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Abstract

We formalize the notion of coalition measure as a primitive of so-
cial choice with a countably infinite number of agents. An example
would be a dynamic setting with an infinite horizon, where it may
be convenient to consider separately each individual’s preferences at
every moment of time. In this setting, there are some “equal size”
coalitions that a social choice rule should treat in the same manner.
We therefore introduce a new property of equal treatment with respect
to a coalition size measure and explore its interaction with other com-
mon axioms of social choice. We observe that, provided the measure
space is sufficiently rich in coalitions of the same measure, the new
axiom can play a role similar to that of anonymity.

1 Introduction

It has long been known that social choice problems with a countably infi-

nite number of agents differ in significant ways from their finite-agent ana-

logues. Thus, for instance, countably large societies admit social choice rules

satisfying the standard Arrovian axioms of efficiency, independence, non-

dictatorship and transitivity (see, for instance, Fishburn [9], Kirman and

Sondermann [11], Hansson [10], or Chichilnisky [7]). These Arrovian rules
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involve, in the words of Kirman and Sondermann [11], “invisible dictators:”

collections of decisive coalitions that recede into infinity so that no particular

individual has to be a member of every decisive coalition.

Armstrong [2] extended the earlier results to societies where the set of

admissible coalitions is restricted to be an algebra, with the implied measur-

ability restriction on the social choice rules. He also introduced the measure

of coalition size with a two-fold objective of describing the size of decisive

coalitions and of defining the notion of a “negligible” coalition.

Surprisingly, it seems that no attempt has been made to tie the measure

of coalition size with the idea of equal treatment. Instead, Mihara [13] has

recently extended the usual notion of anonymity from a finite-agent to the

infinite-agent set up. This anonymity axiom states that a social choice rule

should be insensitive to permutations of the agent space. Mihara [13] found

that, subject to a simple richness condition on the algebra of admissible

coalitions, any measurable Arrovian rule must treat differently coalitions of

the same cardinality and thus violates anonymity.

However, whenever the set of agents is endowed with a measure-space

structure, there seems to be no particular reason why a cardinality-based

equal-treatment notion such as anonymity should be the relevant one. In

fact, in certain applications it may be rather hard to justify, since it would

require equal treatment of intuitively very different coalitions such as those

including, respectively, every second and every thousandth agent. A number

of restrictions on agent permutations allowed in the definition of anonymity

have therefore been proposed. One of these, which seems to avoid the coun-

terintuitive implications mentioned above, has been proposed by Lauwers

[12]. This is bounded anonymity, which can be viewed as requiring admis-

sible permutations to be measure-preserving for a particular (“frequency”)

measure on the set of agents (even though he never explicitly introduces a

measure space for the case when there are countably many agents).

We study the consequences of explicitly incorporating the notion of the

coalition measure size into the model and requiring equal-treatment of coali-

tions of equal measure. It turns out that, subject, once again, to a rich-

ness condition on the equal-measure coalition classes, imposing such equal

treatment results in restoration of Arrow’s impossibility. We then relax the

requirement of transitivity by dropping the requirement of transitivity of
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social indifference, which is known to allow a broader class of social choice

rules. Indeed we show that with this adjustment our equal treatment axiom

is consistent with the rest. One rule satisfying this set of axioms is what we

call consensus : a rule which takes as decisive the full-measure coalitions. We

proceed to provide a complete axiomatic characterization of this rule.

The rest of this paper is organized as follows. In section 2 we introduce

the standard model of measurable social choice. In section 3 we discuss the

notion of coalition size. In section 4 we define the notion of anonymity with

respect to a measure and proceed to study the consequences of imposing

it in the place of the standard cardinality-based notion. Section 5 contains

conclusions and possible extenssions.

2 Measurable Social Choice

We define a social choice model with an algebra of admissible coalitions

following Armstrong [2].

Let N = {1, 2, 3, . . .} be a countable set of individuals (voters), indexed

by the natural numbers. A coalition is any subset L ⊂ N . An algebra is

any class of coalitions L ⊂ 2N such that it contains N itself and it is closed

under the formation of complements and finite unions (or, equivalently, finite

intersections). The pair (N,L) is a coalition measurable space.

