, z¢) be an ergodic and strictly stationary process, where z; = (21 4,..., Tx¢) isa K x 1
random vector process of conditioning variables. We employ the superscript to denote vec-
tors. Notice that no assumptions are made about the moment structure of z; and, in particu-
lar, all their moments could be unbounded. We assume that n+p observations from {y;} and
n + p; observations from each variable {z;;}, i = 1,...K, are available. Denote the whole
observed sample by X, = (Y_pi1, s Y0, Y5 oo Uns T1—pyt1s oo Ty ooy LK —prtly--s TKon)-
The null hypothesis of interest that we consider in this paper is testing mean indepen-
dence with respect to the information set ,thj) = { Y1y s Ytmps Tty T1t1s ooy T1pmpyy ooy TK
LK1,y TK 1—py | Where P= (p,p1,...,px)" and p, p1, ..., px are any natural numbers. No-
tice that the conditioning information set includes the past p values of the considered process

and current and past values of the other conditioning processes.

3



Thus, the considered null hypothesis is

Hy:E(y/Z5) =p  as. (1)

for some unknown ;1 € R, and the alternative is the complement of Hy, that is,

Hy: B/Zp) =1 (5p)  as. (2)

where i (+) is some unknown measurable function from R into R, where P = p+ K +Zf:1 Dy,
such that Pr(u (’%,ﬁ) = p) < 1. A process that verifies (1) is said to be a martingale
difference sequence of order p with respect to its past and of orders p; with respect to z;,
for i =1,..., K, (more briefly, we say that y; is a MDS of orders ]5) In Sections 5 and 6 we
consider the special case of testing that a process is just a martingale difference sequence of
order p with respect to its own past. We establish the theoretical results for the general case
since economic theory establishes the orthogonality with respect to the agent information
set that typically includes a set of additional explanatory variables.

In order to obtain consistent tests of the null hypothesis (1) there are two approaches:
the use of tests based on empirical processes indexed by classes of functions and the use of
tests based on nonparametric estimates. Both approaches are nonparametric in spirit. For
simplicity, we call the integrated approach to the first (since the corresponding tests require
the selection of an integrating measure) and the smoothing approach to the second (since
the corresponding tests require the selection of a smoothing number). Both are based on

the following equivalence which is based on the definition of conditional expectation
Hy e By — )W G ) =0 as.

for any bounded measurable weighting function W(-) with respect to z, 5. The tests are
based on evaluating the discrepancy of the sample analog of E((y: — p)W (2, 5)) to zero.
Notice that any such test involves testing an infinite number of orthogonality conditions.
The smoothing approach reduces the problem of testing H, to testing a unique, appropriately
chosen, orthogonality restriction. Namely, it employs W* (2,5) = E((yr — p1)/7, p)- Hence,

this methodology is based on the following equivalence
Hy < E((ys — p)W*(Z,p)) = 0.

Notice that this approach, although implicitly, involves testing an infinite number of orthog-

onality restrictions as well, as we show now. First, express W* (Z, p) as a linear combination
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of a basis {w;} = {w;(Z, 5)} of the space of functions with finite second moment
W5z, ) =) amw

where o, = E[W?® (2, 5)wi]. Second, apply the law of iterated expectations to obtain «; =
E[E((y:—p) /% p)wil = E[(y: — p)w;]. Finally, testing E((y: — M)WS(fo)) = 0 is equivalent
to testing F((y, — pu) >, csw;) = >, i E((yy — p)w;) = Y., a? = 0, that is, testing that
«o; = 0 for all i.

Since the function W* (fzvt 5) is unknown, evaluating its sample analog will require the use
of nonparametric estimation techniques, that is, the introduction of a user-chosen smoothing
number. This approach presents three drawbacks. First, its main problem is that statistical
inference is sensitive to the selection of the smoothing parameter. There has been consider-
able research on how to select this parameter automatically from the sample for estimation
problems (see Marron (1988) for a survey). Unfortunately, there is not any completely
satisfactory answer yet and furthermore, most of this research has focused on estimation
rather that hypothesis testing. However, notice that in the testing framework, Horowitz and
Spokoiny (1999) and Guerre and Lavergne (1999) have recently considered the selection of
the smoothing parameter and developed tests with minimax properties. Second, tests based
on the nonparametric approach have no power against alternative hypotheses tending to the
null hypothesis at the n=/? rate. Third, this literature needs to impose strong smoothness
conditions on the function pu (fzvt 15), see, for instance, Zheng (1996) or Li (1999).

The integrated approach tests Hy by selecting a family of functions W so that Hy holds
if and only if (y; — p) is orthogonal to every member of W almost surely. Depending on the
choice of W the corresponding test resembles certain classical goodness of fit tests employed
in the statistical literature as we see now. There are two types of integrated tests: one is
based on smooth classes of functions and the other is based on indicator functions. The first
type has been employed by Bierens (1984, 1990), De Jong (1996), Bierens and Ploberger
(1997) and Stinchcombe and White (1998). They proposed testing procedures based on
families of analytic functions W = {W(y,7), 7 € T, y € RT'} and prove that

Hy < RY (7) = E((ys — )W (2, 5,7)) =0, forany 7 € T,

t,P)

where, in general, T is an infinite set, for instance, any neighborhood of 0 € R”. In
particular, Bierens (1990) considers W = {exp(i7'y), T € T, y € R”}. Hence, for this choice

these tests resemble goodness of fit tests based on the characteristic function. Note that



under both the null and the alternative hypotheses, R" (7) € C[Y], the space of continuous
functions on Y. We have called [A] the closure of A and, in case the function is not defined
for every a in the frontier of A, we extend the process by considering that R (a) = limg, 3
RY (@,,) . The dependence of the nuisance parameter vector 7 is avoided by applying a norm
of the space C[Y] onto the function RY (7). A main problem with this approach is that,
the application of the norm requires the selection of an arbitrary measure on Y.

