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Abstract

This article proposes omnibus consistent goodness-of-�t tests of a parametric dynamic quan-

tile regression model. Contrary to the existing procedures we allow for the simultaneous speci-

�cation of an in�nite number of quantiles under fairly weak conditions on the underlying data

generating process. We study the asymptotic distribution of the test statistics under the null

and under �xed and local alternatives. It turns out that the asymptotic null distribution de-

pends on the data generating process and the hypothesized model. We propose and justify

theoretically a subsampling procedure for approximating the asymptotic critical values of tests.

The article also considers asymptotically distribution-free tests for the classical location-scale

family based on certain weighted standardized residuals processes. An appealing property of all

tests proposed in the article is that they do not require estimation of the non-parametric (con-

ditional) sparsity function. A Monte Carlo study compares the proposed tests and shows that

the asymptotic results provide good approximations for small sample sizes. Finally, an applica-

tion of our methodology to the Sharpe Style Analysis of the Magellan Fund and a reanalysis of

the Pennsylvania Reemployment Bonus Experiments provides evidence that the linear quantile

model is a good speci�cation for the �rst and a misspeci�ed model for the second.
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1. INTRODUCTION

Quantile regression is a powerful alternative to least squares regression in a wide range of

econometric applications that vary from labor economics or demand analysis to �nance, see the

special issue of Empirical Economics (2001, vol.26) and the references therein. The conditional

quantile has the advantage over its natural competitor, the conditional mean, of being more robust

to outliers and imposing less restrictions on the data generating process (DGP). Rather than relying

on a single measure of conditional location, the quantile regression approach allows the researcher to

explore a range of conditional quantile functions, thereby providing a more complete analysis of the

conditional dependence structure of the variables under consideration. Since the seminal work by

Koenker and Basset (1978) there has been a large body of research devoted to regression quantiles,

resulting in a well-developed theory of asymptotic inference for many important aspects of quantile

regression. Most of the extant literature has been devoted to the estimation of quantile parameters

and the associated so-called quantile processes, see, e.g., Koenker and Xiao (2002). It is well-known

that such inference procedures depend crucially on the validity of the speci�ed parametric functional

forms for the range of quantiles under consideration (cf. Kim and White, 2002). The main purpose

of this article is to develop omnibus diagnostic tests for the correct speci�cation of the functional

form of a family of parametric conditional quantiles over a range of quantiles of interest and under

fairly general conditions on the underlying DGP.

More precisely, let us consider the real-valued dependent variable Yt; and the explanatory vector

It�1 2 Rd; d 2 N; say. To be more concrete, let Zt 2 Rm; m 2 N; be an m-dimensional observable

random variable (r.v) and Wt�1 = (Yt�1; :::; Yt�s)
0 2 Rs; where A0 denotes the matrix transpose of

A. The conditioning variable we consider is It�1 = (W 0
t�1; Z

0
t)
0; so d = s+m:We assume throughout

the article that the time series process f(Yt; Z 0t)0 : t = 0;�1;�2; :::g; de�ned on the probability space

(
;A; P ); is strictly stationary and ergodic: Assuming that the conditional distribution of Yt given

It�1 is continuous, we de�ne the �-th conditional quantile of Yt given It�1 = x as the measurable

function q�(x) satisfying the equation

P (Yt � q�(It�1) j It�1) = �; almost surely (a.s.). (1)

In parametric quantile regression modeling one assumes the existence of a parametric family of

functions M = fm(�; �(�)) : �(�) : T ! � � Rpg; where T = [�; 1 � �] is the range of quantiles of

interest, with � 2 (0; 1=2]; and one proceeds to make inference on �(�) or to test if q� 2 M; i.e., if

there exists some �0(�) : T ! � � Rp such that m(It�1; �0(�)) = q�(It�1) a.s. 8� 2 T : We remark

that our theory is also valid for a general compact set T of (0; 1), but in accordance with the quantile

regression literature we present our theory with T = [�; 1� �]; � 2 (0; 1=2]:
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Leading examples of speci�cationsM are the Linear Quantile Regression (LQR) model

m(It�1; �0(�)) � m(Zt; �0(�)) = Z 0t�0(�); � 2 T ;

with the location-scale shift model as the prominent example in which �0(�) = (�0; 
0F
�1
0 (�)) 2

� � Rp; and where F�10 (�) denotes a univariate quantile function, see, e.g., Koenker and Xiao

(2002), or the Linear Quantile Autoregression model of order s (LQAR(s)),

m(It�1; �0(�)) � m(Wt�1; �0(�)) = �01(�) +W
0
t�1�02(�); �0(�) = (�01(�); �

0
02(�))

0;

which arises, for instance, from the random coe¢ cient model

Yt = �01(Ut) +W
0
t�1�02(Ut); (2)

where �01(�) and �02(�) are such that the right hand side of (2) is monotone increasing in Ut; and fUtg

are independent and identically distributed (iid) standard uniform random variables; see Koenker

and Xiao (2004) for inferences on the LQAR(s) model.

Although much e¤ort has been devoted to inferences on �0(�) based on the associated quantile

processes, i.e., Qn(�) :=
p
n (�n(�)� �0(�)), for �n(�) a

p
n-consistent estimator of �0(�); and

inferences based on Qn(�) usually depend on the correct speci�cation of the parametric regression

quantile model, no consistent test for q� 2 M has been proposed. In the present article we propose

omnibus consistent tests for q� 2 M valid for general linear and nonlinear quantile models under

time series sequences.

The condition q� 2M can be equivalently expressed as an in�nite number of conditional moment

restrictions (CMR)

E[1(Yt � m(It�1; �0(�)))� � j It�1] = 0 a.s. for some �0(�) : T ! � � Rp;8� 2 T : (3)

Therefore, all of the many procedures available in the literature for testing a CMR can be applied

for testing the correct speci�cation of the parametric dynamic quantiles, with the proviso that

an in�nite number of CMR have to be tested. The vast amount of literature on testing CMR

can be divided into two approaches. The �rst approach is called the �local approach�, because

it is based on nonparametric estimators of the conditional moment. Using this idea Zheng (1998)

has proposed a quantile regression speci�cation test based on kernel smoothing estimators of the

conditional moment E[1(Yt � m(It�1; �0(�)))�� j It�1] under iid observations for a �xed � 2 (0; 1).

Horowitz and Spokoiny (2002) have developed a speci�cation test for LQR for the median function

(i.e., � = 0:5) which is uniformly consistent against smooth alternatives whose distance from the

linear model converges to zero at the fastest possible rate, but the rate is slower than the parametric

rate. Recently, Whang (2005) using ideas from the empirical likelihood literature has proposed a
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speci�cation test for quantile regression and censored quantile regression for iid data. Local-based

tests usually have known asymptotic null distributions after an appropriate choice of the bandwidth

sequence, but they are not consistent against Pitman�s local alternatives.

The second methodology in the CMR literature is called the �integrated approach�, see Bierens

(1982) and Stute (1997). Using this methodology, Bierens and Ginther (2001) proposed a test for

(3) for a speci�c quantile, i.e., for a particular � 2 (0; 1). Their test is consistent against n�1=2 local

alternatives, with n the sample size, but it relies on an upper bound on the asymptotic critical value,

which might be too conservative. Bierens and Ginther (2001) considered iid observations and do not

take into account the uncertainty due to parameter estimation, see also Inoue (1999) for a related

approach. Koul and Stute (1999) considered asymptotic pivotal tests for parametric conditional

quantiles of �rst-order autoregressive processes. To obtain the pivotal property of the test they

use a martingale transform (cf. Khmaladze, 1981). Alternatively, Whang (2004) has considered a

subsampling approach to approximate the asymptotical critical values for multivariate LQR. Also

recently, He and Zhu (2003) use empirical process theory to develop a bootstrap-based test for linear

and nonlinear quantile regressions in an iid framework.

An important limitation for our purposes of all the aforementioned proposals is that they do

not consider the problem (3), but the less restrictive problem of testing for q�0 2 M�0 for a �xed

�0 2 (0; 1) and a parametric familyM�0 = fm(�; �(�0)) : �(�0) 2 � � Rpg: Unlike these procedures,

our new tests consider the problem (3) for the whole set of quantiles of interest T . The proposed

tests are based on functionals of a quantile-marked empirical process. The asymptotic theory for the

test statistics is derived using new weak convergence results for empirical processes under martingale

conditions, which are of independent interest. It turns out that the asymptotic null distributions of

test statistics depend on the speci�cation under the null and the DGP. We propose to implement

the test with the assistance of the subsampling. Another important contribution of the paper is

the development of asymptotically distribution-free (ADF) tests based on a weighted standardized

residual empirical process for testing the adequacy of the quantile regression model imposed by the

classical location-scale model.

The rest of the article is organized as follows. In Section 2 we introduce the quantile-marked

empirical process, which is the basis upon which the new test statistics for testing (3) are developed.

We study the asymptotic distribution of the proposed tests under the null and under �xed and

local alternatives. In Section 3 a subsampling procedure for approximating the asymptotic null

distribution of the proposed omnibus tests is considered and theoretically justi�ed. Section 4 is

devoted to obtain ADF test statistics for the location-scale model. In Section 5 we make a simulation

exercise comparing the subsampling and ADF tests under the null and under some alternatives.

