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Abstract

Decision makers often have imperfect information. We develop a choice theoretic experiment

to explore choice mistakes that result from incomplete search. Our choice process methodology

generates data on how choices change with contemplation time, thereby illuminating the search

process. We demonstrate that most subjects behave in line with a reservation-based model of

sequential search, altering their reservation utilities in response to the size of the choice set and

the complexity of the environment. These �ndings support Simon�s model of satis�cing behavior

and suggest simple measures of contextual e¤ects on the quality of decisions.

Key Words: Revealed preference, search, incomplete information, bounded rationality,

stochastic choice, decision time

1 Introduction

When faced with large or complicated choice sets, it is unsurprising that people make signi�cant

mistakes, in the sense of failing to choose the best possible alternative. Understanding the nature

and prevalence of such mistakes is an important theoretical and practical challenge. In practi-

cal terms, policy makers are looking to develop decision making protocols and rules that reduce

consumer confusion. In parallel, economic theorists have begun to model the behavior resulting
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from choices being made from subjective �consideration sets� that are strictly smaller than the

objectively available set of choices.1

A key question is whether the fact that people make mistakes when they have incomplete

information can be reconciled with the concept of revealed preference.2 We introduce a novel

choice theoretic experiment for purposes of reconciliation and use it to show that many apparent

mistakes can indeed be rationalized by a model that incorporates search into the choice procedure.

While subjects regularly violate standard rationality conditions, their behavior is well described by

a simple model of sequential search with a reservation stopping rule. This is the satis�cing model

of boundedly rational behavior proposed by Simon [1955]. Moreover, both estimated reservation

values and the order of search respond systematically to changes in the choice environment. In

combination, these factors have strong explanatory power in identifying choice environments in

which people make large mistakes, and those in which they do not. Thus, the process of information

search provides a natural framework for understanding how environmental factors a¤ect the quality

of decisions that people make.

In order to explore the process of information search, we present a choice-based experiment that

makes visible aspects of search that are not revealed in standard choice data. Our design elicits

�choice process�data that records not only the �nal choices that subjects make, but also how choices

change with contemplation time (see Campbell [1978] and Caplin and Dean [2009]).3 We obtain

such data using an experimental design in which subjects�choices are recorded at a random point

in time unknown to them, incentivizing them to always report their currently preferred alternative.

This represents a choice-based experiment constructed precisely to enrich our understanding of

search behavior and imperfect information.

In order to pin down the e¤ect of search on choice quality, we use choice objects which allow for

an intuitive notion of mistakes. The objects of choice in our baseline experiments are simple mone-

1See Manzinini and Mariotti [2007] and Masatlioglu and Nakajima [2009] for examples of decision theoretic models

with consideration sets. See also Eliaz and Spiegler [2008]. Rubinstein and Salant [2006] present a model of choice

from lists, in which a decision maker searches through the available options in a particular order. Ok [2002] considers

the case of a decision maker who is unable to compare all the available alternatives in the choice set.
2The appropriateness of categorizing particular decisions as mistakes is taken up by Bernheim and Rangel [2008],

Gul and Pesendorfer [2008] and Koszegi and Rabin [2008].
3Compared to other novel data used to understand information search, such as those based on eye tracking or

Mouselab (Payne, Bettman and Johnson [1993], Gabaix et al. [2006], Reutsaja et al. [2009]), choice process data is

more closely tied to standard choice data and revealed preference methodology.
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tary prizes, making preferences trivial and universal. However, this dollar value is not immediately

clear to the subject, as it is expressed in the form of a sum, or sequence of addition and subtraction

operations. The act of choice is non-trivial because mental e¤ort is needed to understand the value

of each prize on o¤er. Subjects regularly make choice mistakes in the sense of failing to select the

object with the highest dollar value. We show that the size of these mistakes is a¤ected both by

the number of available alternatives and by the complexity of each alternative, as measured by the

number of mathematical operations that make up each option.

We use choice process data to test whether models of information search can explain this pattern

of mistakes. We �rst show that search behavior is well described by sequential �alternative-based�

search: subjects behave as if they are searching through alternatives one by one, always selecting

the best of the alternatives that they have come across. This contrasts with other boundedly

rational models of search, such as those that are �attribute-based�, in which di¤erent attributes of

the goods are examined in sequence. Caplin and Dean [2009] provide a general characterization of

the implications of alternative based search (ABS) for choice process data, and in section 4 we show

that the vast majority of data satisfy this characterization. In fact allowance for this simple form

of search removes almost all evidence of mistakes for most subjects. While apparent violations of

rationality in �nal choice are large and context dependent, appropriately measured improvements

during the process of search are not.

More striking still is the apparent applicability of the simple satis�cing model of Simon [1955]

to describing choice process data. Most of our experimental subjects appear to engage in sequential

search that stops once a satisfactory, or reservation, level of utility is achieved. Mistakes are found

to be large in environments associated with low levels of reservation utility. We show that such

behavior is optimal for a decision maker (DM) facing �xed per-alternative psychic search costs.

The optimal reservation level is decreasing in the complexity of each object, but is una¤ected by

size of the choice set.

Given the applicability of the satis�cing framework, we investigate experimentally how changes

in the decision making environment impact mistakes by estimating the corresponding changes in

reservation utility. We �nd that reservation levels do indeed decrease as the complexity of choice

objects increase, in line with the optimal model. However, we also �nd that reservation levels

increase with the size of the choice set, suggesting that subjects search relatively too hard in larger

choice sets, as compared to optimal behavior.
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In order to elicit choice process data we use an experimental design in which �nal choices may

not in fact be implemented. In section 7 we explore the impact of this design feature on our

results. To this end we use data from the pure choice experiments in which only �nal choices were

implemented. As with the choice process data, these pure choice experiments allowed individuals

to click to new options during the pre-decision period. The key di¤erence is that these switches

were payo¤ irrelevant in the pure choice case. Despite this di¤erence, the results in section 8 show

that the key features of the analysis hold when we examine these unincentivized changes in choice.

It appears that the incentive structure of the choice process experiment has little impact on the

nature of the search process.

In addition to providing information on reservation values, choice process data can also shed

light on the order in which people search through the choice set. In the �nal section of the paper,

we study search order in settings in which options vary both in the order on the screen and in their

complexity. We identify some individuals whose search order is governed by screen position, and

others whose search order is governed by complexity. We show that individual di¤erences impact

the mistakes that subjects make: those who search in screen order miss good objects at the base

of the list, while those who search by complexity miss good objects if they are complex.

2 Measuring Mistakes

2.1 Experimental Design

In our �rst experiment (experiment 1), we use a standard choice task to identify choice environments

in which people make mistakes, in the sense of failing to select the best possible objects. In order

to make such mistakes obvious, we use choice objects that have a clear underlying value, but whose

value takes e¤ort to uncover. Each object is displayed as an arithmetic expression, a sequence of

addition and subtraction operations, with the value of the object equal to the value of the sum in

dollars.4 As we demonstrate below, choice among these objects produces evidence of signi�cant

and environmentally sensitive mistakes.

4Given that the subjects (NYU students) were unusually numerate and made negligible mistakes when purely

numerical options were presented, we wrote out the arithmetic expressions in word form rather than in symbolic

form.
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Experiment 1 consisted of six treatments, di¤ering in the complexity of choice object (3 or 7

addition and subtraction operations for each object) and the total number of objects (10, 20 or 40

alternatives) in the choice set. Figure 1 shows a 10 option choice set with objects of complexity 3.

