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Abstract

Paradoxes of game-theoretic reasoning have played an important role in spurring develop-

ments in interactive epistemology, the area in game theory that studies the role of the players’

beliefs, knowledge, etc. This paper describes two such paradoxes—one concerning backward-

induction, the other iterated weak dominance. We start with the basic epistemic condition of

“rationality and common belief of rationality” in a game, describe various ‘refinements’ of this

condition that have been proposed, and explain how these refinements resolve the two para-

doxes. We will see that a unified epistemic picture of game theory emerges. We end with some

new foundational questions uncovered by the epistemic program.

1 Introduction

The word “paradox” means, literally, “beyond belief.” So it seems fitting to use the word to describe

some problems that have stimulated much recent work in the epistemology of games, which is the

study of the role of the players’ beliefs, knowledge, etc. in games.

Rapaport [65, 1967, p.50] writes about the productive role paradoxes can play: “Whenever,

in any discipline, we discover a problem that cannot be solved within the conceptual framework

that supposedly should apply, we experience shock. The shock may compel us to discard the

old framework and adopt a new one.”1 The goal of this survey is to suggest that, as an example

of this effect, game-theoretic paradoxes have helped prompt the development of new ideas in the

foundations of game theory.
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2 Two Paradoxes

We will look at two paradoxes in game theory—one in the tree and one in the matrix.

The paradox in the tree concerns backward induction (BI). The reasoning behind BI seems clear.

If Ann, the last player to move, is rational, she will make the BI choice. If Bob, the second-to-last

player to move, is rational and thinks Ann is rational, he will make the choice that is maximal given

that Ann makes the BI choice—i.e., he too will make the BI choice. And so on back in the tree. But

as many people have pointed out, this reasoning is flawed. For example, BI applied to Centipede

(Rosenthal [68, 1981]) says the first player will end the game immediately. In their textbook [57,

1995, p.282], Mas-Colell, Whinston, and Green explain the problem with this conclusion:

Consider player 1’s initial decision to say “stop.” For this to be rational, player 1 must be

pretty sure that if instead she says “continue,” player 2 will say “stop” at her first turn. Indeed,

“continue” would be better for player 1 as long as she could be sure that player 2 would say

“continue” at her next move. Why might player 2 respond to player 1 saying “continue” by also

saying “continue”?... [Because] once she sees that player 1 has chosen “continue”—an event that

should never happen...—she might entertain the possibility that player 1 is not rational.... If,

as a result, she thinks that player 1 would say “continue” at her next move if given the chance,

then player 2 would want to say “continue” herself.

Just what argument does lead to BI? Equally, if the BI path isn’t played, what assumptions

don’t then hold? This has been a big puzzle in game theory.

The second puzzle is in the matrix and concerns weak dominance—specifically, iterated weak

dominance (iterated admissibility, or IA). IA is an old concept in game theory, going back at least

to Gale [46, 1953]. Like BI, it is a powerful solution concept, delivering sharp answers in many

games. Also like BI, the reasoning behind IA seems clear. Suppose Ann is rational in the sense

that she avoids any inadmissible strategies. If Ann thinks Bob is rational in the same way, she can

eliminate from consideration any of Bob’s strategies that are inadmissible. So, if Ann is rational

and thinks Bob is rational, she should choose only a strategy that is admissible in the submatrix

that results after deleting Bob’s inadmissible strategies. And so on until reaching the IA set. But

this reasoning is flawed, too. Mas-Colell, Whinston, and Green [57, 1995, p.240] state the problem:

[T]he argument for deletion of a weakly dominated strategy for player i is that he contemplates

the possibility that every strategy combination of his rivals occurs with positive probability.

However, this hypothesis clashes with the logic of iterated deletion, which assumes, precisely,

that eliminated strategies are not expected to occur.

Can a sound argument be made for IA? This is a second big puzzle in game theory.

These two puzzles—or paradoxes—are really both about the fundamental problem of what it means

to say that the players in a game are rational, each thinks the other players are rational, etc. The

meaning of this has to be understood both in the matrix and in the tree. That is why there are

two paradoxes.
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3 Overview

Influential early papers on the BI paradox include Binmore [21, 1987], Bicchieri [19, 1988], [20, 1989],

Basu [13, 1990], Bonanno [28, 1991], and Reny [66, 1992]. Samuelson [70, 1992] and Börgers and

Samuelson [30, 1992] are important papers pointing out the difficulties with IA. In this survey, we

will focus on some of the recent epistemic literature on these topics.

The hallmark of the epistemic approach to game theory is that it adds to the traditional de-

scription of a game a mathematical language for talking about the rationality or irrationality of the

players, their beliefs or knowledge, and related ideas. As such, the approach sounds tailor-made to

address the paradoxes.

We will see, though, that several challenges have to be overcome to get languages that can express

the issues well. In the next section, we lay out a very basic epistemic framework that can be used

to analyze game matrices and ordinary (strong) dominance. We will examine the problems that

arise in trying to extend the framework to deal with the tree, or with weak dominance in the matrix,

and look at how to overcome these problems. With this background, we will be ready to follow

the stories of tackling BI and IA, respectively. We will find resolutions of the two paradoxes. But

there will also be some surprises along the way—some new challenges and even theoretical limits in

game theory will emerge.

Of course, this paper is not a substitute for the technical papers in the field. It is a partial

survey that tries to pull together some of the recent epistemic work.

4 Epistemic Analysis

The first step in the epistemic approach to game theory is to enrich the classical description of a

game by adding sets of types for each of the players. The apparatus of types goes back to Harsanyi

[49, 1967-68], who introduced it as a way to talk formally about the players’ beliefs about the payoffs

in a game, their beliefs about other players’ beliefs about the payoffs, and so on. But the technique

is equally useful to talk about uncertainty about the actual play of the game, either separate from

or in addition to uncertainty about the structure of the game. A feature of the epistemic approach

is putting these two sources of uncertainty on an equal footing.2

We will give a definition of a type structure as commonly used in the epistemic literature, and

an example of its use.

Fix an n-player finite strategic-form game 〈S1, . . . Sn, π1, . . . , πn〉. Some notation: Given sets

X1, . . . ,Xn, let X = ×ni=1X
i and X−i = ×j �=iXj . Also, given a compact metrizable space Ω,

writeM (Ω) for the space of all Borel probability measures on Ω, whereM (Ω) is endowed with the

topology of weak convergence (and so is again compact metrizable).

2Harsanyi argued that all uncertainty about the structure of the game—whether about payoffs, the strategy sets

available to the players, etc.—could be captured via payoff uncertainty. See Hu and Stuart [53, 2001] for a formal

treatment of this.
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Definition 4.1 An (S1, . . . , Sn)-based type structure is a structure

〈S1, . . . , Sn;T 1, . . . , Tn;λ1, . . . , λn〉,

where each T i is a compact metrizable space, and each λi : T i → M(S−i × T−i) is continuous.

Members of T i are called types for player i. Members of S × T are called states (of the world).

