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1 Introduction

The role of repeated play in facilitating cooperation is one of the main themes of

game theory. Past work has shown that reciprocation can lead to more cooperative

equilibrium outcomes even if there isimperfect public monitoring, so that players

do not directly observe their opponents’ actions but instead observe noisy public

signals whose distribution depends on the actions played. This work has covered

a range of applications, from oligopoly pricing (e.g. Green and Porter (1984)

and Athey and Bagwell (2001)), repeated partnerships (Radner, Myerson, and

Maskin (1986)) and relational contracts (Levin (2003)). These applications are

accompanied by a theoretical literature on the structure of the set of equilibrium

payoffs and its characterization as the discount factor approaches1, most notably

Abreu, Pearce, and Stachetti (1986), Abreu, Pearce, and Stachetti (1990, here-

after APS), Fudenberg and Levine (1994, hereafter FL), Fudenberg, Levine, and

Maskin (1994, hereafter FLM), and Fudenberg, Levine, and Takahashi (2007). All

of these papers assume that the players know the distribution of public signals as

a function of the actions played. In some cases this assumption seems too strong:

For example, the players in a partnership may know that high effort makes good

outcomes more likely, but not know the exact probability of a bad outcome when

all agents work hard. This paper allows for such uncertainty, and also allows for

uncertainty about the underlying payoff functions.

Specifically, we study repeated games in which the state of the world, chosen

by Nature at the beginning of the play, influences the distribution of public signals

and/or the payoff functions of the stage game. The effect of the state on the payoff

functions can be direct, and can also be an indirect consequence of the effect of

the state on the distribution of signals. For example, in a repeated partnership,

the players will tend to have higher expected payoffs at a given action profile at

states where high output is most likely, so even if the payoff to high output is

known, uncertainty about the probability of high output leads to uncertainty about

the expected payoffs of the stage game.

Because actions are imperfectly observed, the players’ posterior beliefs need

not coincide in later periods, even when they share a common prior on the dis-

tribution of states. This complicates the verification of whether a given strategy

profile is an equilibrium, and thus makes it difficult to provide a characterization
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of the entire equilibrium set. Instead, we consider a subset of Nash equilibria,

calledperfect public ex-post equilibriaor PPXE. A strategy profile is a PPXE if

it is public- i.e. it depends only on publicly available information- and if its con-

tinuation strategy constitutes a Nash equilibrium given any state and given any

history. In a PPXE, a player’s best reply does not depend on her belief, so that

the equilibrium set has a recursive structure and the analysis is greatly simplified.1

Moreover, like other forms of ex-post equilibrium, PPXE are robust to variations

in priors beliefs: A PPXE for a given prior distribution is a PPXE for an arbitrary

prior.2

Before developing our general characterization of PPXE, we give a few ex-

amples. The first two examples consider special structures that make it easy to

give explicit constructions of PPXE. One important fact these examples illustrate

is that even though players start out not knowing the state, conditioning play on

outcomes can indirectly allow the state to determine play and equilibrium pay-

offs. For example, if the outcome perfectly reveals the state, there can be PPXE

where player1’s preferred PPE is played from period2 on in stateω1 and player

2’s preferred PPE is played from period2 on in stateω2. The third and fourth

examples are partnership games where the uncertainty concerns the productivity

of effort. Here the non-constructive characterization that we develop in the rest of

the paper lets us show that the folk theorem applies in Example 3 while payoffs

can be bounded away from efficiency in Example 4. In both of these examples,

the distribution of outcomes can reveal the state and the folk theorem would hold

in each state if the state were known; the key is that in Example 4 the states are

“entangled” while in Example 3 they are not.

To characterize the limit of the set of PPXE payoffs as the discount factor

goes to 1, we extend the linear programming characterization of the limit payoffs

of PPE. That is, we show in Section 4 that the limit of the set of payoff vectors

to PPXE as the discount factor goes to1 is the intersection of the “maximal half-

1As a referee points out, the fact that PPXE is independent of beliefs about the state simplifies
the analysis even in the case where actions are observed so that players have common beliefs.

2See Bergemann and Morris (2007) for a discussion of various definitions of ex-post equilib-
rium. Miller (2007) analyzes a different sort of ex-post equilibrium: he considers repeated games
of adverse selection, where players report their types each period, as in Section 8 of FLM, and
adds the restriction that announcing truthfully should be optimal regardless of the announcements
of the other players.
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spaces” in various directions, where each componentλ ω
i of the direction vector

λ corresponds to the weight attached to playeri’s payoff in stateω. The main

new feature is that in a PPXE, the equilibrium payoffs are allowed to vary with

the state, and can do so even if the state does not influence the expected payoffs

to each action profile- for example there can be PPXE where player1 does better

in stateω1 and player2 does better in stateω2. Thus PPXE can involve a form

of “utility transfer” across states. For this reason, the “maximal half space” in

these “cross-state directions” can be the whole space, while in FL the maximal

half space in each direction is bounded by the feasible set.

In Section 5, we use this characterization to prove an “ex-post” folk theorem:

For any map from states to payoff vectors that are feasible and individually ra-

tional in that state, there is a PPXE whose payoffs in each state approximate the

target map as the discount factor tends to1. This theorem uses individual and

pairwise full rank conditions as in FLM, and adds the assumption that for every

pair (i,ω) and( j, ω̃) of individuals and states, there is a profileα that has “state-

wise full rank,” which means roughly that the observed signals reveal the state

regardless of whetheri or j (but not both!) unilaterally deviate fromα.

