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Abstract

Suppose that each player in a game is rational, each player thinks the other players are
rational, and so on. Also, suppose that rationality is taken to incorporate an admissibility
requirement–i.e., the avoidance of weakly dominated strategies. Which strategies can be
played? We provide an epistemic framework in which to address this question. Specifically,
we formulate conditions of “rationality and mth-order assumption of rationality” (RmAR) and
“rationality and common assumption of rationality” (RCAR). We show: (i) RCAR is charac-
terized by a solution concept called a “self-admissible set;” (ii) in a “complete” type structure,
RmAR is characterized by the set of strategies that survive m + 1 rounds of elimination of
inadmissible strategies; (iii) under a non-triviality condition, RCAR is impossible in a complete
structure.

1 Introduction

What is the implication of supposing that each player in a game is rational, each player thinks
the other players are rational, and so on? The natural first answer to this question is that the
players will choose iteratively undominated (IU) strategies—i.e., strategies that survive iterated
deletion of strongly dominated strategies. Bernheim [11, 1984] and Pearce [44, 1984] gave essentially
this answer, via their concept of rationalizability.1 Pearce [44, 1984] also defined the concept of a
best-response set (BRS), and gave this as a more complete answer.
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In this paper we ask: What is the answer to the above question, when rationality of a player is
taken to incorporate an admissibility requirement—i.e., the avoidance of weakly dominated strategies?

In particular, we want to identify conditions under which the answer is that the players will choose
iteratively admissible (IA) strategies—i.e., strategies that survive iterated deletion of weakly dom-
inated strategies. We also want to find a weak-dominance analog to Pearce’s concept of a BRS—we
identify one, which we call a self-admissible set (SAS).

The case of weak dominance is important. Weak-dominance concepts give sharp predictions
in many games of applied interest. For example, in the Vickrey auction, the players have weakly
dominant strategies to bid their values. IA is useful in analyzing other auctions (e.g., Harstad-
Levin [33, 1985] and Chung-Ely [27, 2001]). Farquharson [30, 1969] suggested that IA could yield
strong predictions in voting games, and this has since been shown in a number of cases (see Moulin
[42, 1994]). Bertrand pricing games can be analyzed using IA (e.g., Börgers [16, 1992]).2 IA also
makes sharp predictions in extensive games. It yields the backward-induction outcome in perfect-
information games,3 and the Defect-always strategies in the Finitely Repeated Prisoner’s Dilemma.
In signalling games, Osborne-Rubinstein [43, 1994, pp.110-111] observe that IA gives the forward-
induction outcome in the original example of Kohlberg-Mertens [36, 1986, Section 2.3]. Van Damme
[57, 1989] and Ben Porath-Dekel [10, 1992] employ IA to generate the forward-induction outcome
in their striking Burn-a-Dollar game. IA also gives the signalling outcome in the well-known Beer-
Quiche game of Cho-Kreps [26, 1987].4 Of course, IU does not yield such sharp results in these
games.

Separate from its power in applications, admissibility is a prima facie reasonable criterion: It
captures the idea that a player takes all strategies of the other players into consideration; none is
entirely ruled out. It also has a long heritage in decision and game theory. (See the discussion in
Kohlberg-Mertens [36, 1986, Section 2.7].)

The paper is organized as follows. The next section is an informal discussion of the issues and
results to follow. The formal treatment is in Sections 3-8. Section 9 discusses some conceptual
aspects, and Section 10 covers the literature. The heuristic treatment of the next section can be
read either before or in parallel with the formal treatment.

2 Heuristic Treatment

We begin with the standard equivalence: Strategy s is admissible if and only if there is a strictly
positive probability measure on the strategy profiles of the other players, under which s is optimal.
In an influential paper, Samuelson [47, 1992] pointed out that this poses a basic challenge for an
analysis of admissibility in games. Consider the game in Figure 2.1, which is essentially Example 8
in Samuelson [47, 1992].

L R

U 1, 1 0, 1

D 0, 2 1, 0

Ann

Bob

Figure 2.1

2 We have borrowed from the list of applications in Ewerhart [29, 2002]. We come back to this paper in Section 10.
3 Under a “no-ties” condition on the payoffs. See Appendix A.
4 When IA is performed on the two-player strategic form, where one player is the Sender and the other is the

Receiver, and the Sender’s payoffs are calculated as expected payoffs before Nature chooses the Sender’s type.
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Suppose rationality incorporates admissibility. Then, if Ann is rational, she should assign
positive probability to both L and R. If Bob is rational, he should assign positive probability to
both U and D, and so will play L. But then, if Ann thinks Bob is rational, presumably she should
assign probability 1 to L. (We deliberately use the loose term “thinks.” We will be more precise
below.) The condition that Ann is rational appears to conflict with the condition that she thinks Bob
is rational. Moreover, there could be different implications for behavior. If Ann assigns positive
probability to both L and R, then perhaps, depending on the exact assessment, she will play D. If
Ann assigns probability 1 to L, she will play U .

2.1 Lexicographic Probabilities

Our method for overcoming this hurdle will be to allow Ann at the same time both to include and to
exclude a strategy of Bob’s. (In Section 10, we return to Samuelson’s line of argument.) Ann will
consider some of Bob’s strategies infinitely less likely than others, but still possible. The strategies
that get infinitesimal weight can be viewed as both included (because they don’t get zero weight)
and excluded (because they get only infinitesimal weight).

L R

U 1, 1 0, 1

D 0, 2 1, 0

1 [1]

1

[1]

Figure 2.2

In Figure 2.2, each player has a lexicographic probability system (LPS) on the other player’s
strategies. (See Blume-Brandenburger-Dekel [13, 1991].) Ann’s primary measure (“hypothesis”)
assigns probability 1 to L. Her secondary measure (depicted in square parentheses) assigns proba-
bility 1 to R. Ann considers it infinitely more likely that Bob is rational (plays L) than that he
is irrational (plays R)—but doesn’t entirely exclude R from consideration. We will say that Ann
assumes Bob is rational.

Which strategy will Ann choose? In our lexicographic decision theory, Ann will choose strategy s
over strategy s′ if s yields a sequence of expected payoffs lexicographically greater than the sequence
s′ yields. So, she’ll choose U (not D).

Note we can’t say that Ann believes Bob is rational, because that would require the event that
Bob is irrational to be Savage-null. That is, preference conditional on this event would have to
be trivial—which is precluded if Ann follows the admissibility requirement, and so rules no event
out. We settle for the weaker condition that Ann assumes Bob is rational. (We give assumption a
preference basis later.) This is our resolution of the tension between requiring Ann to be rational—in
the sense of admissibility—and requiring her to ‘think’ Bob is rational.

Back to Figure 2.2: Under Bob’s primary hypothesis, L and R yield Bob an equal expected
payoff of 1. But under his secondary hypothesis, L yields a higher expected payoff than R. If
rational, Bob will choose L.

In this game, the conditions that Bob is rational, and that Ann is rational and assumes Bob is
rational, imply a unique strategy for each player.

2.2 Rationality and Common Assumption of Rationality

In general, we can formulate a sequence of conditions:
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(a1) Ann is rational; (b1) Bob is rational;

(a2) Ann is rational and assumes (b1); (b2) Bob is rational and assumes (a1);

(a3) Ann is rational, assumes (b1), assumes (b2); (b3) Bob is rational, assumes (a1), assumes (a2);

. . . . . .

There is rationality and common assumption of rationality (RCAR) if this sequence
holds. RCAR is a natural ‘baseline’ epistemic condition on a game, when rationality incorporates
admissibility. We want to know what strategies can be played under RCAR.

To answer, we need some more epistemic apparatus. Let T a, T b be spaces of types for Ann and
Bob respectively. Each type ta for Ann is associated with an LPS on the product of Bob’s strategy
and type spaces. Likewise for Bob. A state of the world is a 4-tuple (sa, ta, sb, tb), where sa and ta

are Ann’s actual strategy and type, and likewise for Bob. This is a standard type structure in the
epistemic literature, with the difference that types are associated with LPS’s, not single probability
measures.

In these structures, rationality is a property of a strategy-type pair. A pair (sa, ta) is rational
it satisfies the following admissibility requirement: The LPS σ associated with ta has full support
(rules nothing out), and sa lexicographically maximizes Ann’s expected payoff under σ (in particular,
sa is not weakly dominated). Otherwise the pair is irrational. Likewise for Bob.

Tb

(sb, tb) satisfying

RCAR for Bob

Sb

Figure 2.3

Starting with a game and an associated type structure, we get a picture like Figure 2.3. Here,
Sb, T b are the strategy and type spaces for Bob, and the outer rectangle is Sb × T b. The shaded
area consists of strategy-type pairs (sb, tb) that satisfy RCAR for Bob. The set of rational pairs for
Bob (which is not shown in the picture) is between the shaded area and the rectangle.

Sb

T b

µµµµ1

µµµµ 0

µµµµ j

µµµµ j+1

µµµµ j+2

µµµµn-1

Figure 2.4

Now fix a strategy-type pair (sa, ta) that satisfies RCAR for Ann. Then Ann assumes (b1),
assumes (b2), . . . . By a conjunction property of assumption, it follows that Ann assumes the joint

4



event (b1) and (b2) and . . . , i.e., Ann assumes “RCAR for Bob.” This gives a picture like Figure
2.4, where the sequence of measures (µ0, . . . , µn−1) is the LPS associated with ta. There is an initial
segment (µ0, . . . , µj) of this sequence which concentrates exactly on the event “RCAR for Bob.”

This is because Ann considers pairs (sb, tb) inside this event infinitely more likely than pairs outside
the event.

Consider the marginals on Sb of the measures (µ0, . . . , µn−1). Since (sa, ta) is rational, strategy
sa lexicographically maximizes Ann’s expected payoff, under this sequence of marginals. This es-
tablishes (by taking a convex combination of the marginals) that there is a strictly positive measure
on Sb under which sa is optimal. That is, sa must be admissible. Strategy sa must also lexico-
graphically maximize Ann’s expected payoff, under the marginals of the initial segment (µ0, . . . , µj).
It follows (again taking a convex combination) that there is a strictly positive measure on the pro-
jection of the event “RCAR for Bob” under which sa is optimal. That is, sa must be admissible
with respect to the projection.

Take the set of all states (sa, ta, sb, tb) satisfying RCAR, and let Qa × Qb be its projection into
Sa × Sb. By the discussion above, the product Qa × Qb has the following two properties:

(i) each sa ∈ Qa is admissible (i.e., is admissible with respect to Sb);

(ii) each sa ∈ Qa is admissible with respect to Qb;

and likewise with a and b interchanged.

(Note the similarity of these properties to the definition of a best-response set (Pearce [44, 1984])—
a concept based, of course, on strong dominance.) But these two properties are not yet enough to
characterize RCAR, as the next example shows.

2.3 Convex Combinations

Ann

Out

1, 4
L R

U -1, 3 -1, 0

M 2, 0 0, 3

D 0, 0 2, 3

Ann

Bob

Figure 2.5

Consider the game in Figure 2.5. The set {Out}×{L,R} has properties (i) and (ii). But Out cannot
be played under RCAR. Indeed, fix a type structure, and suppose (Out, ta) is rational. Then it
must be that (M, ta) and (D, ta) are also rational. Now consider a strategy-type pair (sb, tb) for Bob,
which is rational and assumes Ann is rational (i.e., Bob assumes the event (a1) defined in Section
2.2). Consider the marginals on Sa of the measures in the LPS associated with tb. Since Bob
assumes Ann is rational, there is an initial segment of this sequence of marginals which concentrates
exactly on the set {Out,M,D}. (Intuitively, Bob considers rational pairs infinitely more likely than
irrational pairs.) From this, sb = R. Now consider a strategy-type pair (sa, ta) for Ann, which is
rational and such that Ann assumes “Bob is rational” and assumes “Bob is rational and assumes
Ann is rational” (i.e., Ann assumes the events (b1) and (b2)). Consider the marginals on Sb of the
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measures in the LPS associated with ta. Using the conclusion sb = R above, we see there must be
an initial segment of this sequence of marginals which concentrates on {R}. But now sa = D, not
sa = Out.

The key to the example is that Out is a convex combination for Ann of M and D, so that (M, ta)
and (D, ta) are rational whenever (Out, ta) is. Also, our basic requirement is that a player—in
order to assume another player is rational—must consider all of the rational strategy-type pairs for
that other player infinitely more likely than the irrational pairs. That is, Bob must put (Out, ta),
(M, ta), and (D, ta) ahead of any pairs involving U . Then, L can’t be rational (i.e., part of a rational
strategy-type pair) for Bob.

This suggests that the projection of the RCAR set should have the following property:

(iii) if sa ∈ Qa, and ra is part of a convex combination of strategies for Ann that is
equivalent for her to sa, then ra ∈ Qa;

and likewise for Bob.

We define a self-admissible set (SAS) to be a set Qa ×Qb ⊆ Sa × Sb of strategy pairs which
has properties (i), (ii), and (iii). The strategies played under RCAR always constitute an SAS
(Theorem 6.1(i)). But there is a remaining issue, before we get a characterization of RCAR.

2.4 Irrationality

Consider the game in Figure 2.6 (kindly provided by Pierpaolo Battigalli). The set {U,M,D} ×
{C,R} is an SAS. (It is also the IA set—i.e., the set of strategies that survive iterated deletion of
weakly dominated strategies.)

L C

U 4, 0 4, 1

M 0, 0 0, 1

D 3, 0 2, 1

R

0, 1

4, 1

2, 1

Ann

Bob

Figure 2.6

Fix a type structure. Note that the set of Bob’s rational strategy-type pairs looks as in Figure
2.7: Any strategy-pair (L, tb) is irrational, since L is (strongly) dominated. Since C and R are
dominant, strategy-type pairs (C, tb) and (R, tb) are rational for any type tb—provided tb has full
support (i.e., the LPS associated with tb has full support). Graphically, Bob’s rational strategy-
type pairs are represented by the solid vertical lines—and the issue is whether or not these lines
extend all the way to the axis.

Tb

Sb
L

••••••••••••

?
••••

?

C R

Figure 2.7
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Our goal is to characterize the RCAR states; both players in these states have full-support types.
Nevertheless, we shall allow types in our structures that do not have full support. So, in Figure
2.7, there may, in fact, be gaps between the solid vertical lines and the axis, reflecting the presence
of non-full-support types ub for Bob. Such pairs (C, ub) and (R, ub) will be irrational.

Conceptually, since Ann considers everything possible, she should, in particular, take into account
the possibility that Bob doesn’t consider everything possible.5 (Cf. von Neumann-Morgenstern [58,
1944, p.32]: “The rules of rational behavior must provide definitely for the possibility of irrational
conduct of the part of others.”)

Now refer to Figure 2.6. Strategy D belongs to an SAS, and we want to ask whether it can
be played under RCAR—i.e., whether there can be a type ta such that (D, ta) is consistent with
RCAR. To answer, first note the following two facts: If D is optimal under a measure, then the
measure either assigns probability 1

2 to C and 1
2 to R, or assigns positive probability to both L and

R. Moreover, in the first case, U and M are also optimal.
Suppose that (D, ta) is rational and assumes Bob is rational. Let

(
µ0, . . . , µn−1

)
be the LPS

associated with ta. Since (D, ta) is rational, the LPS associated with ta must have full support
(we are characterizing such states). So, there is some first measure µi that gives {L} × T b positive
probability. Given that type ta assumes Bob is rational, it must consider the set of rational strategy-
type pairs for Bob infinitely more likely than the irrational pairs. In particular, we have i �= 0,
because each pair (L, tb) is irrational for Bob. Since (D, ta) is rational, D must be optimal under the
first measure µ0. An easy induction then shows that for each measure µk that comes earlier than
µi (i.e. k < i): (i) µk assigns probability 1

2 to {C} × T b and probability 1
2 to {R} × T b; and (ii) U ,

M , and D are each optimal under µk. It follows that D is optimal under µi, and so µi must assign
positive probability to both {L} × T b and {R} × T b. Therefore, since ta assumes Bob is rational,
and each point in

(
L, tb

)
is irrational, µi must give positive probability to the set of irrational pairs

in {R} × T b. But every pair in {R} × T b with a full-support type is rational. We conclude that
there must be non-full-support types for Bob.