A particular state (s1, t1, . . . , sn, tn) describes the strategy chosen by each player, and also each

player’s type. Moreover, a type ti for player i induces a probability measure on the strategies that

the players j �= i can choose. (Go from T i to M(S−i × T−i) and marginalize to M(S−i).) Call

this player i’s first-order belief. Type ti also induces a probability measure on the strategies and

first-order beliefs of the players j �= i. (Go from T i to M(S−i × T−i), and then to M(S−i ×

×j �=iM(S−j × T−j)) to M(S−i ××j �=iM(S−j)) via image measures.) Call this player i’s second-

order belief. Continuing inductively, we see that a state (s1, t1, . . . , sn, tn) describes not just the

strategies the players choose, but also each player’s entire hierarchy of beliefs about the strategies

chosen, about other players’ beliefs about this, and so on. This richer description is the starting

point of the epistemic approach.3

Example 4.1 (A Coordination Game) Consider the coordination game in Figure 4.1 (where

Ann chooses the row and Bob the column), and the associated type structure in Figure 4.2.4

L R

U 2, 2 0, 0

D 0, 0 1, 1

Figure 4.1
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Figure 4.2

There are two types ta, ua for Ann, and two types tb, ub for Bob. The measure associated with

each type is as shown. (For example, Ann’s type ta assigns probability 1/2 to each of Bob’s strategy-

type pairs (R, tb) and (R,ub).) Fix the state (D, ta,R, tb). At this state, Ann plays D and Bob

3Here we use types to describe uncertainty about the play of the game, not the structure of the game.
4Similar to an example in Aumann and Brandenburger [10, 1995, pp.1166-1167].
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plays R. Ann is ‘correct’ about Bob’s strategy. (Her type ta assigns probability 1 to Bob’s playing

R.) Likewise, Bob is correct about Ann’s strategy. Ann, though, thinks it possible Bob is wrong

about her strategy. (Her type assigns probability 1/2 to type ub for Bob, which assigns probability

1/2 to Ann’s playing U , not D.) Again, likewise with Bob.

What about the rationality or irrationality of the players? At state (D, ta, R, tb), Ann is rational.

Her strategy maximizes her expected payoff, given her first-order belief (which assigns probability 1

to R). Likewise, Bob is rational. Ann, though, thinks it possible Bob is irrational. (She assigns

probability 1/2 to (R,ub). With type ub, Bob gets a higher expected payoff from L than R.) The

situation with Bob is again similar.

Summing up, the example is a description of a game situation—a type structure is a descriptive

not a predictive tool. Note, too, that the example includes both rationality and irrationality, and

also allows for ‘incorrect’ as well as ‘correct’ beliefs (e.g., Ann thinks it possible Bob is irrational,

though in fact he isn’t). These are typical features of the epistemic approach.

A major use of type structures is to identify conditions on the players’ rationality, beliefs, etc. that

yield various solution concepts. A basic result is on iteratively undominated (IU) strategies.

(Delete from the matrix all strongly dominated strategies, then delete all strategies that become

strongly dominated in the resulting submatrix, and so on until no further deletion is possible.)

Presumably, a rational player i won’t play a strongly dominated strategy. Also, if player i assigns

probability 1 to the rationality of the other players, then i’s marginal on the other players’ strategies

will assign probability 1 to undominated strategies. So, a player who is rational and believes the

other players are rational won’t play a strategy that becomes dominated after the first round of

deletions. And so on.

The idea of this argument is very easy. But for all the terms to be formally defined, the type

structure apparatus is needed. First, rationality. This is a property of strategy-type pairs. Say

(si, ti) is rational if si maximizes player i’s expected payoff under the marginal on S−i of the

measure λi(ti).

Say type ti of player i believes an event E ⊆ S−i × T−i if λi(ti)(E) = 1, and write

Bi(E) = {ti ∈ T i : ti believes E}.

Now, for each player i, let Ri1 be the set of all rational pairs (s
i, ti), and for m > 0 define Rim

inductively by

Rim+1 = Rim ∩ [S
i ×Bi(R−im )].

Definition 4.2 If (s1, t1, . . . , sn, tn) ∈ Rm+1, say there is rationality and mth-order belief of

rationality (RmBR) at this state. If (s1, t1, . . . , sn, tn) ∈
⋂∞
m=1Rm, say there is rationality and

common belief of rationality (RCBR) at this state.

With these definitions, one can show: Fix a type structure and a state (s1, t1, . . . , sn, tn) at

which there is RCBR. Then the strategy profile (s1, . . . , sn) is IU. Conversely, fix an IU profile

(s1, . . . , sn). There is a type structure and a state (s1, t1, . . . , sn, tn) at which there is RCBR.
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Results like this can be found in the early literature (Brandenburger-Dekel [33, 1987], Tan-

Werlang [78, 1988]).5 Again, the idea of it is clear without any formal apparatus. But formalizing

epistemic arguments was a crucial step towards solving the harder problems that came later, as we

will see.

Other early epistemic results included conditions for correlated equilibrium (Aumann [5, 1987])

and Nash equilibrium (Aumann-Brandenburger [10, 1995]).

One more comment on type structures: Naturally, we can ask whether Definition 4.1 above is

to be taken as primitive or derived. Arguably, hierarchies of beliefs are the primitive, and types

are simply a convenient tool for the analyst. Perhaps also, a more primitive way of describing

the players’ reasoning is via mathematical logic, and a structure such as Definition 4.1 should be

derived from such a starting point. See the papers in Special Issue on Interactive Epistemology (this

journal, [74, 1999]) and the references there for more on this. Here, we will stay one level above

these foundational questions and take type structures as given. (But we will look a bit deeper in

Section 11.)

5 Two Problems

Two big challenges arise in developing these epistemic tools to a point where we can analyze our

starting paradoxes and many other issues in game theory. One is doing epistemics on the tree rather

than the matrix. The other is incorporating weak, not just strong, dominance. We start with the

tree.

Example 5.1 (A Second Coordination Game) Consider the coordination game in Figure 5.1

and the associated type structure in Figure 5.2 (where there happens to be one type for each player).

1

1

In

Out

A

0

0

Out

B 2

2In

Figure 5.1

01

Out
Sb

T b t b

λa(t a)

In

01

Out
S a

T a t a

λb(t b)

In

Figure 5.2

Pick the state (Out, ta, Out, tb). Ann plays Out, believing Bob plays Out. Both players get a

payoff of 1.

5Bernheim [18, 1984] and Pearce [64, 1984] introduced the “rationalizable” strategies (which differ from the IU

strategies by virtue of an independence requirement), and argued verbally that they will be played under common

knowledge of rationality (and independence). See Section 13 below on the knowledge vs. belief distinction.
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It can be checked that the rational strategy-type pairs are Ra1 = {(Out, ta)} and Rb1 = {(Out,

tb), (In, tb)}. Since both types assign probability 1 to rational strategy-type pairs for the other player,

we get Ra2 = Ra1 and Rb2 = Rb1, and so Ram = Ra1 and Rbm = Rb1 by induction. In particular then,

there is RCBR at the state (Out, ta, Out, tb).

This isn’t the BI path (on which both players choose In). But as noted earlier, an epistemic

model is just a description of a game situation. In the case of a perfect-information (PI) tree, the

situation may or may not involve play of the BI path. (Of course, we will be very interested later

in looking for conditions under which the BI path is played.)

This said, there is nevertheless a conceptual problem with the scenario. Ann plays Out because

she believes Bob plays Out. She believes this because she believes Bob believes she plays Out, and

so is indifferent between his choices. (His expected payoff is 1, regardless of his choice.) But Ann

knows that if instead she played In, Bob would see this, so she needs to think about how Bob would

react. The epistemic model of Section 4 doesn’t allow us to specify this. In the example, we can

calculate Bob’s (ex ante) expected payoffs, as above. But we can’t calculate his conditional expected

payoffs (from In vs.Out), given the event that Ann plays In, since he gives this event probability 0.

Now, the second problem we have to solve: incorporating weak as well as strong dominance on

the matrix. The results we mentioned in Section 4 say that our epistemic set-up yields the IU

strategies. Of course, an undominated—even IU—strategy may be inadmissible.

Example 5.2 Figure 5.3 is the strategic form of the tree in Figure 5.1. If we use the same type

structure as in Figure 5.2, then there is again RCBR at the state (Out, ta, Out, tb).