Finally, an application of our methodology to the Sharpe Style Analysis of the Magellan Fund
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and a reanalysis of the Pennsylvania Reemployment Bonus Experiments highlights the merits of

our approach. Proofs are deferred to an appendix. Throughout the article Ac and jAj denote the

complex conjugate and Euclidean norm of A; respectively. In the sequel C is a generic constant that

may change from one expression to another. The symbol OP (1) denotes boundedness in probability

and oP (1) convergence to zero in probability. All limits are taken as the sample size n!1.

2. TEST STATISTICS AND ASYMPTOTIC THEORY

The main goal of this article is to test the null hypothesis

H0 : E[	�(Yt �m(It�1; �0)) j It�1] = 0 a.s. for some �0 2 B and for all � 2 T ;

against the nonparametric alternatives

HA : P (E[	�(Yt �m(It�1; �(�))) j It�1] 6= 0) > 0; for some � 2 T and for all �(�) 2 � � Rp;

where 	�(") = 1(" � 0)� �; and B is a family of uniformly bounded functions from T to � � Rp:

Note that under H0 (and a mild continuity condition), m(x; �0(�)) is identi�ed as the �-th quantile

of the conditional distribution of Yt given It�1 = x; for all � 2 T : Testing for H0 is a challenging

testing problem since it involves an in�nite number of non-smooth CMR parametrized by � 2 T :

We address these technical di¢ culties by means of new weak convergence theorems for empirical

process under martingale conditions, see the Appendix.

Using the results in Bierens (1982), our �rst aim is to characterize H0 by the in�nite number of

unconditional moment restrictions

E[	�(Y1 �m(I0; �0)) exp(ix0I0)] = 0; 8x 2 � � Rd; for some �0 2 B and for all � 2 T ; (4)

where � is a compact subset of Rd containing the origin, and i =
p
�1 is the imaginary unit. Instead

of the exponential function we may also use any of the parametric families considered in Bierens

and Ploberger (1997), see also Stinchcombe and White (1998).

Given a sample f(Yt; I 0t�1)0 : 1 � t � ng and a parameter value � 2 B; we consider the quantile-

marked empirical process indexed by x 2 �, � 2 T and � 2 B;

Sn(x; �; �) := n�1=2
nX
t=1

	�(Yt �m(It�1; �)) exp(ix0It�1):

Associated to Sn are the quantile-marked error and residual processes, respectively, de�ned by

Rn(x; �) � Sn(x; �; �0) and R1n(x; �) � Sn(x; �; �n); for a
p
n�consistent estimator �n(�) of �0(�);

say. The null hypothesis is likely to hold when the process R1n(x; �) is close to zero for almost all

(x0; �)0 2 � := �� T :
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The most popular estimator of �0 is the Quantile Regression Estimator (QRE), initially proposed

Koenker and Basset (1978) for the linear model, and subsequently generalized to other frameworks

by numerous authors, see references below. The QRE is de�ned as any solution �KB;n(�) minimizing

� 7�!
nX
t=1

��(Yt �m(It�1; �))

with respect to � 2 � � Rp; where ��(") = �	� (") ": Koenker and Park (1996) discussed the

existence of �KB;n(�) and an interior point algorithm for its computation.

Basset and Koenker (1978) proved the consistency and asymptotic normality of �KB;n(�) in

the Linear Regression (LR) model, including the least absolute deviation estimator, see also Pol-

lard (1991). The asymptotic theory for �KB;n based on the associated quantile process Qn(�) =
p
n(�KB;n(�) � �0(�)); as a process with parameter � 2 T ; have been considered, among others, in

Gutenbrunner and Jureµckova (1992) and Gutenbrunner, Jureµckova, Koenker and Portnoy (1993) for

LR models, in Koul and Saleh (1994) and Jureµckova and Hallin (1999) for linear autoregressions,

and by Mukherjee (1999) for nonlinear autoregressions (NLAR). For early contributions see Portnoy

(1984). In the present article we do not restrict ourselves to �KB;n and we consider any estimator

�n satisfying some mild conditions, see A3 below.

The process R1n is a mapping from (
;A; P ) with values in `1(�); where `1(�) is the space of

all complex-valued functions that are uniformly bounded on �: The space `1(�) is furnished with

the supremum metric, say d1; and let Bd1 be the corresponding Borel �-algebra. Let =) denote

weak convergence on (`1(�);Bd1) in the sense of J. Ho¤mann-Jørgensen, see, e.g., Dudley (1999,

p. 94), or De�nition 1.3.3 in van der Vaart and Wellner (1996).

Because of (4), test statistics are based on a distance from the standardized sample analogue of

E[	�(Y1 �m(I0; �0(�))) exp(ix
0I0)] to zero, i.e., on a norm of R1n, say �(R

1
n). A popular norm is

the Cramér-von Mises (CvM) functional

CvMn :=

Z
�

��R1n(x; �)��2 d�(x)dW (�); (5)

where � and W are some integrating measures on � and T ; respectively. Other continuous (with

respect to d1) functionals � from `1(�) to R are of course possible. Then, the omnibus tests we

proposed in this article reject the null hypothesis H0 for �large� values of �(R1n). Practicalities

about the test statistic CvMn are discussed in Section 5.

2.1 Asymptotic null distribution.

In this subsection we establish the limit distribution of the quantile-marked empirical process R1n

under the null hypothesis H0: The null limit distributions of the tests are the limit distributions of
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some continuous functionals of R1n. To derive asymptotic results we consider the following notation

and assumptions. Throughout the paper the family B; in which the parameter �0 takes values, is

endowed with the sup norm, i.e., k�kB = sup�2T j�(�)j. Let for each t 2 Z; Ft = �(I 0t; I
0
t�1; :::); be

the �-�eld generated by the information set obtained up to time t: Let us de�ne for each t 2 Z;

the quantile innovation "t;� := Yt � q�(It�1) and the parametric quantile error et(�(�)) := Yt �

m(It�1; �(�)): De�ne also the family of conditional distributions

Fx(y) := P (Yt � y j It�1 = x); Fx;�(y) := P ("t;� � y j It�1 = x): (6)

Let fI0;� be the error density function of the cumulative distribution function (cdf) FI0;�. Let

N[�](�;H; k�k) be the �-bracketing number of a class of functions H with respect to a norm k�k ; i.e.,

the smallest number r such that there exist f1; :::; fr and �1; :::;�r such that max1�i�r k�ik < �

and for all f 2 H; there exists an 1 � i � r such that kf � fik < �i; see De�nition 2.1.6 in van der

Vaart and Wellner (1996).

Assumption A1:

A1(a): f(Yt; Z 0t)0 : t = 0;�1;�2; :::g is a strictly stationary and erdogic process and (	�("t;�);Ft�1)t2Z
is a martingale di¤erence sequence for all � 2 T :

A1(b): The parametric family m(x; �0(�)) is nondecreasing in �; 8x 2 Rd:

A1(c): E[jI0j2] < C:

A1(d): The family of distributions functions fFx; x 2 Rdg has Lebesgue densities ffx; x 2 Rdg

that are uniformly bounded

sup
x2Rd;y2R

jfx(y)j � C

and equicontinuous: for every � > 0 there exists a � > 0 such that

sup
x2Rd;jy�zj��

jfx(y)� fx(z)j � �:

Assumption A2: For each �1 2 B;

A2(a): There exists a vector of functions g : Rp � � ! Rq such that g (It�1; �1(�)) is Ft�1-

measurable for each t 2 Z, and satis�es, for all k <1;

sup
1�t�n;k�1��2kB�kn�1=2

n1=2 km(It�1; �2)�m(It�1; �1)� (�2 � �1)0g(It�1; �1)kB = oP (1)

A2(b): For a su¢ ciently small � > 0;

E

"
sup

k�1��2kB��
j1(Yt � m(It�1; �1(�)))� 1(Yt � m(It�1; �2(�)))j

#
� C�; 8� 2 T and

E[ sup
j�1��2j��

jm(I0; �1(�1))�m(I0; �1(�2))j] � C�:
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A2(c): Uniformly in � 2 T ; E jg (I0; �1(�))j2 <1; and uniformly in (x0; �)0 2 �;����� 1n
nX
t=1

g(It�1; �0(�)) exp(ix
0It�1)fIt�1;�(0)� E

�
g(It�1; �0(�)) exp(ix

0It�1)fIt�1;�(0)
������ = oP (1):

Assumption A3:

A3(a): The parametric space � is compact in Rp: The true parameter �0(�) belongs to the interior

of � for each � 2 T , and �0 2 B. The class B satis�es
1Z
0

�
log(N[�](�

2;B; k�kB))
�1=2

d� <1:

A3(b): The estimator �n 2 B; for all n su¢ ciently large; and satis�es the following asymptotic

expansion under H0 uniformly in � 2 T ;

Qn(�) =
p
n(�n(�)� �0(�)) =

1p
n

nX
t=1

l�(Yt; It�1; �0(�)) + oP (1);

where l�(�) is such that E[l�(Y1; I0; �0(�))] = 0, L�(�0(�)) = E[l�(Y1; I0; �0(�))l
0
�(Y1; I0; �0(�))]

exists and is positive de�nite, and E[l�(Yt; It�1; �0(�))	�(Ys �m(Is�1; �0(�)))] = 0 if t 6= s: Fur-

thermore, as a process in `1(T ); Qn(�) converges weakly to a Gaussian process Q(�) with zero mean

and covariance function

KQ(�1; �2) = lim
n!1

1

n

nX
t=1

nX
s=1

E[l�1(Yt; It�1; �0(�1))l�2(Ys; Is�1; �0(�2))]:

Assumption A1(a) is standard in the model checks literature under time series, see, e.g., Bierens

and Ploberger (1997). A1(b) is natural in the present context. A1(c) is necessary for the equicon-

tinuity of the limit process of Rn and can be avoided using exp(ix0�(It�1)); with �(�) a one-to-one

bounded mapping (see Bierens and Ginther, 2001), instead of exp(ix0It�1): A1(d) is necessary for

the tightness of the process R1n and is required in Koul and Stute (1997). Assumptions A2(a)-A2(c)

are classical in inference about nonlinear models, see Koul (2002) monograph. A2 is satis�ed for all

models considered in the literature under mild moment assumptions, e.g. LQR and LQAR models.