FIGURE 1 ABOUT HERE

Each round began with the topmost option on the screen selected, which had a value of $0, and

so was worse than any other option. While only the �nal choice was recorded, subjects could select

whichever option they wanted at any time by clicking on the radio button next to that option. The

alternative that the subject currently selected would then be displayed at the top of the screen.

Once they had �nalized their selection, they could proceed by clicking on the submit button at

the bottom of the screen. The changes that were made over the entire pre-decision period were

recorded and their properties are explored in section 8. However it was only the �nal choices that

were payo¤ relevant. There was no constraint on decision time.

The value of each alternative was drawn from an exponential distribution with � = 0:25,

truncated at $35 (a graph of the distribution was shown in the experimental instructions - see

appendix A).5 Once the value of each object was determined, the operations used to construct the

object were drawn at random.

Subjects for experiment 1 took part in a single experimental session consisting of 2 practice

rounds and between 27 and 36 regular rounds, drawn from all 6 treatments. At the end of the

session, two regular rounds were drawn at random, and the subject received the value of the

selected object in each round, in addition to a $10 show up fee. Each session took about an hour,

for which subjects earned an average $32. In total we observed 22 subjects making 657 choices.

2.2 Mistakes

Table 1 presents information on the extent to which mistakes were made in each treatment. We

report three measures of error. The �rst row reports �failure rate� - the proportion of rounds in

which the subject did not choose the best option (i.e. the option with the highest dollar value).

The second row reports average absolute loss - the di¤erence in dollar value between the chosen
5For each of the three choice set sizes we generated 12 sets of values, which were used to generate the choice

objects at both the low and the high complexity levels.
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item and the highest value item in the choice set. The third row reports average percentage loss -

the absolute loss expressed as a percentage of the highest value in the choice set.

TABLE 1 ABOUT HERE

Our experimental design creates an environment in which subjects make suboptimal choices.

Averaging across all treatments, subjects fail to select the best option 38% of the time. These

failures of rationality are also signi�cant in terms of dollar amounts. On average, subjects leave

$3.12, or 17% of the available money, on the table in each round.6

The degree to which subjects make mistakes varies signi�cantly and systematically across treat-

ments. All measures reported in table 1 increase both with the size and the complexity of the choice

set. Failure rates vary from 7% for the size 10, low complexity (3 operations) treatment to 65%

for size 40, high complexity (7 operations) treatment. Average losses range from $0.41 (3.44%) in

the size 10, low complexity treatment to $7.12 (33.25%) in the size 40, high complexity treatment.

Regression analysis shows that the di¤erence in losses between treatments is signi�cant.7

There is also some evidence that the e¤ect of complexity is higher in larger choice sets - the

di¤erence in loss between low and high complexity objects in size 10 choice sets is $1.29 (10.2%)

and not signi�cant at the 10% level. For size 40 choice sets, the di¤erence is $4.83 (22.8%) and

signi�cant at the 1% level.8

6There is no evidence for any e¤ect of learning or fatigue on mistakes. The order in which choice rounds were

presented was reversed for half the subjects, and the order of presentation did not have a signi�cant e¤ect on

performance. This may in part be because our experimental design is structured to remove learning e¤ects. The

decision making context, including the distribution of prizes, is known to the decision maker at the start of each

experimental round.
7Absolute di¤erences in value were regressed on dummies for choice set size, complexity and interactions, with

standard errors calculated controlling for clustering at the subject level. Losses were signi�cantly higher at the 1%

level for complexity 7 vs. complexity 3 for size 20 and 40 choice sets, though not for size 10 choice sets. Losses were

also signi�cantly higher at the 1% level for size 40 vs. size 10 choice sets at both levels of complexity.
8While not the primary subject of study in the current paper, there are signi�cant individual di¤erences in

mistakes. Estimates obtained from a regression of absolute loss on individual speci�c dummies, controlling for

treatment e¤ects, indicate that the 25th percentile subject does on average $1.10 better than the median subject,

while the 75th percentile subject does $1.23 worse, averaging across all rounds.
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3 The Choice Process

3.1 Ideal Data

While the mistakes identi�ed in section 2 are unsurprising, standard choice theory has little to say

about them - either the process by which such mistakes come about, or the relationship between

factors in the choice environment and the likelihood and the signi�cance of mistakes.

In order to explore these issues, we introduce choice process data, which is designed to shed light

on search-based causes of mistakes. Rather than recording only the �nal alternative that is chosen

by the DM, choice process data tracks how the choices that people make evolve with contemplation

time. As such, choice process data come in the form of sequences of observed choices. For each

non-empty set of alternatives A, choice process data specify not just the �nal choice C(A) � A,

but rather a sequence of choices, representing the DM�s choices after considering the problem for

di¤erent discrete lengths of time.

We introduce now the formal version of the choice process data set from Caplin and Dean

[2009].9 Let X be a nonempty �nite set of elements representing possible alternatives, with X

denoting non-empty subsets of X. Let Z be the set of all in�nite sequences from X with generic

element Z = fZtg11 with Zt 2 X all t � 1. For A 2 X , de�ne Z 2 ZA � Z i¤ Zt 2 A all t � 1.

De�nition 1 A (deterministic) choice process (X;C) comprises a �nite set X and a function;

C : X ! Z such that C(A) 2 ZA 8 A 2 X and jZtj = 1 8 t.

Given A 2 X , choice process data assign not just �nal choices, but a sequence of such choices,

representing the DM�s choices after considering the problem for di¤erent lengths of time. We let

CA(t) refer to the object chosen after contemplating A for t periods.

Choice process data represent a relatively small departure from standard choice data, in the

sense that all observations represent choices, albeit indexed by time. We therefore see this approach

as complementary to other attempts to use novel data to understand information search, such as

those based on eye tracking or Mouselab (Payne, Bettman and Johnson [1993], Gabaix et al. [2006],

Reutsaja et al. [2009]). These approaches make aspects of the search process observable, yet do

9Caplin and Dean [2009] consider the generalized case with set-valued choice functions.
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not connect these intermediate acts of search with their implications for choice. On the other hand,

choice process data misses out on potentially relevant cues to search behavior, but captures the

moment at which search changes a DM�s assessment of the best option thus far encountered.

3.2 Experimental Design

For each set of alternatives presented to an experimental subject, our aim is to generate a time

series of observations that records their preferred alternative from the choice set at each moment

in time. Our design has two key features. First, subjects were allowed to select any alternative

in the choice set at any time, changing their selected alternative whenever they wished. Second,

actualized choice was recorded at a random point in time unknown to the experimental subject. At

the end of each choice round, a random time was generated, and whatever the subject had selected

at that time was recorded as their choice. This incentivized subjects to always have selected their

current best option in the choice set. We therefore interpret the sequence of selections as choice

process data.10

Appendix A reproduces the experimental instructions. As in the standard choice experiment,

each round began with the topmost and worst option of $0 selected, subjects could at any time

select any of the alternatives on the screen either by clicking on the alternative itself or the radio

button next to it, with the currently selected object being displayed at the top of the screen.