As in FLM, a weaker, “static-threats,” version of the folk theorem holds under

milder informational conditions. Section 6 shows that pairwise full rank can be

replaced by the condition of “pairwise identifiability,” which can be satisfied with

a smaller number of signals, and that statewise full rank can be relaxed to “state-

wise distinguishability.” Very roughly speaking, this condition says that for every

pair of playersi, j and pair of statesω, ω̃, there is a strategy profile whose sig-

nal distribution distinguishes between the two states regardless of the deviations

of player j, and such that continuation payoffs can give a large reward to player

i in stateω without increasing playeri’s incentive to deviate and without affect-

ing player j ’s payoff in stateω̃. We use this condition to explain the difference

between Example 3 and Example 4.

Finally, we explain how to extend our analysis to games where the players

have initial private information. In such games, the PPXE still satisfy all of the

incentive constraints and are still PPXE; they now correspond to pooling equilib-

ria where all types of a given player use the same strategy. We then introduce the

concept of “perfect type-contingently public ex-post equilibria” or “PTXE;” this

concept allows players to condition on their initial private information as well as
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the subsequent public history. The set of PTXE has a recursive structure, and the

set of limit payoffs can be characterized by an extension of the linear programming

algorithm that allows the action profile used to generate a given score to depend

on the vector of types. However, despite the similar formal structure, the set of

limit payoffs can be very different than before, as the players now have additional

sources of information about the state. Thus we postpone a detailed exploration

of PTXE to Fudenberg and Yamamoto (2009), where we provide weaker suffi-

cient conditions for a folk theorem and then provide a detailed analysis of several

special cases, including that of games with a known monitoring structure.

While the study of uncertain monitoring structures is new, there is a substan-

tial literature on repeated games with unknown payoff functions and perfectly

observed actions, notably Forges (1984), Sorin (1984), Hart (1985), Sorin (1985),

Aumann and Maschler (1995), Cripps and Thomas (2003), Gossner and Vieille

(2003), Wiseman (2005), Ḧorner and Lovo (2009), Wiseman (2008), and Hörner,

Lovo, and Tomala (2009).3 Our work makes two extensions to this literature- first

to the case of unknown payoff functions and imperfectly observed actions but a

known monitoring technology, and from there to the case where the monitoring

structure is itself unknown. Our work is closest to that of Hörner and Lovo (2009)

and Ḧorner, Lovo, and Tomala (2009), as PTXE reduces to the belief-free equi-

libria they consider when actions are perfectly observed; we say more about these

papers in Fudenberg and Yamamoto (2009). PPXE is also related to belief-free

equilibria in repeated games with private monitoring, as in Piccione (2002), Ely

and V̈alimäki (2002), Ely, Ḧorner, and Olszewski (2005), Yamamoto (2007), Kan-

dori (2008), and Yamamoto (2009).4 However, unlike the belief-free equilibria in

those papers, the ex-post equilibria we consider do not require that players be in-

different, and so it is not subject to the robustness critiques of Bhaskar, Mailath,

and Morris (2008); this is what motivates our choice of a different name for the

3Cripps and Thomas (2003), Gossner and Vieille (2003), and Wiseman (2005) study
symmetric-information settings. In Aumann and Hart (1992), Aumann and Maschler (1995),
Hörner and Lovo (2009), Wiseman (2008), and Hörner, Lovo, and Tomala (2009), players re-
ceive private signals about the payoff functions and so can have different beliefs. (In Wiseman
(2008) the players privately observe their own realized payoff each period, in the other papers the
players do not observe their own realized payoffs, and the private signals are the players’ initial
information or “type.”

4Belief-free equilibria and the use of indifference conditions have also been applied to repeated
games with random matching (Takahashi (2008), Deb (2008)).
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concept.

2 Unknown Signal Structure and Perfect Public Ex-Post

Equilibria

2.1 Model

Let I = {1, · · · , I} represent the set of players. At the beginning of the game, Na-

ture chooses the state of the worldω from a finite setΩ = {ω1, ...,ωO}. Assume

that players cannot observe the true stateω, and letµ ∈ 4Ω denote the players’

common prior overω .5 For now we assume that the game begins with symmetric

information: Each player’s beliefs aboutω correspond to the prior. We relax this

assumption in Section 7.

Each period, players move simultaneously, with playeri ∈ I choosing an ac-

tion ai from a finite setAi . Given an action profilea = (ai)i∈I ∈ A ≡ ×i∈I Ai ,

players observe a public signaly from a finite setY according to the probabil-

ity function πω(a) ∈ 4Y; we call the functionπω the “monitoring technology.”

Playeri’s realized payoff isuω
i (ai ,y), so that her expected payoff conditional on

ω ∈Ω and ona∈ A is gω
i (a) = ∑y∈Y πω

y (a)uω
i (ai ,y); gω(a) denotes the vector of

expected payoffs associated with action profilea.

In the infinitely repeated game, players have a common discount factorδ ∈
(0,1). Let (aτ

i ,y
τ) be the realized pure action and observed signal in periodτ, and

denote playeri’s private history at the end of periodt ≥ 1 by ht
i = (aτ

i ,y
τ)t

τ=1.6

Let h0
i = /0, and for eacht ≥ 1, letHt

i be the set of allht
i . Likewise, a public history

up to periodt ≥ 1 is denoted byht = (yτ)t
τ=1, andHt denotes the set of allht . A

strategy for playeri is defined to be a mappingsi :
⋃∞

t=0Ht
i →4Ai . Let Si be the

set of all strategies for playeri, and letS=×i∈I Si . Note that the case of a known

5Because our arguments deal only with ex-post incentives, they extend to games without a
common prior. However, as Dekel, Fudenberg, and Levine (2004) argue, the combination of
equilibrium analysis and a non-common prior is hard to justify.