An algebra is to be understood as a collection of admissible coalitions that

satisfies some minimum requirements: the union of two admissible coalitions

should itself be admissible, and the complement of an admissible coalition

should also be admissible. The admissibility restriction may arise from the

nature of the economic model at hand; alternatively it could be viewed as

coming from observability or computability constraints facing the social plan-

ner as in [14].

Let X be a set of alternatives, which has at least three elements. For

simplicity, we assume throughout that X is finite and, as usual, has at least

three elements. Each individual possesses a weak order (i.e., a reflexive,

complete, and transitive binary relation) on X. We let Ri denote the order

for i ∈ N ; the relation Ri represents individual i’s weak preference. We let Pi

denote the asymmetric part of Ri and we let Ii denote the symmetric part;

the relations Pi and Ii represent, respectively, individual i’s strict preference
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and indifference. A preference profile is then a list of weak orders ρ = (Ri)i∈N

describing the preferences of all individuals. A profile ρ is L-measurable if

for all x, y ∈ X, the coalitions {i : xPiy} and {i : yPix} belong to L. Finally,

denote by R the set of all weak orders on X, denote by RN
L the set of all

L-measurable profiles, and denote by B the set of all reflexive and complete

binary relations on X.

Definition 1 A L-measurable preference aggregation rule is a map

f : RN
L → B.

A measurable preference aggregation rule assigns to every measurable

profile a reflexive and complete binary relation, the social preference R =

f(ρ). We denote by P and I, respectively, the asymmetric and the symmetric

part of the social preference R.

A L-measurable coalition L is decisive under a L-measurable rule f if

∀i ∈ L, xPiy ⇒ xPy

for all directed pairs x, y ∈ X for all measurable profiles. Given the set of de-

cisive coalitions Df associated to f , we can define the preference aggregation

rule fD as

xPy ⇐⇒ [∃L ∈ Df : ∀i ∈ L, xPiy]

for all directed pairs x, y ∈ X for all measurable profiles. We say that f is a

simple rule if f = fD.

We next consider coalition measurable spaces that are fine enough to ad-

mit all preference profiles of interest in some examples of countable societies.

2.1 A few examples

Consider the algebra Lc which is composed of all finite (including the empty

set) and cofinite subsets of N . In many ways this is the “smallest” algebra

of interest to us. In particularly, this is the coarsest algebra that admits all

the singleton coalitions. We call (N,Lc) the cofinite measurable space.

An extension of a measurable space (N,L) is any measurable space (N,L′)
such that L′ ⊃ L. The following examples are suggestive of a way to extend

(N,Lc).
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Example 1 (Mihara) Consider a society composed of finitely many people,

where there is uncertainty expresses as a countable number of states of the

world. Let index the people by j = 1, . . . , n and the states by s = 1, 2, . . .; we

can let the preferences of person j in state s be represented by an individual

i = js.

Example 2 Consider a society composed of finitely many dynasties, which

we index by j = 1, . . . , n; at each period s = 1, 2, . . . each dynasty is repre-

sented by one individual. We can name an individual belonging to dynasty

j and living in period s by i = js.

In the first example, it seems natural to consider as admissible coalitions

the sets {i ∈ N : i = js, s = 1, 2, . . .} for j = 1, . . . , n, representing the

person j in all states of the world (the n-period sets), and the sets {i ∈ N :

(s − 1)n < i ≤ sn} for s = 1, 2, . . . (finite sets) representing all the people

in a particular state. Similarly, in the second example, it seems natural to

consider as admissible coalitions the sets including all members of a dynasty

as well as the sets including all individuals living at a given period. Note that

an algebra containing both types of sets will include also all the coalitions

consisting of a single individual, and hence all finite and cofinite coalitions.

We shall denote this n−period coalition algebra as Lp,n.

We may also wish to consider a coalition algebra that recognizes all ad-

missible coalitions for a society such as that in example 1 or in example 2 for

arbitrary n. The coarsest such algebra admits all finite unions of n-period

sets, which we refer to as purely periodic sets, as well as all unions and dif-

ferences of a purely periodic and a finite set. We denote this algebra by Lp,

and refer to Lp-coalitions as periodic sets.

Other coalition algebras may be of interest as well. Of course, the finest

such algebra is the power set 2N of N .