Unlike in the standard choice experiment, there was a time constraint, with subjects having up

to 120 seconds to complete the choice task (though, as we shall see below, this time constraint is

rarely binding).11 Subjects were instructed that at the end of the round, a random time would

be picked from distribution between 1 and 120 seconds according to a truncated beta distribution

with parameters � = 2 and � = 5, and the selected alternative at this time would be recorded as

the choice for that round.12 A subject who �nished in less than 120 seconds could press a submit

10 In support of this interpretation, 58 of 76 subjects in a post-experiment survey responded directly that they always

had their most preferred option selected, while others gave more indirect responses that suggest similar behavior (e.g.

having undertaken a re-calculation before selecting a seemingly superior alternative).
11 In experiment 1, which had no time limit, 56% of rounds were completed inside 2 minutes. This di¤erence in

time usage may explain why �nal choices were slightly worse in the choice process treatment, as we discuss below.
12A graph of this distribution was shown in the experimental instructions, which are reproduced in appendix A.

The beta distribution was chosen in order to �front load�the probability of a time being selected in the �rst minute

of the choice round, as most subjects made their choices inside 120 seconds.

8



button, which completed the round as if they had kept the same selection for the remaining time.

Typically, a subject took part in a single session consisting of 2 practice rounds and 40 regular

rounds, and two recorded choices were actualized for payment, which was added to a $10 show up

fee.

The choice process experiment (experiment 2) made use of exactly the same treatments as the

standard choice experiments of experiment 1: choice sets contained 10, 20 or 40 alternatives, with

the complexity of each alternative being either 3 or 7 operations. Moreover, exactly the same choice

sets were used in the choice process and standard choice experiments.13

3.3 Basic Properties of Choice Process Data

Before using the choice process apparatus to estimate models of search, we establish two properties

that are important for its usefulness. First, we show that �nal choices made under the choice

process regime are similar to those made under standard choice conditions. This suggests that

there is some similarity in the choice making procedure used in the choice process and standard

choice experiments. Second, people do indeed change their selection with consideration time. This

is a necessary condition for choice process data to contain more information than standard choice

data alone.

For this analysis we discard observations from rounds in which the subject does not press the

submit button before the allotted 120 seconds. In such rounds, we assume that subjects have not

�nished their choice process, so we cannot assume that we are observing their �nal choice. In doing

so, we lose 94 rounds, or 8% of our total observations.

3.3.1 Impact on Final Choices

Table 2 compares failure rates and average absolute loss by treatment for choice process and non-

choice process data. It also shows the number of observations per treatment for the choice process

data.
13We also conducted experimental sessions in which the grand set of objects was 29 lotteries of the form P% chance

of $X and 1-P% chance of $Y. In each round, 11 of the 29 lotteries were presented in a list on the screen, and choices

were recorded at randomly selected times distributed uniformly between 1 and 60 seconds.

9



TABLE 2 ABOUT HERE

The comparative statics of loss and failures of optimality are very similar for the choice process

experiment and the standard choice experiment. In both cases, subjects fail to optimize more

frequently and lose more money in larger and more complicated choice sets. While it appears

that choice process data leads to somewhat higher losses (and less optimal selection) on average,

regression analysis suggests the e¤ect is insigni�cant for percentage loss, and on the border of

signi�cance for failure rate.14

To the extent that there is a di¤erence in the quality of �nal choices, it goes in the expected

direction. The incentive to continue searching is higher in the standard choice experiment, since

it is certain that any identi�ed improvements will be implemented. The corresponding probability

is less than one in the choice process experiment, and falls toward zero as the 2 minutes come to

an end. In this light, it is noteworthy how limited was the impact of the incentive changes induced

by the choice process interface. When we compare the distribution of �nal choices in each choice

set from choice process and non-choice process sessions using Fisher�s exact test, we �nd that 12

(20%) of the 60 choice sets have distributions that are signi�cantly di¤erent at the 5% level. More

tellingly, the analysis of section 7 shows that all of the results that follow concerning the nature

of the search and decision process from the choice process experiments are closely mirrored using

data from the pre-decision period in the pure choice experiment.

3.3.2 Number of Switches

Choice process data provide signi�cantly more information than standard choice data in the form

of switches in the period prior to �nalization. Figure 2 shows histograms of the number of choice

switches per round for each treatment. We de�ne a choice switch as an occasion in which the

subject changes selection from one alternative to another, excluding the initial change away from

the $0 option. Across all trials, 67% of rounds contain at least one switch and 37% contain at least

two switches, indicating that people do use the choice process technology to update their choices

as they contemplate the problem.

14To test this hypothesis, we repeat the regression analysis of section 2.2 on the combined standard choice and

choice process data set with an additional dummy for whether or not choice process was implemented. The estimated

coe¢ cient is 0.637 (p-value of 0.260) for absolute loss and 9.01 (p-value of 0.052) for failure rate.
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FIGURE 2 ABOUT HERE

One feature of this data is that there are many instances in which there are zero switches -

subjects switch away from the initial zero option then stop. This suggests the possibility that there

may be changes of mind that are not recorded in the choice process data, possibly due to perceived

transactions costs of making the switch. It is important to note that none of our analyses are

impacted by this possibility: our results are all consistent with behavior in which there is a private

threshold of signi�cance that has to be crossed before a change is recorded. In other words, our

analysis is robust to the possibility that we do not observe all changes in preferences.

4 ABS and Mistakes

4.1 ABS

We now introduce a model of information search to shed light on apparent mistakes. The model we

consider is ABS, the process of sequential search with recall, in which the DM evaluates over time

an ever-expanding set of objects, choosing at all times the best object thus far identi�ed.15 ABS is

a common feature of classic models of search within economics [McCall, 1970; Stigler, 1961]) and

of many boundedly rational models such as that of Simon [1955].

As de�ned by Caplin and Dean [2009], choice process data has an ABS representation if there

exists a �xed utility function and a non-decreasing search correspondence for each choice set such

that what is chosen at any time is utility maximizing in the corresponding searched set.

De�nition 2 Choice process (X;C) has an ABS representation (u; S) if there exists a utility

function u : X ! R and a search correspondence S : X ! ZND, with SA 2 ZA all A 2 X , such

that,

CA(t) = arg max
x2SA(t)

u(x)

where ZND � Z comprises non-decreasing sequences of sets in X , such that Zt � Zt+1 all t � 1.
15This contrasts with other more intricate forms of search involving partial understanding of all options (e.g. those

based on exploring attributes and/or continuously learning about multiple options).
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Caplin and Dean [2009] provide a general method of identifying whether or not choice process

data has an ABS representation. The key to this representation is understanding what type of

behavior implies a revealed preference in the context of the ABS model. It is not the case that

�nal choice of x over y necessarily indicates that x is preferred to y, as the decision maker may

simply be unaware of y. However, if we see a subject at some point choose y and then replace it

with x then under the ABS model they must be interpreted as preferring x to y. The fact that y

has previously been chosen indicates that the subject is aware of it. However, the subject has later

rejected y in favor of x, indicating that the latter must be preferred.

In general, choice process data will have an ABS representation if and only if this revealed

preference information is consistent with some underlying linear order - in other words, it must be

acyclic. However, in our experiments, we have an externally observable ranking over the objects

of choice, given by their underlying dollar value. The corresponding result is therefore trivial: an

ABS representation exists for our data if and only if all switches are to higher value alternatives.