Out In

In 0, 0 2, 2

B

A

Out 1, 1 1, 1

Figure 5.3

But if we want rationality to mean avoiding inadmissible strategies, then Bob should play In not

Out—even though Out isn’t strongly dominated. Should Ann then assign probability 0 to Bob’s

playing Out? This leads to the conceptual problem on which we quoted Mas-Colell, Whinston,

and Green [57, 1995, p.240]: Wouldn’t this conflict with the idea of admissibility, which says that a

player considers as possible (even if unlikely) any of the strategies of the other players.

Yet, admissibility seems a very reasonable, even basic, requirement. See Kohlberg and Mertens

[54, 1986, Section 2.7] for a thorough discussion and defense. Kolhberg-Mertens also point out the

connection between admissibility and invariance [54, 1986, Section 2.4]—which we will consider in

Section 12.

In the next section, we will look at how to modify probability theory to solve both this problem

in the matrix and the problem in the tree.
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6 Extended Probabilities I

Both problems we identified involve the treatment of probability-0 events. Two extensions of

ordinary probability theory have been used in the epistemic program, to tackle these problems.

On the tree, an appropriate tool is conditional probability systems (CPS’s), due to Rényi

[67, 1955]. A CPS specifies a family of conditioning events E and a measure pE for each such event,

together with certain restrictions on these measures. The interpretation is that pE is what the

player believes, after observing E. The key is that even if pΩ(E) = 0 (where Ω is the entire space),

the measure pE is still specified. That is, even if E is ‘unexpected,’ the player has a measure if

E nevertheless happens. Myerson [62, 1991, Ch.1] provided a preference-based axiomatization of

a class of CPS’s. Battigalli and Siniscalchi [15, 1999], [16, 2002] further developed both the pure

theory and the game-theoretic application of CPS’s, as we will discuss in detail later.

On the matrix, an appropriate tool is lexicographic probability systems (LPS’s), introduced

and axiomatized by Blume, Brandenburger, and Dekel [23, 1991], [24, 1991]. An LPS specifies a

sequence of probability measures. The interpretation is that the states that get positive probability

under the first measure make up the player’s primary hypothesis about the true state. But the

player recognizes that his primary hypothesis might be mistaken, and so also forms a secondary

hypothesis, consisting of the states that get positive probability under the second measure. Then

his tertiary hypothesis, and so on. The primary states can be thought of as infinitely more likely

than the secondary states, which are infinitely more likely than the tertiary states, etc. Stahl [75,

1995], Stalnaker [77, 1998], Asheim [3, 2001], and Brandenburger-Friedenberg-Keisler [35, 2006],

among other papers, use LPS’s.

Example 6.1 Let’s go back to the game of Figure 5.1, to see how CPS’s work. Figure 6.1 is

another type structure for this game, different from the one in Figure 5.2. The difference is that

here the probabilities come from CPS’s, as we will explain.

01

Out
Sb

T b t b

λa(t a)

In

0 [1]1 [0]

Out
S a

T a t a

λb(t b)

In

Figure 6.1

Start with Ann and the first node in the tree. Formally, this is the event {Out, In} × {tb}—i.e.,

the event that Bob chooses either of his strategies. Ann assigns probability 1 to Out, given this

event (essentially as before). Next, Bob. At the root of the tree, he assigns probability 1 to Ann’s

playing Out (as before). But now we also have to specify what Bob believes at the second node

in the tree. Formally, this is the event {(In, ta)}—i.e., the event that Ann chooses In. One of the

conditions of a CPS is that pE(E) = 1. (Conceptually, this says that players believe what they

observe.) So at the second node, Bob must assign probability 1 to {(In, ta)}. This is the measure

shown in square brackets.

Example 6.2 Figure 6.2 is a type structure for the game of Figure 5.3, that now specifies LPS’s.
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(1)1

Out
Sb

T b t b

λa(t a)

In

(1)1

Out
S a

T a t a

λb(t b)

In

Figure 6.2

Each player has a primary hypothesis that assigns probability 1 to the other player’s choosing

Out. But each player also has a secondary hypothesis that assigns probability 1 to the other player’s

choosing In. These measures are shown in parentheses.

We see how LPS’s can solve the conceptual problem with admissibility: All states (i.e., strategy-

type pairs) are ruled in, in the sense that every state gets positive probability under some measure.

But states can also be ruled out, in the sense that they can be give infinitely less weight than other

states. (We will see later though, in Section 8, that there is a further challenge to overcome before

LPS’s yield an analysis of IA.)

For the general definitions of CPS’s and LPS’s, and CPS-based and LPS-based type structures

(extending Definition 4.1), see the papers referenced above.6

7 Extended Probabilities II

Let us now check that extended probabilities really do work the way we want. We saw in the type

structure of Figure 5.2, which used ordinary probabilities, that RCBR holds at the state (Out, ta,

Out, tb). What epistemic conditions hold at the state (Out, ta, Out, tb) in Figure 6.1?

To say which strategy-type pairs are rational, we need a definition of rationality with CPS’s.

Here is the natural definition: Fix a strategy-type pair (si, ti), where ti is associated with a CPS.

Call this pair rational (in the tree) if the following holds: Fix any information set H of i allowed

by si, and look at the measure given H (i.e., given the event that the other players’ strategies allow

H). Require that si maximizes i’s expected payoff under this measure, among all strategies ri of i

that allow H.

So (Out, ta) is rational for Ann. At her node, Ann assigns probability 1 to Bob’s playing Out,

making Out optimal for her. But (Out, tb) is irrational for Bob. At his node, he assigns probability

1 to Ann’s playing In (as he must), and so he gets an expected payoff of 2 from In, as opposed to 0

from Out. The irrationality of (Out, tb) is what we want intuitively.

Next, what does Ann think about Bob’s rationality? To answer, we need a CPS-analog to belief

(as defined in Section 4). Ben Porath [17, 1997] proposed the following:7 Say player i initially

believes event E if E gets probability 1 given the root of the tree, under i’s CPS. (Formally,

the conditioning event includes all strategy profiles of the other players.) This implies that E

gets probability 1 at any information set H that gets positive probability under the measure given

the root. Battigalli-Siniscalchi [16, 2002] strengthened this definition to: Say player i strongly

6 In particular, definitions on infinite spaces turn out to be crucial; see Section 9 below.
7We have taken the liberty of changing terminology, for consistency with “strong belief” below.
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believes event E if for every information set H with E ∩ (H × T−i) �= ∅, the measure given H

assigns probability 1 to E. That is, player i believes E, whenever E is possible given what i observes.

It is immediate in Figure 6.1 that Ann’s type ta doesn’t initially believe (so certainly doesn’t

strongly believe) that Bob is rational. This is different from the situation in Example 5.1, where

Ann believes Bob is rational—and there is even RCBR. Again, the new answer is the intuitively

correct one.

Now, the analysis of Example 6.2. What epistemic conditions hold at the state (Out, ta, Out,

tb) in Figure 6.2?

To answer, we need LPS-analogs to rationality and belief. For rationality, fix strategy-type

pairs (si, ti) and (ri, ti) for player i, where ti is now associated with an LPS. Calculate the tuple of

expected payoffs to i from si, using first the primary measure associated with ti, then the secondary

measure associated with ti, etc. Calculate the corresponding tuple for ri. If the first tuple

lexicographically exceeds the second, then si is preferred to ri.8 A strategy-type pair (si, ti) is

rational (in the lexicographic sense) if si is maximal under this ranking.