6As written, this formulation assumes that players do not observe their realized payoffs
uω

i (ai ,y), unless the realized payoff does not depend onω. Since we restrict attention to ex-
post equilibria, where players’ belief about the state do not matter, we do not need to impose this
restriction, with the exception of Lemma 9, where the restriction is explicitly stated. If players ob-
serve the realized payoff then playeri’s private history after periodt also includes(uω

i (aτ
i ,y

τ))t
τ=1.
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public monitoring structure corresponds to a single possible state,Ω = {ω}.
We define the set of feasible payoffs in a given stateω to be

V(ω)≡ co{(gω(a))|a∈ A}= {gω(η)|η ∈ ∆(A)};
where∆(A) is the set of all probability distributions overA: As in the standard

case of a game with a known monitoring structure, the feasible set is both the set

of feasible average discounted payoffs in the infinite-horizon game when players

are sufficiently patient and the set of expected payoffs of the stage game that

can be obtained when players use of a public randomizing device to implement

distributionη over the action profiles.

Next we define the set of feasible payoffs of the overall game to be

V ≡×ω∈ΩV(ω),

so that a pointv∈V = (vω1, · · · ,vωO) = ((vω1
1 , · · · ,vω1

I ), · · · ,(vωO
1 , · · · ,vωO

I )).
Note that a givenv∈V may be generated using different action distributions

η(ω) in each stateω. If players observeω at the start of the game and are very

patient then any payoff inV can be obtained by a state-contingent strategy of the

infinitely repeated game. Looking ahead, there will be equilibria that approximate

payoffs inV if the state isidentifiedby the signals, so that players learn it over

time. Note also that, even if players have access to a public randomizing device,

the set of feasible payoffs of the stage game is the smaller set

VC = {gω(η)|η ∈ ∆(A)}ω∈Ω,

because play in the stage game must be a constant independent ofω.

2.2 Perfect Public Ex-Post Equilibria

This paper studies a special class of Nash equilibria calledperfect public ex-post

equilibria or PPXE; this is an extension of the concept of perfect public equi-

librium that was introduced by FLM. Given a public strategy profiles∈ Sand a

public historyht ∈ Ht , let s|ht denote its continuation strategy profile afterht .

Definition 1. A strategysi ∈ Si is public if it depends only on public information,

i.e., for allt ≥ 1, ht
i =(aτ

i ,y
τ)t

τ=1∈Ht
i , andh̃t

i =(ãτ
i , ỹ

τ)t
τ=1∈Ht

i satisfyingyτ = ỹτ

for all τ ≤ t, si(ht
i) = si(h̃t

i). A strategy profiles∈ S is public if si is public for all

i ∈ I .
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Definition 2. A strategy profiles∈ S is aperfect public ex-post equilibriumif for

everyω ∈ Ω the profile is a perfect public equilibrium of the game with known

monitoring structureπω .7

Given a discount factorδ ∈ (0,1), let E(δ ) denote the set of PPXE payoffs,

i.e., E(δ ) is the set of all vectorsv = (vω
i )(i,ω)∈I×Ω ∈ RI×|Ω| such that there is a

PPXEs∈ Ssatisfying

(1−δ )E

(
∑
t=1

δ t−1gω
i (at)

∣∣∣∣∣s,ω

)
= vω

i

for all i ∈ I andω ∈Ω. Note thatv∈ E(δ ) specifies the equilibrium payoff for all

players and for all possible states. Note also that the set of PPXE can be empty,

in contrast to the case of perfect public equilibria of games with a known state.8

However, the conditions of our ex-post folk theorem imply that PPXE exist for

sufficiently large discount factors.

Because PPXE is an ex-post equilibrium concept, each player’s payoff in each

state must be at least the minmax value in that state. Letvω
i = minα−i maxai g

ω
i (ai ,α−i)

be the minmax payoff for playeri in stateω, and let

V∗ ≡ {v∈V|∀i ∈ I ,∀ω ∈Ω, vω
i ≥ vω

i }

be the subset of the feasible payoff state where each player receives at least her

minmax payoff in each state. ThenE(δ )⊆V∗.
By definition, any continuation strategy of a PPXE is also a PPXE. Thus any

PPXE specifies PPXE continuation play after each signaly, where the continua-

tion payoffsw(y) = (wω
i (y))(i,ω)∈I×Ω corresponding to this signal specify payoffs

for every player and every state. We will writeπω(α) ·wω
i for ∑yπω

y (α)wω
i (y),

which is playeri’s expected continuation payoff at stateω under action profile

α. This recursive structure of the equilibrium payoff set motivates the following

definition.
7That is, s is a public strategy, and for everyω ∈ Ω, and any public historyht ∈ Ht , the

continuation strategy profiles|ht is a Nash equilibrium of the “continuation game” corresponding
to {ht ,ω}. In this continuation game, players know that the state isω, and because all opponents
are using public strategies, each player can compute the expected payoff to any of their strategies
(public or private) even though{ht ,ω} is not the root of a proper subgame.

8With a known state, repeated play of a static Nash equilibrium is a perfect public equilibrium
of the repeated game. Similarly, repeated play of a static ex-post equilibrium is a PPXE, but static
ex-post equilibria need not exist.
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Forδ ∈ (0,1) andW⊆ RI×|Ω|, a pair(α ,v)∈ (×i∈I4Ai)×RI×|Ω| of an action

profile and a payoff vector isex-post enforceable with respect toδ andW if there

is a functionw = (wω)ω∈Ω : Y→W such that

vω
i = (1−δ )gω

i (α)+δπω(α) ·wω
i

for all i ∈ I andω ∈Ω, and

vω
i ≥ (1−δ )gω

i (ai ,α−i)+δπω(ai ,α−i) ·wω
i

for all i ∈ I , ω ∈Ω, andai ∈ Ai .

For eachδ ∈ (0,1), W ⊆ RI×|Ω|, andα ∈ ×i∈I4Ai , let B(δ ,W,α) denote the

set of all payoff vectorsv ∈ RI×|Ω| such that(α,v) is ex-post enforceable with

respect toδ andW. Let B(δ ,W) be a union ofB(δ ,W,α) over allα ∈ ×i∈I4Ai .