This result is noted in remark 1:

Remark 1 Let v : X ! R be the externally observable value of a set of choice objects. A choice

process model (X;C) permits an ABS representation (v; S) if and only if v(CA(t)) � v(CA(t+ s))

for all A 2 X and t; s � 1 (Condition 1).

4.2 Testing ABS

In order to measure how close our data is to satisfying condition 1, we use a measure of consistency

proposed by Houtman and Maks [1985]. The Houtman-Maks (HM) index is based on calculating

the largest number of observations that are consistent with a particular condition, which can be

determined by �nding the minimum number of observations that have to be removed before the

condition is satis�ed. The underlying idea is that a data set that requires fewer such removals is

�closer�to satisfying condition 1 than one that requires more removals. In this case, we speci�cally

ask how many selections have to be removed from a subject�s data set before condition 1 is satis�ed.

The resulting HM Index is normalized by dividing through by the total number of observations, so

that the HM Index takes a value between 0 and 1, which can be interpreted as the largest fraction

of a data set that satis�es condition 1

To give a concrete example, consider that for one subject we observe that they initially select
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an option worth 7, then one worth 6, then 8 then 9. Such a subject would not be consistent with

condition 1, as their initial switch would be to a lower value. However, if we removed their second

selection, their choice process data would show them switching from value 7 to value 8 to value

9 - in line with condition 1. Thus this subject would have an HM index of 0.75, as 1 of their 4

observations would have to be removed to make their data consistent with condition 1. This subject

we consider closer to satisfying condition 1 than one who switched from value 7 to value 6 to value

9 to value 8. We would have to remove two observations from this subject�s data to make them

consistent with condition 1, giving them an HM index on 0.50

To determine the relative consistency of subjects in the choice process experiment, we compare

their selections to a benchmark of random choice, as proposed by Bronars [1987]. For each subject,

a benchmark choice process data set is constructed by replacing each selection with a random

selection from the corresponding choice set, so that the resulting random choice process data has

the same number of selections in each round as the original data.

Figure 3 shows the results of the benchmarking. The top histogram shows the distribution of

HM Index scores for all 76 subjects using their actual selections, and the bottom histogram shows

the distribution of HM Index scores for 1,000 simulations of random data for each subject in the way

described above, which gives a total of 76,000 simulated scores. A two-sample Kolmogorov-Smirnov

test indicates that the distributions are signi�cantly di¤erent (p < :001).

FIGURE 3 HERE

4.3 Identifying ABS Types

Figure 3 suggests that, for the population as a whole, ABS does a good job of describing search

behavior. We can also ask whether the behavior of a particular subject is well described by the

ABS model - if so, we describe this subject as an ABS type.16

16While the choice process data for this experimental setting can be modeled well with ABS, it remains to be

shown that ABS is appropriate for other choice objects. Therefore, we ran an additional treatment of 20 rounds with

21 subjects using the lotteries. The grand set of objects was 29 lotteries of the form P% chance of $X and 1-P%

chance of $Y. In each round, 11 of the 29 lotteries were presented in a list on the screen. Despite the complexity and

novelty of the choice objects, many of these 21 subjects can be modeled well with ABS. Because preferences are not

immediate for these objects, we performed a more general test for acyclicity. For 16 subjects, 90% or more selections
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To identify ABS types, we compare each subject�s HM Index with the median HM Index of

the 1,000 simulations of random data for that subject, which have exactly the same number of

observations in each round. Only 1 subject (727) has an HM Index below the median HM Index of

the corresponding random choice process data, and only 4 subjects (638, 680, 727, and 826) have

an HM Index lower than the 75th percentile. For the remainder of the paper we focus on the 72

out of 76 subjects we classify as ABS types.17

4.4 ABS and Mistakes

Under the standard model of decision making, preferences are revealed through �nal choice: one

object is revealed preferred to another if it is chosen when the other was available. Because our

experiment makes use of objects with externally observable values, we have de�ned a mistake

relative to the standard model as a case when revealed preference is not in line with the external

valuation - in other words, when one object is chosen though a more valuable object was available.

The ABS model incorporates a di¤erent notion of revealed preference: preference is revealed not

through �nal choice, but by switching from one alternative to another. We can therefore de�ne the

concept of a mistake relative to the ABS model as a case when this de�nition of revealed preference

is not in line with the external value. Viewed this way, the HM index calculated above counts the

proportion of observations which are consistent with an absence of mistakes.

Figure 4 compares the proportion of mistakes according to the ABS model and according to

the standard model for each treatment. Two key facts stand out in this �gure. First, the level

of irrationality as measured by the standard de�nition of revealed preference is far higher than

that with the ABS measure. Second, while there is strong evidence of increasing irrationality in

larger and more complex choice sets according to the standard measure, such e¤ects are minimal

according to the ABS measure - using the latter, there is no e¤ect of set size, and only a small

e¤ect of complexity on mistakes.

FIGURE 4 ABOUT HERE

are consistent with acyclicality
17Using a cuto¤ of the 95th percentile would lead to the loss of 3 more subjects, and would not change any of the

following results.
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Figure 4 suggests that simple search theoretic explanations can help make sense of the mistakes

that we observe. In large choice sets, people still recognize preferred objects and choose them

when they come across them. However, their �nal choices may not be maximal because they do

not search through all available alternatives. Thus, the ABS model can resurrect the concept of

revealed preference in environments in which decision makers must search for information on the

available alternatives.

5 Satis�cing

In his pioneering model of bounded rationality, Simon [1955] suggested that decision makers do not

optimize, but rather search through a decision set until they achieve a �satisfactory�(or reservation)

level of utility. One factor that has held back research on satis�cing behavior is that the model has

typically been interpreted in terms of its implications for �nal choices alone. The problem in this

regard is that the simplest form of satis�cing cannot be separated from utility maximization on the

basis of choice alone: both are characterized by �nal choices that obey the weak axiom of revealed

preference.18

In this section we use choice process data to shed new light on satis�cing behavior. The essential

advantage that choice process data provides is that it opens up observation of both unsatisfactory

as well as satisfactory choices, in that we directly observe occasions when a subject continues to

search having uncovered an unsatisfactory object. This allows us to estimate reservation values for

our di¤erent treatments.

The bottom line is that a simple model of satis�cing behavior in which the satiation level is

dependent on ex ante known features of the decision making context has great explanatory power

in our data set. Moreover, reservation levels depend in a predictable way on our two treatment

variables, choice set size and complexity.

18This is true in the version of the satis�cing model in which decision makers always search through choice objects

in the same order, and the set of satis�cing objects is �xed. If the order of search can change over time, then the

satis�cing model has no implication for �nal choice.
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5.1 Satis�cing and Reservation Utility

In search theoretic terms, satis�cing behavior corresponds to ABS behavior coupled with a reser-

vation level of value (or utility): a subject searches through the choice set item by item, stopping

if and only if this reservation level is achieved. This connection to sequential search based on a

simple stopping rule link satis�cing with our experimental data.

The �rst indication that our subjects exhibit satis�cing behavior is shown in �gure 5. This shows

how the value of the selected object changes with order of selection for each of our six treatments.