So, as before, (Out, ta) is rational for Ann. For Bob, both Out and In give an expected payoff

of 1 under his primary measure. But In gives him an expected payoff of 2 under his secondary

measure, as opposed to an expected payoff of 0 from Out. We want (Out, tb) to be irrational for

Bob, since Out is inadmissible.

What does each player think about the other’s rationality? For this, we need an LPS-analog to

belief. An early candidate in the literature was: Say player i believes event E at the 1st level if

E gets primary probability 1 under i’s LPS (Börgers [29, 1994], Brandenburger [31, 1992]).

A stronger concept (but still weaker than belief) is: Say i assumes E if all states not in E are

infinitely less likely than all states in E, under i’s LPS. (See Brandenburger-Friedenberg-Keisler [35,

2006] for the general definition, which covers infinite spaces.) In other words, a player who assumes

E recognizes E may not happen, but is prepared to ‘count on’ E versus not-E.

Clearly, in Figure 6.2, Ann’s type ta doesn’t 1st-level believe (so certainly doesn’t assume) that

Bob is rational. (In fact, type ta assumes Bob is irrational.) Again, this is what we want intuitively.

8 Resolving the Paradoxes I

Let us use our language for the tree—involving type structures and CPS’s—to go back to the paradox

of BI. The problem was whether it is possible to find epistemic conditions that yield BI in a formal

and unambiguous manner.

For the simple coordination tree of Example 5.1, the obvious condition of RCBR does not neces-

sarily yield BI, as we saw. But this was because of a deficiency of the language. Does the language

with CPS’s work better? The answer is yes. Regardless of the type structure, Bob must play

In if he is rational, because the definition of a CPS requires him, at his information set, to assign

8 If x = (x1, . . . , xn) and y = (y1, . . . , yn), then x lexicographically exceeds y if yj > xj implies xk > yk for some

k < j.
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probability 1 to Ann’s playing In. If Ann initially (or strongly) believes Bob is rational, and is

rational, she too will play In. The BI path results.

This is very straightforward. But will we get a similar answer in more complicated trees? First

some definitions. Paralleling Definition 4.2, with CPS’s we can define inductively rationality and

mth-order initial belief of rationality (RmIBR) at a state of a type structure, and rationality

and common initial belief of rationality (RCIBR). (See Ben Porath [17, 1997].) Similarly, we

can define rationality and mth-order strong belief of rationality (RmSBR), and rationality

and common strong belief of rationality (RCSBR). (See Battigalli-Siniscalchi [16, 2002].)

The question is then: Does the condition of RCIBR, or perhaps RCSBR, yield BI in a perfect-

information (PI) tree?

Example 8.1 (Three-Legged Centipede) Figure 8.1 is three-legged Centipede (where the top

payoffs are Ann’s, and the bottom payoffs are Bob’s), and Figure 8.2 is an associated CPS-based type

structure.
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Figure 8.1
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Out

t b
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u a

t a

λb(u b)

Out

S a

T a
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S b
S b

0
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0 [0]1 [0]

0 [1]0 [0]
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0 [0]1 [0] 0 [0] u a

t a

Out

S a

T a

Down Across

0 [1]0 [0] 0 [0]

0 [0]1 [0] 0 [0]

Figure 8.2

Type ta for Ann has the measure shown in the top-left matrix. This is her measure at the first

node in the tree. Since this measure assigns positive probability (in fact, probability 1) to her second

node (i.e., to the event that Bob chooses In), it determines her measure there. By contrast, type ua

for Ann assigns probability 0 to her second node. The measure there is shown in square brackets

(and assigns probability 1 to {(In, tb)}). Both of Bob’s types initially assign probability 1 to Ann’s

playing Out. At his node, Bob’s type tb assigns probability 1 to {(Across, ta)}, while his type ub

assigns probability 1 to {(Down, ta)}.

Let us list the rational strategy-type pairs in this example. They are (Down, ta), (Out, ua), (In,

tb), and (Out, ub). We see that both of Ann’s types ta and ua initially (even strongly) believe Bob is

rational. Also, both of Bob’s types initially believe that Ann is rational. (But note that tb doesn’t

strongly believe that Ann is rational. We come back to this.) Given this, a simple induction shows

that at the state (Down, ta, In, tb) for instance, RCIBR holds.
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This kind of example is the focus of Ben Porath [17, 1997], a key step forward in the epistemic

program. Let’s interpret it. Ann plays across at her first node, believing (initially) that Bob will

play In, so she can get a payoff of 4. Why would Bob play In? Because he initially believes that

Ann plays Out. But in the probability-0 event that Ann plays across at her first node, Bob then

assigns probability 1 to Ann’s playing across at her second node—i.e., to Ann’s being irrational. He

therefore (rationally) plays In. In more everyday language, by playing across at her first node, Ann

‘bluffs’ Bob into believing she is irrational and will play across at her second node.9

Interestingly, this is exactly the line of reasoning from Mas-Colell, Whinston, and Green [57,

1995, p.282] we quoted earlier. So, in fact, there’s no contradiction or impossibility with this

reasoning—we have just given a formal set-up in which it holds. The resolution of the BI paradox

is, rather, to accept that even under the condition of RCIBR—which a priori might be expected to

yield BI—the BI path may not result.

But one can also argue that RCIBR is not the right condition: it is too weak. In the above

example, Bob realizes that he might be ‘surprised’ in the play of the game—that’s why he has a CPS,

not just an ordinary probability measure. If he realizes he might be surprised, should he abandon

his (initial) belief that Ann is rational when he is surprised? Bob’s type tb does so. This brings

us back to strong belief (Battigalli-Siniscalchi [16, 2002]). The argument says that we want tb to

strongly believe, not just initially believe, that Ann is rational. Type tb will strongly believe Ann

is rational if we move the probability-1 weight (in square brackets) on (Across, ta) to (Down, ta).

But now (In, tb) isn’t rational for Bob, so Ann doesn’t (even initially) believe Bob is rational. It

looks as if the example unravels.

2
1

Out

A

1
4

Out

B

4
3

Out

A
• • •

2n – 3
2n

Out

B

Out

A
In

2n

2n – 1

2n – 1
2n + 2In

Figure 8.3

So, replacing initial belief with strong belief, the question is: Does RCSBR yield the BI path in

Centipede? The answer is yes: Fix a CPS-based type structure for n-legged Centipede (Figure 8.3),

and a state at which there is RCSBR. Then Ann plays Out.

The result follows from Friedenberg [45, 2002]. Here is a verbal argument. Suppose to the

contrary that there is an RCSBR state at which Ann plays across at the first node. Consider the

length of play at each such state (before Ann or Bob plays Out), and pick a state (sa, ta, sb, tb) with

the longest play. Suppose it is Bob who ends the game, by playing Out at node H. (If it is Ann,

a similar argument works.) Then the event “Bob is rational, Bob is rational and strongly believes

Ann is rational, ...” (denote this E) and the event “Ann’s node H − 1 is reached” (denote this F )

have a nonempty intersection. But Ann’s type ta strongly believes E. (This uses the assumption

that ta strongly believes each of the events “Bob is rational,” “Bob is rational and strongly believes

9At the state (Down, ta, In, tb), the bluff works. But at the state (Down, ta, Out, ub), Ann attempts the bluff

and it fails.
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Ann is rational,” ..., and a conjunction property of strong belief.) It follows that at H − 1, type ta

assigns probability 1 to E. At H − 1, type ta also assigns probability 1 to F (by one of the defining

properties of a CPS). Therefore at H − 1, type ta assigns probability 1 to E ∩F . By construction,

at H − 1, type ta must then assign probability 1 to the event that Bob plays Out exactly at H.