To prove our main results, we will use the fact that various useful properties

of PPE extend to PPXE.

Definition 3. A subsetW of RI×|Ω| is ex-post self-generating with respect toδ if

W ⊆ B(δ ,W).

Theorem 1. If a subsetW of RI×|Ω| is bounded and ex-post self-generating with

respect toδ thenW ⊆ E(δ ).

Proof. See the online supplementary materials. The proof is very similar to APS.

The key is that whenW is ex-post self-generating, the continuation payoffsw(y)
used to enforcev∈V ⊂ RI×|Ω| have the property that for eachy∈Y, the vector

w(y) ∈ RI×|Ω| can in turn be ex-post generated using a single next-period action

α (independent ofω) so that the strategy profile constructed by “unpacking” the

ex-post generation conditions does not directly depend onω. Q.E.D.

Definition 4. A subsetW of RI×|Ω| is locally ex-post generatingif for eachv∈W,

there existδv ∈ (0,1) and an open neighborhoodUv of v such thatW ∩Uv ⊆
B(δv,W).

Theorem 2. If a subsetW of RI×|Ω| is compact, convex, and locally ex-post gen-

erating, there isδ ∈ (0,1) such thatW ⊆ E(δ ) for all δ ∈ (δ ,1).

Proof. See the supplementary materials; this is a straightforward generalization

of FLM. Q.E.D.
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3 Examples

Before proceeding with the general analysis, we present several examples to illus-

trate properties of PPXE. The first two examples make special assumptions that

permit the explicit construction of PPXE strategies. The third and fourth exam-

ples are variants of a repeated partnership game. Here we use our non-constructive

techniques to show that whether incentive problems lead to inefficiency depends

on certain details of the information structure.

Example 1. There are two players,I = {1,2}, and two possible states,Ω =
{ω1,ω2}. In every stage game, player1 chooses an action fromA1 = {U,D},
while player2 chooses an action fromA2 = {L,R}. Their expected payoffsgω

i (a)
are as follows.

L R

U 2,2 0, 1

D 0,0 1, 1

L R

U 1,1 0, 0

D 1,0 2, 2

Here, the left table shows expected payoffs for stateω1, and the right table shows

payoffs for stateω2. Note that the feasible payoff set at stateω is full dimensional

for eachω, and so is the feasible payoff setV of the entire game. Suppose that the

set of possible public signals isY = A×Ω, and that the monitoring technology is

such thatπω
y (a) = ε > 0 for y, (a,ω), andπω

y (a) = 1−7ε for y = (a,ω).
Note that(U,L) is a static Nash equilibrium for each state. Hence, play-

ing (U,L) in every period is a PPXE, yielding the payoff vector((2,2),(1,1)).
Likewise, playing(D,R) in every period is a PPXE, yielding the payoff vector

((1,1),(2,2)). “Always (U,L)” Pareto-dominates “always(D,R)” for stateω1,

but is dominated for stateω2. Note that these equilibrium payoff vectors are in

VC, the set of feasible payoff vectors with a constant (state-independent) proba-

bility distribution over actions. LetY(ω1) be the set{y = (a,ω) ∈ Y|ω = ω1},
andY(ω2) be the set{y = (a,ω) ∈Y|ω = ω2}. Consider the following strategy

profile:

• In period one, play(U,L).

• If y∈Y(ω1) occurs in period one, play(U,L) afterwards.

• If y∈Y(ω2) occurs in period one, play(D,R) afterwards.
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After every one-period public historyh1∈H1, the continuation strategy profile

is a PPXE. Also, given any stateω ∈ Ω, nobody wants to deviate in period one,

since(U,L) is a static Nash equilibrium and players cannot affect the distribution

of the continuation play. Therefore, this strategy profile is a PPXE; its payoff

vector converges tov∗ = ((2−4ε,2−4ε),(2−4ε,2−4ε)) asδ → 1. Observe

thatv∗ <VC if ε ∈ (0, 1
8). In particular, this equilibrium approximates the efficient

payoff vector((2,2),(2,2)) as the noise parameterε goes to zero.

The idea of this construction is that continuation play depends on what players

have learned about the state. When players observey∈Y(ω1) and learn thatω1

is more likely, they choose “always(U,L),” which yields an efficient payoff(2,2)
in stateω1, but gives an inefficient outcome(1,1) in ω2. Likewise, when players

observey∈Y(ω2) and learn thatω2 is more likely, they choose “always(D,R)”
to achieve an efficient payoff(2,2) in stateω2 but an inefficient payoff inω1. In

this sense PPXE allows “utility transfers” across states.

Example 1 is misleadingly simple, because there is an ex-post equilibrium of

the static game, and for this reason there is a PPXE for all discount factors. It

is also very easy to construct equilibria that approximate efficient payoffs in this

example: simply specify that(U,L) is played forT periods, and then either(U,L)
or (D,R) is played forever afterwards, depending on which state is more likely. In

the next example there is no static ex-post equilibrium, and hence no PPXE for a

range of small discount factors.

Example 2. Now we consider the game where players can learn the true state

from observed signals. Suppose that there are two players and two states, so that

I = {1,2} andΩ = {ω1,ω2}. The payoffs for stateω1 are shown in the left panel,

and those for stateω2 in the right.

L R

U 1, 1 −1, 2

D 2,−1 0, 0

L R

U 0, 0 2,−1

D −1, 2 1, 1

Note that the stage game is prisoner’s dilemma for each state, but the role of

actions are reversed; specifically,(U,L) is efficient for stateω1 while (D,R) is

efficient for stateω2.