In sum, we want the play of D to be allowed under RCAR—a fortiori, under the assumption
that Ann is rational and assumes Bob is rational. This is possible only if we include types that
do not satisfy the full support requirement. We think this is natural because a full analysis of
the admissibility requirement should include the idea that other players do not conform to the
requirement.

2.5 Characterization of RCAR

We now state the desired characterization of RCAR in games (Theorem 6.1(i) and (ii)). As usual,
we start with a game and an associated type structure.

Let Qa ×Qb be the projection into Sa × Sb of the states (sa, ta, sb, tb) satisfying RCAR.
Then Qa × Qb is an SAS of the game.

We also have:

Start with a game and an SAS Qa × Qb. There is a type structure (with non-full-
support types) such that Qa× Qb is the projection into Sa×Sb of the states (sa, ta, sb, tb)
satisfying RCAR.

5 Naturally, our structures will often also contain strategy-type pairs that are irrational simply because a player
isn’t optimizing given his–even full-support–LPS. In Figure 2.7, pairs (L, tb), where tb has full support, are of this
kind.
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Appendix A examines the usefulness of this characterization, by showing how SAS’s behave in
various games of interest—Centipede, the Finitely Repeated Prisoner’s Dilemma, and the Chain Store
Game.

2
2

3

3In

Out

A
Across

1

1

Out

B

0

0

Down

A

Figure 2.8

It is easy to check that the IA strategies constitute an SAS of a game. So, in particular, every
game possesses an SAS (and RCAR is possible in every game). But a game may possess other
SAS’s too. In the game in Figure 2.8, there are three SAS’s: {(Out,Out)}, {Out} × {Out, In},
and {(Across, In)}. (The third is the IA set. Note that the other two SAS’s aren’t contained in
the IA set. This is different from the case of strong dominance: It is well known that any Pearce
best-response set is contained in the set of strategies that survives iterated strong dominance.)

2.6 Iterated Admissibility

What epistemic conditions select the IA set in a game, from among the family of SAS’s? To
investigate this, consider Figure 2.9, which gives a type structure for the game in Figure 2.8. Ann
and Bob each have a single type. Ann’s LPS assigns primary probability 1 to (Out, tb), and
secondary probability 1 (in square parentheses) to (In, tb). Bob’s LPS assigns primary probability
1 to (Out, ta), secondary probability 1 (in square parentheses) to (Down, ta), and tertiary probability
1 (in double square parentheses) to (Across, ta). Ann (resp. Bob) has just one rational strategy-type
pair, namely (Out, ta) (resp. (Out, tb)). Ann’s unique type ta assumes Bob is rational (the rational
pair (Out, tb) is considered infinitely more likely than the irrational pair (In, tb)). Likewise, Bob’s
unique type tb assumes Ann is rational (the rational pair (Out, ta) is considered infinitely more likely
than the irrational pairs (Down, ta) and (Across, ta)). By induction, the RCAR set is then the
singleton {(Out, ta, Out, tb)}. This is an instance of Theorem 6.1(i): The projection into Sa × Sb

of {(Out, ta,Out, tb)} is an SAS, viz. {(Out,Out)}.

[1] 1

Out
S a

T a t a1

Out
S b

Tb t b

LPS associated with t a:

In Down Across

[1] [[1]]

LPS associated with t b:

Figure 2.9

In this structure, Ann assumes Bob plays Out, making Out her unique rational choice. Both
Down and Across are irrational for her. In fact, Bob considers it infinitely more likely that Ann
plays Down than Across—which is why he plays Out. Bob is free to assign the probabilities this
way. Given her type, the choice Across is irrational for Ann. So, to assume Ann is rational, it
is enough that Bob considers Out infinitely more likely than both Down and Across, as he does.
But if Bob considered Across infinitely more likely than Down, he’d rationally play In not Out.
Presumably, Ann would then play Across. The IA set would result.

Figure 2.10 gives a scenario under which Bob will, in fact, consider Across infinitely more likely
than Down. Add to the structure a type ua for Ann that assumes Bob plays In. Now, there
is a second rational pair for Ann, viz. (Across, ua). (Note there is no type va for Ann which we
could add to the structure to make (Down, va) rational for Ann, since Down is dominated.) If Bob
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assumes Ann is rational, then he must consider the shaded pairs in Figure 2.10 infinitely more likely
than the unshaded pairs. A rational Bob must then play In, as desired.

Out
S a

T a

t a

Down Across

1

Out
S b

T b t b

In

u a

[1]1

Out
S b

T b t b

In

[1]

LPS associated with t a :

LPS associated with t b :

LPS associated with u a :

Figure 2.10

Call a type structure complete if the range of the map from T a (Ann’s type space) to the
space of LPS’s on Sb×T b (Bob’s strategy space cross Bob’s type space) properly contains the set of
full-support LPS’s on Sb × T b, and similarly with Ann and Bob interchanged. More loosely, a type
structure is complete if it contains ‘all’ possible full-support types, and at least some non-full-support
type (as per Section 2.4 above). Complete type structures exist for every finite game (Proposition
5.2). As Figure 2.10 suggests, with this set-up, we can now identify the IA strategies.

For m ≥ 0, say there is rationality and mth-order assumption of rationality (RmAR) if
the sequence of conditions (a1), (b1), . . . , (a(m + 1)), (b(m + 1)) of Section 2.2 holds. We have
(Theorem 7.1):

Start with a game and an associated complete type structure. Let Qa × Qb be the
projection into Sa × Sb of the states (sa, ta, sb, tb) satisfying RmAR. Then Qa × Qb is
the set of strategies that survive (m+ 1) rounds of iterated admissibility.

2.7 A Negative Result

Note that our Theorem 7.1 actually identifies, for any m, the (m+1)-iteratively admissible strategies,
not the IA strategies. Of course, for a given (finite) game, there is a number M such that for all
m ≥ M , the m-iteratively admissible strategies coincide with the IA strategies. Nevertheless, our
result is not quite an epistemic condition for IA in all finite games. That would be one common
condition—across all games—that yields IA. For example, one might hope to characterize the IA set as
the projection of a set of states which is constructed in a uniform way in all complete type structures.

One would expect the RCAR set to be a natural candidate for this set of states. But the
following negative result (Theorem 8.1) shows that RCAR will not work, and is the reason for our
limited statement of Theorem 7.1. (The complete type structure we get from Proposition 5.2 is
continuous—see Definition 5.7—and this result also uses continuity).

Start with a game in which Ann has more than one “strategically distinct” strategy and
an associated continuous complete type structure. Then no state satisfies RCAR.

Here is an intuition for the result. Suppose the RCAR set is nonempty. Then there must be a
type ta for Ann that assumes each of the decreasing sequence of events (b1), (b2), . . . (these events
were defined in Section 2.2). That is, strategy-type pairs not in (b1) must be considered infinitely
less likely than pairs in (b1). Pairs not in (b2) must be considered infinitely less likely than pairs in
(b2). And so on. Let (µ0, . . . , µn−1) be the LPS associated with ta. Figure 2.11 shows the most
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‘parsimonious’ way to arrange the measures µi, so that Ann indeed assumes each of (b1), (b2), . . . .
But even in this case, we’ll run out of measures, and Ann won’t be able to assume any of the events
(bn), (b(n+1)),. . . . More loosely, at some point Ann will ‘hit’ her primary hypothesis µ0, at which
point there is no next (more likely) order of likelihood.

S b

T b

µµµµn-2

µµµµn-1

Event (b1)

µµµµn-3

Event (b2)

Event (b3)

Figure 2.11

In the complete type structure we get from Proposition 5.2, each event (b(m+1)) is ‘significantly’
smaller than event (bm). This is because Bob has many types that assume the event (a(m − 1))
but not the event (am). So the measures µi do indeed have to be arranged as shown. This wasn’t
true in the incomplete structure of Figure 2.9.

In Section 9f, we discuss further the meaning of this negative result.

3 SAS’s and the IA Set

We now begin the formal treatment. Fix a two-player finite strategic-form game 〈Sa, Sb, πa, πb〉,
where Sa, Sb are the (finite) strategy sets and πa, πb are payoff functions for Ann and Bob, respec-
tively.6 Given a finite set X, let M(X) denote the set of all probability measures on Ω. The
definitions to come all have counterparts with a and b reversed. We extend πa to M(Sa) × M(Sb)
in the usual way, i.e. πa(σa, σb) =

∑
(sa,sb)∈Sa×Sb σ

a(sa)σb(sb)πa(sa, sb). Throughout, we adopt

the convention that in a product X × Y , if X = ∅ then Y = ∅ (and vice versa).

Definition 3.1 Fix X × Y ⊆ Sa × Sb. A strategy sa ∈ X is weakly dominated with respect
to X × Y if there exists σa ∈ M(Sa), with σa(X) = 1, such that πa(σa, sb) ≥ πa(sa, sb) for every
sb ∈ Y , and πa(σa, sb) > πa(sa, sb) for some sb ∈ Y . Otherwise, say sa is admissible with
respect to X × Y . If sa is admissible with respect to Sa × Sb, simply say that sa is admissible.

We have the usual equivalence:

Lemma 3.1 A strategy sa ∈ X is admissible with respect to X × Y if and only if there exists
σb ∈ M(Sb), with Suppσb = Y , such that πa(sa, σb) ≥ πa(ra, σb) for every ra ∈ X.

Definition 3.2 Say ra supports sa if there exists some σa ∈ M (Sa) with ra ∈ Suppσa and
πa
(
σa, sb

)
= πa

(
sa, sb

)
for all sb ∈ Sb. Write su (sa) for the set of ra ∈ Sa that support sa.

6 For notational simplicity, we restrict attention throughout to two-player games. But the analysis can be extended
without change to games with three or more players.
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In words, the strategy ra is contained in su (sa) if it is part of a convex combination of Ann’s
strategies that is equivalent for her to sa.

We can now define SAS’s and the IA set:

Definition 3.3 Fix Qa × Qb ⊆ Sa × Sb. The set Qa × Qb is a self-admissible set (SAS) if:

(i) each sa ∈ Qa is admissible,

(ii) each sa ∈ Qa is admissible with respect to Sa × Qb,

(iii) for any sa ∈ Qa, if ra ∈ su (sa) then ra ∈ Qa,

and likewise for each sb ∈ Qb.

Definition 3.4 Set Si0 = Si for i = a, b, and define inductively

Sim+1 = {si ∈ Sim : si is admissible with respect to Sam × Sbm}.

A strategy si ∈ Sim is called m-admissible. A strategy si ∈
⋂∞
m=0 S

i
m is called iteratively admis-

sible (IA).

Note that there is an M such that
⋂∞
m=0 S

i
m = SiM for i = a, b. Moreover, each set Sim is nonempty,

and hence IA is nonempty.

4 Lexicographic Probability Systems

Given a Polish space Ω, it will be helpful to fix a metric. (So “Polish” will mean complete separable
metric.) Let M(Ω) be the space of Borel probability measures on Ω with the Prohorov metric.
Recall that M(Ω) is again a Polish space, and has the topology of weak convergence (Billingsley
[12, 1968, Appendix III]). Let N (Ω) be the set of all finite sequences of Borel probability measures
on Ω. That is, if σ ∈ N (Ω), then there is some integer n with σ = (µ0, . . . , µn−1).

Define a metric on N (Ω) as follows. The distance between two sequences of measures (µ0, . . . , µn−1)
and (ν0, . . . , νn−1) of the same length is the maximum of the Prohorov distances between µi and
νi for i < n. The distance between two sequences of measures of different lengths is 1. For each
fixed n, this metric on the set of sequences in N (Ω) of length n is easily seen to be separable and
complete, and thus Polish (this is the usual finite product metric). The whole space N (Ω) is thus
a countable union of Polish spaces at uniform distance 1 from each other. This shows that N (Ω)
itself is a Polish space.

Definition 4.1 Fix σ = (µ0, . . . , µn−1) ∈ N (Ω), for some integer n. Say σ is a lexicographic
probability system (LPS) if σ is mutually singular–that is, for each i = 0, . . . , n−1, there are
Borel sets Ui in Ω with µi(Ui) = 1 and µi(Uj) = 0 for i �= j. Write L(Ω) for the set of LPS’s, and
write L(Ω) for the closure of L(Ω) in N (Ω).

An LPS is a finite measure sequence where the measures are non-overlapping (mutually singular).
This has the usual interpretation: the player’s primary hypothesis, secondary hypothesis, . . . , and
so on, until an nth hypothesis µn−1.

The space L(Ω) is Polish, since it is a closed subspace of the Polish space N (Ω). The next
proposition identifies L(Ω) in two natural cases.7

7 The proofs not found in the main text, can be found in the appendices.
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Proposition 4.1

(i) If Ω is a finite set, then L(Ω) is closed, and thus L(Ω) = L(Ω).

(ii) If Ω has no isolated points, then L(Ω) = N (Ω).

In general, an LPS may have some null states which remain outside the support of each of its
measures. We are also interested in the case that there are no such null states:

Definition 4.2 A full-support sequence is a sequence σ = (µ0, . . . , µn−1) ∈ N (Ω) such that
Ω =

⋃
i<n Suppµi. We write N+(Ω) for the set of full-support sequences, and L+(Ω) for the set of

full-support LPS’s.

The sets N+(Ω), L(Ω), and L+(Ω) are each Borel (Corollary E.1).
Our definition of an LPS is an infinite version of the definition for finite spaces introduced in

Blume-Brandenburger-Dekel (henceforth BBD) [13, 1991], who also gave an axiomatic derivation
in terms of preferences over acts. Infinite spaces play a crucial role in this paper—complete type
structures (recall the discussion in Section 2.6) are infinite. (A note on terminology: BBD [13, 1991]
use the term LPS even if mutual singularity doesn’t hold. We use the term LPS throughout.)

The next step is the formal treatment of our concept of “assumption” (Section 2.1). In the usual
setting (subjective expected utility), Ann has one probability measure µ, and she believes an event
E if µ(E) = 1. With a sequence of measures σ = (µ0, . . . , µn−1), the obvious analog is to say that
Ann believes E if µi(E) = 1 for all i. (Appendix B gives a preference-based treatment. Say E is
believed if Ω\E is Savage-null under Ann’s preference relation. This holds if and only if µ(E) = 1,
in the subjective expected utility setting, and if and only if µi(E) = 1 for all i, in the lexicographic
setting.)

But as we noted in Section 2.1, belief is too strong in the lexicographic setting. If Ann’s LPS
σ has full support, and E is the event that Bob is rational, then it may be impossible to have Ann
believe E, that is, to have µi(E) = 1 for all i. For any of Bob’s strategies sb, the event {sb} × T b is
open, and so must get positive probability under some µi. But if sb is inadmissible, then {sb} × T b

is disjoint from the event that Bob is rational. While it may be impossible to have Ann believe E,
it is possible to have Ann consider the event that Bob is irrational to be infinitely less likely than
the event that he is rational. This is the motivation for our assumption concept:

Definition 4.3 Say a set E is assumed under σ ∈ L(Ω) (at level j) if E is Borel and there is a
j such that:

(i) µi(E) = 1 for all i ≤ j,

(ii) µi(E) = 0 for all j < i,

(iii) E ⊆
⋃
i≤j Suppµi.