Conditions for the satisfaction of A3(a) can be found in van der Vaart and Wellner (1996), see e.g.

their Theorem 2.7.5 for monotone classes of functions which applies to LQAR models. The condition

�n 2 B; for all n su¢ ciently large, can be weakened to P (�n 2 B) ! 1 as n ! 1; at the cost of

complicating the proofs, see Escanciano and Song (2006). A3(b) has been established in the litera-

ture under a variety of conditions and di¤erent models and DGP�s, see, for instance, Theorem 1 in

Gutenbrunner and Jureµckova (1992) or Theorem 3.2 in Mukherjee (1999). For NLAR models with

iid innovations ("t)t2Z distributed as F"; Mukherjee (1999) proved A3 for �KB;n(�). Then, under

some mild additional assumptions, including that ��0(�) := E
�
g (I1; �0(�)) g (I1; �0(�))

0� exists and
is positive de�nite, Mukherjee (1999) showed that A3(b) holds for the QRE under H0 with

l�(Yt; It�1; �0(�)) = �
��1�0(�)g(It�1; �0(�))	�("t)

q(�)
;
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where q(�) = f"(F
�1
" (�)) and f" is the density of F": The quantile limit process Q(�) in that case is

��1�0(�)W (�)=q(�); where W (�) denotes a vector of p independent Brownian bridges on T .

Now, we establish the limit process of Rn: Under A1(a) and H0, because Rn(v) is a zero-mean

square-integrable martingale for each v = (x0; �)0 2 �; using a suitable Central Limit Theorem

(CLT) for stationary ergodic martingale di¤erence sequences, cf. Billingsley (1961), we have that

the �nite-dimensional distributions of Rn converge to those of a multivariate normal distribution

with a zero mean vector and variance-covariance matrix given by the covariance function

K1(v1; v2) = (�1 ^ �2 � �1�2)E[exp(i(x1 � x2)0It�1)]; (7)

where from now on v1 = (x01; �1)
0 and v2 = (x02; �2)

0 represent generic elements of �; and ^ denotes

the minimum, i.e., a ^ b = minfa; bg: The next result is an extension of the convergence of the

�nite-dimensional distributions of Rn to weak convergence in the space `1(�):

Theorem 1: Under the null hypothesis H0 and Assumptions A1(a-c)

Rn =) R1;

where R1 is a Gaussian process with zero mean and covariance function (7).

Theorem 1 generalizes Bierens and Ginther (2001) to a time series setup and more importantly,

to the case in which all the quantiles in T are considered in the speci�cation test. In other words,

we consider the process Rn indexed by x 2 � and � 2 T ; whereas their process is indexed only in

x 2 �: Note that no mixing conditions are required in Theorem 1.

In practice, �0 is unknown and has to be estimated from a sample f(Yt; I 0t�1)0 : 1 � t � ng by

an estimator �n. When we replace �0 in Rn by �n; resulting in R1n; we need to investigate how the

estimation error will a¤ect the asymptotic properties of R1n: The next result shows this e¤ect on the

asymptotic null distribution of R1n. De�ne the function

G(x; �0(�)) := E[g(I0;�0(�))fI0;�(0) exp(ix
0I0)]; x 2 �; � 2 T :

Theorem 2: Under the null hypothesis H0 and Assumptions A1-A3

sup
x2�;�2T

�����R1n(x; �)�Rn(x; �) +G0(x; �0(�))n�1=2
nX
t=1

l�(Yt; It�1; �0(�))

����� = oP (1):

As a consequence, we obtain the following corollary.

Corollary 1: Under the assumptions of Theorem 2

R1n =) R11;
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where R11(�) = R1(�)�G0(�; �0(�))Q(�) (in distribution).

Now, using the last corollary and the Continuous Mapping Theorem (CMT) we obtain the asymptotic

null distribution of continuous functionals such as CvMn.

Corollary 2: Under the assumptions of Theorem 2, for any continuous functional �(�) from

`1(�) to R,

�(R1n)
d�! �(R11):

2.2 Consistency and Pitman�s local alternatives.

In this section we study the consistency properties of tests based on functionals �(R1n): First, we

show that these tests are consistent, that is, they are able to detect all alternatives in HA. To that

end, we need the following assumption.

Assumption A4: Under HA there exists a �1 2 B such that k�n � �1kB = oP (1):

See Kim and White (2003) for conditions on �KB;n to satisfy Assumption A4, see also Section

3 in Angrist, Chernozhukov and Fernández-Val (2006). Henceforth, almost sure convergence of

nonmesurable maps is understood, as usual, as outer almost sure convergence, see van der Vaart

and Wellner (1996) for de�nitions.

Theorem 3: Under the alternative hypothesis HA and Assumptions A1, A2, A3(a) and A4,

n�1=2R1n(�)
a:s�! E[	�(et(�1(�))) exp(i � It�1)]:

Furthermore, the function E[	�(et(�1(�))) exp(i �It�1)] is di¤erent from zero in a subset with positive

Lebesgue measure on �:

A consequence of Theorem 3 and the CMT is that (under the assumptions of Theorem 3),Z
�

���n�1=2R1n(x; �)���2 d�(x)dW (�) P�!
Z
�

jE[	�(et(�1(�))) exp(ix0It�1)]j2 d�(x)dW (�) > 0;

provided that � and W are absolute continuous with respect to the Lebesgue measure: In such a

situation, the test statistic CvMn will diverge to +1 under any �xed alternative and the test will

be consistent.

Now we analyse the asymptotic distribution of R1n under a sequence of local alternatives converging

to null at a parametric rate n�1=2: We consider the DGP generating the local alternatives

HA;n : E[	�(Yt �m(It�1; �0)) j It�1] =
a�(It�1)

n1=2
a.s. for some �0 2 B and for all � 2 T ; (8)
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where the function a�(�) : Rd �! R satis�es the following assumption.

Assumption A5: a�(�) is such that E sup�2T ja�(It�1)j <1: There exists a Ft�1-measurable r.v.

Ct�1 with E[C2t�1] <1; such that for all t 2 Z and for all �1; �2 2 T ,

ja�1(It�1)� a�2(It�1)j � Ct�1 j�1 � �2j ; a.s.

To derive the next result we need the following assumption on the behaviour of the estimator under

the local alternatives.

Assumption A3�: The estimator �n(�) satis�es the following asymptotic expansion under HA;n;

uniformly in �;

p
n(�n(�)� �0(�)) = �a(�) +

1p
n

nX
t=1

l�(Yt; It�1; �0(�)) + oP (1);

where the function l�(�) is as in A3(b) and �a(�) 2 Rp for each � 2 T :

Assumption A3�holds for most estimators considered in the literature. For instance, in the nonlinear

time series context of Mukherjee (1999), the corresponding �a(�) to �KB;n(�) is

�a(�) = �q�1(�)��1�0(�)E[fI0;�(0)g(It�1; �0)a�(It�1)]:

The shift in charge of local power against alternatives in HA;n is given by

Da(x; �0(�); �) := E[a�(I0) exp(ix
0I0)]� �0a(�)G(x; �0(�)):

Theorem 4: Under the local alternatives (8), Assumptions A1-A2, A3(a), A5 and A3�

R1n =) R11 +Da;

where R11 is the process de�ned in Theorem 2.

It is not di¢ cult to show that

Da � 0 a.e.() a�(It�1) = �0a(�)g(It�1;�0(�)) for all � 2 T a.s.

Therefore, for directions a�(�) not collinear to the score g(�; �0(�)); the shift function Da is non-

trivial and test statistics based on �(R1n) for a symmetric functional � are asymptotically strictly

unbiased against the local alternatives (8). The latter result is not proved formally here for the sake

of space, but follows straightforwardly from Anderson�s Lemma (cf. Anderson, 1955).
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3. SUBSAMPLING APPROXIMATION

We have seen before that the asymptotic null distribution of continuous functionals of R1n depends

in a complex way of the DGP and the speci�cation under the null. Therefore, critical values for the

test statistics can not be tabulated for general cases. In this section we overcome this problem with

the assistance of the subsampling methodology. Resampling methods have been used extensively in

the literature of quantile regression models, see, e.g., Hahn (1995), Horowitz (1998), Bilias, Chen and

Ying (2000), Sakov and Bickel (2000) or He and Hu (2002). These articles consider iid sequences.