Assume that the set of possible public signals isY = A×Ω, and that the mon-

itoring technology is perfect:πω
y (a) = 1 if y = (a,ω), andπω

y (a) = 0 otherwise.
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As we will see, this example satisfies all of the full-rank conditions of our general

ex-post folk theorem, so in particular a PPXE exists, but our proof of the general

folk theorem is not constructive.

Because this example has perfect monitoring, it is easy to give an explicit con-

struction of a PPXE whose payoffs converge to the efficient frontier in each state.

The basic idea is to wait one period, learn the state, and play a subgame-perfect

equilibrium for the corresponding known-state game. However, the strategies used

in the construction need to be a bit more complicated, as the recursive nature of

PPXE requires that the strategies specify incentive compatible play following ev-

ery sequence of signals, including those that have probability 0 unless “Nature

deviates.”

Consider a strategy with the following four phases:

• Phase “Regularω1.” Players play(U,L), which gives the efficient payoffs

for stateω1. If y = ((U,L),ω1), stay. Ify = ((D,L),ω1), y = ((U,R),ω1),
or y = ((D,R),ω1), go to “Punishω1.” If y = ((U,L),ω2), go to “Regular

ω2.” Otherwise, go to “Punishω2.”

• Phase “Punishω1.” Players play(D,R), which gives the minimax payoffs

for stateω1. If y = ((D,R),ω2), go to “Regularω2.” If y = ((U,R),ω2),
y = ((D,L),ω2), or y = ((U,L),ω2), go to “Punishω2.” Otherwise, stay.

• Phase “Regularω2.” Players play(D,R), which gives the efficient payoffs

for stateω2. If y= ((D,R),ω2), stay. Ify= ((U,R),ω2), y= ((D,L),ω2), or

y= ((U,L),ω2), then go to “Punishω2.” If y= ((D,R),ω1), go to “Regular

ω1.” Otherwise, go to “Punishω1.”

• Phase “Punishω2.” Players play(U,L), which gives the minimax payoffs

for stateω2. If y = ((U,L),ω1), go to “Regularω1.” If y = ((D,L),ω1),
y = ((U,R),ω1), or y = ((D,R),ω1), go to “Punishω1.” Otherwise, stay.

It is straightforward to check that this strategy profile with initial state “Regu-

lar ω1” is a PTXE and approximates((2,2),(2,2)).

Claim 7 in the appendix shows how to extend the idea of this construction to

any case where actions and states are perfectly observed, and uses it to prove a

folk theorem for this observation structure.
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The next two examples are partnership games with two actions{Ci ,Di} per

player, corresponding to high and low effort on the group project. There are three

possible outcomesH, M, L, two states, and stage game payoffs that makeDi a

dominant strategy in each state. The probability distribution generated by(D1,D2)
is known and so independent of the state; what is unknown is the productivity of

high effort. Moreover the monitoring structure (or production function) in these

games is additive: the change in probabilities induced by playeri’s changing from

Ci to Di is the same regardless of the action of the other player.

Example 3. In this example the uncertainty is symmetric in the state: In stateω1,

if player1 choosesC1 instead ofD1 then the probabilities ofH andM increase by

pH andpM, while player2’s choice ofC2 increases the probabilities byqH andqM;

in stateω2, the roles are reversed. The realized payoff functions are independent

of ω and given by

ui(Ci ,y) = r i(y)−ei and ui(Di ,y) = r i(y)

for eachi ∈ I , ω ∈Ω, andy∈Y. We assume that for eachi ∈ I ,

r i(H) > r i(M) > r i(L),

ei > pH(r i(H)− r i(L))+ pM(r i(M)− r i(L)),

ei > qH(r i(H)− r i(L))+qM(r i(M)− r i(L)).

Here the left-hand side of the second inequality is the cost of player1’s choice of

C1 for stateω1 (or the cost of player2’s choice ofC2 for stateω2), and the right-

hand side is an increase in player1’s benefit from the project when he choosesC1

instead ofD1 for stateω1 (or an increase in player2’s benefit when he chooses

C2 for stateω2). Since the left-hand side is greater than the right-hand side, we

conclude thatD1 strictly dominatesC1 for stateω1, andD2 strictly dominatesC2

for stateω2. Likewise, the third inequality asserts thatD1 strictly dominatesC1

for stateω2, andD2 strictly dominatesC2 for stateω1. Thus,Di strictly dominates

Ci for each state. Moreover, we assume that for eachi ∈ I ,

ei < pH(r1(H)+ r2(H)− r1(L)− r2(L))+ pM(r1(M)+ r2(M)− r1(L)− r2(L))

and

ei < qH(r1(H)+ r2(H)− r1(L)− r2(L))+qM(r1(M)+ r2(M)− r1(L)− r2(L)),

12



so that choosingCi instead ofDi always increases the total surplus. Summing

up, the payoff matrix of the stage game corresponds to a prisoner’s dilemma for

each sate; hence,V∗ has a non-empty interior and(D1,D2) is a static ex-post

equilibrium.

Example 4. In this example, the state only influences the productivity of player

2’s effort: If player1 choosesC1 instead ofD1 then the probabilities ofH andM

increase bypH andpM, independent of the state. In contrast, if player2 chooses

C2 instead ofD2 then the probabilities ofH andM increase byqH andqM in state

ω1, but they increase only byβqH andβqM in stateω2, where0 < β < 1.

As in Example 3, the payoffs have the form

ui(Ci ,y) = r i(y)−ei and ui(Di ,y) = r i(y)

for eachi ∈ I andy∈Y. We once again impose restrictions on the realized payoffs

so that the stage game payoffs in each state correspond to a prisoner’s dilemma:

Di is a dominant strategy, so(D1,D2) is a static ex-post equilibrium,(C1,C2) is

efficient, andV∗ has a non-empty interior.9

In both of these examples, the conditions of FLM’s Theorem 6.1 apply in each

state considered in isolation, so if the state were known the folk theorem would

apply. Moreover in each example there are action profiles that reveal the state, in

the sense that the outcome distribution at that profile is different at stateω1 than

at stateω2. However our ex-post-threats folk theorem applies to Example 3, but

in Example 4 the folk theorem fails, and moreover PPXE payoffs can be bounded

away from efficiency.