The best way to understand this definition is via some examples. To begin, let Ω = {a, b, c} and
σ be a two-level LPS with µ0 (a) = 1 and µ1 (b) = 1. Consider the events E = {a} and F = {a, c}.
Intuitively, we’d want to say that E is assumed (at level 0), because a is considered infinitely more
likely than either b or c. But, we wouldn’t want to say F is assumed, because c is considered
infinitely less likely than b. Note that E satisfies (i)-(iii) (at level 0), while F satisfies (i) and (ii)
but fails (iii). In particular then, condition (iii) is to ensure that the formal definition of assumption
captures the intuitive idea. It guarantees that all of F is considered infinitely more likely than the
complement of F .
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If Ω is finite, condition (iii) implies condition (ii), so we could require conditions (i) and (iii)
alone. But this is not true in the infinite case. To see this, let Ω = [0, 1] ∪ {2} and σ be a two-level
LPS where µ0 is uniform on [0, 1] and µ1 ({1}) = µ1 ({2}) = 1

2 . Consider the event E = [0, 1].
Condition (iii) is satisfied (for j = 0), but condition (ii) is not. Moreover, intuitively, we wouldn’t
want to say E is assumed, because, under µ1, the complement of E is considered as likely as E.
This is why in the general—i.e., infinite—case, we require all three conditions (i)-(iii).

Like belief, assumption can also be defined axiomatically. (See Appendix B for the formal
treatment.) Say E is assumed in the axiomatic sense if whenever Ann strictly prefers one act to
another, conditional on E, she has the same preference unconditionally. More loosely, if Ann
assumes E, she is prepared to make a decision based only on the states in E.

Here is the relationship between belief and assumption: If E is believed, then it is assumed
(Proposition B.1). If Ann has one probability measure µ, then if she assumes E, she believes E
(Proposition B.2). But, with an LPS, assumption is weaker than belief. In Appendix B, we show
that Ann assumes E in the axiomatic sense if and only if conditions (i)-(ii) of Definition 4.3 hold.
In Figure 2.2, for example, Ann assumes {L} (in the axiomatic sense) but doesn’t believe it.

(There are other examples of concepts that coincide under ordinary probabilities but are distin-
guished under lexicographic probabilities. For instance, BBD [13, 1991] give three definitions of
stochastic independence that are equivalent under ordinary probabilities, but successively weaker
under lexicographic probabilities. See also Hammond [32, 1994], Kohlberg-Reny [37, 1997], and
Streufert [56, 2003].)

Condition (iii) can also be axiomatized (again see Appendix B) so that, in the lexicographic case,
assumption plus an additional axiom is equivalent to Definition 4.3. (If Ann has one probability
measure, the same axiom implies Suppµ = E when E is closed.)

Next are some properties of assumption:

Property 4.1 (Convexity) If E and F are assumed under σ at level j, then any Borel set G lying
between E ∩ F and E ∪ F is also assumed under σ at level j.

Property 4.2 (Closure) If E and Fare assumed under σ at level j then cl (E) = cl (F ) (where
cl (·) denotes closure).

The Convexity property refers to convexity in the sense of orderings (where the order is set
inclusion), and is a two-sided monotonicity. The Closure property implies that if E and F are each
assumed then either cl (E) ⊆ cl (F ) or cl (F ) ⊆ cl (E). Consequently, for a finite space, there is only
one set that is assumed at each level, and E ⊆ F or F ⊆ E. But this is not true for an infinite
space.

Overall, the mental picture we suggest for assumption is of rungs of a ladder, separated by gaps,
where each rung is a convex family of sets with the same closure. (Each rung corresponds to the
events assumed at the particular level.)

Next, notice that assumption is not monotonic. Here is an example: Set Ω = [0, 1] ∪ {2, 3}, and
let σ = (µ0, µ1) be a full-support LPS where µ0 is uniform on [0, 1] and µ1 ({2}) = µ1 ({3}) = 1

2 .
Then σ assumes (0, 1] but not (0, 1] ∪ {2}.

The best way to understand this nonmonotonicity is in terms of our axiomatic treatment.8

Suppose Ann assumes (0, 1]—i.e., she is willing to make a decision based solely on (0, 1] (when she
has a strict preference). Now suppose Ann considers the possibility that 2 obtains. It doesn’t
seem natural to require that she should now be willing to make a decision based only on (0, 1]∪ {2}.
After all, once she considers the possibility that 2 obtains, presumably she should also consider the

8 We thank a referee for this line of argument.
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possibility that 3 obtains. (To give 2 positive probability, she must look to her secondary hypothesis,
which also gives 3 positive probability.) Of course, the state 3 may well matter for her preferences.

On the other hand, if Ann assumes (0, 1] then certainly she should assume [0, 1]. Admitting the
possibility of 0 doesn’t force her to look to her secondary hypothesis—it doesn’t force her to consider
2 or 3 possible. Formally, Ann assumes [0, 1) and (0, 1] at the same level. Convexity then requires
her to assume [0, 1] (at the same level).

While assumption is not monotonic in the lexicographic case, it is monotonic under ordinary prob-
abilities. Now, Ann assumes (0, 1] if and only if she assigns probability 1 to this event. Monotonicity
is immediately satisfied. Conceptually, Ann never considers the possibility that state 2 or state 3
obtains. But we use LPS’s precisely to be able both to include and to exclude a given state (Section
2.1). This is why assumption is not monotonic in the lexicographic case.

Finally, note that because it is not monotonic (in the lexicographic case), assumption fails one
direction of conjunction. Returning to the example, Ann assumes (0, 1] ∩ ((0, 1] ∪ {2}) even though
she does not assume (0, 1] ∪ {2}. But the other direction of conjunction, and the analog for
disjunction, are satisfied:

Property 4.3 (Conjunction and Disjunction) Fix Borel sets E1, E2, ... in Ω, and suppose, for
each m, that Em is assumed under σ. Then

⋂
mEm and

⋃
mE are assumed under σ.

In Section 10, we relate assumption to some other epistemic concepts in the literature, including
“belief at level 0” (Brandenburger [19, 1992]) and strong belief (Battigalli-Siniscalchi [8, 2002]).

5 Type Structures

Fix again a two-player finite strategic-form game 〈Sa, Sb, πa, πb〉.

Definition 5.1 An
(
Sa, Sb

)
-based type structure is a structure

〈Sa, Sb, T a, T b, λa, λb〉,

where T a and T b are nonempty Polish spaces, and λa : T a → L
(
Sb × T b

)
and λb : T b → L (Sa × T a)

are Borel measurable. Members of T a, T b are called types. Members of Sa × T a × Sb × T b are
called states (of the world). A type structure is called lexicographic if λa : T a → L

(
Sb × T b

)

and λb : T b → L (Sa × T a).

This is based on a standard epistemic definition: A type structure enriches the basic description
of a game by appending spaces of epistemic types for both players, where a type of one player is
associated with an LPS on the strategies and types of the other player. The difference from the
standard definition is the use of LPS’s rather than (ordinary) probability measures.

Our primary focus will be on lexicographic type structures, which have a natural interpretation
in a game setting. Non-lexicographic type structures do not have such an interpretation, but, as
we will see, they are useful as a step in the construction of lexicographic type structures. Note that
lexicographic type structures can contain two different kinds of types—those associated with full-
support LPS’s and those associated with non-full-support LPS’s. The reason for this was discussed
in Section 2.4.

The following definitions apply to a given finite game and type structure. As before, they also
have counterparts with a and b reversed.
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Definition 5.2 A strategy sa is optimal under σ = (µ0, . . . , µn−1) if σ ∈ L(Sb × T b) and

(
πa(sa,margSb µi(s

b))
)n−1
i=0

≥L
(
πa(ra,margSb µi(s

b))
)n−1
i=0

for all ra ∈ Sa.9

Here, margSb µi denotes the marginal on Sb of the measure µi. In words, Ann will prefer strategy
sa to strategy ra if the associated sequence of expected payoffs under sa is lexicographically greater
than the sequence under ra. (If σ is a length-one LPS (µ0), we will sometimes say that sa is optimal
under the measure µ0 if it is optimal under (µ0).)

Definition 5.3 A strategy-type pair (sa, ta) ∈ Sa × T a is rational if λa (ta) is a full-support LPS
and sa is optimal under λa(ta) ∈ L(Sb × T b).

In words, a strategy-type pair (sa, ta) will be rational if λa (ta) is a full-support LPS and sa is
optimal under λa (ta). This is the usual definition of rationality, plus the condition that Ann rules
out no states. The full-support requirement is to capture our basic admissibility requirement. The
following two lemmas say this formally:

Lemma 5.1 (BBD [14, 1991]) Suppose sa is optimal under a full-support LPS (µ0, . . . , µn−1) ∈
L+(Sb × T b). Then there is a length-one full-support LPS (ν0) ∈ L+

(
Sb × T b

)
, under which sa is

optimal.

Together with Lemma 3.1, this gives:

Lemma 5.2 If (sa, ta) is rational, then sa is admissible.

Next, for E ⊆ Sb × T b, set

Aa(E) = {ta ∈ T a : E is assumed under λa(ta)}.

In words, Aa (E) is the set of types ta ∈ T a with associated LPS’s λa (ta) that assume the event E
(in Sb × T b). Of course, this set depends on the specific type structure.

For finite m, define Ram inductively by

Ram+1 = Ram ∩ [Sa × Aa(Rbm)].

The sets Ram are Borel (Lemma E.6).

Definition 5.4 If (sa, ta, sb, tb) ∈ Ram+1 × Rbm+1, say there is rationality and mth-order as-
sumption of rationality (RmAR) at this state. If (sa, ta, sb, tb) ∈

⋂∞
m=1R

a
m ×

⋂∞
m=1R

b
m, say

there is rationality and common assumption of rationality (RCAR) at this state.

In words, there is RCAR at a state if Ann is rational, Ann assumes the event “Bob is rational,”
Ann assumes the event “Bob is rational and assumes Ann is rational,” and so on, and similarly
starting with Bob.

Note, we cannot replace this definition with R̂a1 = Ra1 and R̂am+1 = R̂a1 ∩ [Sa × Aa(R̂bm)]. To
clarify, suppose (sa, ta) ∈ Ra3 . Then (sa, ta) ∈ Ra1 ∩ [Sa ×Aa(Rb1)] ∩ [Sa ×Aa(Rb1 ∩ [Sb ×Ab(Ra1)])].
In words, Ann is rational, she assumes the event “Bob is rational,” and she assumes the event
“Bob is rational and assumes Ann is rational.” Now suppose (sa, ta) ∈ R̂a3 . Then (sa, ta) ∈

9 If x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1), then x ≥L y if and only if yj > xj implies xk > yk for some k < j.
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Ra1 ∩ [Sa ×Aa(Rb1 ∩ [Sb × Ab(Ra1)])]. In words, Ann is rational, and she assumes the event “Bob is
rational and assumes Ann is rational.” But, because assumption is not monotonic, she might not
assume the event “Bob is rational.” We think that under a good definition of R2AR, Ann should
assume this event.

We now introduce a notion of equivalence between type structures.

Definition 5.5 Two type structures 〈Sa, Sb, T a, T b, κa, κb〉 and 〈Sa, Sb, T a, T b, λa, λb〉 are equiva-
lent if:

(i) they have the same strategy and type spaces;

(ii) for each ta ∈ T a, if either κa(ta) or λa(ta) belongs to L+(Sb × T b) then κa(ta) = λa(ta) (and
likewise with a and b reversed).

Proposition 5.1

(i) For every type structure there is an equivalent lexicographic type structure.

(ii) If two type structures are equivalent, then for each m they have the same Ram and Rbm sets.

This proposition shows that any statement about rationality and assumptions of rationality that
is true for every lexicographic type structure is true for every type structure. Conceptually, we are
interested in type structures which satisfy the hypothesis of being lexicographic, but the proposition
tells us that we will never need this hypothesis in our theorems. In practice, we will state and prove
theorems for arbitrary type structures. By Proposition 5.1, in these proofs we can always assume
without loss of generality that the type structure is lexicographic.

We conclude this section with complete type structures.

Definition 5.6 A type structure 〈Sa, Sb, T a, T b, λa, λb〉 is complete if L+
(
Sb × T b

)
� rangeλa

and L+ (Sa × T a) � rangeλb.

In words, a complete structure contains all full-support LPS’s for Ann and Bob, and (at least)
one non-full-support LPS. (Refer back to Sections 2.4 and 2.6.) We see at once from the definition
that any type structure which is equivalent to a complete type structure is complete.

Proposition 5.2 For any finite sets Sa, Sb, there is a complete type structure 〈Sa, Sb, T a, T b, λa, λb〉
such that the maps λa and λb are continuous.

Definition 5.7 A type structure 〈Sa, Sb, T a, T b, λa, λb〉 is continuous if it is equivalent to a type
structure where the λa and λb maps are continuous.

Thus, in a continuous type structure, players associate neighboring full-support LPS’s with neigh-
boring full-support types. Propositions 5.1 and 5.2 immediately give:

Corollary 5.1 For any finite sets Sa, Sb, there exists a complete continuous lexicographic (Sa, Sb)-
based type structure.
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6 Characterization of RCAR

Theorem 6.1

(i) Fix a type structure 〈Sa, Sb, T a, T b, λa, λb〉. Then projSa
⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m is an

SAS. That is, the projection of the set of RCAR states into Sa × Sb is an SAS.

(ii) Fix an SAS Qa × Qb. There is a lexicographic type structure 〈Sa, Sb, T a, T b, λa, λb〉 with
Qa ×Qb = projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m. That is, Qa ×Qb is the projection of the set

of RCAR states into Sa × Sb.

Proof. For part (i), if
⋂
mRam ×

⋂
mRbm = ∅, then the conditions of an SAS are automatically

satisfied. So we’ll suppose this set is nonempty.
Fix sa ∈ projSa

⋂
mRam. Then (sa, ta) ∈

⋂
mRam for some ta ∈ T a. Certainly (sa, ta) ∈ Ra1 .

Using Lemma 5.2, sa is admissible, establishing condition (i) of an SAS. By Property 4.3, ta ∈
Aa
(⋂

mRbm
)
. We therefore get a picture like Figure 6.1 (for some j < n), and, as illustrated,

⋃
i≤j SuppmargSb µi = projSb

⋂
mRbm.

(This is formally established as Lemma D.1 in the appendix to this section, and uses condition
(iii) of the definition of assumption.) As in Lemma 5.1, there is a length-one LPS (ν0) on Sb,
with Supp ν0 = projSb

⋂
mRbm, under which sa is optimal. Thus sa is admissible with respect to

Sa × projSb
⋂
mRbm, establishing condition (ii) of an SAS. Next suppose ra ∈ su (sa). Then, for

any ta, (sa, ta) ∈ Ra1 implies (ra, ta) ∈ Ra1 (Lemma D.2), and so we have for all m, (sa, ta) ∈ Ram
implies (ra, ta) ∈ Ram. This establishes condition (iii) of an SAS.

Sb

T b

µµµµ
1

µµµµ
0

µµµµ j

µµµµ j+1

µµµµ j+2

µµµµn-1

∩R b
m m

projS
b ∩Rb

m m

Figure 6.1

S b

T b

t b

*

Q b

Q b

s b

su(s b) × {s b}

•••• •••• ••••

••••

••••

••••

s b

••••

••••

••••

Figure 6.2

For part (ii), fix an SAS Qa × Qb. (Recall the convention that if Qa = ∅ then Qb = ∅, and vice
versa.) By conditions (i) and (ii) of an SAS, for each sa ∈ Qa there are measures ν0, ν1 ∈ M

(
Sb
)
,

with Supp ν0 = Sb and Supp ν1 = Qb, under which sa is optimal. We can choose ν0 so that ra is
optimal under ν0 if and only if ra ∈ su (sa). (This is Lemma D.4 in the appendix to this section.)