When time series are involved the bootstrap approximation becomes more challenging. Subsampling

is a powerful resampling scheme that allows an asymptotically valid inference under very general

conditions on the DGP, see the monograph by Politis, Romano and Wolf (1999). Chernozhukov

(2002) and Whang (2004) considered subsampling approximation for LQR models. In this section

we apply the subsampling methodology to approximate the critical values of continuous functionals

of R1n; thereby generalizing the aforementioned works to general nonlinear models. With an abuse

of notation we write the test statistic as a function of the data fXt = (Yt; I
0
t�1)

0 : t = 0;�1;�2; :::g;

�(R1n) = �(R
1
n(X1; :::; Xn)): Let G�n(w) be the test statistic cdf,

G�n(w) = P (�(R1n) � w):

Let �(R1b;i) = �(R
1
b(Xi; :::; Xi+b�1)) be the test statistic computed with the subsample (Xi; :::; Xi+b�1)

of size b. We note that each subsample of size b (taken without replacement from the original data)

is indeed a sample of size b from the true DGP. Hence, it is clear that one can approximate the sam-

pling distribution G�n(w) using the distribution of the values of �(R
1
b;i) computed over the n� b+1

di¤erent subsamples of size b: That is, we approximate G�n(w) by

G�n;b(w) =
1

n� b+ 1

n�b+1X
i=1

1(�(R1b;i) � w); w 2 [0;1):

Let c�n;1��;b be the (1� �)-th sample quantile of G�n;b(w); i.e.,

c�n;1��;b = inffw : G�n;b(w) � 1� �g:

Thus, our subsampling tests reject the null hypothesis if �(R1n) > c�n;1��;b: Let c
�
1�� be the (1��)-th

quantile of G�1(w) = P (�(R11) � w): To justify theoretically this resampling approximation we need

an additional assumption on the serial dependence of the DGP. De�ne the �-mixing coe¢ cients as

�(m) = sup
n2Z

sup
B2Fn;A2Pn+m

jP (A \B)� P (A)P (B)j ; m � 1

where the �-�elds Fn and Pn are Fn := �(Xt; t � n) and Pn := �(Xt; t � n); respectively, with

Xt = (Yt; Z
0
t+1)

0:

12



Assumption A6: fXt = (Yt; Z
0
t+1)

0 : t = 0;�1;�2; :::g is a strictly stationary strong mixing process

with �-mixing coe¢ cients satisfying
nX

m=1

�(m) = o(n):

The mixing assumption in A6 is su¢ cient but not necessary for the validity of the subsampling,

see Politis, Romano and Wolf (1999). This subsampling procedure allows us to approximate the

asymptotic critical values of the tests based on �(R1n;w). The next result justi�es theoretically the

subsampling approximation.

Theorem 5: Assume Assumptions A1-A6 and that b=n! 0 and b!1 as n!1. Then,

(i) Under the null hypothesis H0;

c�n;1��;b
P�! c�1�� :

and

P (�(R1n) > c�n;1��;b) �! � :

(ii) Under any �xed alternative hypothesis

P (�(R1n) > c�n;1��;b) �! 1:

(iii) Under the local alternatives (8),

P (�(R1n) > c�n;1��;b) �! P (�(R11 +Da) > c�1�� ):

Theorem 5 implies that the proposed subsampling tests have a correct asymptotic level, are con-

sistent and are able to detect alternatives tending to the null at the parametric rate n�1=2: An

appealing property of our subsampling tests is that they do not need estimation of the nonpara-

metric (conditional) sparsity function, which results in a substantial simpli�cation of the tests. In

practice, the empirical size and power of the tests depend on the choice of the parameter b: For this

choice the reader is referred to Politis, Romano and Wolf (1999) or Sakov and Bickel (2000). In

the present article, we follow the suggestion of Sakov and Bickel (2000) and we chose b =
�
kn2=5

�
;

where b�c denotes the integer part, which yields the optimal minimax accuracy under certain condi-

tions. Section 5 below shows that this resampling procedure provides good approximations in �nite

samples for a variety of values for k.

4. DISTRIBUTION-FREE TESTS FOR LOCATION-SCALE MODELS

In this section we explore a rather di¤erent approach to study speci�cation tests for the most

popular class of models in the econometrics and statistical literature, the location-scale models. The

main contribution of this section is to develop ADF speci�cation tests for quantile regressions of

such models based on certain weighted residual empirical processes.
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Location-scale models are de�ned as

Yt = f(It�1; �0) + h(It�1; �0)ut(�0); (9)

where fut(�0) � utg is a sequence of iid standardized errors, with ut independent of It�1; and

�0 is an unknown �nite-dimensional parameter in Rp�1; p > 1: For these models, the associated

conditional quantile is

m(It�1; �0(�)) = f(It�1; �0) + h(It�1; �0)F
�1
u (�); (10)

where F�1u is the quantile function of ut; so the corresponding �0 is �0(�) = (�
0
0; F

�1
u (�))0: Let fu

be the density of Fu:

Within this context, H0 is equivalent to

E[1(ut(�0) � F�1u (�))� �] = 0 for some �0(�) = (�0; F�1u (�))0 2 � � Rp;8� 2 T :

Then it is natural to based a test on the weighted standardized residual empirical process

K1
n;w(�) :=

1p
n

nX
t=1

w(It�1; �n)f1(ut(�n) � F�1u;n(�))� �g;

where w(It�1; �0) is a real-valued measurable transformation of It�1 that will be speci�ed later on

and depends on �0, ut(�n) are standardized residuals obtained from (10) using a
p
n-consistent esti-

mator �n; say, and F
�1
u;n(�) estimates F

�1
u (�):We can consider �KB;n(�) for �0(�) = (�0; F

�1
u (�))0;

but any other estimator satisfying A3 is possible, e.g. the Quasi-Maximum Likelihood Estimator

(QMLE) for �0 and the empirical quantile of residuals for F
�1
u :

Under H0; K
1
n;w is asymptotically centered, but under the alternative it is not asymptotically

centered anymore, suggesting to base omnibus tests on suitable functionals of K1
n;w. We choose the

weights w(It�1; �n) and construct functionals in a simple way such that ADF tests are obtained,

avoiding either subsampling approximations or complicated martingale transforms.

In the proof of Theorem 6 below we obtain, under the null H0 and regularity conditions, the

asymptotic uniform (in � 2 T ) expansion,

K1
n;w(�) =

1p
n

nX
t=1

w(It�1; �0)f1(ut(�0) � F�1u (�))� �g (11)

+
p
n(F�1u;n(�)� F�1u (�))fu(F

�1
u (�))E[w(It�1; �0)]

+
p
n(�n � �0)0b(�;w; �0) + oP (1);

where

b(�;w; �0) := fu(F
�1
u (�))E [w(It�1; �0)a1;t(�0)] +E [w(It�1; �0)a2;t(�0)] fu(F

�1
u (�))F�1u (�); (12)

a1;t(�) = _ft(�)=h(It�1; �); a2;t(�) = _ht(�)=h(It�1; �);
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with _ft(�0) = @f(It�1; �0)=@� and _ht(�0) = @h(It�1; �0)=@�:

Notice that

E [w(It�1; �0)ai;t(�0)] = 0 i = 1; 2; (13)

implies b(�;w; �0) � 0; and if in addition w(It�1; �0) has also zero mean, then a suitable standard-

ization of K1
n;w(�) is ADF.

To simplify notation write

Xt(�) := (1; a
0
1;t(�); a

0
2;t(�))

0 t = 1; :::; n:

To guarantee that (13) holds, we start with an initial w(It�1) and we shall take as w(It�1; �n) the

residuals from the least squares regression (provided no exact collinearity exists, otherwise remove

the necessary regressors),

w(It�1) = 
0Xt(�n) + �t t = 1; :::; n: (14)

The initial w is up-to the econometrician and gives �exibility to direct the power of the tests against

desired directions, see the end of this section.

The least squares estimator in (14) is

b
n(�n) =
 

nX
t=1

Xt(�n)X
0
t(�n)

!�1 nX
t=1

Xt(�n)w(It�1):

The estimator b
n(�n) estimates 
 � 
(�0) = (E[Xt(�0)X
0
t(�0)])

�1
E[Xt(�0)w(It�1)] and the weight

w(It�1; �0) = w(It�1)� 
0(�0)Xt(�0) (15)

satis�es (13) and has zero mean, by construction. The function bw(It�1; �n) = w(It�1)�b
0n(�n)Xt(�n)

estimates w(It�1; �0) in (15). Our �nal process is

K1
n; bw(�) := 1p

n

nX
t=1

bw(It�1; �n)1(ut(�n) � F�1u;n(�)):

To study the asymptotic behaviour of K1
n; bw we need the following regularity conditions.

Assumption A7: Let ��0 be a small convex neighborhood of �0.

A7(a): The functions f(It�1; �) and h(It�1; �) are (a.s.) twice continuously di¤erentiable in ��0 :

In addition,

E

"
sup
�2��0

jXt(�)j2
#
< C;

and I(�) = E [Xt(�)X
0
t(�)] is positive de�nite on ��0 .