As we will show, the key difference is that in Example 4, the two states are

“entangled” in the sense that for anyα1, the distributionπω2(α1,C2) is a convex

combination ofπω1(α1,C2) andπω2(α1,D2), while this is not the case in Example

3 provided thatα1 assigns positive probability toD1. Hence in Example 4, low-

ering the expected value of the continuation payoffs underπω2(α1,D2) (which

9The conditions on the payoffs are somewhat different here due to the difference in the
monitoring structure. Now we assumer i(H) > r i(M) > r i(L); e1 > pH(r1(H) − r1(L)) +
pM(r1(M)− r1(L)); e2 > qH(r2(H)− r2(L)) + qM(r2(M)− r2(L)); e1 < pH(r1(H) + r2(H)−
r1(L)− r2(L)) + pM(r1(M) + r2(M)− r1(L)− r2(L)); and e2 < βqH(r1(H) + r2(H)− r1(L)−
r2(L))+βqM(r1(M)+ r2(M)− r1(L)− r2(L)).
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can be necessary to provide incentives) also lowers the continuation payoffs un-

derπω2(α1,C2), and this bounds the set of PPXE payoffs away from the efficient

frontier.

4 Characterizing E(δ )

4.1 Using Linear Programming to BoundE(δ )

In this subsection, we provide a bound on the set of PPXE payoffs that holds

for any discount factor; the next subsection shows that this bound is tight as the

discount factor converges to one.

Consider the following linear programming problem. Letα ∈ ×i∈I4Ai , λ ∈
RI×|Ω|, andδ ∈ (0,1).

(LP-Average) k∗(α ,λ ,δ ) = max
v∈RI×|Ω|

w:Y→RI×|Ω|

λ ·v subject to

(i) vω
i = (1−δ )gω

i (α)+δπω(α) ·wω
i

for all i ∈ I andω ∈Ω,

(ii) vω
i ≥ (1−δ )gω

i (ai ,α−i)+δπω(ai ,α−i) ·wω
i

for all i ∈I , ω ∈Ω, andai ∈ Ai ,

(iii) λ ·v≥ λ ·w(y) for all y∈Y.

If there is no(v,w) satisfying the constraints, letk∗(α ,λ ,δ ) = −∞. If for ev-

ery K > 0 there is(v,w) satisfying all the constraints andλ · v > K then let

k∗(α ,λ ,δ ) = ∞.

Here condition (i) is the “adding-up” condition, condition (ii) is ex-post in-

centive compatibility, and condition (iii) requires that the continuation payoffs lie

in half-space corresponding to direction vectorλ and payoff vectorv. Note that

whenλ ω
i , 0 andλ ω̃

j , 0 for someω , ω̃, condition (iii) allows “utility trans-

fer” across states. This utility transfer is the most significant way that LP-average

differs from the linear program in FL, so we will discuss it in more detail below.

As we show in Lemma 1(a), the valuek∗(α ,λ ,δ ) is independent ofδ , so that

we denote it byk∗(α,λ ). Now let

k∗(λ ) = sup
α

k(α,λ )
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be the highest score that can be approximated in directionλ by any choice ofα.

For eachλ ∈ RI×|Ω| \{0} andk∈ R, let H(λ ,k) = {v∈ RI×|Ω||λ ·v≤ k}. For

k = ∞ or λ = 0, let H(λ ,k) = RI×|Ω|. For k = −∞ andλ , 0, let H(λ ,k) = /0.

Then, let

H∗(λ ) = H(λ ,k∗(λ ))

be the maximal half-space in directionλ , and set

Q =
⋂

λ∈RI×|Ω|
H∗(λ ).

Lemma 1.

(a) k∗(α,λ ,δ ) is independent ofδ .

(b) If (λ ω
i )i∈I , 0 for someω and (λ ω̃

i )i∈I = 0 for all ω̃ , ω thenk∗(λ ) ≤
supα λ ·g(α).

(c) If λ ω
i < 0 for some(i,ω) andλ ω̃

j = 0 for all ( j, ω̃) , (i,ω) thenk∗(λ ) ≤
λ ω

i vω
i .

(d) ConsequentlyQ⊆V∗.

Proof. As in past work, part (a) follows from the fact that the constraint set in

(iii) is a half-space: If(v,w) satisfies constraints (i) through (iii) in LP-Average

for (α,λ ,δ ), then (v, w̃) satisfies the constraints for(α,λ , δ̃ ), where w̃(y) =
δ̃−δ

δ̃ (1−δ )
v+ δ (1−δ̃ )

δ̃ (1−δ )
w(y). Let Λ∗ be the set ofλ ∈ RI×|Ω| such that(λ ω

i )i∈I , 0

for someω ∈ Ω and(λ ω̃
i )i∈I = 0 for all ω̃ , ω. Since parts (b) and (c) consider

a single stateω they follow from FL Lemma 3.1. Thus
⋂

λ∈Λ∗ H∗(λ ) ⊆V∗, and

part (d) follows fromQ⊆⋂
λ∈Λ∗ H∗(λ ). Q.E.D.

Since we already know thatE(δ ) ⊆V∗, part (d) of this lemma shows thatQ

is “not too big”: it doesn’t contain any payoff vector we can rule out ona priori

grounds. The next lemma shows thatQ is “big enough” to contain all the payoffs

of PPXE.