But then if ra is the strategy for Ann that plays across until H − 1 and Out at H − 1, this strategy

yields Ann a higher expected payoff at H − 1 under ta, than does sa (which plays across at H − 1).

This contradicts the rationality of (sa, ta).10

This result gives a second resolution of the BI paradox—at least as far as Centipede is concerned.

As above, no contradiction or impossibility in reasoning about the game is found. Moreover, we

have found a very natural line of reasoning that actually yields BI, unlike earlier.

Let us reemphasize that an epistemic analysis is not a prediction independent of the specific

assumptions made. In Centipede, if RCSBR holds, the BI path results. But RCSBR need not

hold. In fact, it seems a stringent assumption11 and quite plausibly might not hold. For example,

we might want to assume only that both players are rational and strongly believe the other is

rational—much less than RCSBR.12 Without RCSBR, the BI path won’t necessarily obtain. (We

already saw this in Example 8.1 above.)

Later, we will look at whether what we have found for Centipede generalizes to other PI games.

First, we want to go back to the matrix and LPS’s.

So, again following Definition 4.2, with LPS’s we can define inductively rationality and mth-

order 1st-level belief of rationality (Rm1BR) at a state of a type structure, and rationality

and common 1st-level belief of rationality (RC1BR). Likewise, we can define rationality and

mth-order assumption of rationality (RmAR), and rationality and common assumption

of rationality (RCAR). What do these conditions yield?

L R

M 0, 0 0, 1

D 1, 1 1, 1

B

A

U 0, 1 2, 0

Figure 8.4

Example 8.2 Figure 8.5 is an LPS-based type structure for the game of Figure 8.4. (The secondary

measures are in single parentheses, the third-level measures in double parentheses, the fourth-level

10Aumann [8, 1998] provides knowledge-based epistemic conditions under which Ann plays Out in Centipede (proved

via a forward-looking argument). Knowledge-based models are different from the belief-based models we are looking

at here; see Section 13 below.
11Aumann [6, 1995] calls an assumption such as this one “an ideal condition that is rarely met in practice. . . . This

is not a value judgment; ‘ideal’ is meant as in ‘ideal gas’.”
12Note that we’re talking only about the plausibility of departures from an epistemic ‘baseline.’ Sorin [73, 1998]

gives a method for quantifying the size of such departures.
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measures in triple parentheses.)
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The rational strategy-type pairs are (U, ta), (D,ua), (R, tb), and (L, ub). Also, each type assigns

primary probability 1 to rational strategy-type pairs for the other player, so each type believes at the

1st level that the other player is rational. By induction, RC1BR holds at the state (U, ta, R, tb), for

example.

But notice that while type tb for Bob believes at the 1st level that Ann is rational, this type

doesn’t assume Ann is rational. This is because tb considers the irrational strategy-type pair (M, ta)

for Ann infinitely more likely than the rational pair (U, ta). Arguably, if Bob is really ‘trying to

think’ that Ann is rational, he should put the rational pair (U, ta) first. If he does, then he will

rationally play L not R. Ann, presumably, will play D. The (unique) IA profile (D,L) results.

If we replace belief at the 1st level with assumption—i.e., consider RCAR in place of RC1BR—in

the game of Figure 8.4, then the IA outcome (1, 1) will always result. Here is a proof for the finite

case. Fix an arbitrary finite LPS-based type structure, and a state at which there is RCAR. Let

Ann’s type at this state be ta. Certainly, Ann cannot play M at this state, since this is (even

strongly) dominated. Can Ann play U? If so, since she is rational, the primary measure associated

with ta must put positive weight on R. That is, there must be a type vb for Bob such that (R, vb)

gets positive primary probability. Since Ann’s type ta assumes Bob is rational, (R, vb) must be

rational. Ann’s strategy-type pair (U, ta) gets positive probability under some measure in the LPS

associated with vb. So, for (R, vb) to be rational, there must be a type va for Ann such that (M,va)

gets positive probability under this same measure, or an earlier measure, in the LPS associated with

vb. But then, vb does not assume Ann is rational, since it doesn’t make the rational strategy-

type pair (U, ta) infinitely more likely than the irrational pair (M,va) (recall that M is dominated).

This says rationality and 2nd-order assumption of rationality fails—so certainly RCAR does. The

conclusion is that under RCAR, Ann will play D, as claimed. (The claim is also true for a general

type structure. This follows from Theorem 6.1(i) in Brandenburger-Friedenberg-Keisler [35].)

Does the same conclusion hold in all games? We will see in the next section.
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9 Resolving the Paradoxes II

Back to the tree, and the condition of RCSBR. It turns out that the result that RCSBR yields BI

in Centipede was, indeed, special. In general, RCSBR need not yield the BI outcome in a PI game.

(We will say later what makes Centipede special.)

Example 9.1 (A Third Coordination Game) Consider the coordination game in Figure 9.1

and the associated CPS-based type structure in Figure 9.2

2

2

3

3In

Out

A
Across

1

1

Out

B

0

0

Down

A

Figure 9.1

0 [1] 1 [0]
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S a

T a t a

λb(t b)

1 [0]

Out
S b

T b t b

λa(t a)

In Down Across

0 [1] 0 [0]

Figure 9.2

The rational strategy-type pairs are (Out, ta) and (Out, tb) for Ann and Bob respectively. Ann’s

type ta strongly believes {(Out, tb)}, and Bob’s type tb strongly believes {(Out, ta)}. By induction,

RCSBR holds at the state (Out, ta,Out, tb).

Here is a game of pure coordination (so that the BI outcome is even Pareto dominant), but the

BI outcome need not arise under RCSBR. The key is to see that both (Down, ta) and (Across,

ta) are irrational for Ann, since she (strongly) believes Bob plays Out. So, at his node, Bob can’t

believe Ann is rational. If he considers it sufficiently more likely Ann will play Down rather than

Across, he will rationally play Out (as happens). In short, if Ann doesn’t play Out, she is irrational

and so ‘all bets are off’ as to what she will do. She could play Down.

The situation described in Example 9.1 may be surprising, at least at first blush, but there does

not appear to be anything conceptually wrong with it. Indeed, it points to an interesting way in

which the players in a game can literally be trapped by their beliefs—which here prevent them from

getting their mutually preferred (3, 3) outcome.13

This said, we still want to identify epistemic conditions which yield the BI outcome in any PI

game. We will look at several routes.

Here is the first. Consider the following line of reasoning in Example 9.1 (it gets formalized

below): If Ann forgoes the payoff of 2 she can get by playing Out at the first node, then surely she

must be playing Across to get 3. Playing Down to get 0 makes little sense since this is lower than

13The (3, 3) outcome does seem very salient in Figure 9.1. But the game itself is only a partial description of the

strategic situation. A full description includes a type structure—our claim is that if the type structure is as in Figure

9.2, the saliency of (3, 3) disappears.
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the payoff she gave up at the first node. But if Bob considers Across (sufficiently) more likely than

Down, he will play In. Presumably then, Ann will indeed play Across, and the BI path results.