A7(b): For a su¢ ciently small � > 0 and all su¢ ciently large n on,

E

"
sup

j�1��2j��n�1=2
jXt(�1)�Xt(�2)j

#
� C�:
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Assumption A8:

A8(a): E
�
w2(It�1)

�
< C:

A8(b): Fu is strictly increasing and has a Lebesgue density fu that is uniformly bounded, i.e.,

sup
x2R

jfu(x)j � C;

and equicontinuous: for every � > 0 there exists a � > 0 such that

sup
jx�zj��

jfu(x)� fu(z)j � �:

Assumption A7 is necessary to show that the estimation of w(It�1; �0) in (15) has not asymptotic

e¤ect on the limit process of K1
n; bw. Koul and Ling (2006) have shown that A7 is satis�ed for most

common examples in the literature, e.g. ARMA-GARCH models. The conditions in Assumption

A8 are analogous to Assumption A1(d), having the same role. Set �2 = E[w2(I0; �0)]:

Theorem 6: Under the location-scale model (10), Assumptions A1(a), A3, and A7-A8

K1
n; bw(�) =) �B(�) in `1(T );

where B is a standard Brownian Bridge on [0; 1]:

An application of the CMT yields

CvMn;ls :=

Z
T

b��2 ��K1
n; bw(�)��2 d� d�!

Z
T

jB(�)j2 d�; (16)

and

KSn;ls := sup
�2T

���b��1K1
n; bw(�)

��� d�! sup
�2T

jB(�)j ; (17)

where b�2 = n�1
Pn

t=1 bw2(It�1; �n) estimates �2: The asymptotic critical values of the test statistics
CvMn;ls and KSn;ls are distribution-free and can be easily tabulated, see Section 5.

A natural candidate for estimating Fu is the empirical cdf of residuals Fu;n: In such a case the

test statistics CvMn;ls and KSn;ls can be easily computed, as the process K1
n; bw(�) takes at most

n�2i�+1 values, where i� = inffj : 1 � j � n; j=n � �g: Similarly, if Fu;n is a continuous estimator

of Fu; CvMn;ls can be easily computed and no numerical integration is necessary.

The choice of the initial w allows us to construct omnibus ADF tests with power against desired

alternatives. To illustrate this point, consider the following local alternatives within the model (9):

H1n : E[Yt j It�1 = x] = f(x; �0) + n
�1=2sm(x): (18)
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Under these local alternatives the expansion in (11) typically is a sum of centered iid random

variables plus a shift, see Behnen and Neuhaus (1975). The shift is in charge of local power. It can

be shown that the shift (in absolute value) is

D1(�) = E
�
w(It�1; �0)sm(It�1)h

�1(It�1; �0)
�
fu(F

�1
u (�)):

It is then clear that the optimal choice for w(It�1; �0) is the orthogonal projection of sm(It�1)h
�1(It�1; �0) on

the orthocomplement of the span generated by Xt(�0):

As compared to other methods for obtaining ADF tests our tests are much simpler to compute.

The weight function bw(It�1; �n) can be estimated with any regression package and no nonparametric
estimation of the (conditional) sparsity function is necessary. In contrast, martingale transforms

require nonparametric estimations of this function in the computation of the scores, which may

result in inaccurate size performance in �nite samples.

5. FINITE SAMPLE PERFORMANCE

We investigate in this section, by means of a Monte Carlo experiment, the �nite sample perfor-

mance of the proposed tests. Our interest in these simulations is in the comparison between the

ADF tests and the subsampling-based tests. We describe our simulation setup.

The choice of �(�) in (5) is up-to the practitioner and gives �exibility to direct the power against

some preferred alternatives. Following Escanciano and Velasco (2006) and references therein, we

choose �(�) equal to the d�variate standard normal random vector. Thus, our CvM test boils down

to

CvMn = n�1
nX
t=1

nX
s=1

0@Z
T

	�(Yt �m(It�1; �n))	�(Ys �m(Is�1; �n))dW (�)

1A exp(�1
2
jIt�1 � Is�1j2):

We consider as W a uniform discrete distribution over a grid of T in m = 21 equidistributed points

from � to 1� �. Denote by Tm = f�jgmj=1 the points in the grid, with � = �1 < � � � < �m = 1� �.

We compute CvMn;ls and KSn;ls as

CvMn;ls =
(1� 2�)b�2(m� 1)

m�1X
j=1

��K1
n; bw(�j)��2 ;

and

KSn;ls = max
�2Tm

���b��1K1
n; bw(�)

��� ;
with initial weights w given below.

The limit processes in (16) and (17) are functionals of the Brownian Bridge on [0,1]. To ap-

proximate the critical values of such functionals we carry out simulations based on the so-called
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Kac-Siegert expansion of the Brownian Bridge, i.e.

B(�) =
1X
j=1

�
1=2
j �j j(�), (19)

where

�j =
1

(j�)2
;  j(t) =

p
2 sin(j�t); t 2 [0; 1]; j = 1; 2; :::;

and f�jg1j=1 are iid N(0; 1) r.v�s. We approximate the series in (19) using the �rst r = 1; 000

summands of the series. Tables I and II report the approximated asymptotic critical values for

CvMn;ls and KSn;ls for di¤erent values of m and based on 100,000 replications. As expected, the

approximated critical values for KSn;ls are more sensitive to the choice of m than those of CvMn;ls;

especially for small values of m: Notice also that for large values of m; the asymptotic critical values

for KSn;ls are very similar to those of the standard KS test of the Brownian Bridge on [0,1].

Please, insert Table I and Table II about here.

For the simulations, we examined two data generating processes that have been previously con-

sidered in Zheng (1998) and Whang (2004):

DGP1 : Yt = X1t +X2t + c1�
3=2
t + u1t; t = 1; : : : ; n;

where �t = X2
1t + X2

2t + X1tX2t and X1t; X2t and u1t � iid N(0; 1); mutually independent. The

null hypothesis corresponds to the location model with c1 = 0, so the null quantile model is a LQR

model

m(It�1; �(�)) = Z 0t�0(�); � 2 T ;

with Zt = (1; X1t; X2t)
0 and �0(�) = (��1(�); 1; 1)0, with ��1(�) the quantile function of the

standard normal r.v.

The second design is a time series model:

DGP2 : Yt = 0:6Yt�1 +Xt + c2X
2
t + u2t; t = 1; : : : ; n;

where Xt = 0:5Xt�1 + "t with both u2t and "t are sampled independently from N(0; 1) and Y0 =

X0 = 0. Here, the null model corresponds to c2 = 0: Under H0, a LQR model holds with It�1 =

(1; Yt�1; Xt)
0; and �0(�) = (�

�1(�); 0:6; 1)0.

We consider two sample sizes n = 100 and n = 300 and a quantile interval [0:1; 0:9]. As the number

of subsamples, we follow the suggestion of Sakov and Bickel (2000) and we chose b =
�
kn2=5

�
; with

k from 9 to 11 for DGP1 and from 3 to 5 for DGP2, that yields for DGP1 (DGP2), b = 54; 60 and

66 (18; 24; and 30) for n = 100 and b = 81; 90 and 99 (27; 36 and 45) for n = 300:We set the number

of Monte Carlo repetitions to 1,000. The parameter �0(�) is estimated by the QRE of Koenker and
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Bassett (1978). In all experiments, the nominal probability of rejecting a correct null hypothesis

is 0.05. The results with other nominal values are similar. To compute CvMn;ls and KSn;ls; we

choose w1(It�1) = X2
1t and w2(It�1) = �t for DGP1 and w1(It�1) = jYt�1Xtj and w2(It�1) = X2

t

for DGP2. In tables we denote by CvMn;i and KSn;i the test statistics based on wi(It�1); i = 1; 2.

Table III provides the rejection probabilities of the tests for DGP1. When c1 = 0, the results show

that the size performance of the subsampling-based test is good for all the subsample sizes considered

and that the approximated asymptotic critical values lead to accurate empirical sizes for the ADF

tests. We observe that to achieve appropriate empirical sizes the choice of b for the DGP1 should

be larger than for the DGP2. When c1 6= 0, the results show the power performance of the tests.

The rejection probabilities increase as n increases, as expected, showing that the tests are consistent

against these �xed alternatives. For DGP1 the ADF tests outperform the subsampling-based test,

with CvMn;2 and KSn;2 having the best empirical power, which is consistent with our local-power

analysis. The latter conclusion was expected because the ADF tests take into account the location-

structure of the model, and use of this information should produce better power properties. For the

subsampling-based tests the power does not depend substantially on the choice of b. Table IV gives

the corresponding results for DGP2 with similar conclusions to those under DGP1.

Unreported simulations using the indicator weight function 1(It�1 � x); instead of exp(ix0It�1);

con�rm that exponential-based tests have more power than indicator-based tests for these alterna-

tives. In fact, this was our motivation for the use of the exponential weight in the CvM test.

This small simulation study suggests that even with relative small sample sizes the subsampling

and ADF tests proposed in this article exhibit fairly good size accuracy and power.

Please, insert Table III and Table IV about here.