Define type spaces T a = Qa ∪ {ta∗} and T b = Qb ∪ {tb∗}, where ta∗ and tb∗ are arbitrary labels.
For ta = sa ∈ Qa, the associated λa(ta) ∈ L+(Sb × T b) will be a two-level full-support LPS (µ0, µ1)
where margSb µ0 = ν1 and margSb µ1 = ν0.

10 (Further conditions are specified below.) Let λa(ta∗)
be an element of L(Sb × T b)\L+(Sb × T b). Define the map λb similarly.

10 We reverse the indices for consistency with the proof of Theorem 7.1 below.
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Figure 6.2 shows the construction of λa(ta): Under the above specifications, points (sb, sb) on
the diagonal are rational, i.e., lie in Rb1. Other points (rb, sb) are rational if and only if rb ∈ su(sb).
Since su(sb) ⊆ Qb, by condition (iii) of an SAS, the set Rb1 contains the diagonal and is contained
in the rectangle Qb × Qb. Moreover, for each sb ∈ Sb,

(
sb, tb∗

)
∈ (Sb × T b)\Rb1. Thus we can take

the measures µ0 and µ1 to satisfy:

margSb µ0 = ν1, Suppµ0 = Rb1,
margSb µ1 = ν0, Suppµ1 = (Sb × T b)\Rb1.

Likewise for the map λb.
We now show that projSa

⋂
mRam = Qa, and likewise for b. By the same argument as in the

previous paragraph, projSa R
a
1 = Qa. Moreover, the construction yields Aa(Rb1) = Qa, so that

Ra2 = Ra1 . Likewise for b. Thus Ram = Ra1 and Rbm = Rb1 for all m, by induction. Certainly
projSa R

a
1 × projSb R

b
1 = Qa × Qa. It follows that projSa

⋂
mRam × projSb

⋂
mRbm = Qa × Qb, as

required.

7 Characterization of RmAR in a Complete Structure

Theorem 7.1 Fix a complete type structure 〈Sa, Sb, T a, T b, λa, λb〉. Then, for each m,

projSa R
a
m × projSb R

b
m = Sam × Sbm.

That is, the projection of the set of RmAR states into Sa×Sb is the set of strategy pairs that survive
(m+ 1) rounds of iterated admissibility.

Proof. We may assume that the type structure is lexicographic. The proof is by induction on
m. Begin by fixing some (sa, ta) ∈ Ra1 . By Lemma 5.2, sa ∈ Sa1 . This shows that projSa R

a
1 ×

projSb R
b
1 ⊆ Sa1 × Sb1.

Next fix some sa ∈ Sa1 . By Lemma 3.1, there is an LPS (ν0) ∈ L+
(
Sb
)

under which sa is optimal.

We want to construct an LPS (µ0) ∈ L+
(
Sb × T b

)
with margSb µ0 = ν0. By completeness, there

will then be a type ta with λa (ta) = (µ0). By construction, the pair (sa, ta) ∈ Ra1. This will
establish that projSa R

a
1 × projSb R

b
1 = Sa1 × Sb1.
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To construct (µ0), fix some sb ∈ Sb and set X = {sb} × T b. Note that ν0(s
b) > 0. By rescaling

and combining measures over different sb, it is enough to find (ξ0) ∈ L+ (X). By separability, X has
a countable dense subset Y . So, by assigning positive weight to each point in Y we get a measure
ξ0 where ξ0(Y ) = 1 and Supp ξ0 is the closure of Y , as required.

Now assume the result for all 1 ≤ i ≤ m. We will show it is also true for i = m + 1. Fix
some (sa, ta) ∈ Ram+1, where λa(ta) = (µ0, . . . , µn−1). Then (sa, ta) ∈ Ram and so, by the induction
hypothesis, sa ∈ Sam. Also, ta ∈ Aa(Rbm). Since projSb R

b
m = Sbm, by the induction hypothesis, we

get a picture like Figure 7.1 (for some j < n). By the same argument as in the proof of Theorem 6.1,
we conclude that sa is admissible with respect to Sa × Sbm (so certainly with respect to Sam × Sbm).
Thus sa ∈ Sam+1.

Next fix some sa ∈ Sam+1. It will be useful to set Sb0 = Sb and Rb0 = Sb × T b. For each
0 ≤ i ≤ m there is a measure νi ∈ M(Sb), with Supp νi = Sbi , under which sa is optimal among
all strategies in Sa. (This is Lemma E.1 in the appendix to this section, which uses Lemma 3.1.)
Thus sa is (lexicographically) optimal under the sequence of measures (ν0, . . . , νm). Also, using
the induction hypothesis, Sbi = projSa R

b
i for all 0 ≤ i ≤ m. We want to construct an LPS

(µ0, . . . , µm) ∈ L+
(
Sb × T b

)
where:

(i) margSb µi = νm−i,

(ii) Rbi is assumed at level m− i.

It will then follow from completeness that there is a ta with λa(ta) = (µ0, . . . , µm), and hence
(sa, ta) ∈ Ram+1. (Refer to Figure 7.2.)

Now fix some sb ∈ Sb and set X = {sb} × T b as above. Let h be the greatest i ≤ m such that
sb ∈ Sbi . Note that for each i ≤ h we have sb ∈ Sbi = Supp νi, and so νi(s

b) > 0. By rescaling and
combining the measures over different sb, it is enough to find (ξ0, . . . , ξh) ∈ L+ (X) with:

(iii) ξ0(X ∩ Rbh) = 1,

(iv) ξi(X ∩ (Rbh−i\R
b
h−i+1)) = 1 for each 1 ≤ i ≤ h,

(v) X ∩ Rbh−i ⊆
⋃i
j=0 Supp ξj for each 0 ≤ i ≤ h.

Each Rbh−i is Borel (Lemma E.6). We also have projSb R
b
h−i = projSb(R

b
h−i\R

b
h−i+1). (This is

Lemma E.8. It is the place where we need the fact that a complete lexicographic type structure has
a non-full-support LPS.) Since sb ∈ projSb R

b
h−i, for each 1 ≤ i ≤ h the set Xi = X∩(Rbh−i\R

b
h−i+1)

is nonempty. The set X0 = X ∩ Rbh is also nonempty. The proof is finished by the same argument
as in the base step above: By separability, each Xi has a countable dense subset Yi. Assign positive
probability to each point in Yi to get a measure ξi where ξi(Yi) = 1 and Supp ξi is the closure of Yi.
Then (ξ0, . . . , ξh) ∈ L+ (X) and satisfies (iii)-(v), completing the induction.

8 A Negative Result

Definition 8.1 Say that player a is indifferent if πa(ra, sb) = πa(sa, sb) for all ra, sa, sb.

In words, the condition is that a player has more than one “strategically distinct” strategy.

Theorem 8.1 Fix a complete continuous type structure 〈Sa, Sb, T a, T b, λa, λb〉. If player a is not
indifferent, then there is no state at which there is RCAR. In fact,

⋂∞
m=1R

a
m =

⋂∞
m=1R

b
m = ∅.
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The result assumes continuity (see Section 9b below for a discussion of this assumption). We
don’t know if the result holds if λa, λb are required only to be measurable. Alternatively put, does
there exist a complete type structure in which RCAR is nonempty? We leave this as a–we think
very interesting–open question.

9 Discussion

Here we discuss some further conceptual and technical aspects of our analysis.

a. Definition of an LPS The original definition of LPS’s in BBD [13, 1991] considers both the
mutually singular and non-mutually singular cases. Our Definition 4.1 imposes mutual singularity.
But, in fact, both types of LPS’s are used in this paper, too. Fix a strategy-type pair (sa, ta) for
Ann. Type ta is associated with an LPS λa(ta) = (µ0, . . . , µn−1) on Sb × T b, where the measures
µi are mutually singular. But the optimality of sa under λa(ta) (Definition 5.2) depends on the
marginals on Sb of the measures µi. These marginals may not be mutually singular, of course.
(The game of Figure 2.6 shows that mutual singularity of the marginals may be impossible.)

We define an LPS to be a finite sequence of probability measures, not an infinite sequence. The
main reason is that finite sequences are general enough for this paper. But it would certainly be
worth exploring extensions of our definition—e.g., with applications to infinite games in mind. (See
Section 9g below.) For example, in Halpern [31, 2003], LPS’s are sequences of measures indexed by
an initial segment of the ordinals. An axiomatic treatment of LPS’s on infinite spaces would also
be valuable.

It is interesting to ask whether Theorem 8.1 would go through with infinite sequences of measures.
Certainly, the intuition given in Section 2.7 appears to depend only on the condition that an LPS
has a primary hypothesis, secondary hypothesis, etc. Given this, we’ll eventually ‘hit’ the primary
hypothesis, when trying to ‘count on’ smaller and smaller events. In other words, it seems that the
well-foundedness of an LPS is really what is responsible for the impossibility.

The idea that a player has an initial hypothesis about a game seems very basic. That said, we
don’t know if Theorem 8.1 would be overturned if we used non-well-founded LPS’s. This is another
important open question.

b. Definition of a Complete Structure In the literature, the more common concept of a
“model of all possible types” is the universal (or canonical) model. (See Armbruster-Böge [1, 1979],
Böge-Eisele [15, 1979], Mertens-Zamir [40, 1985], Brandenburger-Dekel [21, 1993], Heifetz [34, 1993],
and Battigalli-Siniscalchi [7, 1999], among others.) Why do we define and use completeness instead
(Definition 5.6)?11 Completeness is very easy to define—it is just “two-way surjectivity.” Further,
it is exactly the completeness property that is used in Theorems 7.1 and 8.1, so it seems right to
isolate this property.12

Also, the constructions of universal models in the papers cited above, as well as the construction
of complete type structures in this paper, give continuous maps from types to measures. For this
reason, we don’t view our continuity assumption in Theorem 8.1 as ad hoc—though, as we said, we
are interested in knowing what happens without it.

c. Complete vs. Incomplete Structures The use of complete structures (in Theorems 7.1 and
8.1) is not uncontroversial. To see why, we need the concept of the “context” of a game. Formally,

11 The concept is from Brandenburger [20, 2003].
12 The universal models cited are also complete models. That said, we aren’t aware of a general treatment of the

relationship between universal and complete models (absent specific structure). On this point, see also Brandenburger-
Keisler [25, 1999, Section 9].
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this is just an associated type structure (Definition 5.1). Informally, the idea is that the types
present in the structure reflect the players’ possible characteristics, what they could have observed
prior to the start of the game (their possible histories), etc. Viewed this way, a complete structure is
the special “context-free” case, where all possible types are present. But, arguably, like the Savage
[48, 1954, pp.82-91] “small-worlds” view of decision theory, there is always a history before the start
of the game as described. This will likely narrow down, at least to some extent, the players’ possible
types. In short, if the game has a particular context, we won’t be in a complete structure.

We don’t want to overstate this point, but we do think this argument highlights the interest in
analyzing RCAR in incomplete structures. Moreover, it is perhaps not obvious, a priori, that one
would be able to characterize RCAR regardless of the context of the game. But Theorem 6.1 on
SAS’s says that one can.13

d. Order Dependence We defined IA (Definition 3.4) to be simultaneous maximal deletion
(SMD). It is well known that different orders of deletion can give different answers. Theorem
7.1 delivers SMD. Of course, we don’t rule out that some other epistemic treatment could yield a
different order of deletion.

U

L

M

C

D

R

0, 1

0, 0

-1, -1

1, 1

-1, -2

1, 2

-1, -1

1, 0

0, 2

Figure 9.1

Interestingly, if a different order of deletion from SMD is used, the result may not even be an
SAS. In Figure 9.1, SMD gives {(U,C)}, an SAS. But if we delete D first, no further deletions are
possible, and the remaining set {U,M} × {L,C,R} is not an SAS, since L is inadmissible.14 It is
also true that an SAS may not correspond to any order of deletion. In Figure 4.1, there were three
SAS’s, but there was a unique order of deletion.

e. Irrationality The presence of a non-full-support type (i.e., a type with associated LPS that
doesn’t have full support) is needed in the proofs of each of our three main theorems. To be precise,
one such type is used in the converse direction of Theorem 6.1 (the characterization of RCAR), in
Theorem 7.1 (the characterization of RmAR and completeness), and in Theorem 8.1 (our negative
result). In each case, the key fact is that, for every strategy sa, there is some type ta such that
(sa, ta) is irrational.

Let us repeat the conceptual meaning of this. The theorems concern states where players have
full-support types. But since these types consider all possibilities, they don’t rule out the event
that another player is of a non-full-support type. The idea, as discussed in Section 2.4, is that a
player who considers everything possible should, in particular, take into account the possibility that
another player doesn’t consider everything possible.

In Theorem 8.1 we also used the hypotheses that the maps λa, λb are continuous, and Ann is not
indifferent. The key here is that under these hypotheses, Sa × T a contains a nonempty open set of
irrational pairs. This is used to get the first step of an induction (Lemma F.1). At each later step

13 We are grateful to Dov Samet, who suggested this framing at a seminar presentation of this work.
14 The same example indicates that it would be hard to give an epistemic treatment of certain orders of deletion.

Provided we have the requirement that if a strategy-type pair is rational then the strategy is admissible, we can’t get
{U,M} × {L,C,R}.
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of the induction, continuity is again needed to guarantee that the pre-image of an open set is still
open.

f. Interpretation of the Negative Result Conceptually, Theorem 8.1 appears to indicate
a limit on players’ ability to reason about all possibilities in a game. The underlying decision
theory (incorporating admissibility) asks a player to take all states into consideration. RCAR asks
players to assume “rationality and mth-order assumption of rationality” for all m. Completeness
asks players to consider all possible types that are implied by the model. Continuity asks players
to associate neighboring full-support LPS’s with neighboring full-support types. It seems that not
all of this is possible. (Our open question is whether all but the continuity requirement is possible.)

g. Infinite Games Finally, Theorem 8.1 may be suggestive of limitations to the analysis of
infinite games.15 For a fixed infinite game, it may be that one needs the full force of RCAR in a
complete structure to characterize IA. Will this be possible? Of course, to answer this question,
we have to rebuild all the ingredients of this paper for infinite games.16 This seems an important
direction for future work.

10 Related Papers

Our goal in this paper was to provide a unified analysis of admissibility in games. We’ve shown
that RCAR is characterized by an SAS, an analog to a Pearce best-response set. Moreover, the IA
set is one SAS, and, in the case of a complete type structure, the (m+ 1)-admissible strategies are
the strategies consistent with RmAR.

There are a number of existing analyses of admissibility, to which we now relate our work. (We
discuss other connections, including to the work by Asheim-Dufwenberg [3, 2003] and Basu-Weibull
[5, 1991], in an online appendix.17)

A pioneering paper is Samuelson [47, 1992], which—as we mentioned in Section 2—pointed out the
fundamental inclusion-exclusion challenge in the area. To see how Samuelson tackles this, go back
to the game of Figure 2.1. Suppose an analysis yields the answer that Ann plays (only) U . Then,
Samuelson requires Ann to include all of Bob’s strategies that are optimal with respect to U—so Ann
must include both L and R. Turning to Bob, by the same principle he should then include D for
Ann, since D could be optimal with respect to {L,R}. Contradiction. What if the answer includes
Ann’s playing D? But then Bob must play L (admissibility). From this, Ann will play U , so D is
excluded, not included. Another contradiction.