The second type of integrated tests has been employed by Brunk (1970), Su and Wei
(1991), An and Bing (1991), Delgado (1993), Andrews (1997), Stute (1997), Delgado,
Dominguez and Lavergne (1998), Koul and Stute (1999) and Whang (2000). They have
considered the family Wi={I(Z, 5 < 7),7 € R”} where I (A) is the indicator function of
the event A and a < b denotes that each element of @ is less or equal that the corresponding
of b for any Ei,g € RY. Notice that this family of functions is not analytic. For this family,
the nuisance parameters are evaluated in the support of the conditioning vector, E’t 5, and
hence, the natural integrating measure is the joint empirical distribution function of the
vector :th 5. Therefore, the corresponding tests resemble goodness of fit tests based on the
distribution function, such as, the Cramer-von Mises test and the Kolmogorov-Smirnov test.
Hence, the advantage of using this family instead of families of analytic functions resides in
the elimination of the arbitrariness involved in the selection of an integrating measure.

Since both the smoothing approach and the first type of integrated tests present the
problem of arbitrarily selecting the smoothing number and the integrating measure, respec-
tively, the test procedure proposed in this paper belongs to the second type of integrated
tests.

We end this Section commenting on three papers related to the current one. First, Park
and Whang (1999) consider testing for the martingale hypothesis in a spirit similar to us.
Notice that their framework is different to ours, though. Their stated null hypothesis is that
the process is a martingale, but in fact, their test statistic tests that the first difference of

the process conditionally on the last value has zero mean, that is,

E(yt - ytfl/ytfl) =0.

Hence, on the one hand their null hypothesis is more restrictive than ours in the sense that
they consider the case p =1, K =0 and p = 0 (thus, p is known). But, on the other hand
they allow for the conditioning variable to be nonstationary. Furthermore, since they impose
that © = 0 their tests statistics are asymptotically distribution free, and hence they do not

need to use bootstrap procedures to obtain the critical values. Second, for independent data,
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Whang (2000) generalizes Stute (1997) to the multivariate case and considers wild bootstrap
specification testing as in Stute, Manteiga and Presedo (1998). Third, Koul and Stute (1999)
consider a generalized first-order autoregressive process with p = 1 and K = 0. Instead of
employing the bootstrap to estimate the asymptotic distribution of the test statistics they
propose to apply a transformation to achieve an asymptotic distribution free test in the
conditional homoskedastic case. However, the generalization to our context demands the
use of smoothing techniques in order to estimate the conditional variance function, see Stute,
Theis and Zhu (1998).

3 A Consistent Test for the Martingale Difference Hy-

pothesis of orders J2

We assume that Eyi™® < oo, for some § > 0, and that y, given Z, p has a continuous bounded

density function. The proposed test is based on the following equivalence
Hy < R(7) =0 for almost all 7 € RY

where
R() = B((y— wI(G,p < 7)) = / (s — w)I(T < 7)dF(s,) € C[RI, (3)

where F'(s,t) is the joint distribution function of the vector (v, %, 5). In order to evaluate

the distance of R (T) to zero, a norm has to be chosen. Denote the general norm by

Ts = ¢(R(7)). (4)

The two norms considered in this paper are the Cramer-von Mises norm, that is,

0u(R (7)) = ( i (’T“)]QdF(oo,?))l/z )

where F'(co,T) = lim, .o F'(s,7) is the marginal distribution of the conditioning variables,

and the Kolmogorov-Smirnov norm, that is,
Poo (R (T)) =sup |R(T)|. (6)

A general consistent test would be based on the sample analog of (4). In particular, the
tests considered in this paper are based on the empirical versions of (5) and (6). Next, we

provide explicit formulae for these two test statistics.
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Denote by F;, the empirical distribution function of (yt,fzvt ;,) and by 7 the sample

mean J = n~! Y7 4. Notice that T = 7 + 0,(n"/?) where 7° is the usual definition
for the sample mean that takes into account all the available observations (3¢ = (n +
p) >0, yt)- We estimate the function R (7) given in (3) by its sample analog

n

Ra(@) = [(s=DIE AT = 1 S0~ DI p < 7). @

=1
Notice that R, (7) is a random element in D[R]”, where D[R]” is the natural extension of
the Skorohod space D[R] considered by Koul and Stute (1999). Also, for a fixed 7, under
the null hypothesis, R, (7) = O,(n"*/?), but under the alternative \/nR, (7) diverges to
infinity for every 7 in some non null set (as we will show in Theorems 1 and 2). Hence, test
procedures are based on \/nR, (7). The general test statistic considered is the empirical
analog of (4) and we denote it by T, = ¢(v/nR, (7)). The two particular test statistics

considered here are the Cramer-von Mises test statistic

Cp, = / ViR, (7)) dFy(00,7) = % > [Z(yt ~DIGEp < %ﬁ]

t—

where F,,(00,7) = lim,_, F,,(s,7), and the Kolmogorov-Smirnov statistic

Kp, = [V p)| = | 2= (0 ~T)I(Ep < 5,0)|
j=1

Notice that contrary to Andrews (1997) in our case the Kolmogorov-Smirnov test can be

computed exactly by evaluating the process at the n observations.

In order to consider the asymptotic distribution of the test statistic 1%, we need first
to consider the asymptotic probability law of the process /nR, (7). It turns out to be
Gaussian with the asymptotic covariance matrix depending on the DGP as the following
Theorem shows.