2.2 Measurable Preference Aggregation

The following are some desirable criteria an aggregation rule might satisfy:

Definition 2 A L-measurable preference aggregation rule f is
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(P1) weakly Paretian if, for every ρ ∈ RN
L and for any x, y ∈ X,

[{i ∈ N : xPiy} = N ] ⇒ xPy.

(P2) independent of irrelevant alternatives if for every ρ, ρ′ ∈ RN
L and for

any x, y ∈ X,

[ρ|{x,y} = ρ′|{x,y}] ⇒ [f(ρ)|{x,y} = f(ρ′)|{x,y}],

where ρ|S represents the restriction of ρ to the set S.

(P3) nondictatorial if there does not exist i ∈ N such that xPiy implies xPy

for every ρ ∈ RN
L and for any x, y ∈ X.

(P4) transitive if for every ρ ∈ RN
L and for all x, y, z ∈ X,

xRy & yRz ⇒ xRz.

Arrow’s [4] impossibility theorem shows that, with a finite number of

individuals, there is no preference aggregation function satisfying properties

(P1) to (P4). Fishburn [9], Kirman and Sondermann [11] and others have

shown that, in fact, such functions are possible once an infinite set of voters

is considered. Armstrong [2] extended this result to coalition measurable

spaces. Our first result is a corollary of Proposition 3.2 in Armstrong [2].

For any extension of the cofinite measurable space (including (N,Lc)

itself) define a social choice rule σc by

xPy ⇐⇒ [{i ∈ N : xPiy} is a cofinite set]

for all directed pairs x, y ∈ X. That is, σc is the simple rule with the cofinite

sets as decisive coalitions. We say that a rule f is an extension of σc if

Df ⊃ {L ∈ 2N : L is cofinite}.

Proposition 1 For any extension (N,L) of the cofinite measurable space,

there exists at least one L-measurable rule satisfying (P1) to (P4); any such

rule is an extension of σc.
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Proof It follows immediately from Armstrong’s [2] proposition 3.2 (as am-

mended in [3]) that for every free ultrafilter U of measurable coalitions there

exists a measurable social choice rule satisfying (P1)-(P4) such that all coali-

tions in U are decisive, and viceversa, for every measurable social choice rule

satisfying (P1)-(P4) the set of decisive coalitions is a free ultrafilter. (For the

definitions of filter, ultrafilter, and free filter see, e.g. Aliprantis and Bor-

der [1].) It is easy to see that in every extension of the cofinite measurable

space the set of cofinite coalitions is a free filter. By an application of Zorn’s

lemma ([1], p. 32), there exists a free ultrafilter of measurable coalitions that

contains the set of cofinite coalitions. Now suppose there exists a measurable

social choice rule f satisfying (P1)-(P4), and a cofinite coalition Lc ∈ L that

is not decisive under f . Then its complement Lc
c ∈ U is a finite decisive

coalition under f . But (P3) implies that no individual is in every decisive

coalition. That is, for every x ∈ Lc
c there exists a Lx ∈ U such that x /∈ Lx.

Hence, there exists a finite intersection of elements of U with an empty in-

tersection, which contradicts the definition of an ultrafilter. 2

In general, explicitly constructing such Arrovian rules may be rather diffi-

cult (see [15]). When the coalition algebra L is sufficiently restricted this may

be much easier. Thus, consider a society of two infinitely-lived dynasties. As

discussed above a natural algebra of admissible coalitions for such a society

could be Lp,2. The one-dynasty coalitions in this setting are represented by

the sets of even and odd numbers, respectively. The only other admissible

infinite purely periodic coalition here is N . All other admissible coalitions

are eventually periodic with period 2. A measurable preference-aggregation

rule satisfying all the four properties can be defined as follows:

xPy ⇐⇒ [{j ∈ N : xP2jy} is a cofinite set]

for all directed pairs x, y ∈ X. In words, this rule says that an alternative is

preferred to another if and only if all but finitely many members of the second

coalition agree. It is obvious that all cofinite coalitions are decisive (notice,

however, that σc itself is not Arrovian, since it would violate transitivity).

A striking feature of the above example is that the social choice rule

discriminates among dynasties: The “evens” eventually rule. In fact, as we
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show below, this has to be generally the case for rules satisfying rule satisfying

(P1) to (P4). This seems to violate some notion of “equal treatment” of what

should be “equals.” To formalize this idea, however, we need to introduce a

notion of coalition size.