Each graph has one isolated point and three lines. The isolated point shows the average object

value for those who stop at the �rst object chosen.19 The �rst line shows the average value of each

selection from rounds in which one switch was made. The next line shows the average value of each

selection in rounds where 2 switches were made, and the �nal line for rounds in which 3 switches

were made.

FIGURE 5 ABOUT HERE

Figure 5 is strongly suggestive of satis�cing behavior. First, as we would expect from the

proceeding section, in aggregate people behave in line with ABS: in all but one case, the average

value of selections is increasing. Second, we can �nd reservation values for each treatment such

that aggregate behavior is in line with satis�cing according to these values. The horizontal lines

drawn on each graph show candidate reservation levels, estimated using a technique we describe

below. In every case, the aggregate data show search continuing for values below the reservation

level, and stopping for values above the reservation level, as with satis�cing behavior.

5.2 The Estimator

In order to estimate the reservation utility for each treatment, we assume a stochastic generalization

of the reservation strategy. We assume that all individuals in a given choice environment have the

same constant reservation value v and experience variability " in this value each time they decide

whether or not to continue search. Further, we assume this stochastically enters additively and is

drawn independently and identically from the standard normal distribution. Let v be the value

19Following the initial switch away from the zero value option.
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of the item that has just been evaluated, and so the DM uses the following strategy to determine

whether to continue searching through the choice set:

search stops if v > v + " :

search continues if v � v + ";

where " � N (0; 1).

We can recast this procedure as a binary choice model. Let k be a decision node, vk be the

value of the object uncovered and xk be the choice made at that decision node, with xk = 1 if

search stops and xk = 0 if search continues. Then

xk = 1(vk � v � "k > 0);

where 1(:) is the indicator function.

An individual will stop searching if "k < vk � v, so the probability of stopping is search is

� (vk � v), where � is the cumulative density function of the standard normal distribution. Sim-

ilarly, search will continue if "k > vk � v, so the probability of search continuing is given by

1� � (vk � v) = � (v � vk).

Thus, to estimate the parameter v with maximum likelihood estimation, we use the log likelihood

function

lnL =
KX
k=1

[xk ln (� (vk � v)) + (1� xk) ln (� (v � vk))]

and �nd the value of v maximizes lnL.

To employ this procedure using our data, we consider each selection made by a subject as

a decision node. We then need to identify occasions when we observe that search has stopped,

and when we observe that it has continued. The latter is simple: search continues if a subject

switches to another alternative after the current selection. Identifying stopped search is slightly

more complicated. If we observe that a subject does not make any more selections after the current

one, then there are three possibilities. First, they could have continued to search, but run out of

time before they found a better object. Second, they could have continued to search, but already

have selected the best option. Third, they could have stopped searching. We therefore consider

a subject to have stopped searching at a decision node only if they made no further selections,

pressed the submit button, and the object they had selected was not the highest value object in

the choice set.
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Choice process data is clearly vital for the estimation of reservation values. If we ignore data

on the choice process and instead consider only standard choice data, we cannot use the same

estimation strategy because it requires observations of subjects continuing to search as well as

observations in which they stop searching. Choice data is composed entirely of the latter, so it only

indicates when search has stopped, not when it continues.

5.3 Estimated Reservation Levels

Because we assume that all individuals have the same distribution of reservation values in a given

environment, we pool together all selections within each treatment. We estimate reservation levels

for the 72 participants whose choice data is best modeled with ABS. Table 3 shows the estimated

reservation levels for each treatment, with standard errors in parentheses.

TABLE 3 ABOUT HERE

Table 3 reveals two robust patterns in the estimated reservation levels. First, reservation levels

decrease with complexity: using a likelihood ratio test, estimated reservation levels are signi�cantly

lower for high complexity treatments than for low complexity treatments for all set sizes (p < 0:001).

Second, reservation levels increase monotonically with set size (signi�cantly di¤erent across set sizes

for both complexity levels with p < 0:001).

One question that this estimation strategy does not answer is how well RBS behavior explains

our experimental data. In order to shed light on this question, we calculate the equivalent of the

HM index for the RBS model with the estimated reservation levels of table 3. For each treatment,

we calculate the fraction of observations which obey the reservation strategy (i.e. subjects continue

to search when they hold values below the reservation level and stop when they have values above

the reservation level).

TABLE 4 ABOUT HERE

The results, aggregated across all subjects, are shown in table 4. The estimated RBS model

describes about 85% of observations for treatments with simple objects and about 80% for com-

plicated objects. Both of these �gures are signi�cantly higher than the random benchmark of 50%
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(where people arbitrarily stop or continue at each decision node) at the 1% level.

As with the ABS model, there is signi�cant heterogeneity across individuals with respect to

how well they are described by the RBS model. While the majority of subjects have an HM index

above 75%, some have extremely low scores and are clearly poorly described by the RBS model

with the given estimated reservation levels. In order to ensure these individuals are not a¤ecting

our estimates in table 3, we repeat the estimation of reservation strategies while dropping subjects

who have an HM index below 50%. These results are in table 3 under the rows for �RBS�types.

The estimated reservation levels are essentially the same as those for the whole sample.

5.4 Reservation Utility or Reservation Time?

A natural question is whether our data is consistent with other stopping rules. One obvious

candidate is a stopping rule based on a reservation time, in which subjects search in a given

environment for a �xed time, selecting the best option found subject to this time constraint. In

order to test this possibility, we redraw the graphs of �gure 5, but showing the average time of each

switch, rather than the average value. If subjects are using a �xed stopping time strategy then we

expect the graphs to look like those in �gure 5 - on average, subjects stop searching when time is

over the stopping time, and continuing when it is less than the stopping time.

FIGURE 6 ABOUT HERE

The results of the above analysis are shown in �gure 6. The �gures are completely destructive

of the reservation time alternative. Unlike in �gure 5, there is generally no �reservation time�such

that subjects continue to search for times below this level and stop for times above that level. It

appears that those who identi�ed a high value object with their �rst selection stopped quickest,

while those who made the most switches along the way took far longer. This is precisely as the

reservation utility model would suggest, and runs completely counter to the predictions of the

reservation time model.
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6 Optimal Stopping

In this section we explore the connection between the reservation stopping rules that we identify in

the experiment and optimal stopping rules. We establish that reservation stopping rules of the kind

that we uncover are optimal in the context of our experimental design. We consider a standard

model of sequential search with a search cost speci�ed in utility terms, as in Gabaix et al. [2006].

The DM is an expected utility maximizer with a speci�c �nal utility function u : X ! R that

represents object values. The agent�s search strategy from any non-empty �nite subset A � X is

based only on the size M of the set of available objects in A, not the identities of these objects.

Each available option is assumed ex ante to have a utility level that is independently drawn from

some distribution F (z). Note that this is explicitly true in our experiment.

We endow the searcher with information on one available option. At each subsequent time t � 1,

the decision maker faces the option of selecting one of the options already searched, or examining

an extra option and paying the additional psychic search cost � > 0. Once search stops, the agent

must choose one of the uncovered objects.20 There is no discounting. In this environment, we

establish that the optimal search strategy is based on a �xed reservation level of utility.

Theorem 1 Given that search costs satisfy 0 < � <

1Z
0

zdF (z), de�ne reservation utility R as the

unique solution to the equation
1Z
R

(z �R)dF (z) = �:

The expected utility maximizing strategy is to continue search until and unless an option is uncovered

with utility strictly above the cuto¤ level R, with immediate selection of any such object.