Theorem 1. Under the null hypothesis (1)
ViR, (7) = B(7), (8)

where = denotes weak convergence in D[R]" and B (T) denotes a centered continuous Gaus-

sian process in D[R] with covariance given by

S(7,0) = Elo*(Z ) L(T AD)] — F(oo,7)Elo*(Z, p)1(V))] (9)
—F(00,0)E[0*(Z, p) I(T)] + 0> F(00,0) F(0,7),
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where 02(%;7 p) 18 the unknown variance of y; conditional on z, p, which is known to be finite
a.s., I(T) = I(z, p < 7) and T AU denotes the vector whose i—th component is the minimum
of the i-th components of the vectors T and v.

Notice that the asymptotic distribution is a tied-down Gaussian process and that the
covariance structure depends on the DGP. Theorem 1 is a natural extension of Theorem
2.2 in Koul and Stute (1999), see their Remark 2.4. Next we provide two remarks about
Theorem 1.

Remark 1. Notice that under the assumption of conditional homoskedasticity, that is

0*(Z,p) = 0°, the asymptotic covariance matrix (9) reduces to
Y(7,0) = 0*[F(00, 7 AT) — F(00,0)F(00,7)]. (10)

If, in addition, the conditioning set Zt 5 includes only one variable (either one own lagged
value or one contemporaneous or lagged value of a conditioning variable), using the classical
quantile transformation, equation (10) simplifies to (7, v) = o2[(T A v) — (vT)], and so, the
process B(7T) follows a standard Brownian Bridge. Hence, for this restrictive case, inference
is straightforward since the critical values are already tabulated, see Shorack and Wellner
(1986, pp. 143-147).

Remark 2. The functional central limit theorem (8) can be obtained under alternative
sets of assumptions. Here we have followed Koul and Stute (1999) and assumed ergodicity
and strict stationarity with finite fourth moment. Some of these assumptions could be
weakened at the cost of strenghtening others. For instance, the strict stationarity assumption
could have been removed at the cost of strengthening to strong mixing the condition on the
dependence of the process (see, for instance, Andrews and Pollard (1994) and references
therein). Continuity of the density of y; given Zt 5 could also be weakened by assuming
that the conditional second moment F(y?/ zZ 5) is a continuous function, see Koul and Stute
(1999, p.219).

Next, we provide two Theorems about the behavior of the process /nR,, (T) under the
alternative hypothesis.

Theorem 2. Under the alternative hypothesis (2), there exists a T C RY such that
Pr (fzvtf € ’T) > 0 and for all T € T, R, (T) = R(T) # 0. Hence, under the alternative
hypothesis (2), \/nR, (T) diverges.

The next Theorem shows the behavior of the process y/nR, (7) under a sequence of

alternative hypotheses tending to the null at the rate n~1/2. Consider the following sequence



of alternative hypotheses

g(th,)
\/ﬁ

for any function g(.) such that Pr(g(z, 5) = constant) < 1.

Hpn: E(ye/2,p) = p+ a.s. (11)

Theorem 3. Under the sequence of alternative hypotheses (11)
ViR, (7) = B(7) + G(7),

where G(T) = E(g(z, p)wi(T)) # 0, where wy(7) = I,(T) — F(c0,T) and the covariance is
given in (9).

Using the previous three theorems and the Continuous Mapping Theorem the following
corollary establishes the asymptotic behavior of the general test statistic T} .

Corollary 2. Under the null hypothesis (1), Tp, = ¢(B(7)); under the alternative
hypothesis (2), T5,, diverges; and under the sequence of alternative hypotheses (11), T Pn =
6(B (7) + G(7)).

Notice that the asymptotic null distribution of 7%, is given by ¢(B (7)) that depends

on the specific DGP. Hence, standard asymptotic inference procedures cannot be applied.

4 The Bootstrap Test

Since the asymptotic distribution of \/nR, (T) depends, in general, on the DGP, the one
corresponding to T P also depends on the DGP. Hence, the theory in the previous section
cannot be automatically applied for statistical inference. In this section we estimate this
unknown distribution using a modification of the wild bootstrap. Notice that our solution
is valid for the general case, that is, when additional conditioning variables or more than
one lagged value of the process are included in the conditioning set, and conditional het-
eroskedasticity is present. These generalizations are important because economic theory
typically includes additional explanatory variables and conditional heteroskedasticity is a
well-known feature of financial data.

Next, we explain and justify theoretically the proposed bootstrap-based test procedure.

Let & = (y; — p) and notice that uniformly in 7
ViR, (7) = =Y (7 - =Y 23 aL®
- \/ﬁt:1tt \/ﬁs:ntzlts
1 n
- — L(7) — Fy(00, 7
\/ﬁ;&r[ t(7) n(00,7))]
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- %Zet[ftG)—F(oo,ﬂﬂH(l)

_ %Zetwt(?)jto(l) as.

where in the third equality we have used a Glivenko-Cantelli type Strong Law of Large
Numbers for stationary ergodic processes. The main idea is to estimate the distribution of
VnR, (T) by the distribution of

VnR:(T) = % Za@t(”f)Wt,

where €, = (y: — 7), W(T) = L(T) — F,(00, T) and W} is a sequence of independent random
variables with zero mean, unit variance and bounded support. This procedure has been
called a wild bootstrap (see Wu (1986) or Mammen (1993)).

Next, we justify the bootstrap test procedure by providing a Theorem that establishes
the consistency of the bootstrapped process /nR? (7). This means that asymptotically
the probability law of /nR: (T) given the data &), is the null asymptotic distribution of
VnR, (T).