3 Coalition Size

In a finite world, a coalition’s size is easy to define as its cardinality. This is

the idea behind the standard anonymity axiom in social choice, which says

that a social choice rule should be invariant under the agents’ permutations.

Mihara [13] has shown that, subject to a richness condition on the algebra

of admissible coalitions, invariance under permutations of agents is inconsis-

tent with (P1) - (P4). Unfortunately, in an infinite society such axiom may

be hard to justify. Consider for instance the “dynastic society” example. It

is straightforward to show that if the number of dynasties n is larger than

2, there exists a permutation of the agent space that transforms a single dy-

nasty into its union with another dynasty. It seems rather hard to insist on

equal treatment of such clearly different coalitions.

We could, of course, recall that our dynastic society is endowed with an

additional L−measurability structure. A natural question to ask is, there-

fore, if it alone can help resolve this problem. Unfortunately, referring to the

example above, it is possible to construct periodically measurable permuta-

tions that change the period of a coalition. To sum up, while cardinality-

based anonymity notions are undoubtedly of interest, in order to discuss

coalition size in important applications they may be inadequate. We there-

fore proceed to define explicitly coalition size as its measure, and to study

the consequences of requiring equal treatment of equal measure (rather than

equal cardinality) coalitions.

3.1 Coalition Measure Spaces

Definition 3 Given a coalition measurable space (N,L), a set function µ

on the algebra L is a (finitely-additive) probability measure if:

(i) µ(L) ∈ [0, 1] for L ∈ L;
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(ii) µ(∅) = 0 and µ(N) = 1;

(iii) If L1, . . . , Ln are disjoint L-coalitions, then

µ

(
n⋃

k=1

Lk

)
=

n∑
k=1

µ(Lk).

The triple (N,L, µ) is a coalition measure space. An extension of a mea-

sure space (N,L, µ) is any measure space (N,L′, µ′) such that L′ ⊃ L and

µ′(L) = µ(L) for every L ∈ L.

Example 3 On the cofinite measurable space (N,Lc) we may define a mea-

sure µc by

µc (L) =

{
0 if L is finite
1 if L is cofinite

(note that this is the only probability measure that assigns equal weight to

all singleton coalitions in the cofinite measurable space).

Example 4 Extending the cofinite measure space, consider the n-period

coalition measurable space (N,Lp,n). Treating all n−period coalitions as

having equal size implies the following probability measure on Lp,n:

µp,n (L) = lim
k↑∞

1

k
# [m ∈ L : 1 < m ≤ k] .

This measure assigns 0 to every finite set, 1
n

to every n-period set, and

1 to every cofinite set. We refer to (N,Lp,n, µp,n) as the n-period measure

space.

Example 5 Consider the periodic measurable space (N,Lp). Extending µp,n

leads to the following measure defined on Lp:

µp(L) = lim
k↑∞

1

k
#[m ∈ L : 1 < m ≤ k].
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Like µp,n, the measure µp is not countably additive. Consider the follow-

ing example. Let L1 be the periodic set containing all individuals named with

odd natural numbers. For each n ≥ 2 , define Ln = L1\{k ∈ N : 1 ≤ k ≤ n}.
Then ∀n, Ln+1 ⊂ Ln. Now Ln ↓ ∅, since, given any k ∈ N, n > k ⇒ k 6∈ Ln.

But µp(Ln) → 1/2, since for all n, µp(An) = 1/2. The reason why µp is not

countably additive is that µp is very different from the regular probability

measures on complete metric spaces. All such probability measures are tight,

that is, most of their mass is concentrated on a finite or a compact set. On

the other hand, as our previous example illustrates, the value of µp is inde-

pendent of what happens in any finite set, that is, µp concentrates most of

its mass “at infinity.”

We refer to (N,Lp, µp) as the periodic measure space. Obviously, the

periodic measure space is an extension of every n -period measure space.

Billingsley ([6], p. 577) contains an example showing that (N,Lp, µp) cannot

be uniquely extended to include all sets such that µp is well-defined.