Proof. We prove the result inductively on n, the number of remaining unsearched elements in a

set of initial cardinality N � n. Supposing that search continues until there is only one element left

unsearched, let x1 be the highest utility object encountered in prior search. The optimal strategy

is either to stop immediately and take this option, or to continue. The continuation results in net

expected utility gain G1(x1) as the result of one additional search, comprising the possible surplus

above x1 if the �nal object uncovered has such a utility balanced against the additional search

20This method of modeling makes the process of uncovering an option equivalent to the process of �locating�it as

feasible. The strategy is more intricate if we allow unexplored options to be selected.
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costs,

G1(x1) =

Z 1

x1

(z � x1)dF (z)� �:

The upper bound we have imposed on the search costs imply that G1(0) > 0, implying that

continued search is worthwhile. In addition note that G1(x1) is strictly decreasing in x1, that

G1(R) = 0, and that limx1!1G1(x1) = -�. Hence it is uniquely optimal to search the �nal object

if x1 < R, strictly optimal to stop if x1 > R, with indi¤erence between searching and stopping if

x1 = R.

Assume now that this precise search strategy is optimal if search continues until there are some

n � 1 elements left unsearched: de�ning xn as the maximum value object encountered in the prior

search, assume that it is uniquely optimal to search the �nal object if xn < R, strictly optimal

to stop if xn > R, with indi¤erence between searching and stopping if xn = R. Now consider the

optimal strategy with n+ 1 elements left unsearched, de�ning xn+1 as the maximum value object

encountered in the prior search.

� If xn+1 > R, any optimal search strategy involves searching at most one more time by the

inductive hypothesis. Hence the net gain from continued search is precisely as identi�ed by the

function G1 introduced above, so that the strict optimality of immediately stopping follows

from the fact that G1(xn+1) < G1(R) = 0 .

� If xn+1 < R, the expected utility gain from continued search is bounded below by G1(xn+1) >

0, which is the value of the strategy of searching for one more period and then stopping for

sure. Hence the unique optimal strategy for xn+1 � R is to so continue.

� If xn+1 = R, the expected utility gain from continued search is bounded below by G1(R) = 0,

so that continuation is an optimal strategy. On the other hand, by the inductive hypothesis

it is also optimal to continue one more period and then stop for sure, which gives rise to an

expected gain of precisely 0. Hence stopping immediately is also an optimal strategy.

Theorem 1 also tells us how the optimal reservation level varies across our experimental treat-

ments. First, the optimal reservation level falls as the per unit search cost rises. Thus, assuming

that search costs are higher for the 7 than for the 3 complexity objects, this implies that optimal
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reservation levels are lower in the higher complexity environment. Second, optimal reservation

levels are independent of the size of the choice set: there is no increase in the optimal reservation

level as the size of the choice set increases.

Thus, the comparative statics properties of our estimated stopping rules do not align perfectly

with those of the optimal stopping rule. While we do �nd that subjects reduce their reservation

level in response to higher search costs, they also tend to increase their reservation level as the size

of the choice set increases.

There are two possible reasons for this discrepancy between optimal behavior and this obser-

vation. The �rst is that subjects are behaving optimally with respect to a di¤erent maximization

problem. For example, theorem 1 assumes that no learning takes place with respect the distribution

of values of the objects in the choice set. While our subjects are explicitly told the distribution from

which values are drawn, it may be that they in fact try to learn this distribution for every new

choice set. In such a case, estimated reservation levels would in many cases be greater in larger

choice sets.

A second possibility is that subjects are acting sub-optimally by increasing their reservation

levels in larger choice sets: they are searching �too much�in larger choice sets relative to smaller

ones. This result may relate to �ndings from the psychology and experimental economics liter-

ature that show that people have preferences for smaller choice sets [Iyengar and Leper, 2000;

Seuanez-Salgado, 2006]. One factor that potentially links these two �ndings is the concept of re-

gret. Zeelenberg and Pieters [2007] show that decision makers experience more regret in larger

choice sets, and suggest that can lead them to search for more information.

7 Choice Process vs Non-Choice Process Data

An important question is how the elicitation of choice process data impacts the decision making

process. Clearly, our results are of more interest if the experimental techniques used to elicit choice

process data are not having a marked impact on the was in which people make decisions. In order

to explore this issue, we re-run the above analyses of choice process data using data from the

standard choice experiment described in section 2. Recall that, in this experiment, subjects could

select options prior to their �nal choice just as they could in the choice process experiment. The
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only di¤erence was that in the standard choice experiment, there was no incentive for them to do

so. However, as �gure 7 shows, subjects still did record switches of their own volition. We can

therefore treat these switches as choice process data and test whether the results derived above

survive.

FIGURE 7 ABOUT HERE

It turns out that the results from switches recorded in the standard choice treatment are re-

markably similar to those from the choice process data. Firstly, subjects still exhibit ABS behavior:

�gure 8 compares the estimated distribution of HM indices for the choice process and standard

choice experiments, which shows that, if anything, standard choice data are more in line with ABS

than the choice process data. Figure 9 repeats the analysis of �gure 4 for the standard choice

data, comparing the proportion of �mistakes�by treatment, as measured by the ABS model and

standard revealed preference. Again, we see little e¤ect of treatment on mistakes for the ABS based

measure.

FIGURE 8 AND 9 ABOUT HERE

The data from the standard choice experiments is also in line with RBS behavior. Figure 10

recreates the analysis of �gure 5, and suggests that a reservation stopping rule broadly describes

the aggregate data. Table 5 shows the estimated reservation levels for the standard choice data

exhibit the same comparative statics as do those for the choice process data, while table 6 shows

that the estimated HM indices for these reservation levels are only slightly lower than for the choice

process data.

FIGURE 10 AND TABLE 5 AND 6 ABOUT HERE

8 Search Order and Choice

In this section we show that choice process data provide insight into the order in which people

search through available objects, and that this information can help predict when subjects will
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do badly in particular choice sets. We are interested in two particular factors that can determine

search order: screen position and object complexity. In order to explore both factors, we ran an

additional experimental treatment which contained objects of varying complexity. This treatment

contained choice sets of size 20, and the objects in each set varied in complexity from between one

and nine operations. We ran the new treatment on 20 subjects for a total of 206 observed choice

sets.

8.1 Aggregate Search Order

Figure 11 shows how average screen position and complexity of selection change with selection

order. As with �gure 5 separate lines show the average screen position and complexity for rounds

in which 0, 1, 2, 3 and 4 switches were made. Screen position is encoded from top to bottom (i.e.

the top object on the screen has position 1, the second has position 2 and so on), while complexity

is encoded as the number of arithmetic operations needed to evaluate each prize.

FIGURE 11 ABOUT HERE

These �gures suggest that average search behavior has systematic patterns. The �rst graph

shows that, on average, subjects search the screen from top to bottom: screen position is higher

for later selections. The second panel shows that subjects also tend to search from simple to

complex objects. As complexity is uncorrelated with value, this is in line with optimal strategy.