6. APPLICATIONS

In this section, we apply the new proposed tests for testing the correct speci�cation of some well-

known quantile models considered in the literature. More concretely, we examine two applications:

�rst, we consider the Sharpe Style Analysis of the Magellan Fund studied in Kim and White (2003),

see also Basset and Chen (2001), and second, the Pennsylvania Reemployment Bonus Experiments

analyzed in Koenker and Xiao (2002). In both applications LQR models have been considered for a

range of quantiles in T = [�; 1� �] for a given � 2 (0; 0:5):

6.1 Application to Sharpe Style Analysis

Since Sharpe�s (1988, 1992) seminal work, the Sharpe style regression has become a popular tool

to analyze the style of an investment fund. The Sharpe style regression is carried out by regressing
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fund returns on various factors mimicking relevant indices. By analyzing the regression coe¢ cients

of the factors, one can understand the style of a fund manager. Bassett and Chen (2001) have

proposed using the quantile regression method to analyze the style of a fund manager over the entire

conditional distribution. These authors consider a linear speci�cation

Rt = �00(�) + �10(�)Z
LG
t + �20(�)Z

LV
t + �30(�)Z

SG
t + �40(�)Z

SV
t + "t;�; (20)

where fRtg are the returns of the Fidelity Magellan fund, the factors are the Russell indices classi�ed

as:

Large (L) Small (S)

Growth (G) Russell 1000 Growth (ZLGt ) Russell 2000 Growth (ZSGt )

Value (V) Russell 1000 Value (ZLVt ) Russell 2000 Value (ZSVt )

The sample we consider is from January 1979 to December 1997, as in Kim and White (2003), with

a total of 228 monthly observations. Details about the estimation and other related issues for this

data set can be found in Basset and Chen (2001) for a shorter period and in Kim and White (2003)

for the period considered here. In this section we are interested in testing the correct speci�cation

of the LQR model in (20) and to test if a pure location model is appropriate for this data set.

Kim and White (2003) did not �nd evidence against the LQR speci�cation. We consider � = 0:1

and m = 9; i.e., � = 0:1; 0:2; :::; 0:9: For the subsampling we choose b between 90 and 100: We

do not �nd evidence against the linear speci�cation with the CvM subsampling-based test. The

smallest empirical p-value for CvM subsampling-based test is 0.4388. As for the tests for a location

model, we have considered as the initial weight w in the ADF tests the product of all possible

combinations among pairs of regressors, i.e., w(Zt) = ZitZ
j
t ; i; j = LG; LV; SG and SV; measuring

all the interactions among regressors. None of the ADF tests �nd evidence against the pure location

model. The maximum value for the test statistics are 0.7767 and 0.1349 for the CvM and KS tests,

respectively, and they are attained at w(It�1) =
�
ZLVt

�2
: These correspond approximately to p-

values of 0.30 and 0.40, respectively. Therefore, our application suggests that the LQR model is

correctly speci�ed, and moreover, a pure location model seems to be a good model for this data set.

6.2 The Pennsylvania Reemployment Bonus Experiments

In this section we shall reanalyze the Pennsylvania reemployment bonus experiment conducted

by the U.S. Department of Labor in the 1980�s in order to test the incentive e¤ects of alternative

compensation schemes for the unemployment insurance (UI). There have been a large signi�cant

empirical and theoretical literature focusing on this data set and similar experiments, see Koenker

and Xiao (2002) or Chernozhukov (2002) and references therein. In these controlled experiments,
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UI claimants were randomly o¤ered a cash bonus if they �nd a job within some prespeci�ed period

of time and if the job was retained for a speci�ed duration. The objective of these experiments was

to evaluate the impact of such a scheme on the unemployment duration.

As in the aforementioned studies, we focus here on the compensation schedule that includes

a lump-sum payment of a six times the weekly unemployment bene�t for claimants establishing

the reemployment within 12 weeks (in addition to the usual weekly bene�ts). The de�nition of

unemployment spell includes one waiting week, with the maximum of interrupted full weekly bene�ts

of 27. The number of observations is 6384.

Koenker and Xiao (2002) �tted to this data set the linear quantile speci�cation

Yt = �00(�) + �01(�)Dt + �
0
02(�)Xt + "t;�; (21)

where Yt is the log of the duration of unemployment, i.e., Yt = log(Tt); Dt is the indicator of the

bonus o¤er, and Xt is a set of socio-demographic characteristics (age, gender, number of dependents,

location within the state, existence of recall expectations, and type of occupation). See Koenker and

Xiao (2002) for a detailed analysis of this data set.

In Koenker and Xiao (2002) the interest was mainly in testing for restrictions on the parameter

�0(�) in the LQR model (21), e.g. testing for a pure location model, testing if the treatment e¤ect

is constant across the range of quantiles of interest and whether the treatment was unambiguously

bene�cial. Here in the present article we are concerned with testing if the LQR model is correctly

speci�ed.

We set � = 0:15 and m = 15 and compute our CvM subsampling test for this data set taking

b = 3000 (see Chernozhukov (2002) for motivation on this choice). We have obtained an empirical

p�value of 0 with the subsampling test, and hence, CvMn strongly rejects the LQR speci�cation.

Other values of �; m and b yield the same conclusion. For the pure location model, our results based

on the ADF tests coincide with those obtained by Koenker and Xiao (2002) and Chernozhukov

(2002), rejecting the pure location model. The KS test using w(Zt) = DtBt; where Bt is a dummy

variable which is 1 if the individual is black and 0 otherwise, rejects the location model at 10% and

5% with a value of 1.353, but the CvM test does not �nd evidence against the location model for

this choice of w. Other choices of w lead to stronger rejections by ADF tests. For instance, the

choice w(Zt) = Ftdt; where Ft is a dummy variable for gender (1 if female, 0 otherwise) and dt

is the number of dependents, lead to rejections with both, the KS and CvM tests, with respective

values 1.523 and 0.566, and con�rming the need of an interaction term between these two variables,

as expected given the nature of the experiment.

Summarizing, we �nd evidence against the LQR model with our subsampling-based test and

against the pure location model with the ADF tests. Notice that the asymptotic properties (e.g.

consistency) of the estimator of �0(�) in (21) are not necessarily a¤ected by the misspeci�cation of
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the LQR but are at least questionable. More concretely, even if the LQR model is misspeci�ed it is

still possible that �n(�) in (21) estimates consistently �0(�) de�ned by the moment conditions

E[	�(Yt � �00(�)Zt)Zt] = 0; 8� 2 T ; (22)

see Kim and White (2003). But more importantly, it is possible that under misspeci�cation of (21)

still the condition

q�(Dt = 1; Xt)� q�(Dt = 0; Xt) = �01(�) a.s for all � 2 T ,

holds, which is the object of interest in this experiment. If the concern is not in testing the validity

of the LQR model against all alternatives, but in testing the LQR model against those alternatives

where q�(Dt = 1; Xt) � q�(Dt = 0; Xt) and �01(�) di¤er, more e¢ cient tests taking into account

that information are possible, see Escanciano and Song (2006) for a related problem in a di¤erent

semiparametric testing setup. The development of such e¢ cient tests in the present context is an

interesting problem that deserves further attention and is a direction of future research.
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APPENDIX. PROOFS

First, we shall state a weak convergence theorem which is an extension of Theorem A1 in Delgado

and Escanciano (2006) and that is of independent interest. Let for each n � 1; I 0n;0; :::; I
0
n;n�1; be

an array of random vectors in Rp, p 2 N; and Yn;1; :::; Yn;n; be an array of real random variables

(r.v.�s). Denote by (
n;An; Pn); n � 1; the probability space in which all the r.v.�s fYn;t; I 0n;t�1gnt=1
are de�ned. Let Fn;t; 0 � t � n; be a double array of sub �-�elds of An such that Fn;t�1 � Fn;t;

t = 1; :::; n and such that for each n � 1 and each 
 2 H,

E[w(Yn;t; In;t�1; 
) j Fn;t�1] = 0 a.s. 1 � t � n; 8n � 1: (23)

Moreover, we shall assume that fw(Yn;t; In;t�1; 
);Fn;t; 0 � t � ng is a square-integrable martingale

di¤erence sequence for each 
 2 H; that is, (23) holds, Ew2(Yn;t; In;t�1; 
) <1 and w(Yn;t; In;t�1; 
)

is Fn;t-measurable for each 
 2 H and 8t; 1 � t � n;8n 2 N: The following result gives su¢ cient

conditions for the weak convergence of the empirical process

�n;w(
) = n�1=2
nX
t=1

w(Yn;t; In;t�1; 
) 
 2 H:

Under mild conditions the empirical process �n;w can be viewed as a mapping from 
n to `1(H);

the space of all complex-valued functions that are uniformly bounded on H; with H a generic metric

space. The weak convergence theorem that we present here is funded on results by Levental (1989),

Bae and Levental (1995) and Nishiyama (2000). In Theorem A1 in Delgado and Escanciano (2006)

H was �nite-dimensional, but here we allow for an in�nite-dimensional H: The proof of theorem

does not change by this possibility, however.

An important role in the weak convergence theorem is played by the conditional quadratic variation

(CV) of the empirical process �n;w on a �nite partition B = fHk; 1 � k � Ng of H; which is de�ned

as

CVn;w(B) = max
1�k�N

n�1
nX
t=1

E

"
sup


1;
22Hk

jw(Yn;t; In;t�1; 
1)� w(Yn;t; In;t�1; 
2)j
2 j Fn;t�1

#
: (24)

Then, for the weak convergence theorem we need the following assumptions.

W1: For each n � 1; f(Yn;t; In;t�1)0 : 1 � t � ng is a strictly stationary and ergodic process.