More generally, Samuelson formalizes a condition of “common knowledge of admissibility” (CKA)
and shows that a “consistent pair” (Börgers-Samuelson [18, 1992])—another weak dominance analog
to a Pearce best-response set—is always consistent with CKA.18 Consistent pairs may or may not
exist. In particular, Figure 2.1 is a game where no consistent pair exists. By contrast, SAS’s
always exist (the IA set is an SAS). In Figure 2.1, {(U,L)} is the (unique) SAS. The reason for
the difference is that while we also require Ann to include R, she can consider R infinitely less likely
than L, in which case only U (and not D) is optimal. A consistent pair (when it exists) may contain
inadmissible strategies, and so may not be an SAS. If it contains only admissible strategies, it is an
SAS.

15 We are grateful to the editor for this observation.
16 In particular, we have to revisit the relationship between admissibility, optimality under a full-support measure,

and rationality under a LPS (Lemmas 3.1 and 5.1).
17 “Admissibility in Games: Online Appendix” available on our webpages.
18 He gives a mixed analog to consistent pairs as defined in [18, 1992]. We are stating his result for the case of pure

strategies.
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Samuelson’s work led to various papers investigating ways for Ann both to include all of Bob’s
strategies and, at the same time, to exclude his irrational strategies. Börgers [17, 1994] and Bran-
denburger [19, 1992] took a step with “(1− ε)-belief” (Monderer-Samet [41, 1989], Stinchcombe [55,
1988]) and “belief at level 0,” respectively. The second analysis is lexicographic—let’s restate it in
terms of the current paper. Types are associated with LPS’s and rationality is as in Definition
5.3. If λa (ta) =

(
µ0, . . . , µn−1

)
and µ0(R

b
1) = 1, then we say Ann “believes at level 0” that Bob

is rational. This is one way of allowing Ann both to include and to exclude strategy-type pairs for
Bob. Note that, unlike assumption, belief at level 0 is monotonic. But also notice that it needn’t be
true that all of Bob’s rational strategy-type pairs are infinitely more likely than his irrational pairs.
Of course, this is exactly what is ruled out under assumption. (Conditions (ii)-(iii) of assumption
may be violated for j = 0.) In fact, for a full-support LPS, assumption lies between belief at level
0 and belief.

The condition of rationality and common belief at level 0 of rationality can be characterized as
follows. Call a subset Qa ×Qb of Sa × Sb a weak best-response set (WBRS) if: (i) each sa ∈ Qa is
admissible; (ii) each sa ∈ Qa is not strongly dominated with respect to Qb; and likewise with a and
b interchanged. Recall that the S∞W set (Dekel-Fudenberg [28, 1990]) consists of the strategies
that survive one round of deletion of inadmissible strategies followed by iterated deletion of strongly
dominated strategies. It is easy to check that S∞W is a WBRS, and every WBRS is a subset of
S∞W . We have the following (partial) analog to our Theorem 6.1: Let Qa×Qb be the projection into
Sa × Sb of the states (sa, ta, sb, tb) satisfying rationality and common belief at level 0 of rationality.
Then Qa ×Qb is a WBRS. Conversely, given a WBRS Qa ×Qb there is a type structure such that
Qa ×Qb is contained in the projection into Sa × Sb of the states (sa, ta, sb, tb) satisfying rationality
and common belief at level 0 of rationality.19

There have been several attempts to refine S∞W . Asheim [2, 2001] provides epistemic conditions
for proper rationalizability (Schuhmacher, [49, 1999]), a non-equilibrium analog to proper equilibrium
and a refinement of S∞W . (But the proper rationalizable profiles may not be contained in the IA
set.) Asheim considers the case where Ann has a full-support LPS and believes the relevant events.
He further asks that Ann’s LPS “respect preferences”—i.e., if Bob strictly (lexicographically) prefers(
sb, tb

)
to
(
rb, tb

)
, then Ann should consider

(
sb, tb

)
infinitely more likely than

(
rb, tb

)
. Go back to

the game of Figure 2.8 and the type structure of Figure 2.9. Bob’s LPS does not respect preferences.
Given her type ta, Ann strictly prefers Across to Down, but Bob considers (Across, ta) infinitely
less likely than (Down, ta). As we saw, Bob does assume Ann is rational. Both (Across, ta) and
(Down, ta) are irrational, and considered infinitely less likely than the rational pair (Out, ta). Our
route to ‘upsetting’ the (Out,Out) answer was different—we did so by rationalizing Across (but not
Down) by adding more types (à la completeness). Of course, the understanding that there are
these two different routes goes back to Kohlberg-Mertens [36, 1986, p.1009].

Also related is Stahl [53, 1995], who gets the IA set. Stahl uses LPS’s and supposes that Ann
considers Bob’s strategy sb as infinitely less likely than his strategy rb if sb is eliminated on an earlier
round of IA than rb. We want this condition as an output, not an input, of our analysis. For us,
the crucial ingredient, to get IA, is completeness. We saw that without this we get SAS, not the
IA set.

Other epistemic conditions for IA were given by Ewerhart [29, 2002]. His conditions use prov-
ability (in the sense of mathematical logic). In his model, Ann assigns probability 0 to a strategy of
Bob’s if and only if it is not provable that it is possible that Bob plays that strategy. In effect, Ann
eliminates a strategy of Bob’s unless it is provable that it should not be eliminated. The philosophy
in Ewerhart seems almost opposite to ours. Ewerhart’s players are “aggressive” (his terminology)

19 There may also be an analog—presumably involving a complete structure—to our Theorem 7.1, but we aren’t aware
of a treatment in the literature.
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in eliminating strategies of the other player. Our players are, in a sense, cautious in eliminating
strategies of the other player—since no strategy is ever entirely ruled out. Ewerhart shows that if the
players follow his rule, and if they work in a self-referential system such as Peano Arithmetic, then
they will choose IA strategies. Completeness does not appear to play a role in Ewerhart’s analysis.

Next, we turn to analysis on the tree. The extensive-form rationalizable (EFR) strategies are an
extensive-form analog to the iteratively undominated (IU) strategies, defined by Pearce [44, 1984]
and later simplified by Battigalli [6, 1997].20 In a generic tree, IA and EFR coincide (Shimoji
[51, 2004] and Brandenburger-Friedenberg [22, 2003]). Of course, many games of interest are non-
generic.21 In a simultaneous-move game, EFR reduces to IU. IA and EFR will then differ whenever
IA and IU do. (In general, SAS’s and EFR are quite different.)

Nonetheless, there are some very interesting connections between IA and EFR at the epistemic
level. Battigalli-Siniscalchi (henceforth B-S) [8, 2002] gave epistemic conditions for EFR. As will
be clear, our paper owes a big debt to their work.

Let’s begin by summarizing the B-S characterization of EFR. B-S use conditional probability
systems (CPS’s). (The concept goes back to Rényi [45, 1955].) A CPS is defined relative to
a family E of conditioning events. (In B-S, the family E is associated with information sets of
the tree.) A CPS then specifies a probability measure for each conditioning event, together with
certain conditions tying the measures together. The next ingredient is “strong belief”: Ann strongly
believes an event E if she assigns it probability 1, given any conditioning event F with E ∩ F �= ∅.
B-S show that in a CPS-based complete type structure, the strategies consistent with rationality
(defined on the tree) and common strong belief of rationality are the EFR strategies.

Now the relationship between our analysis and B-S. First, the relationship between LPS’s and
CPS’s. In Brandenburger-Friedenberg-Keisler [24, 2006], we show: Fix a finite subalgebra E of
conditioning events where each F ∈ E is clopen. (The conditioning events in B-S are always
clopen.) There is a natural surjective mapping from the set of full-support LPS’s onto the CPS’s
defined relative to E. Moreover, an event E is strongly believed under a given CPS if and only if it
is assumed under some full-support LPS that maps to that CPS.

Next, the role of completeness. B-S assume completeness of their (CPS-based) type structure.
We assume (LPS-based) completeness in two of our results—in Theorem 7.1, where we character-
ize RmAR under completeness, and in Theorem 8.1, where we show RCAR is impossible under
completeness. Our third result (Theorem 6.1) characterizes RCAR alone, without completeness.

In sum, there is a close correspondence between the ingredients of our analysis and the B-S
analysis, just as there is between the solution concepts of IA and EFR. A difference is that we also
treat the case of incomplete type structures—which leads to our SAS solution concept. Refer back
to Section 9c above, and also to the open question below.

Ben Porath [9, 1997] is an important predecessor on the tree. Like us, he works in an incomplete
type structure. Instead of strong belief, he uses what we’ll call “initial belief”: Ann initially believes
an event E if she assigns it probability 1, given the root of the tree. (Strong belief implies initial
belief, but not vice versa.) Ben Porath considers perfect-information trees satisfying a no-ties
condition. He shows that if a state satisfies rationality (defined on the tree) and common initial
belief of rationality, the strategies played lie in the S∞W set.

Asheim-Søvik [4, 2005] offer more results on the relationship between assumption, strong belief,
and other related concepts in the literature. One such concept is Stalnaker’s [54, 1998] “absolutely
robust belief.” Assumption (defined with probability measures) and absolutely robust belief (defined

20 Shimoji-Watson [52, 1998] show that EFR is equivalent to iterated deletion of strategies that are “conditionally
dominated” in the tree.

21 Examples include auction games, voting games, Bertrand, and zero-sum games. See Mertens [39, 1989] and
Marx-Swinkels [38, 1997] for the same observation on non-genericity, and lists of examples.
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with possibility sets) are analogs in the case of finite spaces. (Unlike B-S and this paper, Stalnaker
doesn’t consider infinite spaces.)

We end with a question. B-S characterize rationality and common strong belief of rationality
in a complete CPS-based type structure. But can we characterize rationality and common strong
belief of rationality in incomplete structures? In other words, is there an extensive-form analog to
our result (Theorem 6.1) that SAS characterizes RCAR on the matrix? This seems an important
question to answer about the tree. In Sections 8 and 9, we noted various open questions on extending
our analysis on the matrix.
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Appendix A Self-Admissible Sets

Here we look at how the SAS concept works in various games of interest in the literature.
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Figure A.1

Example A.1 (Centipede) Consider n-legged Centipede (Rosenthal [46, 1981]), as in Figure A.1.
We show that if Qa ×Qb is an SAS for Centipede, and (sa, sb) ∈ Qa ×Qb, then sa is Ann’s strategy
of playing Out at the first node.22

Proof. Suppose, to the contrary, that there is an (sa, sb) ∈ Qa×Qb where sa involves Ann’s playing
across at the first node. In particular, pick a profile (sa, sb) which yields the longest path of play
(before Ann or Bob plays Out). Let h be the node on this path at which Out is played. Suppose
Bob moves at h. (A similar argument applies if Ann moves at h.) Then, by condition (ii) of the
definition of an SAS, and Proposition 3.1, Ann’s strategy sa must be optimal under a measure that
assigns: (i) probability 1 to Bob’s playing Out at node h or earlier; and (ii) positive probability to
Bob’s playing across until node h and Out at h. Now consider the strategy ra for Ann that plays
across until node h′ (where h′ is the immediate predecessor of h) and plays Out at h′. Then ra

does strictly better than sa under any such measure–a contradiction.

This analysis of Centipede seems very intuitive. It starts at the beginning of the tree and works
forwards—reaching a contradiction because if Bob is the player to end the game (playing Out at node
h), then Ann should have ended the game earlier.

Interestingly, with SAS, we get the BI outcome, not necessarily the BI strategies. For instance,
in the three-legged game, {Out}×{Out, In} is an SAS. IA makes a sharper prediction strategy-wise:
The IA set is a singleton, consisting of the (reduced) backward-induction (BI) strategies.

For our next game, the Finitely Repeated Prisoner’s Dilemma, we need the following projection
property of SAS’s: Fix a game tree Γ, with strategic form G, and a proper subtree ∆ of Γ. Any
SAS of G which allows ∆ induces an SAS on the strategic form of ∆.23
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C D
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d > c > 0 > e

Figure A.2

22 Of course, we are not prescribing play. The same is true in the examples below. Also, note that we consider the
reduced strategic form of the game.

23 Kohlberg-Mertens [36, 1986] introduced (essentially) this property of a solution concept. See Brandenburger-
Friedenberg [23, 2004] for a proof of the projection property for SAS’s.
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Example A.2 (Finitely Repeated Prisoner’s Dilemma) Consider the Prisoner’s Dilemma (Fig-
ure A.2) and the T -fold repetition, for some integer T . Fix an SAS of this game. We show that any
strategy profile in the SAS yields the Defect-Defect path throughout.

Proof. The proof is by induction on the number of rounds. For T = 1, the result is immediate
from the fact that any strategy in an SAS is admissible. Now assume the result for T , and fix an
SAS Qa × Qb of the (T + 1)-fold game. Suppose sa ∈ Qa involves Ann’s playing C on the first
round. Then for any sb ∈ Qb, Ann gets a first-round payoff of c if sb involves Bob’s playing C
on the first round, and e if sb involves Bob’s playing D on the first round. These are also Ann’s
total payoffs from the game when (sa, sb) is played, since the projection property above and the
induction hypothesis together imply that the profile (sa, sb) yields the Defect-Defect path on rounds
2, . . . , T + 1. Suppose instead that Ann chooses the “Defect always” strategy. Then she gets a
first-round payoff of d if sb involves Bob’s playing C on the first round, and 0 if sb involves Bob’s
playing D on the first round. On subsequent rounds Ann gets at least 0. But then the “Defect
always” strategy does strictly better than sa against every sb ∈ Qb, contradicting the definition of
an SAS.

As in Centipede, IA gives a sharper prediction strategy-wise in the Finitely Repeated Prisoner’s
Dilemma than SAS does: Each player has a unique IA strategy, namely “Defect always.”

In the next example, SAS and IA give different answers outcome-wise.

Example A.3 (Twice Repeated Chain Store Game) Figure A.3 gives the twice-repeated Chain
Store game (Selten [50, 1978]). On each round, the payoffs are: (0, 3) (to entrant and incumbent
resp.) if the entrant chooses Out; (1, 1) if the entrant chooses In and the incumbent chooses Cede;
and (−2,−2) if the entrant chooses In and the incumbent chooses Fight. There are two SAS’s. In
one, the entrant chooses In unconditionally and the incumbent chooses Cede unconditionally. This
is also the IA set and BI strategy profile. In the other SAS, the entrant chooses Out at the first
stage and In at the second stage. The incumbent chooses Fight at the first stage and Cede at the
second stage.
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Figure A.3

Of course, the fact that SAS can deliver a non-BI outcome in this game is not a flaw of the
concept. It is by now well accepted that non-BI outcomes are of interest in many games—including
the repeated Chain Store game.

Still, the example prompts the question: What does SAS yield in perfect-information (PI) games?
Here is the answer. Fix a PI game satisfying a “no-ties” condition: Any strategy profile that lies in
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an SAS is outcome equivalent to a pure Nash equilibrium (and admissible). Conversely, any pure
admissible Nash equilibrium lies in some SAS. (See Brandenburger-Friedenberg [23, 2004] for a
precise statement and proof.) This is different from IA. In a PI game satisfying a no-ties condition,
any strategy profile that lies in the IA set is outcome equivalent to the BI strategies. (See Battigalli
[6, 1997] and Marx-Swinkels [38, 1997] for various versions of this relationship.)

Our result on SAS’s in PI games resembles Theorem 2 in Ben Porath [9, 1997], which gives
conditions for a Nash outcome in a generic PI game. We discuss the relationship further in our [23,
2004].