While neither relationship is completely monotonic, regression analysis con�rms that the both are

signi�cant.21

8.2 Individual Search Order

We can augment our analysis of aggregate search behavior by looking at the search patterns of

individual subjects. We look for subjects whose behavior is consistent with �Top-Bottom� (TB)

search, and those whose behavior is consistent with �Simple-Complex�(SC) search. The former are

subjects whose search order takes them from the top to the bottom of the screen, while the latter

are subjects whose search takes them from simple to complex objects.
21Regressing selection number on the screen position and complexity of the selection gives coe¢ cients of 0.034 and

0.132 respectively, both signi�cant at the 1% level (allowing for clustering at the subject level).
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We categorize subjects by calculating their HM indices assuming each of these two search

orders. We �rst assume that the subject is searching top to bottom and calculate the fraction of

observations that are consistent with this search order. We then repeat the procedure assuming

that the subject searches from simple to complex. A subject is categorized as being a TB or SC

searcher if their HM Index for that search order is in the 95th percentile compared to a benchmark

distribution constructed using random search orders. Note that the majority of subjects are well

described by either TB or SC search or both. As table 7 shows, only 2 subjects fall into neither

category.

TABLE 7 ABOUT HERE

In the experimental treatments described in section 3, we would categorize 51% of subjects as

TB searchers using the same metric.

8.3 Search Order and Choice

We provide two simple examples that illustrate how knowledge of a subject�s search order helps

predict those choice sets in which they will make large mistakes and those in which they will not.

Example 1 is from a round in which the highest valued item is very short and occurs at the end

of the list (see �gure 12 panel A- best option highlighted in green). We would expect this to be a

choice set in which TB searchers would do badly and SC searchers would do well. This turns out

to be the case. Pure top-bottom searchers �nd the best option least often (66% of the time), those

that search top-bottom but also simple-complex �nd it more often (83%) and pure simple-complex

searchers �nd it most often (100%).22 Unfortunately, due to the small sample size, these numbers

are not signi�cant at the standard levels of signi�cance (di¤erence between pure simple-complex

searchers and other subjects has a p-value of 0.12)

FIGURE 12 ABOUT HERE

Example 2 is from a round in which the highest valued item is very long and occurs very early in

the list (�gure 12 panel B). In this case, we would expect TB searchers to do well and SC searchers

22 In order to avoid potential circularity in our argument, we re-estimate subjects�search types excluding these two

example rounds. The results are unchanged.

25



to do badly. Pure top-bottom searchers �nd the best option most often (80% of the time), those

that search top-bottom but also simple-complex �nd it less often (71%) and pure simple-complex

searchers �nd it even less (66%).

Note that in categorizing people as TB searchers, we are simply saying that options which are

selected later occur further down the list. We have little to say about how their �rst selection is

made - when they quickly move away from the option that gives them $0 for sure. One could

plausibly model this initial selection as a stochastic process, after which the TB searcher searches

downward from that starting point. Our �ndings suggest that this is the case, as TB searchers are

much less likely to �nd the best option if their initial choice is above the best option than below it.

In example 2, those TB searchers whose initial selection comes after the best item in the list are

much less likely to �nd it (70% of the time against 100% of the time for those whose �rst click is

before the best option).

Note that above provides only the most rudimentary indication of the insights into search

order that choice process data can provide. We see this as a very important subject of continued

investigation, and an area in which complementing choice process data with other data on the

search process, particularly eye-tracking data, will be of particular value.

9 Concluding Remarks

An important challenge for researchers is to unite revealed preference theory and the theory of

search. We introduce a choice-based experiment that answers this challenge. We have used it to

classify search behaviors in di¤erent decision making contexts. Our central �nding concerns the

prevalence of satis�cing behavior. Models of sequential search based on achievement of context-

dependent reservation utility closely describe our experimental data. More broadly, we believe that

the search theoretic lens will be of signi�cant value in systematizing our understanding of boundedly

rational behavior.
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Figure 1: A typical choice round 

 



 
Figure 2: Number of Switches per Choice Round, Experiment 2 

10 Options, Complexity 3 10 Options, Complexity 7 

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6

Number of Switches

N
u

m
b

e
r 

o
f 

R
o

u
n

d
s

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6

Number of Switches

N
u

m
b

e
r 

o
f 

R
o

u
n

d
s

20 Options, Complexity 3 20 Options, Complexity 7 

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8

Number of Switches

N
u

m
b

e
r 

o
f 

R
o

u
n

d
s

 

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8

Number of Switches

N
u

m
b

e
r 

o
f 

R
o

u
n

d
s

40 Options, Complexity 3 40 Options, Complexity 7 

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10

Number of Switches

N
u

m
b

e
r 

o
f 

R
o

u
n

d
s

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10

Number of Switches

N
u

m
b

e
r 

o
f 

R
o

u
n

d
s



Figure 3: Distribution of HM Indices for Experiment 1 (Actual vs. Random Data) 
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Figure 4 Proportion of Mistakes According to the Standard Model and ABS 

Panel A: Standard Model Panel B: ABS Model 
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Figure 5: Average Value by Switch 
10 Options, Complexity 3 10 Options, Complexity 7 

0

2

4

6

8

10

12

14

16

18

1 2 3 4

V
al

u
e

Selection Number

0 Switches

1 Switch

2 Switches

3 Switches

Reservation Level

 

0

2

4

6

8

10

12

14

16

18

1 2 3 4

V
al

u
e

Selection Number

0 Switches

1 Switch

2 Switches

3 Switches

Reservation Level

20 Options, Complexity 3 20 Options, Complexity 7 

0

2

4

6

8

10

12

14

16

18

1 2 3 4

V
al

u
e

Selection Number

0 Switches

1 Switch

2 Switches

3 Switches

Reservation Level

 
0

2

4

6

8

10

12

14

16

18

1 2 3 4

V
al

u
e

Selection Number

0 Switches

1 Switch

2 Switches

3 Switches

Reservation Level

40 Options, Complexity 3 40 Options, Complexity 7 

0

5

10

15

20

25

1 2 3 4

V
al

u
e

Selection Number

0 Switches

1 Switch

2 Switches

3 Switches

Reservation Level

0

5

10

15

20

25

1 2 3 4

V
al

u
e

Selection Number

0 Switches

1 Switch

2 Switches

3 Switches

Reservation Level



 
Figure 6: Average Time by Switch 
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Figure 7: Switches in Choice Process and Standard Choice Experiments 
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Figure 8: HM indices for Choice Tracking and Standard Choice Experiments 
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Figure 9: Proportion of Mistakes According to the Standard Model and ABS – Standard 
Choice Data 
Panel A: Standard Model 
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Figure 10: Average Value by Switch – Standard Choice Data 
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Figure 11: Screen Position and Complexity by Switch 
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Figure 12 
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Total 
Set Size 3 7

Failure Rate (%) 6.78 23.61 16.03
Average Loss ($) 0.41 1.69 1.11
Average Loss (%) 3.44 13.66 9.05
Observations 59 72 131
Failure Rate (%) 21.97 56.06 39.02
Average Loss ($) 1.10 4.00 2.55
Average Loss (%) 7.07 24.70 15.89
Observations 132 132 264
Failure Rate (%) 28.79 65.38 46.95
Average Loss ($) 2.30 7.12 4.69
Average Loss (%) 10.49 33.25 21.79
Observations 132 130 262
Failure Rate (%) 21.98 52.69 37.60
Average Loss ($) 1.46 4.72 3.12
Average Loss (%) 7.81 25.65 16.88
Observations 323 334 657