Theorem 4. Under either the null hypothesis (1) or under the alternative hypothesis
(2) or under the sequence of alternative hypotheses (11),

VnR: (7) =, B(T) a.s.,
where =, a.s. denotes weak convergence almost surely under the bootstrap law, that is,
P(VnR: (7) < 5| X,) —as P(B(T) <s8)asn — oo

plus tightness a.s. (see Stute, Manteiga and Presedo (1998)). Therefore, the asymptotic
distribution of \/nR,, (T) can be estimated with that of \/nR* (7). Hence, defining T' [
¢(v/nR;, (7)), the asymptotic distribution of T, can be estimated with that of T;n that
is given by ¢(B (7)) as the following corollary (that is a straightforward application of the
Continuous Mapping Theorem) shows.

Corollary 3. Under (1) or (2) or (11), T3, =+ o(B(T)) a.s..

Corollaries 2 and 3 justify that the asymptotic critical values of T , can be estimated
with those of T;n. In practice, the critical values of T' ;n are approximated by simulations.
Hence, the proposed general bootstrap test consists in the following steps:

a) Calculate the test statistic T ..
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b) Generate {W;} a sequence of n bounded independent random variables with zero
mean and unit variance. This sequence is serially independent and is also independent of
the original sample X,.

c¢) Compute \/nR (T) = % > W (T)W,. Then compute T = o(v/nRE(T)).

d) Repeat steps b) and c) B times where in step b) each sequence {W;} is independent
of each other. This produces a set of B independent (conditionally in the sample) values of
Tlgn that share the asymptotic distribution of 1%,

e) Let T;[a] be the a—quantile of the empirical distribution of the B values of T;n. The
proposed test rejects the null hypothesis if T pn>T ;[a].

Corollaries 2 and 3 establish that under the null hypothesis (1) T, and Tzfv,n share the
same asymptotic distribution for almost all samples. Hence, the rejection probability (RP) of
the bootstrap test converges to a (the theoretical level). Besides, since under the alternative
hypothesis (2) T, diverges while T3, remains bounded, the RP under (2) converges to 1.

Formally,
a under (1),

P(Tp,, > T5,) — 4 1 under (2),
C under (11)
where @ < C' < 1. Hence, the proposed bootstrap test has an « asymptotic level, it is

consistent and it is able to detect alternatives tending to the null al the n~'/? rate.

5 Finite Sample Performance

In this section we examine the finite sample performance of the Cramer-von Mises and the
Kolmogorov-Smirnov test (for simplicity, C, and K, respectively) for the case in which no
other explanatory variables are considered. We employ two Data Generating Processes under
the null hypothesis and several uncorrelated and correlated processes under the alternative.

The two MDS uncorrelated processes are a sequence of independent and identically
distributed (i.i.d.) N(0,1) variates and a GARCH(1,1) process, that is, y; = (,0; where
0 = w+ ay? | + Bo? |, and {(,} is a sequence of i.i.d. N(0, 1) random variables. We
have chosen three specifications. We employ w = 0.001 and the following combinations
for (o, 8) : (0.01,0.97), (0.09,0.89), and (0.09,0.90). These cases were employed in Lobato,
Nankervis and Savin (1999) to compare the finite sample properties of the Box-Pierce Q

statistic and Q*, a modified () statistic. Notice that the second and third GARCH models

have unbounded eight and sixth moment, respectively.
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The non-MDS processes are a nonlinear moving average (NLMA) process, a chaotic
process and a bilinear process. The NLMA process is given by v = (;,_1(;_2(C,_q + ¢, + 1)
where {(,} is as above. The chaotic process is given by y; = 4y;_1(1—y:_1) with gy, distributed
as a beta (1/2, 1/2). The bilinear process is given by y; = (, + 01(, 1ye—1 + b2(, 1Yi—o
where {(,} is as above. Two combinations for (b, bs) were chosen, (by,b2) = (0.15,0.05)
and (0.25,0.15). Notice that usual test procedures for uncorrelatedness, such as Box and
Pierce’s @, or Q* or the statistics proposed by Robinson (1991), Durlauf (1991), Anderson
(1993) or Hong (1996) have asymptotic no power against the NLMA model or the chaotic

process.
Table 1

Percentage of rejections at nominal 10%, 5% and 1% levels. The first DGP is an i.i.d N(0,1) se-
quence. The others are GARCH(1,1) processes. The sample size is 100. The number of replications
is 3000. The number of bootstrap replications is 500.

11D GARCHI GARCH2 GARCH3
p ¢, K, ¢ K, C, K, C, K,
10% 958 9.98 104 102 104 104 10.6 104
1 5% 4.74 508 4.80 570 517 583 508 550
1% 1.00 126 113 1.03 123 127 122 1.36
10% 101 103 11.2 120 112 113 111 114
2 5% 468 518 6.17 593 597 590 576 6.16
1% 134 112 137 1.33 1.37 1.60 120 1.32
10% 930 103 11.2 11.3 107 109 104 10.6
3 5% 462 522 560 6.10 533 583 504 5.26
1% 0.88 1.02 1.00 127 090 1.27 0.76 1.02

We consider three values for p = 1,2 and 3, one sample size n = 100 for the exper-
iments under the null hypothesis and three sample sizes n = 100, 500 and 1000 for the
experiments under the alternative. Notice that different values for p correspond to differ-
ent null hypotheses, and hence, the number p cannot be seen as a smoothing number. In
all replications 200 pre-sample data values were generated and discarded. The number of
Monte Carlo experiments is 3000 and the number of bootstrap replications is B = 500.
Random numbers were generated using the IMSL ggnml subroutine. Computations have

been carried out in Fortran 90. The code is available from the authors. In these finite
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sample exercises, as well as in the empirical application in the next section, we follow Mam-
men (1993) and Stute, Manteiga and Presedo (1998) and the employed sequence {W,} is
an i.i.d sequence of Bernoulli variates W where P(W = 0.5(1 — v/5)) = (1 + v/5)/2/5 and
P(W =0.5(1++/5)) = 1 — (14++/5)/21/5. Notice that the third moment of W is equal to 1,
and hence, this selection of {IW;} guarantees that the first three moments of the bootstrap
series coincide with the first three moments of the original series. In the previous references
it was shown that this particular choice of W leads to very accurate finite sample behavior.