There is no contradiction with the previous analysis because in Figure 9.2, Ann is irrational once

she doesn’t play Out, so we can’t say Ann should then rationally play Across not Down. To make

Across rational for Ann, we have to add more types to the structure. This key insight is due to

Stalnaker [77, 1998] and Battigalli-Siniscalchi [16, 2002]. To see how it works, add a second type

ua for Ann that is the ‘reverse’ of type ta, as in Figure 9.3. The rational strategy-type pairs for

Ann are now (Out, ta) and (Across, ua), as shaded. If Bob strongly believes Ann is rational, then

at his node he must assign probability 1 to Ann’s playing Across. He will rationally play In. This

means type ta for Ann doesn’t (strongly) believe Bob is rational. The non-BI scenario unravels.
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T a
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Down Across
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S b

T b t b

λa(u a)

In

u a

0 [1]1 [0]
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T b t b

λa(t a)

In

0

Figure 9.3

The solution concept that this line of argument yields is extensive-form rationalizability

(EFR), due to Pearce [64, 1984]. Battigalli [14, 1997] showed that EFR yields the BI outcome in a

PI game (under an assumption ruling out certain payoff ties). So, we will get epistemic conditions

for BI, as desired. But note that the reasoning above is also forward-induction (FI) reasoning à la

Kohlberg-Mertens [54, 1986, Section 2.3]. EFR captures FI, too. (Interestingly, while Kohlberg-

Mertens introduced FI in the context of non-PI games, we now see that it already arises in PI

games—such as Figure 9.1.)

Now to finish the epistemic analysis: Battigalli-Siniscalchi consider a complete CPS-based type

structure, which contains, in a certain sense, every possible type of each player. Go back to Definition

4.1. A type structure as defined there is complete if each map λi is surjective—i.e., for each player i

and every (Borel) measure on S−i×T−i, there is a type of player i with that measure.14 A complete

CPS-based type structure is defined analogously. Battigalli-Siniscalchi prove: Fix a complete CPS-

based type structure. If there is RCSBR at the state (s1, t1, . . . , sn, tn), then the strategy profile

(s1, . . . , sn) is extensive-form rationalizable. Conversely, if the profile (s1, . . . , sn) is extensive-form

rationalizable, then there is a state (s1, t1, . . . , sn, tn) at which there is RCSBR.

Next, back to the matrix again. The answer to the question at the end of the previous section

is that, in fact, RCAR need not yield an IA outcome.

Example 9.2 (Battle of the Sexes With an Outside Option) Figure 9.4 is the strategic form

14Completeness is defined in Brandenburger [32, 2003]. A complete type structure will be uncountably infinite.
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of Battle of the Sexes With an Outside Option (Kohlberg-Mertens [54, 1986, Section 2.3], Osborne-

Rubinstein [63, 1994, Ex.110.1]) and Figure 9.5 is an associated LPS-based type structure.

L R

U 0, 0 1, 3

D 3, 1 0, 0

B

A

Out 2, 2 2, 2

Figure 9.4
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The rational strategy-type pairs are (Out, ta) and (R, tb). (Both L and R give Bob a primary

expected payoff of 2, but R gives Bob a secondary expected payoff of 3, versus 0 from L.) By

induction, RCAR holds at (Out, ta,R, tb).

Yet the IA outcome is (3, 1). (Osborne-Rubinstein observe that IA in this game gives the

Kohlberg-Mertens FI outcome.) As in Example 9.1, there is no conceptual problem with this non-

IA scenario. Still, how can we get IA? What is needed is for Bob to consider D infinitely more

likely than U , rather than vice versa. Then he will rationally play L, not R, and Ann presumably

will play D. One reason to give U infinitely less weight than D is that it is eliminated on the first

round of IA. Of course, we don’t want just to assume the answer and require the weights to work

this way. The key again is completeness. Notice that while choosing U can never be rational for

Ann (for any type), choosing D can be rational. In Figure 9.6, we have added a second type for

Ann, which indeed makes D rational for her, and shaded her rational strategy-type pairs. If Bob

assumes Ann is rational, he must consider the shaded states infinitely more likely than the unshaded

ones—so he will play L, as desired.
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For the general case, we need a definition of a complete LPS-based type structure. See

Brandenburger-Friedenberg-Keisler [35, 2006] for a formal treatment that shows the following: Fix a

complete LPS-based type structure. If there is RmAR at the state (s1, t1, . . . , sn, tn), then the strat-

egy profile (s1, . . . , sn) survives (m+ 1) rounds of iterated admissibility. Conversely, if the profile

(s1, . . . , sn) survives (m+1) rounds of iterated admissibility, then there is a state (s1, t1, . . . , sn, tn)

at which there is RmAR.

Some observations: First, the result is stated for RmAR and not RCAR. See Sections 10-11

below for the reason. Of course, for a given game, there is an m such that IA stabilizes after m

rounds.

Remember that the ‘philosophy’ underneath admissibility is that a player should not rule out

any strategies of the other players. The result says that underneath IA is the idea that a player

should consider not only all strategies, but also all types, of the other players.

Next, IA yields the BI outcome in a PI game (ruling out certain payoff ties). See Marx-Swinkels

[56, 1997]. So understanding IA gives a second epistemic analysis of BI, in addition to the EFR-based

analysis above. (We say more in Section 12 below about strategic- vs. extensive-form analysis.)

Here is a third route to getting BI in PI games, different from the completeness route. Asheim

[3, 2001] develops an epistemic analysis using the properness concept (Myerson [61, 1978]). Go back

to Example 9.1. The properness idea says that Bob’s type tb should view (Across, ta) as infinitely

more likely than (Down, ta) since Across is the less costly ‘mistake’ for Ann, given her type ta.

Unlike the completeness route taken above, the irrationality of both Down and Across (given Ann’s

type ta) is accepted. But the relative ranking of these ‘mistakes’ must be in the right order. With

this ranking, Bob is irrational to play Out rather than In. Ann presumably will play Across, and

we get BI again. Asheim [3, 2001] formulates a general such result.

Finally, we point out once more that BI—and IA—aren’t inevitable predictions of an epistemic

analysis. These predictions rest on very specific conditions on the game, such as RCSBR, RmAR,

and completeness.

10 Solution Concepts

Matrix Tree

RCBR

(Rationality and common belief of rationality)

RCIBR
(Rationality and common initial belief 

of rationality)

RC1BR
(Rationality and common 1st-level belief 

of rationality)

RCSBR
(Rationality and common strong belief 

of rationality)

RCAR
(Rationality and common assumption of 

rationality)

CPS-CompletenessLPS-Completeness

Table 10.1
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In analyzing our game-theoretic paradoxes, we have considered a number of epistemic conditions.

Here, we organize these conditions and see that a unified picture emerges. Basically, the conditions

are all characterized by various forms of iterated dominance. Some of these dominance concepts

have only been understood—or even defined—via the epistemic program. So these discoveries and

the overall scheme that emerges are another benefit of the program.

The first epistemic condition was RCBR (rationality and common belief of rationality). Then

we looked at various ‘refinements’ of RCBR, as summarized in Table 10.1. Table 10.2 shows what

is known about the characterization of these conditions. (Here ≈ means “is characterized by”.)

Matrix Tree

RCBR ≈≈≈≈ IU

RCIBR ≈≈≈≈ S∞∞∞∞CD
(See [17], [15])

RC1BR ≈≈≈≈ S∞∞∞∞W
(See [29], [31])

RmSBR & Completeness ≈≈≈≈ (m+1)-EFR 
(= (m+1)-ICD)
(See [16])

PI Games: m-EFR yields BI outcome (for 

sufficiently large m)

(See [14])

RmAR & Completeness ≈≈≈≈ (m+1)-IA
(See [35])

PI Games: m-IA yields BI outcome (for 

sufficiently large m)

(See [56])

RCAR & Completeness is 
impossible

(See [35])

RCSBR & Completeness ≈≈≈≈ EFR 
(= ICD)
(See [16])

PI Games: EFR yields BI outcome

RCAR ≈≈≈≈ SAS
(See [35])

PI Games: RCAR yields a Nash-equilibrium 

outcome

(See [34])

RCSBR ≈≈≈≈ ?