Appendix B Assumption

We begin with an axiomatic justification of assumption (Definition 4.3).
Let Ω be a Polish space and let A be the set of all measurable functions from Ω to [0, 1]. A

particular function x ∈ A is an act, where x (ω) is the payoff to the player of choosing the act x, if
the true state is ω ∈ Ω. For x, y ∈ A and 0 ≤ α ≤ 1, write αx+ (1 − α)y for the act that in state
ω gives payoff αx (ω) + (1 − α)y (ω). For c ∈ [0, 1], write −→c for the constant act associated with c,
i.e. −→c (ω) = c for all ω ∈ Ω. Also, given acts x, z ∈ A, and a Borel subset E in Ω, write

(
xE, zΩ\E

)

for the act: (
xE, zΩ\E

)
(ω) =

{
x (ω) if ω ∈ E,
z (ω) if ω /∈ E.

Let� be a preference relation on A, and write ≻ (resp. ∼) for strict preference (resp. indifference).
We maintain three axioms throughout:

A1 (Order) � is a complete, transitive, reflexive binary relation on A.

A2 (Independence) For all x, y, z ∈ A and 0 < α ≤ 1,

x ≻ y implies αx+(1−α)z ≻ αy+(1−α)z, and x ∼ y implies αx+(1−α)z ∼ αy+(1−α)z.

A3 (Nontriviality) There are x, y ∈ A with x ≻ y.

Given a Borel set E, define conditional preference given E in the usual way:

Definition B.1 x �E y if for some z ∈ A, (xE, zΩ\E) � (yE, zΩ\E).

(As is well known, under A1 and A2, B.1 for some z implies B.1 for all z.)

Definition B.2 Say a set E is believed under � if E is Borel and, for all x, y ∈ A, x ∼Ω\E y.

This is just the statement that the event Ω\E is Savage-null.

Definition B.3 Say a set E is assumed under � if E is Borel and:

(i) there are x, y ∈ A with x ≻E y,

(ii) for all x, y ∈ A, x ≻E y implies x ≻ y.

Condition (ii) says that in the comparison between any two acts x, y, the payoffs in E are
determining for strict preference. More loosely, the player is prepared to make a decision based
only on states in E. Condition (i) is a nontriviality requirement, stating that E is not Savage-null.
(Without (i), the empty set, for example, would be assumed.)
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Proposition B.1 If E is believed under �, it is assumed under �.

Proof. Fix a set E that is believed under� and note that E is Borel. We first establish condition (i).
By A3, there are x, y ∈ A with x ≻ y. Since E is believed under�, we have (xE, xΩ\E) ∼ (xE, zΩ\E).
Similarly, (yE, yΩ\E) ∼ (yE, zΩ\E). Using A1, (xE, zΩ\E) ≻ (yE, zΩ\E), as required.

For condition (ii), consider any x, y ∈ A with x ≻E y. Then certainly (xE, xΩ\E) ≻ (yE, xΩ\E).
Since E is believed under �, we have (yE, xΩ\E) ∼ (yE, yΩ\E). Using A1, (xE, xΩ\E) ≻ (yE , yΩ\E),
as required.

We now define two preference relations on A. It is clear that both of them satisfy Axioms A1—A3.
Given a probability measure µ ∈ M (Ω), define �µ by:

x �µ y ⇐⇒
∫
Ω x (ω)dµ (ω) ≥

∫
Ω y (ω)dµ (ω) .

Similarly, given an LPS σ = (µ0, . . . , µn−1) ∈ L(Ω), define �σ on A by:

x �σ y ⇐⇒
(∫
Ω
x(ω)dµi(ω)

)n−1
i=0

≥L
(∫
Ω
y(ω)dµi(ω)

)n−1
i=0

.

For ordinary probabilities we have:

Proposition B.2 Fix µ ∈ M (Ω) and a Borel set E. The following are equivalent:

(i) µ (E) = 1,

(ii) E is believed under �µ,

(iii) E is assumed under �µ.

Proof. In light of Proposition B.1, it suffices to show that (i) implies (ii), and (iii) implies (i).
Suppose (i) holds. Then µ (Ω\E) = 0, and so for any x, y ∈ A, x ∼µ

Ω\E y. Thus (ii) holds.

Now suppose (iii) holds. By Definition B.3(i), there are x, y ∈ A with x ≻µ
E y. Thus µ (E) > 0.

Set C = Suppµ, and define x, y ∈ A as follows:

x (ω) =

{
µ (C\E) if ω ∈ C ∩ E,
0 otherwise,

y (ω) =

{
1 if ω ∈ C\E,
0 otherwise.

Acts x and (xE,
−→
0 Ω\E) are evaluated as µ (C\E)µ (C ∩ E). Act y is evaluated as µ (C\E), while act

(yE,
−→
0 Ω\E) is evaluated as 0. Note that if 0 < µ (E) < 1, then µ (C\E) > 0 and 0 < µ (C ∩E) < 1.

Thus x ≻µ
E y and y ≻µ x, contradicting Definition B.3(ii).

For lexicographic probabilities we have:

Proposition B.3 Fix σ = (µ0, . . . , µn−1) ∈ L(Ω) and a Borel set E in Ω. The following are
equivalent:

(i) µi (E) = 1 for all i,

(ii) E is believed under �σ.
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Proof. Suppose (i) holds. Then µi (Ω\E) = 0 for all i, and so for any x, y ∈ A, x ∼σ
Ω\E y. Thus

(ii) holds. Now suppose (ii) holds. Then
−→
1 ∼σ

Ω\E

−→
0 . That is

(
µi (Ω\E) +

∫
E
z(ω)dµi(ω)

)n−1
i=0

=
(
0 +

∫
E
z(ω)dµi(ω)

)n−1
i=0

,

or µi (Ω\E) = 0 for all i, as required.

Proposition B.4 Fix σ = (µ0, . . . , µn−1) ∈ L(Ω) and a Borel set E in Ω. The following are
equivalent:

(i) there is a j < n such that µi (E) = 1 for all i ≤ j and µi (E) = 0 for all i > j,

(ii) E is assumed under �σ.

Proof. Suppose (i) holds. The act (
−→
1 E,

−→
0 Ω\E) is evaluated as (1, . . . , 1, 0, . . . , 0) where the last

1 corresponds to µj , and (
−→
0 E,

−→
0 Ω\E) is evaluated as (0, . . . , 0). Thus

−→
1 ≻σ

E

−→
0 , establishing

condition (i) of Definition B.3. To establish condition (ii), note that x ≻σ
E y implies

(∫
E
xdµ0, . . . ,

∫
E
xdµj ,

∫
Ω\E

zdµj+1, . . . ,
∫
Ω\E

zdµn−1

)
>L

(∫
E
ydµ0, . . . ,

∫
E
ydµj ,

∫
Ω\E zdµj+1, . . . ,

∫
Ω\E zdµn−1

)
,

so that certainly

(∫
E
xdµ0, . . . ,

∫
E
xdµj ,

∫
Ω\E xdµj+1, . . . ,

∫
Ω\E xdµn−1

)
>L

(∫
E
ydµ0, . . . ,

∫
E
ydµj(ω),

∫
Ω\E ydµj+1, . . . ,

∫
Ω\E ydµn−1

)
.

Thus x ≻σ y, as required.
Now suppose (i) fails. There are three cases to consider.

Case B.1 µi(E) = 0 for all i.

This contradicts Definition B.3(i).

Case B.2 µi(E) = 0 and µh(E) = 1 where h > i.

Let Ui and Uh be Borel sets as in Definition 4.1 (i.e. with µi(Ui) = 1 and, for i �= k, µi(Uk) = 0
and similarly for h). Define:

x(ω) =

{
1 if ω ∈ E ∩ Uh,
0 otherwise,

y(ω) =

{
1 if ω ∈ Ui\E,
0 otherwise.

Acts x and (xE,
−→
0 Ω\E) are evaluated as (0, . . . , 0, 1, 0, . . . , 0) where the 1 corresponds to µh. (Here,

we use µk(Uh) = 0 for all k �= h.) Act y is evaluated as (0, . . . , 0, 1, 0, . . . , 0) where the 1 corresponds

to µi, while act (yE,
−→
0 Ω\E) is evaluated as (0, . . . , 0). Thus x ≻σ

E y. But, since h > i, y ≻σ x,
contradicting Definition B.3(ii).
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Case B.3 0 < µi(E) < 1 for some i.

Let Ui be a Borel set as in Definition 4.1, and define:

x(ω) =

{
µi(Ui\E) if ω ∈ E ∩ Ui,
0 otherwise,

y(ω) =

{
1 if ω ∈ Ui\E,
0 otherwise.

Acts x and (xE,
−→
0 Ω\E) are evaluated as

(0, . . . , 0, µi(Ui\E)µi(E ∩ Ui), 0, . . . , 0),

where the non-zero entry corresponds to µi. This entry is indeed non-zero, as 1 > µi (E) > 0 implies
µi(Ui\E) > 0 and µi(E ∩ Ui) > 0. Act y is evaluated as

(0, . . . , 0, µi(Ui\E), 0, . . . , 0),

where the non-zero entry corresponds to µi. This entry is indeed non-zero, since 1 > µi (E). The

act (yE,
−→
0 Ω\E) is evaluated as (0, . . . , 0). Thus x ≻σ

E y. But since 1 > µi(E ∩ Ui), y ≻σ x,
contradicting Definition B.3(ii).

The next definition says that “all of E should matter” in terms of preference. For completeness,
we characterize the condition for both ordinary and lexicographic probabilities.

Definition B.4 A set E is whole under � if E is Borel and, for each e ∈ E and open neighborhood
U of e, there are x, y ∈ A such that x ≻E∩U y.

Proposition B.5 Suppose that E is assumed under �µ. Then E is whole under �µ if and only if
E ⊆ Suppµ.

Proof. The proof is the same as the proof of Lemma B.1 below (adapted for a one-level LPS).

Lemma B.1 Suppose that E is assumed under �σ at level j (as per Definition B.3). Then E is
whole under �σ if and only if E ⊆

⋃
i≤j Suppµi.

Proof. First suppose E ⊆
⋃
i≤j Suppµi, and fix some e ∈ E and an open neighborhood U of e.

Then U ∩ Suppµi �= ∅ for some i ≤ j, and so µi (U) > 0. But µi (E) = 1 by Proposition B.4, and

so µi (E ∩ U) > 0. Thus
−→
1 ≻σ

E∩U

−→
0 .

Next suppose E �
⋃
i≤j Suppµi. Then there is an e ∈ E such that U = Ω\

⋃
i≤j Suppµi is

an open neighborhood of e. But µi (U) = 0 for all i ≤ j. Also, µi (E) = 0 for all i > j, using
Proposition B.4. Thus µi (E ∩ U) = 0 for all i, and so x ∼µ

E∩U y for all x, y ∈ A.

Proposition B.6 A set E is assumed and whole under �σ if and only if it is assumed under σ in
the sense of Definition 4.3.

We now turn to some properties of assumption.

Proof of Property 4.1 (Convexity). Let σ =
(
µ0, . . . , µn−1

)
and fix events E and F that are

assumed at level j. Fix also a Borel set G with E ∩ F ⊆ G ⊆ E ∪ F . We will show that G is also
assumed at level j.
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First fix i ≤ j and note that µi (E) = µi (F ) = 1. So certainly µi (E ∩ F ) = 1. Since E∩F ⊆ G,
µi (G) = 1, establishing property (i) of assumption. Next fix i > j. Note that µi (E) = µi (F ) = 0,
and so µi (E ∪ F ) = 0. Since G ⊆ E ∪ F , µi (G) = 0, establishing property (ii) of assumption.
Finally, note that since E and F are assumed at level j and G ⊆ E ∪ F ,

G ⊆ E ∪ F ⊆
⋃
i≤j Suppµi.

This establishes property (iii) of assumption.

Proof of Property 4.2 (Closure). Let σ =
(
µ0, . . . , µn−1

)
. It suffices to show that if E is as-

sumed at level j then cl (E) =
⋃
i≤j Suppµi. By condition (iii) of Definition 4.3, E ⊆

⋃
i≤j Suppµi.

Since
⋃
i≤j Suppµi is closed, cl (E) ⊆

⋃
i≤j Suppµi. Moreover, for all i ≤ j, µi (cl (E)) = 1 so that⋃

i≤j Suppµi ⊆ cl (E).

Proof of Property 4.3 (Conjunction and Disjunction). We will only prove the Conjunction
property. The proof of the Disjunction property is similar.

Let σ =
(
µ0, . . . , µn−1

)
. For each m, Em is assumed under σ at some level jm. Let jM =

min{jm : m = 1, 2, . . .}. Then, for each m, µi (Em) = 1 for all i ≤ jM . Thus µi (
⋂
mEm) = 1

for all i ≤ jM . Also, µi (EM) = 0 for all i > jM . Then certainly µi (
⋂
mEm) = 0 for all i > jM .

This establishes conditions (i) and (ii) of Definition 4.3 (for j = jM ). Finally,
⋂
mEm ⊆ EM

⊆
⋃
i≤jM

Suppµi, where the second inclusion follows from the fact that EM is assumed at level jM .
This establishes condition (iii) of Definition 4.3.

Finally in this section, we prove Proposition 4.1. Let Ln(Ω) be the set of all σ in L(Ω) of length
n, and define Nn(Ω) analogously.

Proof of Proposition 4.1. (i) It suffices to prove that for each n, Ln(Ω) is closed in Nn(Ω). Sup-
pose Ω has at least two elements. (The result is trivial otherwise.) Take a point σ = (µ0, . . . , µn−1)
in N (Ω)\L(Ω). Since Ω is finite, there is a point ω ∈ Ω and a pair of indices i < j < n such that
µi(ω) > 0 and µj(ω) > 0. The set of τ = (ν0, . . . , νn−1) such that νi(ω) > 0 and νj(ω) > 0 is an
open neighborhood of σ in Nn(Ω) which is disjoint from Ln(Ω), so Ln(Ω) is closed.

(ii) It suffices to prove that for each n, Ln(Ω) is dense in Nn(Ω). We begin with the fact that for
any Polish space Ω, the set of probability measures with finite support is dense in M(Ω) (Billingsley
[12, 1968, Appendix III Theorem 4]). Therefore the set F of n-tuples of probability measures with
finite support is dense in Nn(Ω). To complete the proof it is enough to show that every element
(µ0, . . . , µn−1) ∈ F is the limit of a sequence of mutually singular elements of F . The support of
µi is a finite set {xij : j < mj}. Since Ω has no isolated points, each xij is a limit of a sequence
ykij , k = 0, 1, . . .. By taking subsequences, we can get all the points ykij to be distinct from each

other. For each k, let (νk0 , . . . , ν
k
n−1) be the n-tuple of measures such that νki (xij) = µi(xij). That

is, νki is the measure µi shifted over to the kth points in the sequence converging to the support of
µi. Then (νk0 , . . . , ν

k
n−1) is in F and converges to (µ0, . . . , µn−1). Since the points ykij are distinct,

each (νk0 , . . . , ν
k
n−1) is mutually singular.

Appendix C Proofs for Section 5

Proof of Proposition 5.1. (i) Start with a type structure 〈Sa, Sb, T a, T b, κa, κb〉. The case
that Sb × T b is a singleton is trivial, so we may assume that it is not. Pick any σ ∈ L(Sb × T b)
which does not have full support. Define λa(ta) = κa(ta) if κa(ta) ∈ L+(Sb × T b) and λa(ta) = σ
otherwise. Since L+(Sb × T b) is Borel, λa is a Borel map. Define λb similarly.
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(ii) It is clear from the definitions that they have the same rationality sets Ra1 and Rb1. The
result for m > 1 then follows at once by induction, since only assumption by full-support LPS’s is
involved.