In Tables 1 and 2 we report the empirical rejection probabilities (RP’s) associated with
three nominal levels 10%, 5% and 1%, for experiments under the null and the alternative,
respectively. Table 1 shows that for a sample size as small as 100 the empirical RP’s under
the null are very close to the nominal levels for all DGP’s considered. Notice that the
finite sample behavior is very similar in all GARCH cases suggesting that the proposed test
procedures are quite insensitive to thick tails. Notice also that, in most of the cases (28 out

of 36), the K, test rejects more often than the C,, test.

Table 2

Percentage of rejections at nominal 10%, 5% and 1% levels. The first DGP is a non-linear
moving average model, ¥, = (;_1(;_5((;_o + ¢, + 1) where {(,;} is an i.i.d N(0,1) sequence. The
second DGP is a chaotic process given by 1y, = 4yt_1(1 — yt_l) with yg distributed as a beta
(1/2,1/2). The sample sizes are 100, 500 and 1000. The number of replications is 3000. The

number of bootstrap replications is 500.

NLMA Chaotic

p/n 100 500 1000 100 500 1000
¢ K, ¢, K, (¢, K, ¢ K, (¢ K, C K
10% 278 279 683 73.5 91.5 931 100 100 100 100 100 100
1 5% 16.8 16.7 53.5 60.0 839 86.7 100 100 100 100 100 100
1% 4.60 4.50 28.8 359 53.1 64.7 100 100 100 100 100 100
10% 20.0 19.7 53.0 61.9 76.1 &87.3 96.5 90.2 100 100 100 100
2 5% 10.6 10.6 36.5 48.0 62.8 779 84.6 753 100 100 100 100
1% 2.70 290 157 25.1 30.0 52.5 46.2 422 100 100 100 100
10% 13.9 17.8 39.6 55.1 64.6 83.9 54.3 40.0 100 100 100 100
3 5% 6.30 9.67 24.4 40.7 46.1 74.3 35.8 248 100 99.9 100 100
1% 123 210 743 19.6 15.5 46.8 13.1 8.67 96.1 89.4 100 100
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Table 2 shows that typically we need at least sample sizes of about 500 in order to have
reasonable power against a wide range of alternatives. Notice, however, than in some cases,
such as the first bilinear process for the p = 3 case, n=500 is not big enough. Also note
that the empirical power always increases with n but decreases with p. In general, it can be
expected that no test will dominate others in the sense of having more empirical power for
all cases. In our experiments the K, test has typically more empirical power than the C,
test for the NLMA and the bilinear cases, while the C,, test has more empirical power than
the K, test for the chaotic process. Notice also that in the bilinear examples both tests are
comparable for the p = 1 case, but as p increases the K, test has more empirical power than
the C,, test.

Table 2 (continued)

Percentage of rejections at nominal 10%, 5% and 1% levels. The first DGP is a bilinear model,
Yo = C; + 0.15¢;_1y1—1 + 0.05(,_1y;—2, where {(,} is as above. The second DGP is a bilinear
model, y; = ¢, + 0.25¢,_ 1411 + 0.15¢,_1Y:—2, where {(,} is as above. The sample sizes are 100,
500 and 1000. The number of replications is 3000. The number of bootstrap replications is 500.

Bilinear 1 Bilinear 2

p/n 100 500 1000 100 500 1000
¢ K, C, K, (¢, K, C K, C, K, C K,
10% 18.0 187 722 66.2 97.4 94.7 409 424 99.5 99.1 100 100
1 5% 873 10.8 50.6 47.8 929 86.3 23.8 27.7 98.1 96.4 100 100
1% 197 262 18.0 208 56.0 529 7.11 105 824 82.0 99.5 99.6
10% 13.2 13.3 389 415 76.0 77.1 20.6 25.3 88.6 90.8 100 100
2 5% 6.93 6.87 20.8 26.4 57.3 625 10.7 15.3 70.7 819 99.3 99.9
1% 1.60 1.80 4.63 997 14.9 29.2 2.77 492 265 569 781 955
10% 11.0 13.0 26.9 32.1 556 65.1 17.3 21.1 73.0 82.1 987 99.3
3 5% 523 7.00 13.8 21.1 35.0 50.1 872 12,5 50.2 70.8 93.5 98.5
1% 123 1.83 3.33 820 7.27 21.0 2.03 3.76 16.0 47.6 54.5 90.2

6 Empirical Application

In this Section we examine whether the daily log price changes of the British pound in terms

of the U.S. dollar (BP/USD) follows a martingale difference sequence up to order p with
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respect to its own past. We consider three values for p = 1,2, and 3. This series has been
studied before in Hsieh (1989), Gallant, Hsieh and Tauchen (1991) and Bera and Higgins
(1997) among others. For the sample period 1974-1983, Hsieh (1989) and Gallant, Hsieh and
Tauchen (1991) found that GARCH models were not satisfactory. On the contrary, Bera
and Higgins preferred a GARCH model rather than a bilinear model for the period 1985-
1991. Recently, Brooks and Hinich (1999) have reported evidence (based on bicorrelations)
against the MDS property of exchange rate returns.