Going back to our original examples, the periodic measures are not the

only ones of interest. For instance, in example 1, there may be an available

(countably additive) probability measure π(·) over states; we may use it to

construct a probability measure over Lp,n that assigns measure 1/n to every

n-period set, and measure π(s)/n to every individual i = js. Similarly,

in example 2, we may wish to “discount” the welfare of future generations

according to a discount factor β ∈ (0, 1); in this case, we can construct a

probability measure over Lp,n that assigns measure 1/n to every n-period

set, and measure βs−1/(n(1 − β)) to every individual i = js. In example 1,

we may think of the periodic measure space as appropriate for social choice

“under a veil of ignorance” with respect to the likelihood of different states.

In example 2, we may think of the periodic measure space as appropriate from

a normative perspective if discounting of future generations is disallowed.

Unlike the examples two and three, the last one admits atoms – in fact,

it is purely atomic. Other reasons to allow atoms include making explicit the

idea that some individuals (we could call them “politicians”) may have a non-

negligible weight even in a large society, whereas others may be negligible

on their own. Alternatively, atoms may arise if we want to accommodate

political organizations as “indivisible” coalitions, while also allowing for the

presence of unorganized agents.
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4 Measures and anonymity

Once the appropriate measure of coalition size is adopted we want to explore

consequences of adopting the corresponding equal treatment notion.

Definition 4 Given a measure space (N,L, µ), a L-measurable preference

aggregation rule f is

(P6) µ-anonimous if for every ρ, ρ′ ∈ RN
L ,

∀R̂ ∈ R, µ({i ∈ N : Ri = R̂}) = µ({i ∈ N : R′
i = R̂})

implies f(ρ) = f(ρ′).

This requirement has no “bite” unless the equal-measure coalition classes

are sufficiently large. The following example is particularly nasty in that

there are no two equal-measure coalitions:

Example 6 The measure space
(
N, 2N , µβ

)
where µβ (A) = 1

1−β

∑
i∈A βi for

any 0 < β < 1
2
.

This and similar examples can be avoived if a richness condition on coali-

tion algebras is satisfied.

Assumption R1 For every free ultrafilter U on the coalition algebra L
there is a coalition A ∈ U such that there exists a coalition B ∈ L \ U with

µ(A) = µ(B).

Theorem 1 There is no measurable rule satisfying (P1), (P2), (P4), and

(P6) if and only if assumption (R1) holds.

Proof This proof is similar to the one Mihara [13] provides for a cardinality-

based anonymity axiom. Suppose first that there is a social choice rule f

satisfying (P1), (P2), (P4) and (P6). ¿From (P1), (P2) and (P4), the set of

decisive coalitions is an ultrafilter U . (This result holds generally, regarldess

of whether the society is finite or infinite; see e.g. [5], p. 47.) If (R1) holds,

there exist A ∈ U and B ∈ L\U such that µ (A) = µ (B) . If A ∩ B =
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∅, compare the outcomes of the preference profile ρ with {i : xPiy} = A

and {i : yPix} = Ac and the preference profile ρ′ with {i : xPiy} = B and

{i : yPix} = Bc for some x, y ∈ X (and complete indifference elsewhere).

Since, by (P6), f (ρ) = f (ρ′) it follows that both A and B are members of

U , a contradiction. If A ∩ B 6= ∅, consider the complement of B. Since U is

an ultrafilter, Bc ∈ U . Therefore, Bc ∩ A ∈ U while Ac ∩ B /∈ U (otherwise

B ∈ U). Since (Bc ∩ A) ∩ (Ac ∩B) = ∅ and µ (Bc ∩ A) = µ (Ac ∩B) the

result follows.

Now suppose that there is a free ultrafilter U that violates assumption

(R1). The simple rule whose decisive coalitions are all members of U satis-

fies (P1), (P2), and (P4) (see proposition 3.1 in [2]), while (P6) is trivially

satisfied. 2

A corollary of this result is that for any extension of (N,Ln,p, µn,p) with

n ≥ 2 there is no measurable rule satisfying (P1), (P2), (P4), and (P6). More

generally, there is no measurable rule satisfying (P1), (P2), (P4), and (P6)

in every measure space in which there is a partition of the set of agents in

equal-measure coalitions.