Proof of Proposition 5.2. Let T a and T b be the Baire space, i.e., the metric space NN with
the product metric, where N has the discrete metric. There is a continuous surjection λa (resp.λb)
from T a (resp.T b) onto any Polish space, in particular onto L

(
Sb × T b

)
(respectively L

(
Sb × T b

)
).

(See Kechris [35, 1995, p.13 and Theorem 7.9].) These maps give us a complete type structure.

Appendix D Proofs for Section 6

Lemma D.1 Suppose ta assumes E ⊆ Sb × T b at level j, where λa(ta) =
(
µ0, . . . , µn−1

)
. Then⋃

i≤j SuppmargSb µi = projSb E.

Proof. Fix sb ∈ projSb E, i.e.
(
sb, tb

)
∈ E for some tb. Then, by condition (c) of Definition

4.3, (sb, tb) ∈ Suppµi for some i ≤ j. Therefore 0 < µi({s
b} × T b) = margSb µi(s

b) and hence
sb ∈ SuppmargSb µi. Next fix sb /∈ projSb E. Then {sb} × T b is disjoint from E. But for each
i ≤ j we have µi(E) = 1, so µi({s

b} × T b) = margSb µi(s
b) = 0 and hence sb /∈ SuppmargSb µi.

The next series of lemmas concerns the geometry of polytopes. We will first review some notions
from geometry, then state the lemmas, then explain the connection between the geometric notions
and games, then present some intuitive examples, and finally give the formal proofs of the lemmas.

Throughout this section, we will fix a finite set X = {x1, . . . , xn} ⊆ Rd. The polytope generated
by X, denoted by P , is the closed convex hull of X, i.e., the set of all sums

∑n
i=1 λixi, where λi ≥ 0

for each i, and
∑n
i=1 λi = 1. The affine hull of P , denoted by aff (P ), is the set of all affine

combinations of finitely many points in P , i.e., the set of all sums
∑k
i=1 λiyi, where y1, . . . , yk ∈ P

and
∑k
i=1 λi = 1. The relative interior of P , denoted by relint (P ), is the set of all x ∈ aff (P )

such that there is an open ball B (x) centered around x, with aff (P ) ∩B (x) ⊆ P .
A hyperplane in Rd is a set of the form

H (u, α) =
{
x ∈ Rd : 〈x, u〉 = α

}

for some nonzero u ∈ Rd. A hyperplane H (u, α) supports a polytope P if

α = sup {〈x, u〉 : x ∈ P} .

A face of P is either P itself or a set of the form H ∩ P where H is a hyperplane that supports
P . If F �= P is a face of P , we say F is a proper face. A face H ∩ P is strictly positive if
H = H (u, α) for some (u, α) such that each coordinate of u is strictly positive.

Given a point x in a polytope P , say the points x1, . . . , xk ∈ P each support x ∈ P if there are
λ1, . . . , λk, with 0 < λi ≤ 1 for each i,

∑k
i=1 λi = 1, and x =

∑k
i=1 λixi. Write su (x) for the set

of points that support x ∈ P . (Note the slight abuse of notation relative to that introduced before
Definition 3.3.)

Here are the lemmas we will need:

Lemma D.2 If F is a face of a polytope P and x ∈ F then su(x) ⊆ F .

Lemma D.3 For each point x in a polytope P , su(x) is a face of P .
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Lemma D.4 If x belongs to a strictly positive face of a polytope P , then su(x) is a strictly positive
face of P .

We now give the interpretation of the geometric notions in game theory. Let d be the cardinality
of the finite strategy set Sb. Each strategy sa ∈ Sa corresponds to the point

−→π a(sa) =
(
πa(sa, sb) : sb ∈ Sb

)
∈ Rd.

For any probability measure µ ∈ M(Sa), −→π a(µ) is the point

−→π a(µ) =
∑
sa∈Sa µ (sa)−→π a(sa).

Notice that −→π a(µ) is in the polytope P generated by the finite set {−→π a(sa) : sa ∈ Sa}.
Let us identify each probability measure ν ∈ M(Sb) with the point (ν(sb) : sb ∈ Sb) ∈ Rd. Then

for each pair (µ, ν) ∈ M(Sa) × M(Sb), 〈−→π a(µ), ν〉 is the expected payoff to Ann. Thus, a pair
(µ, ν) gives expected payoff α to Ann if and only if −→π a(µ) belongs to the hyperplane H(ν, α). It
follows that a set F is a strictly positive face of P if and only if there is a probability measure ν
with support Sb such that

F = {−→π a(µ) : µ ∈ M(Sa) is optimal under ν}.

Consider an admissible strategy sa. By Lemma 3.1, −→π a (sa) is optimal under some measure ν
with support Sb. That is, −→π a (sa) belongs to some strictly positive face of P . Lemma D.4 shows
that su(−→π a (sa)) is a strictly positive face of P . So, we can pick ν so that, for every ra ∈ Sa,
−→π a (ra) is optimal under ν if and only if −→π a (ra) ∈ su(−→π a (sa)). This is the fact we use in the proof
of Theorem 6.1(ii).

We next give some intuition for Lemmas D.2-D.4. Let P be a tetrahedron, as in Figure D.1.
The point x∗ is supported by the hyperplane H, and the corresponding face H ∩ P is the shaded
region shown. The set of points that support x∗, i.e., the set su (x∗), is the line segment from x2 to
x4. Note that these points are also contained in the face H ∩ P . The general counterpart of this
is Lemma D.2.

x1

x2

x3

x4

H

x∗
•

Figure D1

x1

x2

x3

x4

x∗
•

H ′

Figure D2

Now a converse. In Figure D.1, the point x3 lies in H∩P but does not support x∗. However, we
can ‘tilt’ the hyperplane H to get a new supporting hyperplane H′ as in Figure D.2. Here, H ′ ∩ P
is the line segment from x2 to x4, i.e., exactly the set su (x∗). The general counterpart is Lemma
D.3.
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Consider another example, in Figure D.3. Here P is the line segment from (1, 0) to (1, 1). Note
that su ((1, 0)) = {(1, 0)}. The hyperplane H supports (1, 0), and H ∩ P = P . We can tilt the
hyperplane to get H ′ where H′ ∩ P = {(1, 0)} (in accordance with Lemma D.3). But note that we
can’t do this if we require the hyperplane to be nonnegative. (Indeed, H is the unique nonnegative
hyperplane supporting (1, 0).) Intuitively, though, we will have room to tilt the hyperplane and
maintain nonnegativity—in fact, strict positivity—if the original hyperplane is strictly positive. This
is Lemma D.4.

•

•

(1, 0)

(1, 1)

H ′

H

Figure D3

We now turn to the proofs of Lemmas D.2-D.4.

Proof of Lemma D.2. Fix a face F that contains x. If F = P then certainly su (x) ⊆ F . If
F �= P , there is a hyperplane H = H (u, α) that supports P , with F = H ∩ P . Fix y ∈ su (x).

Then there are x1, . . . , xk ∈ P and λ1, . . . , λk, with 0 < λi ≤ 1 for each i,
∑k
i=1 λi = 1, y = x1, and

x =
∑k
i=1 λixi. Let z =

∑k
i=2

λi
1−λ1

xi, and note that z ∈ P , since P is convex. Also note that
x = λ1y + (1 − λ1) z; that is, x lies on the line segment from y to z.

Since x ∈ H and y, z ∈ P ,

〈x, u〉 = α, 〈y, u〉 ≤ α, 〈z, u〉 ≤ α.

Moreover, since x lies on the line segment from y to z,

〈y, u〉 ≤ 〈x, u〉 ≤ 〈z, u〉.

It follows that 〈y, u〉 = α, so y ∈ F .

For the next proofs we need the following basic facts about a general polytope P (see Ziegler [59,
1998, Chapter 2]):

P1 Every face of P is a polytope.

P2 Every face of a face of P is a face of P .

P3 If x ∈ P , either x ∈ relint (P ) or x belongs to a proper face of P .

P4 P has finitely many faces.

We record an immediate consequence of P1-P4.

Lemma D.5 If x ∈ P then there exists a face F of P with x ∈ relint (F ).
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Proof. If x ∈ relint (P ), the result holds trivially. So suppose x /∈ relint (P ). By P3, x is contained
in some proper face F of P . By P1, the face F is a polytope. Using P2 and P4, we can choose F
so that there does not exist a proper face of F that contains x. P3 then implies x ∈ relint (F ).

The next lemma establishes a fact about points in the relative interior of a face F of P .

Lemma D.6 Let F be a face of P . If x ∈ relint(F ) then F ⊆ su(x).

Proof. Fix x ∈ relint(F ) and some x′ ∈ F . If x′ = x then certainly x′ ∈ su (x). If not, consider the
line going through both x and x′, to be denoted by L (x, x′). Since x ∈ relint (F ), there is some open
ball B (x) centered around x, with aff (F ) ∩ B (x) ⊆ F . Then aff (F ) ∩ B (x) must meet L (x, x′).
Certainly, we can find a point x′′ both on L (x, x′) and in aff (F ) ∩ B (x), with d (x′, x) < d (x′, x′′)
for the Euclidean metric d. Then there must exist 0 < λ < 1 with x = λx′ + (1 − λ)x′′. Since
x′, x′′ ∈ P , this establishes x′ ∈ su (x).

We now turn to the proofs of lemmas D.3 and D.4.

Proof of Lemma D.3. Fix x ∈ P . By Lemma D.5, there exists a face F of P with x ∈ relint (F ).
We then have su (x) ⊆ F by Lemma D.2, and F ⊆ su (x) by Lemma D.6.

Proof of Lemma D.4. Let H(u, α) ∩P be a strictly positive face of P containing x. By Lemma
D.3, su(x) = H(u′, α′) ∩ P is a face of P . Set

u′′ = u′ + βu, α′′ = α′ + βα,

for some β > 0. If y ∈ H(u′, α′) ∩ P , we get

〈y, u′′〉 = 〈y, u′〉 + β〈y, u〉 = α′ + βα = α′′,

using su(x) ⊆ H(u, α) ∩ P . If y ∈ P\H(u′, α′), we get

〈y, u′′〉 = 〈y, u′〉 + β〈y, u〉 < α′ + β〈y, u〉 ≤ α′ + βα = α′′.

Thus H(u′′, α′′) is a supporting hyperplane with su (x) = H(u′′, α′′) ∩ P . Moreover, since β > 0,
u′′ ≫ 0 as required.

Appendix E Proofs for Section 7

Lemma E.1 If sa ∈ Sam then there exists µ ∈ M
(
Sb
)
, with Suppµ = Sbm−1, such that πa (sa, µ) ≥

πa (ra, µ), for each ra ∈ Sa.

Proof. By Lemma 3.1, there exists µ ∈ M
(
Sb
)
, with Suppµ = Sbm−1, such that πa (sa, µ) ≥

πa (ra, µ) for all ra ∈ Sam−1. Suppose there is an ra ∈ Sa\Sam−1 with

πa (sa, µ) < πa (ra, µ) . (E.1)

We have ra ∈ Sal \Sal+1, for some l < m − 1. Choose ra (and l) so that there does not exist
qa ∈ Sal+1 with πa (sa, µ) < πa (qa, µ).

Fix some ν ∈ M(Sb), with Supp ν = Sbl , and define a sequence of measures µn ∈ M(Sb), for
each n ∈ N, by µn = (1 − 1

n
)µ+ 1

n
ν. Note that Suppµn = Sbl for each n. Using ra /∈ Sal+1, and
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Lemma 3.1 applied to the (l + 1)-admissible strategies, it follows that for each n there is a qa ∈ Sal
with

πa(qa, µn) > πa(ra, µn). (E.2)

We can assume that qa ∈ Sal+1. (Choose qa ∈ Sal to maximize the left-hand side of equation E.2
among all strategies in Sal .) Also, since Sal+1 is finite, there is a qa ∈ Sal+1 such that E.2 holds for
infinitely many n. Letting n → ∞ yields

πa(qa, µ) ≥ πa(ra, µ). (E.3)

From E.1 and E.3 we get πa(qa, µ) > πa(sa, µ), contradicting our choice of ra.

In what follows, we will need to make use of the following characterizations of full support.

Lemma E.2 A sequence σ =
(
µ0, . . . , µn−1

)
∈ N (Ω) has full support if and only if, for each

nonempty open set U , there is an i with µi(U) > 0.

Proof. Fix a sequence σ =
(
µ0, . . . , µn−1

)
∈ N (Ω) which does not have full support. Then

U = Ω\
⋃
i<n Suppµi is nonempty. The set U is open and µi(U) = 0 for all i. For the converse,

fix a full-support sequence σ =
(
µ0, . . . , µn−1

)
∈ N (Ω) and a nonempty open set U . Since σ has

full support, U ∩ Suppµi �= ∅ for some i. Then (Ω\U) ∩ Suppµi is closed and strictly contained in
Suppµi, so that µi ((Ω\U) ∩ Suppµi) < 1. From this, µi (U) > 0, as required.

Lemma E.3 Fix a sequence σ = (µ0, . . . , µn−1) ∈ N (Ω) which has full support. Then σ ∈ L+ (Ω)
if and only if there are Borel sets Ui that form a partition of Ω with µi (Ui) = 1 and Ui ⊆ Suppµi.

Proof. Certainly, if there are Borel sets Ui that form a partition of Ω with µi (Ui) = 1 and Ui ⊆
Suppµi, then σ is mutually singular.

Now suppose that, for i = 0, . . . , n − 1, there are Borel sets Ui in Ω with µi (Ui) = 1 and
µi (Uj) = 0 for i �= j. For i > 0, define Vi = Ui\

⋃
j<i Uj . Also define V0 = Ω\

⋃
i>0 Vi. Then Vi is

a partition of Ω with µi (Vi) = 1 and µi (Vj) = 0 for i �= j.
Next, let W =

⋃
j(Vj\Suppµj). We have µi(W ) = 0 for all i. Let W0 = W ∩ Suppµ0 and

Wi = [W\(W0 ∪ · · · ∪ Wi−1)] ∩ Suppµi

for i > 0. Using
⋃
j Suppµj = Ω, we see that the sets Wi partition W . Also µi(Wj) = 0 for all i

and j, since Wj ⊆ W . Finally, set Xi = (Vi ∩ Suppµi) ∪ Wi. Then the Xi partition Ω and have
the required properties: µi(Xi) = 1, µi(Xj) = 0 for j �= i, and Xi ⊆ Suppµi.

In the next three lemmas, Borel without qualification means Borel in N (Ω), and σ = (µ0, . . . , µn−1)
varies over N (Ω). We make repeated use of the following facts:

(i) There is a countable open basis E1, E2, . . . for Ω.

(ii) For each Borel set B in Ω and r ∈ [0, 1], the set of µ such that µ(B) > r is Borel in M(Ω).

(iii) For each Borel set Y in M(Ω) and each k, the set of σ such that µk ∈ Y is Borel.

Fact (i) follows from the assumption that Ω is separable. Fact (ii) says that the function
µ �→ µ(B) is Borel, which follows from Kechris [35, 1995, Theorem 17.24]. Fact (iii) follows from
the continuity of the projection function σ �→ µk from N (Ω) to M(Ω).

Let L+n (Ω) be the set of all σ in L+(Ω) of length n, and define N+
n (Ω) analogously.
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Lemma E.4 Fix n ∈ N. For any Polish space Ω, the set L+n (Ω) is Borel.