Lemma 2. For everyδ ∈ (0,1), E(δ ) ⊆ E∗(δ ) ⊆ Q, whereE∗(δ ) is the convex

hull of E(δ ).
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Proof. The proof is the same as in Fudenberg, Levine, and Takahashi (2007);

we restate it in the supplementary materials to make it easy to see that the proof

applies to the present setting. Q.E.D.

To help explain the role of cross-state utility transfers, we will show that the

conclusion of Lemma 2 does not hold if constraint (iii) is replaced by the uniform-

over-states version

(iii ′) ∑
i∈I

λ ω
i vω

i ≥∑
i∈I

λ ω
i wω

i (y) for all ω ∈Ω andy∈Y.

The resulting “uniform” LP problem corresponds to a form of ex-post enforce-

ability on half-spaces. This condition is too restrictive to capture all of the payoffs

of PPXE, as shown by the combination of the following claim and the example

that follows it.

Claim 1. In the LP-Uniform problem formed by replacing (iii) in LP-Average with

(iii ′), the solutionkU(α ,λ ,δ ) satisfieskU(α,λ ,δ ) ≤ λ ·g(α) for eachα andλ .

Therefore,kU(λ ,δ ) ≡ supα kU(α ,λ ,δ ) ≤ supα λ · g(α), and the corresponding

set of payoffsQU is a subset of the payoffsVC that can be attained with actions

that are independent of the state.

Proof. Inspection of the constraints in the LP-Uniform problem shows that it

is equivalent to solving a separate LP problem for each stateω ∈ Ω in isola-

tion. As FL show, a solution to the LP problem for given(α,ω) cannot ex-

ceed∑i∈I λ ω
i gω

i (α). Therefore,kU(α ,λ ,δ ), the maximal score in LP-Uniform

for a givenα , is at most∑ω∈Ω ∑i∈I λ ω
i gω

i (α) = λ ·g(α), sosupα kU(α ,λ ,δ ) ≤
supα λ ·g(α). Q.E.D.

In both Examples 1 and 2, we constructed PPXE with payoffs outside ofVU .

4.2 Computing the Limit of E(δ ) as Players Become Patient

Now we show that the setE(δ ) of PPXE payoffs expands to equal all ofQ as the

players become sufficiently patient, provided that a full-dimensionality condition

is satisfied. For each setB, let intB denote the interior ofB, and bdB denote the

boundary ofB.
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Definition 5. A subsetW of RI×|Ω| is smoothif it is closed and convex; it has a

non-empty interior; and there is a unique unit normal for each point on bdW.10

Lemma 3. For any smooth strict subsetW of Q, there isδ ∈ (0,1) such that

W ⊆ E(δ ) for δ ∈ (δ ,1).

Proof. From lemma 1(d),Q is bounded, and henceW is also bounded. With this

fact in hand, the rest of the proof is standard; we include it in the supplementary

materials for completeness. Q.E.D.

Because any full-dimensional convex subset ofRI×|Ω| can be approximated

arbitrarily closely by a smooth subset,11 this lemma together with Lemma 2 proves

the following theorem.

Theorem 3. If dimQ = I ×|Ω| thenlimδ→1E(δ ) = Q.

It is possible thatdimQ< I×|Ω|, so that this theorem does not apply, but that

limδ→1E(δ ) , /0. A trivial example of this occurs when the stateω has no effect

on either the monitoring structure or the payoffs, so that it cannot possibly be

observed, but is simply a nuisance parameter. In this caseE(δ ) is a subset of the

spaceVU of payoff that can be generated with actions that are independent of the

state, soQ⊆ E(δ ) has dimension at mostI . The solution is obviously to ignore

the state and characterize the perfect public equilibria of the game where (any)ω
is known; these equilibria correspond to the full set of PPXE of the game with

the noise parameter added. More generally, the full-dimension conditions could

fail due to the imperfect observability ofω , but ω might matter for the payoff

functions. In this case one might be able to characterizelimδ→1E(δ ) using an

extension of the iterative algorithm in Fudenberg, Levine, and Takahashi (2007),

but this remains a topic for future research.

5 A Perfect Ex-Post Folk Theorem

In this section we give simple and easy-to verify sufficient conditions for a folk

theorem to hold in PPXE. This theorem shows that any map from states of the
10A sufficient condition for each point on bdW to have a unique unit normal is that bdW is a

C2-submanifold ofRI×|Ω|.
11This is a standard result, see e.g. Fudenberg, Levine, and Takahashi (2007) Lemma A.1 for a

proof.
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world to feasible and individually rational payoffs in that state can be approxi-

mated by equilibrium payoffs as the discount factor goes to1, and in particular by

payoffs of a PPXE. More formally, our folk theorem gives conditions under which

limδ→1E(δ ) = V∗.12 When this is true, so that efficient payoffs can be approx-

imated by PPXE, the payoffs do not provide much incentive for players to play

other sorts of equilibria or to try to change the monitoring structure. On the other

hand, when the set of PPXE is empty, or when all PPXE are far from efficient

but there are efficient sequential equilibria, the payoffs do provide an incentive for

change, and the PPXE restriction might be less compelling.

Since we have already shown thatQ⊆V∗ and thatlimδ→1E(δ ) = Q under the

full-dimension condition, it remains to show thatV∗ ⊆ Q, which is equivalent to

showing thatk∗(λ )≥maxv∈V∗ λ ·v for each directionλ . Our sufficient conditions

are actually stronger than that: they will imply thatk∗(λ ) = ∞ for directionsλ
with non-zero components in two or more states. Conversely, the folk theorem

fails if there is aλ such thatk∗(λ ) < maxv∈V∗ λ ·v; we use this fact in Example 4

below.

For eachi ∈ I , α ∈ ×i∈I4Ai , andω ∈Ω, let Π(i,ω)(α) be a matrix with rows

(πω
y (ai ,α−i))y∈Y for all ai ∈ Ai .