Transitivity, however, may be a rather strong requirement. We next ex-

plore the possiblity of dropping transitivity and strengthening independence

or irrelevant alternatives and weak Paretianism to, respectively, neutrality

and monotonicity.

Definition 5 A L-measurable preference aggregation rule f is

(P7) neutral if, for all ρ, ρ′ ∈ RN
L and all x, y, a, b ∈ X,

[ρ|{x,y} = ρ′|{a,b}] ⇒ [f(ρ)|{x,y} = f(ρ′)|{a,b}].

(P8) monotonic if for all ρ, ρ′ ∈ RN
L and all x, y ∈ X,

[{i : xPiy} ⊂ {i : xP ′
iy} , {i : xRiy} ⊂ {i : xR′

iy} and xPy] imply xP ′y.

For the finite case it is known that a class of aggregation rules defined

by (cardinality-based) anonymity, neutrality and monotonicity involves dis-

regarding all information other than the head-count of members agreeing in

their rankings. These are called counting rules (see e.g. [5]). In the infinite-

agent case we can analogously define measuring rules as follows:
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Definition 6 An L-measurable preference aggregation rule f is a (proper)

measuring rule if and only if there exist a non-empty collection of ordered

pairs of decisive numbers
{
(p, a) ∈ R2

+ : p + a ≤ 1; p > a
}

such that xPy if

and only if µ ({i : xPiy}) ≥ p and µ ({i : yPix}) ≤ a.

(The non-emptyness requirement in the definition is to avoid the consid-

ering the case when the social preference is always full indifference. Such a

rule would be neutral, anonymous and monotonic, but not weakly Paretian.)

In general, we require assumptions on µ to ensure that µ− anonymity, neu-

trality and monotonicity characterize measuring rules. The reason for this

is that if a measure has atoms it may be possible to find coalitions that can

not be matched in measure and, consequently, µ− anonymity is too weak an

assumption to have any impact. An extreme example of this is example 6.

Indeed, defining individual 2 as a dictator we obtain a preference aggregation

rule, that, somewhat counterintuitively, is not only monotonic and neutral,

but also µ−anonymous. While this example actually violates assumption

(R1), the latter can easily be seen as insufficient. We therefore need another

richness condition:

Assumption R2 Let A, A′ ∈ L be disjoint measurable coalitions. Consider

any pair B, B′ ∈ L (B∩B′ = ∅) such that µ (B) ≥ µ (A) and µ (B′) ≤ µ (A′).

Then L contains disjoint pairs C and C ′, D and D′ such that A ⊆ C, C ′ ⊆ A′,

D ⊆ B, B′ ⊆ D′ and µ (C) = µ (D) , µ (C ′) = µ (D′).

While this assumption is undoubtedly stringent, there are many measure

spaces that satisfy it. Indeed, if the standard finite-agent case is viewed

as assigning equal measure to every agent, it holds trivially. Similarly, ev-

ery distribution that is non-atomic, or in which atoms together contain less

than a half of the total weight, satisfies it. When (R2) holds, the following

characterization is straightforward:

Proposition 2 If assumption (R2) holds, an L -measurable preference ag-

gregation rule f satisfies (P1), (P6), (P7) and (P8) if and only if it is a

measuring rule.
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Proof The proof follows that of the theorem 3.6 in Austen-Smith and

Banks [5]. That any measuring rule satisfies µ−anonymity and neutral-

ity is immediate (the rule neither depends on identities of individuals nor

it is specific to alternatives being compared). Monotonicity can likewise

be easily shown to hold, once we observe that for any preference profiles

ρ, ρ′ ∈ RN
L and any pair of alternatives x, y ∈ X {i : xPiy} ⊂ {i : xP ′

iy}
implies µ ({i : xPiy}) ≤ µ ({i : xP ′

iy}).
Now, suppose f is a weakly Paretian, µ-anonymous, monotonic and neu-

tral rule. Suppose for some preference profile ρ ∈ RN
L and some pair of

alternatives x, y ∈ X we have xPy (weak Paretianism ensures that we may

actually select these). Define µ {i : xPiy} = p and µ {i : yPix} = a. We

have to show that for any preference profile ρ′ ∈ RN
L and any pair of alter-

natives z, w ∈ X such that µ {i : zP ′
iw} ≥ p and µ {i : wP ′

iz} ≤ a we will

have zP ′w. Since assumption (R2) holds, we know that there exists a measur-

able superset C of {i : xPiy} and the measurable subset D of {i : zP ′
iw} such

that µ (C) = µ (D). Furthermore, there must exist a measurable subset C ′ of

{i : yPix} and measurable superset D′ of {i : wP ′
iz} such that µ (C ′) = µ (D′)