PI Games: RCSBR yields a Nash-equilibrium 

outcome

(See [45])

Figure 10.2

Some comments on the table:

a. In the first row, IU is the set of iteratively undominated strategies (Section 4).

b. In the second row, S∞W is the set of strategies that remain after one round of deletion

of inadmissible (weakly dominated) strategies followed by iterated deletion of strongly dominated

strategies (Dekel and Fudenberg [38, 1990]). Also in the second row, S∞CD is the set of strategies

that remain after one round of deletion of conditionally dominated strategies (Shimoji and Watson

[72, 1998]) followed by iterated deletion of strongly dominated strategies. As a special case here,

Ben Porath [17, 1997] showed that in PI games satisfying a no-ties condition, RCIBR is characterized

by S∞W . Example 8.1 is an instance of this. The S∞W set in three-legged Centipede is {Out,

Down}×{In, Out}, so certainly includes the profile (Down, In) we saw was possible under RCIBR.

c. In the third row, m-IA (resp.m-EFR) is the set of strategies that remain after m rounds of

iterated admissibility (resp.m rounds of extensive-form rationalizability). We also record that EFR

is equivalent round-for-round to iterated conditional dominance (ICD)—which is essentially “iterated

strong dominance on the tree.” (See Shimoji-Watson [72, 1998].) Similar to the second row, we
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get equality between the left-hand and right-hand solution concepts in the third row for the case of

a generic tree. (See, e.g., Shimoji [71].)

d. Note the impossibility result in the fourth row. RCAR is impossible in a complete (LPS-

based) type structure. We come back to this in the next section.

e. In the fifth row, SAS stands for “self-admissible set,” defined in [35, 2006]. SAS’s may be

viewed as the weak-dominance analog to Pearce ([64, 1984]) best-response sets (BRS’s). But while

the BRS’s of a game are all contained in the IU set, the SAS’s need not be contained in the IA set.

We saw this in Battle of the Sexes With an Outside Option (Example 9.2). The profile (Out, R)

was playable under RCAR, but even disjoint from the IA set. (In Example 8.2, we argued that an

SAS outcome was an IA outcome—but this was special.)

f. Also in the fifth row, note that the characterization of RCSBR in general trees is open.

g. The table notes what various solution concepts yield in the special case of PI games. These

statements are proved under various payoff restrictions. See the references for details.

h. Note, in particular, the result that in a PI game, RCSBR yields a Nash-equilibrium outcome.

This is the ‘real’ reason why RCSBR gives BI in Centipede (Section 8). In Centipede, there is a

unique Nash path and it coincides with the BI path. Of course, this isn’t true in general—e.g., the

Coordination Game in Example 9.1.

Much of the epistemic program in game theory can be thought of as studying ‘refinements’ of

the basic RCBR condition on a game. (Table 10.2 shows what is known about some of these

refinements—but it is certainly not exhaustive.) To some extent, the program can be seen as a

response to the equilibrium refinements program of the 1980s. In that program, the starting point

was Nash equilibrium. Various modifications of equilibrium were proposed, and attempts made to

interpret these as reflecting one or another underlying notion of rationality (plus belief in rationality,

etc.). For Mertens, a leading proponent, this direction of analysis was a conscious choice: “In this

way, we may eventually reach an axiomatisation, and an interpretation in terms of rationality,

without imposing any explicit preconception about what rationality exactly means, except for some

general a priori requirement[s]” ([59, 1989, p.583]). The epistemic program is different in two ways.

It starts with explicit definitions of rationality, belief, etc., refines these conditions, and tries to work

out implications for the play of a game. Also, Nash equilibrium is no longer the starting point, but

a particular case (as noted in Section 4).

11 Paradox Regained?

Naturally, the epistemic program has uncovered new foundational questions in game theory. The

existence of structures containing all possible types of the players (Section 9) is one such issue.

After all, such a structure sounds rather like the “sets of everything” that are well known to cause

difficulties in mathematics (Russell’s Paradox, etc.). Can such a structure actually exist?15

15Are complete type structures really needed for the theorems quoted in Section 9? (I am grateful to the referees

for raising this issue.) Examples 8.2, 8.3, and 9.1 show that an arbitrary type structure won’t suffice, but also suggest
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In the literature, various kinds of ‘large’ type structures have been considered. When types are

associated with ordinary probabilities, existence results were obtained by Armbruster-Böge [2, 1979],

Böge-Eisele [27, 1979], Mertens-Zamir [60, 1985], and others. Battigalli-Siniscalchi [15, 1999] and

Brandenburger-Friedenberg-Keisler [35, 2006] give existence results for the cases of CPS’s and LPS’s

respectively. But non-existence is also possible; see, e.g., Heifetz-Samet [52, 1999], Brandenburger-

Keisler [36, to appear], Fagin-Geanakoplos-Halpern-Vardi [42, 1999], and Meier [58, 2005].16

A way to understand the boundary between the existence and non-existence results is via math-

ematical logic. The epistemic approach to game theory says that players have beliefs about the

game—about other players’ strategies, beliefs, rationality, etc. Now, we add a specific language—i.e.,

logic—in which these beliefs are formed. See the papers in Special Issue on Interactive Epistemology

(this journal, [74, 1999]) and the references there.

Analyzed this way, the boundary between existence and non-existence results turns on the ex-

pressibility of the language considered. In particular, the papers cited above (and others) that

give existence results make various topological and measure-theoretic assumptions that, from a log-

ical perspective, effectively restrict the language the players can use to form beliefs. With the

restrictions, spaces of all beliefs become possible.

A largely open area is to find logics that allow us to carry out epistemic analyses like the ones

discussed in the earlier sections. Such logics must be able to express concepts such as rationality,

strong belief, assumption, etc., allow the existence of complete structures, and yield conclusions

about solution concepts, as earlier. An analysis of this type would have the benefit of being much

more explicit about the players’ reasoning processes in games. Ewerhart [40, 2002] and Board [25,

2002], [26, 2004] take steps in this direction—on the matrix and tree, respectively.

Let’s go back to the pre-logical—i.e., topological and measure-theoretic—approach to getting com-

plete type structures. Table 10.2 indicates that, even then, there is a ‘limit to analysis.’ For a

given game matrix and any number m, RmAR is possible under completeness, but RCAR under

completeness is impossible. True, neither condition is in any way necessary for a satisfactory analy-

sis of a game. (In Section 9, we emphasized in particular that incomplete structures are meaningful

and interesting.) But both conditions do seem basic to a ‘fully rational’ analysis of games, and the

fact that both can’t hold is definitely disturbing.

The analogous conditions on the tree—RCSBR and (CPS-based vs. LPS-based) completeness—are

consistent. (Refer again to Table 10.2 and to Section 9.)

Why the difference? The basic reason appears to be that the strategic-form analysis is more

demanding. In particular, it satisfies an invariance requirement, discussed next.

that perhaps we can add just the ‘right’ types to the given structure, without adding all possible types. The difficulty

with this approach is that what the right types are will depend on the game in question. (If tailoring epistemic

conditions to a particular game, we could even require directly that the strategy profile we’re interested in is played.)