Proof. Fix n ∈ N. It follows from (iii) that Nn (Ω) is Borel. By Lemma E.2 and (i), a sequence
σ ∈ Nn (Ω) has full support if and only if for each basic open set Ei there exists j < n such that
µj(Ei) > 0. By (ii) and (iii), for each i and j the set of σ such that µj(Ei) > 0 is Borel. Therefore
N+
n (Ω) is Borel.

Write µ ⊥ ν if there is a Borel set U ⊆ Ω such that µ(U) = 1 and ν(U) = 0. It is easy to see
that mutual singularity holds for an element σ ∈ N+

n if and only if µi ⊥ µj for all i < j. To complete
the proof it suffices to prove that for each i < j, the set of σ such that µi ⊥ µj is Borel. Note

that µi ⊥ µj if and only if for each m, there is an open set V such that µi(V ) = 1 and µj(V ) < 1
m

.

By (i), this in turn holds if and only if for each m there exists k such that µi(Ek) > 1 − 1
m

and
µj(Ek) <

1
m

. By (ii) and (iii), the set of σ such that µi(Ek) > 1− 1
m

is Borel, and the set of σ such

that µj(Ek) <
1
m

is Borel. The set of σ such that µi ⊥ µj is a Borel combination of these sets, and
hence is Borel as required.

Corollary E.1 For any Polish space Ω, the set L+(Ω) is Borel.

Proof. Each L+n (Ω) is Borel, and L+(Ω) =
⋃
n L+n (Ω).

Lemma E.5 For each Polish space Ω and Borel set E in Ω, the set of σ ∈ L+(Ω) such that E is
assumed under σ is Borel.

Proof. Fix n and j < n. By Fact (ii), the sets of µ such that µ(E) = 1 and such that µ(E) = 0
are Borel in M(Ω). Therefore the set of σ = (µ0, . . . , µn−1) ∈ L+n (Ω) such that conditions (i) and
(ii) in Definition 4.3 hold is Borel. Let {d0, d1, . . .} be a countable dense subset of E. For each
k and µ ∈ M(Ω), we have dk ∈ Suppµ if and only if µ(B) > 0 for every open ball B with center
dk and rational radius. Then by Fact (ii), the set of µ such that dk ∈ Suppµ is Borel in M(Ω).
We have E ⊆

⋃
i≤j Suppµi if and only if dk ∈

⋃
i≤j Suppµi for all k ∈ N. Therefore, the set of

σ ∈ L+n (Ω) satisfying condition (iii) in Definition 4.3 is Borel. Thus the set of σ ∈ L+(Ω) such that
E is assumed under σ is Borel, as required.

Lemma E.6 For each m,

(i) Ram = Ra1 ∩ [Sa ×
⋂
i<mAa(Rbi )],

(ii) Ram is Borel in Sa × T a.

Proof. Part (i) is immediate.
Part (ii) is by induction. For m = 1, first note that since λa is Borel measurable, Lemma E.4

says that for each n the set (λa)−1(L+n (Sb × T b)) is Borel in T a. From Definition 5.3, for each
sa ∈ Sa there is a finite Boolean combination C of linear equations in n · | Sb | variables such that
whenever λa(ta) = (µ0, . . . , µn−1) ∈ L+n (Sb × T b), the pair (sa, ta) is rational if and only if C holds
for {margSb µi(s

b) : i < n, sb ∈ Sb}. Since Sa and Sb are finite, this shows that Ra1 is Borel in
Sa × T a.

Now turn to m > 1. Assume the result holds for all i ≤ m. It suffices to show that each Aa(Rbi )
is Borel in T a. By the induction hypothesis and Lemma E.5, the set of σ such that Rbi is assumed
under σ is Borel. Since λa is Borel measurable, Aa(Rbi ) is Borel in T a.

The next lemma will guarantee that we will have enough room to build the measures we need to
establish Lemma E.8. For ta, ua ∈ T a, write ta ≈ ua if for each i the component measures (λa(ta))i
and (λa(ua))i have the same marginals on Sb and are mutually absolutely continuous (have the same
null sets).
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Lemma E.7 In a complete type structure:

(i) If λa (ta) ∈ L+
(
Sb × T b

)
and ua ≈ ta, then λa (ua) ∈ L+

(
Sb × T b

)
.

(ii) If λa (ta) ∈ L+
(
Sb × T b

)
, then there are continuum many ua such that ua ≈ ta.

(iii) For each set E ⊆ Sb × T b, the set Aa (E) is closed under the relation ≈. In fact, for each j,
if ta ≈ ua and E is assumed under λa(ta) at level j, then E is assumed under λa(ua)) at level
j.

(iv) If ta ≈ ua then for each m and sa ∈ Sa, (sa, ta) ∈ Ram if and only if (sa, ua) ∈ Ram.

Proof. Part (i) follows from the fact that λa (ta) ∈ L(Sb × T b) and the mutual absolute continuity
of the measures λa (ta) and λa (ua). For part (ii), note that full support implies that µi = (λa(ta))i
has infinite support for some i. Therefore, there are continuum many different measures νi with
the same null sets and marginal on Sb as µi. The sequence of measures obtained by replacing µi
by νi belongs to L+(Sb × T b), and by completeness this sequence is equal to λa(ua) for some ua.
It follows that ua ≈ ta. For part (iii), we need to show that if λa (ta) =

(
µ0, . . . , µn−1

)
assumes

E (at level j) and ua ≈ ta then λa (ua) = (ν0, . . . , νn−1) assumes E (at level j). Conditions (i)-
(ii) follow immediately from the fact that ua ≈ ta. For condition (iii), fix i ≤ j and note that
Suppµi ⊆ E and Ui = Sb × T b\Suppµi is open. It follows that Supp νi\E ⊆ Ui. If there exists(
sb, tb

)
∈ Supp νi\E then νi (Ui) > 0 and, using the fact that ua ≈ ta, µi (Ui) > 0, a contradiction.

With this, Supp νi ⊆ E as required. For part (iv), the case of m = 1 follows immediately from part
(i). The case of m > 1, it is proved by induction and makes use of part (iii).

Set Ra0 = Sa × T a and Rb0 = Sb × T b.

Lemma E.8 In a complete type structure, projSa R
a
m = projSa

(
Ram\Ram+1

)
for each m ≥ 0.

Proof. The proof is by induction on m.
m = 0: Choose ta so that λa (ta) /∈ L+(Sb × T b) and note that Sa × {ta} is disjoint from Ra1 .

So, projSa (Ra0\Ra1) = Sa.
m = 1: Fix (sa, ta) ∈ Ra1 . It suffices to show that there is a type ua ∈ T a with (sa, ua) ∈ Ra1\Ra2 .

To see this, first notice that there is a full-support LPS (µ) of length one such that sa is optimal under
(µ). (This is by Lemma 5.1.) By completeness, there is a type ub such that λb

(
ub
)
/∈ L+(Sa×T a).

Construct a probability measure ν ∈ M
(
Sb × T b

)
with margSb µ = margSb ν and ν

(
Sb ×

{
ub
})

=
1. Let ρ be the measure (µ+ ν) /2. Then ρ is a full-support LPS, so by completeness there is a
type ua ∈ T a with λa (ua) = (ρ). Note, sa is optimal under (ρ), so (sa, ua) ∈ Ra1 . But ρ

(
Rb1
)

≤ 1
2

because λb
(
ub
)
/∈ L+(Sa × T a). So Rb1 is not assumed under (ρ) and therefore (sa, ua) /∈ Ra2 .

m ≥ 2: Assume the result holds for m − 1. Let (sa, ta) ∈ Ram and λa(ta) = σ = (µ0, . . . , µn−1).
Then ta ∈ Aa(Rbi ) for each i < m. We will find a type ua such that (sa, ua) ∈ Ram\Ram+1.

By the induction hypothesis and the fact that Sb is finite, there is a finite set U ⊆ Rbm−1\R
b
m

with projSb U = projSb R
b
m−1. Since m ≥ 2, U ⊆ Rb1, so λb

(
tb
)

∈ L+ (Sa × T a) for each
(
sb, tb

)
∈ U .

Therefore, by Lemma E.7, the set U can be chosen so that µi (U) = 0 for all i.
We will get a point (sa, ua) ∈ Ram\Ram+1 by adding a measure to the beginning of the sequence

σ. Since U is finite, projSb U = projSb R
b
m−1, and µ0(R

b
m−1) = 1, there is a probability measure

ν such that ν(U) = 1 and margSb ν = margSb µ0. Let τ be the sequence (ν, µ0, . . . , µn−1). By
completeness there is a ua ∈ T a with λa(ua) = τ . Since σ ∈ L+(Sb × T b) and µi(U) = 0 for each
i, we see that τ ∈ L+(Sb × T b). Since ν has the same marginal on Sb as µ0, and (sa, ta) ∈ Ra1 , we
have (sa, ua) ∈ Ra1 . Since U ⊆ Rbm−1 and ta ∈ Aa(Rbk) for each k < m, it follows that ua ∈ Aa(Rbk)
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for each k < m. Then, by Lemma E.6(i), we have (sa, ua) ∈ Ram. However, since U is disjoint
from Rbm we have ν(Rbm) = 0, so ua /∈ Aa(Rbm) and hence (sa, ua) /∈ Ram+1. This completes the
induction.

Appendix F Proofs for Section 8

For the following two lemmas we assume that 〈Sa, Sb, T a, T b, λa, λb〉 is a complete type structure in
which the maps λa, λb are continuous.

Lemma F.1 If player a is not indifferent, then Ra0\ cl(Ra1) is uncountable.

Proof. We have that πa(ra, sb) < πa(sa, sb) for some ra, sa, sb. Then Sa has more than one element,
and by completeness, T b has more than one element. Therefore, using completeness again, there is
a type ta ∈ T a such that λa(ta) = (µ0, µ1) is a full-support LPS of length 2, and µ0({s

b} × T b) = 1.
Let U be the set of all ua ∈ T a such that ra is not optimal for (λa(ua))0, that is, for some qa ∈ Sa,

∑
sb∈Sb π

a(ra, sb)marg Sb(λ
a(ua))0(s

b) <
∑
sb∈Sb π

a(qa, sb)marg Sb(λ
a(ua))0(s

b).

We now show that ta ∈ U . Note first that since µ0({s
b}×T b) = 1, the function margSb(λ

a(ta))0
has value 1 at sb and 0 everywhere else in Sb. Therefore for each qa ∈ Sa,

∑
sb∈Sb π

a(ra, sb)margSb(λ
a(ta))0(sb) = πa(qa, sb).

Since πa(ra, sb) < πa(sa, sb), the inequality defining U holds with (qa, ua) = (sa, ta), and hence
ta ∈ U .

We next show that U is open. Since λa is continuous, the function ua �→ (λa(ua))0 is continuous.
Convergence in the Prohorov metric is equivalent to weak convergence, so the function

ua �→ margSb(λ
a(ua))0(s

b) =
∫
1({sb} × T b)d(λa(ua))0

is continuous. Thus U is defined by a strict inequality between two continuous real functions of ua,
and hence U is open.

Since {ra} is open in Sa, the set {ra} × U is open in Sa × T a. By definition, the set {ra} × U
is disjoint from Ra1 . Now suppose ua ≈ ta. Then (λa(ua))0 has the same marginals as λa(ta))0,
so ua ∈ U and hence (ra, ua) ∈ {ra} × U . Since {ra} × U is open and disjoint from Ra1, we have
(ra, ua) /∈ cl(Ra1). By Lemma E.7, there are uncountably many ua such that ua ≈ ta, so Ra0\ cl(Ra1)
is uncountable.

Lemma F.2 Suppose that m ≥ 1 and Rbm−1\cl
(
Rbm

)
is uncountable. Then Ram\cl

(
Ram+1

)
is

uncountable.

Proof. The proof is similar to the proof of Lemma E.8. Fix (sa, ta) ∈ Ram. By the proof of
Theorem 7.1, we can choose ta so that λa (ta) = σ =

(
µ0, . . . , µm−1

)
and Rbm−1 is assumed at level

0. We will get uncountably many points (sa, ua) ∈ Ram\ cl(Ram+1) by adding one more measure to
the beginning of the sequence σ and using Lemma E.7.

We claim that there is a finite set U ⊆ Rbm−1\R
b
m such that projSb U = projSb R

b
m−1 and

µi(U) = 0 for all i < m.
m = 1: Recall that, for each (sa, ta) ∈ Ra1, there is a ua such that λa(ua) is a full-support LPS

and (sa, ua) ∈ Ra1\Ra2 . (This was shown in the proof of Lemma E.8.) The claim for m = 1 now
follows from Lemma E.7 and the fact that Sa is finite.

40



m ≥ 2: The claim was already established in the induction step of Lemma E.8.
Now, since Rbm−1\ cl(Rbm) is uncountable, there is a point (sb, tb) ∈ Rbm−1\ cl(Rbm) such that

µi(s
b, tb) = 0 for all i < m. Therefore we may also take U to contain such a point (sb, tb). Let ν

be a probability measure such that ν(U) = 1,margSb ν = margSb µ0, and ν(sb, tb) = margSb µ0(s
b).

Since Rbm−1 is assumed under σ at level 0, we have (sb, tb) ∈ Suppµ0, and thus µ0({s
b} × T b) =

margSb µ0(s
b) > 0. Therefore ν(sb, tb) > 0.

Let τ be the sequence (ν, µ0, . . . , µm−1). By completeness there is a va ∈ T a with λa(va) = τ .
Then (λa(va))0 = ν. As in Lemma E.8, we have (sa, va) ∈ Ram. Since (sa, ta) is rational, the tail
(µ0, . . . , µm−1) already has full support. Because of this, the proof of Lemma E.7(ii) shows that
there are uncountably many ua ≈ va such that (λa(ua))0 = ν.

Suppose ua ≈ va and (λa(ua))0 = ν. Then λa(ua) has length m + 1. By Lemma E.7, we
have (sa, ua) ∈ Ram. However, since (sb, tb) /∈ cl(Rbm), the measure ν has an open neighborhood W
where, for each ν′ ∈ W , ν′

(
Rbm

)
< 1. (An example of such a neighborhood is the set {ν′ : ν′(V ) >

ν(sb, tb)/2} where V is an open neighborhood of (sb, tb) which is disjoint from Rbm.) Then the set

X = {τ ∈ Nm+1(S
b × T b) : τ0 ∈ W}

is an open neighborhood of λa(ua), and no LPS ξ ∈ X can assume Rbm at level 0. It follows that
an LPS ξ ∈ X cannot assume all of the m+ 1 sets Rbk, k ≤ m, because by the inductive hypothesis
all these sets have different closures, and hence by Property 4.2 at most one can be assumed at each
level. By continuity of λa, the set Y = (λa)−1(X) is an open neighborhood of ua. Then {sa} × Y
is an open neighborhood of (sa, ua) which is disjoint from Ram+1, so (sa, ua) is not in the closure
of Ram+1. By Lemma E.7, there are uncountably many ua ≈ va, and therefore Ram\ cl(Ram+1) is
uncountable.

Proof of Theorem 8.1. By Proposition 5.1(ii), it suffices to assume that λa, λb are continuous.
As such, Lemma F.1 gives that the set Ra0\ cl(Ra1) is uncountable. Suppose that (sb, tb) ∈

⋂
mRbm.

Then, for each m, we have that Ram is assumed under λb(tb) at some level j(m). Moreover, the
sequence j(m) is non-increasing. Using Lemma F.2, we see by induction that for each m, the set
Ra2m\ cl(Ra2m+1) is uncountable and the set Rb2m+1\ cl(Rb2m+2) is uncountable. Then by Property

4.2, for each m, we have j(2m + 1) < j(2m). But this contradicts the fact that λb(tb) has finite
length.
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