Complexity 
Table 1: Magnitude of Mistakes (Experiment 1)
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40
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Total 
Set Size 3 7

Choice Process 11.38 46.53 27.23
Normal Choice 6.78 23.61 16.03
Choice Process 26.67 58.72 40.55
Normal Choice 21.97 56.06 39.02
Choice Process 37.95 80.86 57.42
Normal Choice 28.79 65.38 46.95
Choice Process 27.26 64.14 43.66
Normal Choice 21.98 52.69 37.60

Total 
Set Size 3 7

Choice Process 0.42 3.69 1.90
Normal Choice 0.41 1.69 1.11
Choice Process 1.63 4.51 2.88
Normal Choice 1.10 4.00 2.55
Choice Process 2.26 8.30 5.00
Normal Choice 2.30 7.12 4.69
Choice Process 1.58 5.73 3.43
Normal Choice 1.46 4.72 3.12

Total 
Set Size 3 7

10 123 101 224
20 225 172 397
40 195 162 357

Total 543 435 978

40

Total

10

20

40

Total

Failure Rate
Complexity 

10

20

Table 2: Choice Process vs. Normal Choice Data

Number of Observations - Choice Process 
Complexity 

Complexity 
Absolute Loss



Set Size 3 7 Set Size 3 7
ABS Types 9.03 (.19) 5.78 (.12) 10 0.91 0.82
RBS Types 9.56 (.21) 5.78 (.12) 20 0.79 0.77
ABS Types 10.76 (.10) 8.85 (.09) 40 0.75 0.78
RBS Types 11.22 (.11) 9.45 (.09)
ABS Types 14.91 (.09) 10.16 (.09)
RBS Types 15.32 (.10) 10.57 (.09)

Set Size 3 7
10 ABS Types 8.41 9.04

20 ABS Types 11.22 10.02

40 ABS Types 15.92 11.54

TB Search
Set Size 3 7 Yes No

10 ABS Types 0.80 0.79 SC Search Yes 7 4

20 ABS Types 0.81 0.70 No 7 2

40 ABS Types 0.82 0.70

Table 7: Search Types

Complexity 
Table 3: Estimated Reservation Levels

10

20

40

Table 4: Aggregate HM Indicies
Complexity

Table 5: Reservation Levels - Standard Choice Data

Table 6:  HM Indices - Standard Choice Data
Complexity 

Complexity 



Instructions

In this session of this experiment, you will take part in 2 practice rounds and then 24 regular 
rounds. 
 
In each round, you will be shown a group of options from which you will be asked to make a 
selection. Here is an example of an option: 
 

 
And here is another example of an option: 
 

 
Options are valued at the total of the numbers shown. In this example, both options are valued at 
$8 because 9 - 2 + 4 - 3 = 8 and 5 - 11 + 13 - 2 + 3 = 8. Options can contain up to 9 addition and 
subtraction operations. Feel free to use scratch paper as you do calculations. 
 
The value of each object is independent of the value of other objects, and the value of each object 
is determined by drawing a random integer number between 1 and 35 from an particular 
distribution, which is pictured below. The possible values are on the bottom, and the probability of 
each value is on the left. For example, there is around a 5% chance of an object having a value of 
exactly $7. 
 

 
 
Note that the value of an option is not related to the length of an object or the number of addition or 
subtraction operations. 
 
When a round begins, 4, 10, 20, or 40 options will be presented to you on the computer screen. 

nine minus two plus four minus three 

five minus eleven plus thirteen minus two plus three 
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Each round will last up to 2 minutes. At any time, you can end a round by clicking on the 'Finished' 
button, but there is no penalty for using the entire 2 minutes. Clicking the 'Finished' button is the 
same as letting the remaining time run out with your current selection still selected. If you click the 
'Finished' button, you cannot make any more changes in that round. 
 
When the first round starts, the option that is located on the top of the list will have been selected 
for you. This option will give you $0. This is the 'worst' option, in that all other options will give you 
more than $0. You can change which option is selected by clicking on the button to the left of the 
option you want or by clicking anywhere on the option itself. You are free to change which option is 
selected at any time and as many times as you like. 
 
You can highlight an option without selecting it by moving the mouse cursor over that option. The 
option will remain highlighted as long as the cursor stays anywhere on top of it. 
 
After 2 minutes or whenever you click on the 'Finished' button, the first round will come to an end. 
At that point, a time will be picked at random from between 1 and 120 seconds (as described 
below). THE OPTION WHICH WAS SELECTED AT THAT TIME WILL BE RECORDED AS YOUR 
CHOICE FOR THAT ROUND. Therefore, if at any point you prefer a different option to the one 
you have selected, you should change your selection as this will reduce the chance of the less 
preferred option being recorded as your choice. 
 
Remember, the option that is recorded as your choice is not necessarily the one selected when 
you click the finish button, but rather the one selected at the randomly determined time. 
 
The time that the selected option is recorded as your choice is determined by drawing a random 
integer number between 1 and 120 from an particular distribution, which is pictured below. The 
possible times are on the bottom, and the probability of each time is on the left. For example, there 
is a 7% chance of your selected choice being recorded at exactly 16 seconds and around a 3% 
chance of your selected choice being recorded at exactly 60 seconds. 
 

 
 
After the round has ended, you will be told which option was recorded as your choice. After a brief 



pause, you will be given the opportunity to either review the instructions again on the computer 
screen or proceed to the second round. The second round and all following rounds will proceed 
exactly like the first round. This will continue until you have completed 2 practice rounds and 24 
regular rounds, for a total of 26 rounds. After these rounds are complete, you will proceed to a final 
section of the experiment, which will have different directions. 
 
At the end of the experiment, one of the 24 regular rounds will be picked at random, and you will 
be paid the value of your choice in that round. 
 
REMEMBER: 
 
Selecting a option  

You can select an option by clicking on the empty circle to the left of that option or by clicking 
anywhere on the option.  
Only one option can be selected at a time.  
Initially, the top option will be selected, which gives $0 for sure.  
You are free to change your selected option to any other option at any time, whether or not 
you have picked that option previously.  
You can change the selected option as many times as you would like.  
After clicking on the 'Finished' button, the round will end, and it will be as if the selected 
option remained selected for the remainder of the round.  

How your choice is recorded  

You should select an option as soon as you know that it is better than your currently selected 
option.  
After each round, a time between 1 and 120 seconds will be picked at random.  
The option that was selected at that time will be recorded as your choice.  
The option that is recorded as your choice is not necessarily the one selected when you click 
the finish button, but rather the one selected at the randomly determined time.  
At the end of each round, you will be told which option was recorded as your choice for that 
round.  

How you are paid  

At the end of the experiment, we will pick one round at random, and you will be paid the 
value of your choice in that round. That money will be paid in addition the $5 show-up fee 
and any payments from the last section of the experiment.  
At the beginning of each round, the option selected pays $0. If this option is still selected at 
the random time allotted for that round, it will be recorded as your choice for that round. If this 
round is the one randomly picked at the end of the experiment, you will receive no money for 
this selection. Thus, you should move off of the $0 option as quickly as possible.  
Choices recorded during the practice rounds will not be picked at the end of the experiment 
to play for money.  

Next
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