Results for the Cramer-von Mises and the Kolmogorov-Smirnov tests are reported in
Table 3 for both periods. Notice that, in order to facilitate interpretation, p-values are

reported. The number of bootstrap replications, B, is 500.
Table 3

p-values for the Cramer-von Mises (C}) and the Kolmogorov-Smirnov (K,) tests for daily
returns of the exchange rate of the British pound vs. the U.S. dollar. The first sample period is
from January 2nd, 1974 to December 31st, 1983. The second sample period covers from December

12th, 1985 to February 28th, 1991. The number of bootstrap replications is 500.

74-83 85-91
n 2557 1311
C; 0.014 0.322
K; 0.006 0.202
Cy 0.218 0.788
K, 0.024 0.508
Cs 0.594 0.842
K; 0.282 0.436

In the first column of Table 3 we report the results for the period January 2nd, 1974
to December 31st, 1993. For p = 1, there is strong evidence against the MDS hypothesis
what agrees with the results found by Hsieh (1989) and Gallant, Hsieh and Tauchen (1991).
Notice, however, that for p = 2 the Cramer-von Mises test does not reject the MDS hypoth-
esis (although the Kolmogorov-Smirnov rejects), while both test do not reject for p = 3,
indicating that a sensible model for this data should be a MDS process of order 3 (at least)
with respect to its past and not necessarily a MDS process of order 1 with respect to its

past.
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In the second column of Table 3 we consider the data from December 12th, 1985 to
February 28th, 1991. For this sample, Bera and Higgins considered two alternative models:
a GARCH(1,1) model (an example of a MDS) and a bilinear model (an example of a non-
MDS). Bera and Higgins computed formal tests to discriminate between both models such as
Cox (1961) and Vuong (1989) tests and also compared the two models using some measures of
out-of-sample predictive ability. They found that the general evidence favored the GARCH
(1,1) model in detriment of the bilinear model. The results in the second column of Table 3
agree with this result: for the sample period 1985-1991, the null hypotheses that the process

is a MDS of order p cannot be rejected for any of the considered values of p.

7 Conclusions and Further Research

In this paper we have analyzed consistent tests for the MDS assumption. Contrary to the
commonly employed procedures, the proposed tests are able to detect failures of the MDS
assumption for uncorrelated processes. In fact, our methods lead to consistent tests, that
is, whenever the DGP does not follow a martingale difference of orders }3, the tests will
have asymptotic unit power. Since the asymptotic distribution of the test statistics are not
standard and, in fact, they depend on the specific data generating process, we could either
transform the test statistics to find ones whose asymptotic distributions were pivotal or
use the bootstrap to estimate the asymptotic distributions. The transformation proposed
by Koul and Stute (1999) is not valid for our case; alternative transformations, such as
the one proposed by Ming (1999) present several problems such as requiring conditional
homoskedasticity or demanding the selection of a user-chosen smoothing number. Hence,
we have proposed (and justified theoretically) to implement the test using a modification
of the wild bootstrap procedure. We have also shown that the proposed test is very simple
to use in practice and performs remarkably well in finite samples. Finally, we have applied
the proposed tests to the British pound vs. the U.S. dollar exchange rate for two different
periods and found, in general, evidence in favor of the MDS hypotheses. Of course, more
exhaustive studies for this and for other currencies are needed.

We finish this section with some suggestions on further research. First, in this paper
we have considered the case of testing that a process is a martingale difference sequence
of orders P. However, the martingale hypothesis is typically stated involving an infinite
number of lags. Analyzing this case is a challenging problem. De Jong (1996) presents a
consistent test (that belongs to the first type of integrated tests described in Section 2) for
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this hypothesis. His Monte Carlo results indicate that his test has very low power except
for extreme cases. In fact, we have applied his test to the examples in Section 5 and we
have found that his test has no power for the considered cases. Our tests could be extended
to cover the p = oo case but evidence in Table 2 suggests that the test may also present a
finite sample power problem.

Second, in this paper we have employed the wild bootstrap, but alternative bootstrap
procedures, such as the naive bootstrap or some blocking bootstrap, could have been em-
ployed. For instance, in the simplest case where the information set only contains lagged
values of the relevant process, the naive bootstrap is based on resampling with replace-
ment from {r;} = {(ys, Yt 1, Y1)} for t = 1,...,n, to obtain {r} = (r{y,....,17 1),

t =1,...,n}, so that the test statistics are based on
S T ~
VAR (F) = ==Y &(7) — ViR, (7)
4=

where &£ (T) = (rfy —1)I(rfy < 71,0, 1f 0 < 7p) and 75 =n~1 371 rf ). Another alterna-
tive bootstrap procedure is to generate the bootstrap series using some blocking bootstrap
scheme, such as moving blocks bootstrap.

Third, in this paper we have considered testing that the conditional mean is constant,

but the more general null hypothesis

Elp(yi, %, p/% p)] = 0

where 1) is a given function, could be tested using similar procedures to the ones considered

here (for instance, testing for conditional homoskedasticity).
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Appendix

Proof of Theorem 1

We need to show that the finite dimensional distributions of the process \/nR, (T)
are asymptotically normal with the appropriate covariance matrix and that the process
VnR, (T) is tight. Both conditions hold in this multidimensional context using procedures
similar to those in Koul and Stute (1999). In this appendix K denotes some generic positive
finite constant.

Convergence of finite-dimensional distributions refers to the weak convergence of vectors
of the form (v/nR, (T1), /nR, (T2),....v/nR,, (1)), for arbitrary £ € N and 7; € R, i
1,2,..., k. This result can be obtained using the Corollary 3.1 in Hall and Heyde (1980).