The sequence fw(Yn;t; In;t�1; 
);Fn;t; 1 � t � ng is a square-integrable martingale di¤erence

sequence for each 
 2 H: Also, there exists a function Cw(
1; 
2) on H � H to R such that

uniformly in (
1; 
2) 2 H �H

n�1
nX
t=1

w(Yn;t; In;t�1; 
1)w
c(Yn;t; In;t�1; 
2) = Cw(
1; 
2) + oPn(1):
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W2: The family w(Yn;t; In;t�1; 
) is such that �n;w is a mapping from 
n to `1(H) and for every

� > 0 there exists a �nite partition B� = fHk; 1 � k � N�g of H; with N� being the elements

of such partition, such that
1Z
0

p
log(N�)d� <1 (25)

and

sup
�2(0;1)\Q

CVn;w(B�)
�2

= OPn(1): (26)

Let �1;w(�) be a Gaussian process with zero mean and covariance function given by Cw(
1; 
2):We

are now in position to state the following

Theorem A1: If Assumptions W1 and W2 hold, then it follows that

�n;w =) �1;w in `1(H):

Proof of Theorem A1: Theorem A1 in Delgado and Escanciano (2006).

Corollary A1: Assuming that W1 holds for w(Yn;t; In;t�1; v) = 	�(Yn;t�m(In;t�1; �0(�))) exp(ix0In;t�1),

v = (x0; �)0 2 �; A1(b) and that

n�1
nX
t=1

jIn;t�1j2 = OPn(1);

then the weak convergence of Theorem A1 holds.

Proof of Corollary A1: We shall apply Theorem A1. Let us de�ne the metric

d(v1; v2) :=

q
j�1 � �2j+ jx1 � x2j2; v1; v2 2 �:

Then, we de�ne an �-bracket as an interval [v1; v2] such that v1 � v2 and d(v1; v2) � �: The

bracketing number N(�;�; d) is the minimum number of �-brackets needed to cover �: Then, it is

easy to show that
1Z
0

p
log(N(�;�; d))d� <1

holds. It remains to show that (26) holds. Consider a partition B� = fHk; 1 � k � N(�;�; d) � N�g

of � in �-bracketsHk = [vk; vk]; with vk = (x
0
k; �k)

0 and vk = (x0k; �k)
0; xk � xk and �k � �k: De�ne
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"n;t(�) = Yn;t �m(In;t�1; �0(�)): Then, by simple algebra and the monotonicity of 1("n;t(�) � 0)

due to A1(b), CVn;w(B�) in (24) is bounded by

2 max
1�k�N�

n�1
nX
t=1

E

�
sup

v1;v22Hk

j1("n;t(�1) � 0)� �1 � 1("n;t(�2) � 0) + �2j2 j Fn;t�1
�

+2 max
1�k�N�

n�1
nX
t=1

�
sup

v1;v22Hk

jexp(ix01In;t�1)� exp(ix02In;t�1)j
2
�

� C max
1�k�N�

(
j�k � �kj+ jxk � xkj

2
n�1

nX
t=1

jIn;t�1j2
)
:

Hence, (26) holds for the partition B�. Therefore, W2 of Theorem A1 holds and the corollary is

proved. �

Proof of Theorem 1. Follows from Corollary A1. �

Theorem A2. Assume Assumptions A1(c-d), A2, A3(a), and that there exists a �1 2 B such that

k�n � �1kB = oP (1): Then, uniformly in (x0; �)0 2 �,

R1n(x; �) =
1p
n

nX
t=1

f	�(et(�1))� E[	�(et(�1)) j Ft�1]g exp(ix0It�1) (27)

+
1p
n

nX
t=1

fE[	�(et(�)) j Ft�1]�=�n � E[	�(et(�1)) j Ft�1]g exp(ix0It�1)

+
1p
n

nX
t=1

E[	�(et(�1)) j Ft�1] exp(ix0It�1)� E [E[	�(et(�1)) j Ft�1] exp(ix0It�1)]

+
p
nE [E[	�(et(�1)) j Ft�1] exp(ix0It�1)] + oP (1):

Proof of Theorem A2: Write wt�1(v; �) := f	�(et(�))� E[	�(et(�)) j Ft�1]g exp(ix0It�1): First

we shall show that the process

Sn(v; �) =
1p
n

nX
t=1

wt�1(v; �)

is asymptotically tight with respect to (v; �) 2 W = �� B:

Let us de�ne the class K = fw�(v; �) : (v; �) 2 Wg: Denote Xt�1;1 = (It�1; It�2; :::)
0: Let

B� = fBk; 1 � k � N� � N[](�;K; k�k2g; with Bk = [wk(Yt; Xt�1;1); wk(Yt; Xt�1;1)]; be a partition

of K in �-brackets with respect to k�k2 ; where k�k2 denotes the L2 norm of random variables, i.e.,

kXk2 =
�
E[X2]

�1=2
:
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Conditions A1(c-d) and A2 imply that for a su¢ ciently small � > 0;






 sup
(v2;�2)2A:d(v1;v2)��

k�1��2kB��

jwt�1(v1; �1)� wt�1(v2; �2)j









2

(28)

� C








 sup
(v2;�2)2A:d(v1;v2)��

k�1��2kB��

j	�1(et(�1))�	�2(et(�2))j









2

+ C�

� C�1=2 + C� � C�1=2:

Theorem 3 in Chen et al. (2003) and A3(a) yield that (25) holds for such partition. Therefore, by

similar arguments as in Corollary A1, (26) follows, and condition W2 of Theorem A1 holds. The

asymptotically tightness of Sn(v; �) is then proved.

Now, write

R1n(�) =
1p
n

nX
t=1

f	�(et(�1))� E[	�(et(�1)) j Ft�1]g exp(ix0It�1)

+
1p
n

nX
t=1

E[	�(et(�)) j Ft�1]�=�n + oP (1);

and (27) follows. �

Proof of Theorem 2: Under the null �1 = �0 and E[	�(et(�0)) j Ft�1] = 0 a.s. From the

expansion in (27), it follows that, uniformly in v 2 �,

R1n(�) =
1p
n

nX
t=1

	�(et(�0)) exp(ix
0It�1)

+
1p
n

nX
t=1

fE[	�(et(�)) j Ft�1]�=�n � E[	�(et(�0)) j Ft�1]g exp(ix0It�1) + oP (1)

= Rn(�) +
1p
n

nX
t=1

�
FIt�1(m(It�1; �n))� FIt�1(m(It�1; �0))

	
exp(ix0It�1) + oP (1):

Now, from A1(d) and Koul and Stute (1999, pp. 228-229), uniformly in v 2 �,

1p
n

nX
t=1

�
FIt�1(m(It�1; �n))� FIt�1(m(It�1; �0))

	
exp(ix0It�1)

=
p
n(�n � �0)

1

n

nX
t=1

g(It�1; �0)fIt�1(m(It�1; �0)) exp(ix
0It�1) + oP (1):

This together with Theorem 1, A2(c) and A3 proves the theorem. �

Proof of Theorem 3: From Theorem A2 and the Ergodic Theorem

sup
v2�

����� 1n
nX
t=1

[	�(et(�n(�))) exp(ix
0It�1)� E[	�(et(�1(�))) exp(ix0It�1)]

����� = oP (1): (29)
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Let W = � � B: Let w = (x0; �; �0(�))0 be a general element of W. The space W is endowed with

the metric

�(w1; w2) = jx1 � x2j+ j�1 � �2j+ sup
�2T

j�1(�)� �2(�)j ;

where w1 = (x01; �1; �
0
1(�))0 and w2 = (x02; �2; �

0
2(�))0 belong to W: Let B(w; �) be the open ball of

radius � around w; i.e., B(w; �) = fw1 2 W : �(w1; w) < �g: Note that A1-A3 yield that for each

w = (x0; �; �0(�))0 2 W it holds that

lim
�!0

E

"
sup

w12B(w;�)
j	�1(et(�1(�1))) exp(ix01It�1)�	�(et(�(�))) exp(ix0It�1)j

2

#
= 0:

Therefore, E[	�(et(�1(�))) exp(ix0It�1)] is a continuous function of v = (x0; �)0: Therefore, under

the alternative HA we have that the function E[	�(et(�1(�)))1(It�1 � �)] is di¤erent from zero in a

subset with positive Lebesgue measure on �: �

Proof of Theorem 4: The proof follows from Theorem A2 and Assumptions A4 and A5 jointly

with A3�in a routine fashion, and then, it is omitted: �

Proof of Theorem 5. The proof follows the same steps as Theorems 2, 3 and 4 of Whang (2004)

and then, it is omitted. �

Before proving Theorem 6 we need a useful Lemma. To emphasize the dependence of Xt(�) on

It�1; we write when it is convenient Xt(�) � X(It�1; �): Notice that in the context of location-

scale models �0(�) = (�01(�); �02(�)) = (�00; F
�1
u (�))0: Write similarly, �1(�) = (�11; �12(�)) and

�2(�) = (�21; �22(�)): De�ne the process

Kn(�; �; �) :=
1p
n

nX
t=1

X(It�1; �)f1(Yt � m(It�1; �(�))� �g

indexed by (�; �; �) 2 Cn;K � T � B, where Cn;K is a shrinking neighborhood of �0 such that for a

su¢ ciently large K > 0;

Cn;K =
�
� 2 �� :

p
nj� � �0j < K

	
:

Lemma A1: In the context of the location-scale model in (9). Under Assumption A7, and that

Fu is strictly increasing the process Kn(�; �; �) is asymptotically tight with respect to (�; �; �) 2

Cn;K � T � B:

Proof of Lemma A1: Let us de�ne the class of functions K1 = fX(It�1; �)f1(Yt � m(It�1; �(�))�

�g : (�; �; �) 2 Cn;K � T � Bg: Denote now Xt�1;1 = (It�1; It�2; :::)
0: Let B� = fBk; 1 � k � N� �

N[](�;K1; k�k2)g; with Bk = [wk(Yt; Xt�1;1); wk(Yt; Xt�1;1)]; be a partition of K1 in �-brackets
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with respect to k�k2 :Write wt�1(�; �; �) = X(It�1; �)f1(Yt � m(It�1; �(�))��g: Condition A7 and

triangle�s inequality yield

E

������� sup
(�2;�2;�2)2A:j�1��2j��
j�1��2j��;k�1��2kB��

jwt�1(�1; �1; �1)� wt�1(�2; �2; �2)j

�������
� C

�
E jX(It�1; �1)j

2
�1=2

(jFu(�12(�1)� �))� Fu(�12(�1) + �)j)1=2 + C�

+E

����� sup
j�1��2j��

jX(It�1; �1)�X(It�1; �2)j
����� � C�1=2;

for a su¢ ciently small � > 0: Theorem 3 in Chen et al. (2003) and A3(a) yield that (25) holds for

such partition. Therefore, by similar arguments as in Corollary A1, (26) follows, and condition W2

of Theorem A1 holds. The asymptotically tightness of Kn(�; �; �) is then proved. �

Proof of Theorem 6: Write qt(�; �n) := f1(ut(�n) � F�1u;n(�))� �g and

K1
n; bw(�) =

1p
n

nX
t=1

fw(It�1)� b
0n(�n)Xt(�n)gqt(�; �n)

=
1p
n

nX
t=1

fw(It�1)� 
0(�0)Xt(�n)gqt(�; �n)

�(b
0n(�n)� 
0(�0)) 1pn
nX
t=1

Xt(�n)qt(�; �n)

: = I1n(�) + I2n(�):

From A7 and the uniform law of large numbers of Jennrich (1969),��b
0n(�n)� 
0(�0)�� = oP (1);

and from Lemma A1,

sup
�2T

����� 1pn
nX
t=1

Xt(�n)qt(�; �n)

����� = OP (1):

Hence sup�2T jI2n(�)j = oP (1):

As for I1n(�); again by Lemma A1 and writing w(It�1; �0) := w(It�1)� 
0(�0)Xt(�0);

sup
�2T

�����I1n(�)� 1p
n

nX
t=1

w(It�1; �0)qt(�; �n)

����� = oP (1):

De�ne

d1tn :=
f(It�1; �n)� f(It�1; �0)

h(It�1; �0)
d2tn :=

h(It�1; �n)� h(It�1; �0)
h(It�1; �0)

;

and it;n(�) := F�1u;n(�) + d1tn + d2tnF
�1
u;n(�):

Now,
1p
n

nX
t=1

w(It�1; �0)qt(�; �n) := A1n(�) +A2n(�) +A3n(�); (30)
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where

A1n(�) :=
1p
n

nX
t=1

w(It�1; �0)qt(�; �0);

A2n(�) :=
1p
n

nX
t=1

w(It�1; �0)fqt(�; �n)� qt(�; �0)� Fu(it;n(�)) + �g

and

A3n(�) :=
1p
n

nX
t=1

w(It�1; �0)fFu(it;n(�))� �g:

By similar arguments to those of Lemma A1 it can be shown that sup�2T jA2n(�)j = oP (1):Whereas,

from the arguments of Koul and Stute (1999, pp. 228-229), it can be shown that, uniformly in � 2 T ,

A3n(�) =
p
n(F�1u;n(�)� F�1u (�))fu(F

�1
u (�))E[w(It�1; �0)] (31)

+
p
n(�n � �0)0b(�;w; �0) + oP (1):

The theorem follows from (30), (31) and Lemma A1. �
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Table I:

Asymptotic Critical Values. Cramér-von Mises

m = 9 m = 15 m = 21

� 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.05 0.343 0.458 0.744 0.343 0.458 0.738 0.343 0.458 0.738

0.10 0.334 0.447 0.731 0.333 0.446 0.730 0.333 0.447 0.729

0.15 0.317 0.429 0.694 0.317 0.428 0.693 0.317 0.428 0.694

0.20 0.293 0.398 0.652 0.293 0.398 0.651 0.293 0.398 0.651

0.25 0.262 0.358 0.598 0.262 0.358 0.596 0.263 0.358 0.598

0.30 0.222 0.308 0.514 0.222 0.308 0.511 0.222 0.307 0.513

0.35 0.176 0.243 0.412 0.176 0.244 0.412 0.175 0.244 0.411

0.40 0.124 0.172 0.292 0.123 0.172 0.291 0.123 0.172 0.290

0.45 0.064 0.091 0.156 0.064 0.091 0.156 0.064 0.091 0.156

m = 50 m = 100 m = 1000

� 10% 5% 1% 10% 5% 1% 10% 15% 1%

0.05 0.343 0.458 0.737 0.342 0.458 0.737 0.342 0.458 0.736

0.10 0.334 0.445 0.726 0.333 0.446 0.727 0.333 0.445 0.726

0.15 0.317 0.429 0.692 0.317 0.428 0.693 0.317 0.429 0.692

0.20 0.292 0.397 0.651 0.293 0.397 0.652 0.292 0.397 0.653

0.25 0.263 0.358 0.597 0.263 0.358 0.597 0.262 0.358 0.597

0.30 0.222 0.307 0.512 0.222 0.307 0.511 0.222 0.307 0.511

0.35 0.176 0.244 0.411 0.175 0.244 0.412 0.175 0.244 0.411

0.40 0.123 0.172 0.291 0.123 0.172 0.290 0.123 0.172 0.291

0.45 0.064 0.091 0.156 0.064 0.091 0.156 0.064 0.091 0.156
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Table II:

Asymptotic Critical Values. Kolmogorov-Smirnov

m = 9 m = 15 m = 21

� 10% 5% 1% 10% 5% 1% 10% 5% 1%

0.05 1.028 1.163 1.427 1.075 1.211 1.473 1.099 1.232 1.496

0.10 1.039 1.177 1.453 1.083 1.218 1.492 1.105 1.242 1.509

0.15 1.053 1.188 1.453 1.094 1.227 1.496 1.114 1.246 1.515

0.20 1.064 1.201 1.466 1.099 1.236 1.504 1.118 1.255 1.527

0.25 1.069 1.208 1.482 1.103 1.240 1.518 1.120 1.258 1.535

0.30 1.069 1.213 1.484 1.097 1.241 1.514 1.112 1.254 1.530

0.35 1.058 1.206 1.488 1.083 1.230 1.512 1.095 1.242 1.525

0.40 1.035 1.183 1.473 1.054 1.202 1.492 1.064 1.213 1.502

0.45 0.986 1.141 1.445 0.999 1.153 1.456 1.006 1.160 1.462

m = 50 m = 100 m = 1000

� 10% 5% 1% 10% 5% 1% 10% 15% 1%

0.05 1.143 1.276 1.541 1.167 1.298 1.565 1.201 1.333 1.598

0.10 1.147 1.283 1.556 1.168 1.304 1.574 1.201 1.337 1.604

0.15 1.153 1.286 1.554 1.173 1.306 1.572 1.202 1.335 1.601

0.20 1.153 1.292 1.561 1.171 1.309 1.579 1.198 1.336 1.606

0.25 1.152 1.290 1.566 1.168 1.307 1.584 1.191 1.330 1.607

0.30 1.138 1.284 1.559 1.154 1.298 1.574 1.173 1.318 1.593

0.35 1.118 1.266 1.551 1.131 1.278 1.561 1.145 1.292 1.577

0.40 1.083 1.232 1.519 1.093 1.241 1.530 1.103 1.251 1.539

0.45 1.018 1.173 1.475 1.024 1.178 1.482 1.027 1.181 1.484
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Table III: Empirical size and power. 5% of signi�cance level. DGP1

DGP1 CvMn KSn;1 CvMn;1 KSn;2 CvMn;2

c1 n k = 9 k = 10 k = 11

0.0
100

300

4.8

4.0

6.3

4.0

7.5

4.3

5.2

4.5

5.5

4.3

5.0

5.5

5.7

5.6

0.1
100

300

43.4

98.2

44.1

97.3

38.3

97.0

61.1

98.3

69.4

98.7

97.7

100

99.1

100

0.2
100

300

81.0

100

78.4

100

69.8

100

93.3

100

95.4

100

100

100

100

100

0.3
100

300

93.4

100

92.0

100

87.4

100

98.2

100

98.9

100

100

100

100

100

Table IV: Empirical size and power. 5% of signi�cance level. DGP2

DGP2 CvMn KSn;1 CvMn;1 KSn;2 CvMn;2

c2 n k = 3 k = 4 k = 5

0.0
100

300

5.1

4.9

5.1

4.7

6.1

4.3

5.2

5.5

5.9

6.0

5.2

4.6

5.5

4.7

0.1
100

300

9.1

22.1

9.4

21.6

9.1

20.8

14.8

36.5

15.8

41.4

25.1

73.9

29.7

78.4

0.2
100

300

23.8

76.4

23.7

75.4

23.6

73.0

40.0

87.0

44.5

91.7

73.6

99.9

80.1

100

0.3
100

300

46.2

97.2

43.1

97.5

44.2

96.7

64.8

98.7

70.9

99.1

94.7

100

97.4

100
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