Completeness seems an appropriate game-independent condition.
16There are also existence results (e.g., Aumann [9, 1999]) and non-existence results (e.g., Fagin [41, 1994], Heifetz-

Samet [51, 1998], and Heifetz [50, 1999], for knowledge structures (Section 13 below).
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12 Strategic vs. Extensive Analysis17

Kohlberg-Mertens [54, 1986, Section 2.4] argued that a ‘fully rational’ analysis of games should be

invariant—i.e., should depend only on the fully reduced strategic form.18 (See also Mertens [59, 1989,

p.582] for further discussion.) In this they appealed to early results in game theory (Dalkey [37,

1953], Thompson [79, 1952]) which established that two trees sharing the same reduced strategic form

differ from each other by a (finite) sequence of elementary transformations of the tree, each of which

can be argued to be ‘strategically inessential.’ Kohlberg-Mertens added a fourth transformation

involving convex combinations, to get to the fully reduced strategic form.19

As for how to ensure invariance, Kohlberg-Mertens [54, 1986, Section 2.7] give the essential idea,

although couched in terms of equilibrium. Here, we give a purely decision-theoretic version (which

is then directly relevant to epistemic analysis). Fix a decision tree T—i.e., a two-player game tree,

where one player (D) is the decision maker and the other player (N) is Nature, and we specify

payoffs for D only. Let Λ be the matrix associated with T , where D chooses the row and N chooses

the column. Say that T reduces to matrix M if Λ differs from M by the addition of duplicate rows

or columns, or rows that are convex combinations of other rows.20 We then have: A row in M is

admissible if and only if it is rational in every tree T that reduces to M .

The forward direction uses standard arguments.21 For the converse, let r be a row in M that is

weakly dominated by a mixture of rows σ, and let C be the set of columns on which σ does strictly

better than r. Consider the following tree T : (i) D moves first and chooses between the single

move {r, σ} and any of the other rows; (ii) N then moves, in ignorance of this move, and chooses

a column; (iii) finally, if D chose {r, σ} and N chose one of the columns from C, there is a single

information set H at which D gets to choose between r and σ. The tree T reduces to M . Also,

choosing σ at H will be strictly better for D than choosing r, so r isn’t rational in T , as required.

So, in decision theory, admissibility implies invariance—in fact, is equivalent to it. If we build up

our game analysis using a decision theory that satisfies admissibility, we can hope to get invariance at

this level too. LPS-based decision theory satisfies admissibility. As wanted, the resulting strategic-

form solution concepts in Table 10.2—S∞W , m-IA, SAS—are all invariant in the Kohlberg-Mertens

sense. (See [34].) The extensive-form concepts in Table 10.2 aren’t.

Back to the epistemic conditions: RmAR and completeness yields an invariant prediction, be-

cause (m + 1)-IA is invariant. Arguably then, the inconsistency of RCAR and completeness—as

17This section draws on material in “Common Assumption of Rationality in Games” by A. Brandenburger and

A. Friedenberg, 2002. This paper is superseded by [35, 2006].
18The strategic form after elimination of any (pure) strategies that are duplicates or convex combinations of other

strategies.
19The Dalkey-Thompson transformations can be replaced by the Elmes-Reny [39, 1994] transformations, which

preserve perfect recall (Kuhn [55, 1953]).
20Why not consider convex combination of columns? Under the Aumann-Anscombe [1, 1963] viewpoint, D’s

payoffs are really expected payoffs over objective lotteries. It is then natural to say that D can mix over these

lotteries—creating a row that is a convex combination of other rows. But N does not mix.
21 If r is an admissible row in M , then it is optimal under some full-support measure q on the columns of M . From

q, define a full-support measure on the columns of Λ, and argue that r is also admissible in Λ. Use the new measure

to define a CPS on T . Argue that if r isn’t rational in T , given this CPS, then it is inadmissible in Λ.
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opposed to the consistency of RCSBR and completeness—is the price that has to be paid for having

an invariant analysis.

In any event, it does seem that some basic requirement has to be given up in the search for the

‘fully rational’ analysis of games. If not exactly a paradox, this is certainly a surprising situation

for game theory. To quote Mertens [59, 1989, p.583]:

It is as if every time we think we finally get a hold on what rational behaviour means, we find

ourselves having grasped only a shadow. Maybe this means there is excessive ύβρις in this

endeavour: that rationality is something belonging to the gods themselves, and that should not

be stolen from them. Maybe it is the tree of knowledge itself, that we should not touch?

Perhaps the problem of inconsistent requirements says we are allowed to know one thing—that

rationality in its ‘ultimate form’ simply cannot be.

13 Knowledge-Based Approach

Throughout, we have focused on the epistemic literature that thinks of the players in a game as

having beliefs about one another’s strategies, beliefs about these beliefs, etc. As pointed out right

at the start in Example 4.1, these beliefs don’t have to be correct in any sense. In general, a player’s

type needn’t even assign positive probability to the actual strategy-type pair of another player (or

have that pair in its support in the infinite case).

Knowledge as usually formalized is different from belief, in that if a player knows an event E,

then E indeed happens. Knowledge can be present in the belief-based approach, in the form

of observation. If his information set H is reached, player i observes (and is correct) that the

other players’ strategies must be among those that allow H. These observations constitute the

conditioning events in a CPS (refer back to Section 6). In the strategic-form approach, there is no

(non-trivial) knowledge, just the sequence of hypotheses that makes up an LPS.

Philosophically, the overall view is that only observables are knowable. Unobservables are subject

to belief, not knowledge. In particular, other players’ strategies are unobservables, and only moves

are observables.

Another strand in the literature does allow knowledge about the strategies chosen by other

players. See, among others, Aumann [6, 1995], [8, 1998], Balkenborg and Winter [11, 1997], Halpern

[47, 1999], [48, 2001], Samet [69, 1996], Stalnaker [76, 1996], and also the exchange between Binmore

[22, 1996] and Aumann [7, 1996].

There appear to be some connections between the belief-based and knowledge-based approaches,

but also significant differences. Counterfactuals play an important role in a knowledge-based analy-

sis, if we want to talk about what a player thinks at an information set that cannot be reached given

what he knows. There may be an analogy to the role of extended probabilities in a belief-based

analysis. But completeness is crucial to the belief-based approach, as we have seen, and an analo-

gous concept does not appear to be present in the knowledge-based literature. Halpern [48, 2001]
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is a good synthesis of the knowledge-based approach. We are not aware of any formal treatment of

the relationship between this and the belief-based approach we have followed in this survey.

Finally, we mention some papers that use formalisms related to, but again different from, the

ones we have covered. Feinberg [43, 2005], [44, 2005] builds an extensive-form epistemic framework.

His approach is ‘local’ rather than ‘global,’ since, instead of a CPS, he specifies at each information

set separately what a player believes there. Asheim and Perea [4, 2005] is another epistemic analysis

on the tree, but uses the idea of a “conditional LPS” ([23, Definition 4.2]) rather than CPS’s. (For

each conditioning event E, take in sequence all hypotheses that give E positive probability, calculate

conditionals, and in this way form an LPS concentrated on E.) Conceptually, conditional LPS’s

are the right object for epistemic analysis of “weak dominance on the tree”—as opposed to “strong

dominance on the tree,” which we noted earlier is what comes from a CPS-based analysis.

14 Conclusion

The epistemic program can be viewed as a methodical construction of game theory from its most

basic elements—rationality and irrationality, belief (and knowledge), belief about belief, etc. It is a

‘bottom-up’ approach. In this, it is very different from the ‘top-down’ approach of the equilibrium

refinements program (as noted earlier). It is also very different in that Nash equilibrium has played

a much smaller role in the epistemic program. As we have seen, some of the most basic questions

lead naturally to other solution concepts.

We have talked about some seemingly inherent limits to the epistemic analysis of games. Of

course, such limits aren’t a sign of failure. Rather, finding such theoretical limits seems a sign that

the epistemic program has reached a certain depth and maturity. Also, several of the examples

we looked at involved scenarios that were ‘a long way from’ these theoretical limits. A big point

of the epistemic program is that there isn’t one right set of assumptions to make about a game.

The inconsistency of certain conditions is important, but not the whole picture. The goal of the

program is to be able to analyze many different sets of assumptions about games in a precise and

uniform manner.
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