In order to prove tightness, some definitions are required. Let {Wn (Z) teRP, n=1,2, }

be a sequence of stochastic processes on some set D. Then, {Wn (E)} is tight if and only if
for any ¢ > 0 there exists a compact set K C D such that

sup Pr (Wn (i) € K) >1-0. (12)

Let D, = (34,¢1] = xI_ (s, tt], and Dy = (32,1?] = xL_,(s?,t2] be two intervals of RY.
Then, Dy and D, are neighbor intervals if and only if for some j € {1,2,..., P}, (s},t;] #
(s7,t7] and Xpzj(sp, th] = Xpz;(s3, t], that is, if and only if they are next to each other and
share the j-th face. Each stochastic process indexed by a parameter in RY has associated a

process indexed by the intervals that is defined as
Wa(Dy) = 30 30 (1) 20 W (5] +ea(t] = 1), o sh o eplth — )
e1=0 ep=0

In this proof we verify Chentsov s criterion that is a sufficient condition for (12), see Billings-
ley (1968) and Koul and Stute (1999).

In our case,

The second term is tight since F'(co,T) is continuous. The first term has associated the

following process indexed by the intervals



where I; (D;) = I (zf € Dj>. For instance, in the P = 2 case, I, (D;) = L(t],t}) —
I,(s),t}) — I,(t], 83) + I1(s],s}). Then

E((\/ﬁRn(Dl )2( )2>

- niE{ SON i (D) fend (D) [l (D) [vaDz)]}-

=1 u=1 v=1

Using that ¢, is a centered MDS, the non-zero terms are those such that the greater subindex
appears at least twice. Moreover, notice that when a subindex appears three times, the

corresponding term is zero using that D; and D, are disjoint sets. Therefore,

n

E (VAR (D))" (VAR (D2)*) = niE S [ (Dy)] (Z e <D2)]>

t=1

n

+%E > [€/L(Dy)] (i [esLs (Dl)]>

t=1

Under the assumptions of the Theorem, these expectations exist. Note that both terms are

2
analyzed similarly since the only difference is the index set D;. Using that (Zézl ai> <
l Z _, a?, the first term is bounded by

ZE{Z i1, (Dy)] [l Lis (Dg)]} (13)

t=1

First, consider any term in (13). For any s = 1, ..., P, using the law of iterated expectations,
and defining ), = lims 7z, 5 (where P — oo means that all the coordinates of P tend to

infinity)

E{[e{L, (D)) [ef_1i—s (D2)]} = E{[0* (1) I, (D1)] [e}_sLi—s (D5)] }
= E{E[0* (1)L, (D1) el Ji—s (Do) | Q-] } . (15)

Note that I (D) may depend on two types of variables, namely = {Y-1, e, Yt—s, T11s
T1t—15 0y L1 t—s+15 -y TK 1) TK t— 1,-- th s+1} and% ) — {yt s— 1,- ,yt p,l”lt sy vy L1 t—pyry ey
TK t—sy s LK t—pg }- NOtiCE that 22 1S Qs measurable while 71V 1S affected by the integra-
tion of the inside conditional expectatlon Let fs (€] Q4 _s) be the density of condltlonal

on ;_s. Now, arrange the interval D; in some way according with the decomp031t10n of
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Z, p into Eﬁ% and Eﬁ%, and call Dgl) and D?) to those subsets. Then, equation (15) can be

rewritten as
- F { U o* (&) 1€ € DY, 775 € DY)(e, - p?*f (€| w] I (D) dé}

where e (=y;_s) is the s-th coordinate of €. Using Fubini “s theorem and Holder s inequality,

the last expression is bounded by

/D B (@) TGS € D) (ew — 02 (B] Q) Tou (D)) dE

9~ ~2) ) 20 (> e Y 5/(1+8)
< /(D (E [o* (&) I(2,5 € Dy7)(es — ) f (€] Qt—s)} ) de- (El,_s (Dy))
D1 ’

< iy (D1 U Dy) [y (D1 U D))/

with 0 <6 <1,
1/(1+9)

<E o @) 13 € D) (es — ) f (7] Q)] ) *

t,P

py,s (D1 U Dy) = /

p{MupfH
and

ty (D1 UDy) =EI; (DU D) .
Second, consider (14). Applying the Law of Iterated expectation, for any t,

t—P—-1 t—P—-1

Eq [e{1.(D1)] ( > el (Dz)]> =E40* (1)L (D) ( > lesds (D2)]>

s=1 s=1

—1

- F / o? (&,Q-_p1) f(E|Q_p) dg(_z

s=1

[65]8 <D2>]>

Using Fubini’s theorem and Holder’s inequality, the last expression is bounded by

47 1/2

[5515 <D2>]> : (16)

/Dl {E{[02 ()" f* (5| QtPL]S)}}l/Q . (t_zpjl

s=1

Now, notice that the integral is bounded by p53 (D U D), where

{E { (02 % p 1)) f (5 | QHLLIS) } }1/2 de.

In addition, using that 515 (Ds) is a MDS, and applying Burkholder’s inequality, the ex-

piz (Dy U Do) :/

D1UDoy

pression in brackets in (16) is bounded by
t—P—1
we (%

s=1

2, m) <K(t- P10 (D)
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S K(t—P— 1) (D UDy).
where j1, (D; U Dy) = E [e31, (D1 U Dy)] . Hence,

B (ViR (D))" (VaR, (D))

IN

2
2
s=1 t=1

2n.P 2
< — 5 (DU D) [py (D1 U D,)" + 2 > nfpy (D1 U Dy)] (g (Dy U D))"
t=1

< K |1y (D1 U D) [y (D3 U D))" + a5 (DL U D) (1 (D3 U D))

where y; (Dy U Dy) =320 py,5 (D1 U Dy) . Equation (17) is a Chentsov ‘s inequality in the
multidimensional case and the proof of tightness is finished.