and C ∩ C ′ = D ∩D′ = ∅. Consider a measurable preference profile ρ̂ with

{i : xP̂iy} = C and {i : yP̂ix} = C ′ and another measurable profile ρ∗ with

{i : zP ∗
i w} = D and {i : wP ∗

i z} = D′. (Such measurable profiles can be

obtained from ρ and ρ′, respectively.) By monotonicity xP̂y. Therefore, by

µ−anonymity and neutrality zP ∗w and by monotonicity zP ′w. That p > a

follows immediately, since otherwise both xPy and yPx. 2

Among measuring rules, an important one is “almost sure unanimity,”

which we call consensus:

Definition 7 Given a measure space (N,L, µ) the consensus social choice

rule σcs is defined by

xPy ⇐⇒ [µ {j ∈ N : xPjy} = 1]

It turns out that we can characterize consensus by adding the requirement

of quasitransitivity.

Definition 8 A L-measurable preference aggregation rule f is
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(P9) quasitransitive if for every ρ ∈ RN
L and for all x, y, z ∈ X,

xPy & yPz ⇒ xPz.

Assumption R3 : Every coalition A such that 0 < µ (A) < 1 has a sub-

coalition B such that 0 < µ (B) ≤ µ (Ac).

Note, that like assumptions (R1) and (R2), (R3) is satisfied by any mea-

sure which allows for a partition of the set of agents into equal measure

coalitions.

Theorem 2 For any measure space (N,L, µ) satisfying assumptions (R2)

and (R3), the consensus rule is the unique L-measurable rule satisfying (P1),

(P6), (P7), (P8) and (P9).

Proof It is easy to see that the consensus rule satisfies (P9), in addition to

the other properties common to measuring rules. Now consider any another

measuring rule with p < 1 and a > 0. This rule is effectively different from

consensus if there is a profile ρ such that for some pair of alternatives x, y,

the sets A = {i : xPiy} has measure p ≤ µ(A) < 1. Furthermore, without

loss of generality we can select A ∈ L such that p < µ (A) < p + ε (if this

is impossible, selecting a smaller p would not change the rule). Assumption

(R3) implies that there exists also a B ∈ L such that µ (A) ≥ p, µ (B) ≥ p

but µ (A ∩B) < p. Consider a preference profile such that xPiyPiz for any

i ∈ A ∩ B, but zIixPiy for any i ∈ Bc ∩ A and yPizIix for any i ∈ B ∩ Ac.

It is immediate that for any a xPy, yPz but not xPz. 2

Note that when the number of voters is finite and we use an equal treat-

ment coalition algebra (all individual coalitions are recognized with the same

measure) consensus reduces to unanimity. The difference between the finite

society and the infinite society is that in the last one consensus may also

satisfy the following desirable strengthening of (P3):

Definition 9 A L-measurable preference aggregation rule f is

(P10) veto-proof if there does not exist i ∈ N such that xPiy implies xRy for

every ρ ∈ RN
L and for any x, y ∈ X.

In the finite case consensus implies that every individual has a veto, while

in the non-atomic case no measure zero set of individuals has a veto.
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5 Conclusions and Future Research

This paper considers implications of altering the usual anonymity axiom

of social choice in a setting with a measure defined over a potentially infi-

nite agent space. Rather than concentrating on cardinality of coalitions, we

choose to subject to an equal-treatment regime coalitions of the same mea-

sure. When the number of agents is finite, our results include the standard

ones as a special case. In general, we observe that the usual results in the

theory can be replicated with µ−anonymity, provided the measures define

sufficiently large classes of coalitions that have to be treated equally. It is

of interest that the “richness” assumptions involved are entirely phrased in

terms of properties of “equal-size” coalition collections. This suggests that it

is possible (and perhaps desirable) to re-frame the analysis in terms of prop-

erties of classes of equally treated coalitions (not necessarily defined with

respect to a measure or cardinality).
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