Proof of Theorem 2

Using a Uniform Strong Law of Large numbers for stationary ergodic sequences as in
Koul and Stute (1999)

R,(7) = E (& [LF]) + 0 (n"Y?), as.

Under Hy, there exists a 7 C R such that E (g, [[,(7)]) # 0 for 7 € 7 with Pr (%;715 € ’T) >
0. Therefore, for 7 € 7, R, (T) = R(T), and, hence, \/nR, (T) diverges to infinity almost
surely.

Proof of Theorem 3

VAR () = 2= > - <j’“"§> ) - =3 <jt§) e

and defining v, =y, — u — n"/%g (%,ﬁ) )

VARW(D) = = > (A= = > (Y ) - <jt’§) )1L(7)
= % ivtft(?) + (% ig (Zgﬁ) It(?))
_% ;It(?)% ;vs - %;It(?)% ;9 (515)
_ % tzn; iy(F) + % tzn;g (2.5) @ )

_ % ivtwt(?) + % ig (z““;> wy () + o(1) as..

22

n () t1,s (D U Do) [y (Dy U D) 3 7 (¢ = P = 1) [p15 (D1 U Dy)] (g (D1 U D,))"?)

(17)



Apply the functional Central Limit Theorem and the Strong Law of Large Numbers for
ergodic and stationary processes as in Koul and Stute (1999) to the first and second term
of the last expression respectively and the result follows.

Proof of Theorem 4

We need to show that the finite dimensional distributions of the process \/nR} (T) are
asymptotically normal and that the process /nR? (T) is tight, conditionally on the sample.

First, define for any & € N and any \; € R¥ such that || A]| = 1, L}, = Z?Zl MNivnRE (T;) =
n V2 S0 WiEt, where @y = By(F1, ..., Tr, A) = S5y Ay (7). Alsocall 3° = n ' S 87
and o> = E(6%). Then rewrite L’ as L = E?:lﬂ/t(\/ﬁ&)_lafu\{a\ = I*0 where [* =
S Cry with ¢, = W, (v/n6) ' ,. Now, using standard bootstrap notation, call E*
and V* to the expectation and the variance taken given the sample. Then, E*(I*) =
S (Vo) B @ E(W,) = 0, while VF(I*) = S (o) 2 G@,)? V(W) = 1. In addi-
tion, ¢, and (), are independent conditionally on the sample &;,, since W; is independent
of W, for t # s. Finally, using that W;, w, and ¢ are bounded and & is bounded away from
zero almost surely,

(£

*2 * K - A~ ~ y
DB Gl (Gl > 8) < = Y&l > §'vh) as.
t=1

=1
for some positive constants § and §’. This last expression converges almost surely to zero as
in Stute, Manteiga and Presedo (1998). Hence, the triangular array {(,} satisfies the con-
ditions of the central limit theorem of Lindeberg-Feller, conditionally on almost all samples,
so that I* =, N(0,1) a.s., and consequently, using a Strong Law of Large numbers for 52,
Ly =, N(0,0%) a.s..

Second, we prove that under either the null hypothesis (1) or under the alternative
hypothesis (2) or under the sequence of alternative hypotheses (11), v/nR% (T) is tight in

D[R]¥. In this case, we can express the process indexed by the intervals as
* 1 - -~
ViR, (D) = Tn > [ w (D)) W,
=1

where, for t = 1,...,n, and for j = 1,2, we define w; (D;) =1 (%;715 € D]-) —Pr, (%;715 € D]-),
and Pr, (%;7]; € Dj> = n'#{Z,p € D;}. For instance, for the p = 2 case, w; (D;)=

(@t(t{, t)) — wy(s], 1)) — W, (t], s3) + Wy(s7, sg>). Then
B ((VaRy, (D))" (VaR;, (D2))°) (18)
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n n

= % Z Z Z Z [Exwe (D1)] [Esws (D1)] [Euwa (D2)] [Eswy (Da)] E* (W, W, W, W)

t=1 s=1 u=1 v=1
n

_ 1 Za?@iE* (W2W2) (wi(D1)w?(Ds) + 2wy(Dy)wy(Da)ws( Dy )ws(D2))

2
n
t=1 s=1

since the expected value of the rest of the terms is zero (notice that E* {W,W,W, W, } = 0 for
all values of t, s, u,v except when two pairs with the same subindex appear). Furthermore,

since 0 < w?(D;) < |w(Dy)|, for j = 1,2, expression (18) is bounded above by

(%i@?mwl ) ( Z w,(D2) )

( Z 22 (D)) [un(Dy)] ) ( Z wn(Dy) |w5<Dz>|>
(% zn:g? <It(D1) + Pry, (%715 € Dl))) (% Zgi <IS(D2> +Pr, (”55715 € Dg)))

IN

Z [lws(D1) |+|ws(Dz)l]>

N —
VR
| —
3
Kyt
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S
+
g
S
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v
VR
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~
S
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S
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+
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3
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m
S
C
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IN

2
1< -
3 (EZef [It(Dl UD,)+Pr, (zu; € DU DQ)D

t=1

2% 3 [E (e3L(Dy U Dy)) + Pr (El’ﬁ € Do DQH 2‘

This is a Chenstov s inequality in the multidimensional case and the proof of tightness
is finished.
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