Definition 6. Profile α has individual full rank for (i,ω) if Π(i,ω)(α) has rank

equal to|Ai |. Profileα hasindividual full rank if it has individual full rank for all

players and all states.

Individual full rank implies that at each state, every possible deviation of any

one player leads to a statistically different distribution on outcomes; on this con-

dition there are continuation payoffs that make every player indifferent between

all actions. However, as we discuss in Section 6, many of our results hold under

weaker but harder-to-verify conditions.

Let Π(i,ω)( j,ω̃)(α) be a matrix constructed by stacking matricesΠ(i,ω)(α) and

Π( j,ω̃)(α).

Definition 7. For each(i,ω) and( j,ω) satisfyingi , j, profile α haspairwise

full rank for (i,ω) and( j,ω) if Π(i,ω)( j,ω)(α) has rank equal to|Ai |+ |A j |−1.

12Recall thatV∗ ≡ {v∈V|∀i ∈ I ,∀ω ∈Ω, vω
i ≥ vω

i }.
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Pairwise full rank implies that deviations by playeri can be distinguished from

deviations by j. It is satisfied for generic distributions on outcomes provided

that the number of outcomes is at least|Ai |+ |A j |−1. In the partnership games

of Examples 3 and 4, each player has two actions, and there are three possible

outcomes. This is why the folk theorem can apply there when the state is known

With only two signals, as in Radner, Myerson, and Maskin (1986), equilibrium

payoffs are bounded away from efficiency uniformly in the discount factor.

Definition 8. For each(i,ω) and( j, ω̃) satisfyingω , ω̃, profileα hasstatewise

full rank for (i,ω) and( j, ω̃) if Π(i,ω)( j,ω̃)(α) has rank equal to|Ai |+ |A j |.

Note that both pairwise full rank and statewise full rank imply individual full

rank. Note also that the pairwise full rank conditions require as many outcomes

as required by pairwise full rank in FLM, and the statewise full rank conditions

require at most twice as many outcomes.13 Once again, these conditions are sat-

isfied by generic distributions on outcomes provided that the number of outcomes

is as large as the number of rows that need to be linearly independent.

The statewise full rank condition guarantees that the observed signals will re-

veal the state, regardless of the play of playeri in stateω and the play of player

j (possibly equal toi) in stateω̃, assuming that everyone else plays according to

α. This condition is more restrictive than necessary for the existence of a strat-

egy that allows the players to learn the state: For that it would suffice that there

be a single profileα where the distributions on signals are all distinct, which

requires only two signals.14 On the other hand, the condition is less restrictive

than the requirement that the state is revealed to an outside observer even if a

pair of players deviates. For example, statewise full rank is consistent with a sig-

nal structure where a joint deviation by players1 and2 could conceal the state

from the outside observer, as in a two-player game withA1 = A2 = {L,R} and

πω
y (L,R) = π ω̃

y (R,L). Intuitively, since equilibrium conditions only test for uni-

lateral deviations, the statewise full rank condition is sufficient for the existence

of an equilibrium where the players eventually learn the state. In Section 6, we

13If all players have the same numberD of actions, statewise full rank requires2D signals,
which is one more than in FLM; if one player has more thanD > 2 actions and all other players
have two actions, statewise full rank requires2D actions as opposed toD+2−1 = D+1.

14Note that players only need to distinguish between a finite set of signal distributions, and not
between all possible convex combinations of them.
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introduce the more complicated but substantially weaker condition of statewise

distinguishability, and show that it is sufficient for a static-threat version of the

folk theorem.

The following is an ex-post folk theorem. Note that the set of assumptions of

this theorem is generically satisfied if|Y| ≥ 2|Ai | for all i ∈ I .

Condition IFR. Every pure action profile has individual full rank.

Condition PFR. For each(i,ω) and ( j,ω) satisfying i , j, there is an action

profile α that has pairwise full rank for(i,ω) and( j,ω).

Condition SFR. For each(i,ω) and( j, ω̃) satisfyingω , ω̃ , there is an action

profile α that has statewise full rank.

Theorem 4. Suppose that (IFR), (PFR), and (SFR) hold. Then, for any smooth

strict subsetW of V∗, there isδ ∈ (0,1) such thatW ⊆ E(δ ) for all δ ∈ (δ ,1).

The following lemmas are useful in this proof.

Lemma 4. Suppose that (PFR) holds. Then there is an open and dense set of

profiles each of which has pairwise full rank for all(i,ω) and ( j,ω) satisfying

i , j .

Proof. Analogous to that of Lemma 6.2 of FLM. Q.E.D.

Lemma 5. Suppose that (IFR) holds. Then for anyi ∈ I , ω ∈Ω, andε > 0, there

is a profileαω such thatαω
i ∈ argmaxαi g

ω
i (αi ,αω

−i); |gω
i (αω)−vω

i |< ε; andαω

has individual full rank for all( j, ω̃) , (i,ω).

Proof. Analogous to that of Lemma 6.3 of FLM. Q.E.D.

Lemma 6. Suppose that a profileα has statewise full rank for(i,ω) and ( j, ω̃)
satisfyingω , ω̃ and thatα has individual full rank for all players and states.

Thenk∗(α ,λ ) = ∞ for directionλ such thatλ ω
i , 0 andλ ω̃

j , 0.

Remark 1. Becausek∗(α,λ )≤ λ ·g(α) in the known-monitoring-structure case

of FL, this lemma shows a key difference between that setting and the uncertain

monitoring structure case we consider here. The idea is that under statewise full

rank, the continuation payoffs in such half-spaces can give playeri a very large
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payoff in stateω by giving playerj a very low payoff in that state, while reversing

this transfer in statẽω.

The appendix has a direct proof of this lemma that some readers have found

opaque; the proof we present below is less concise but more revealing.

Proof. Assume to begin with that each player has only two actions,Ai = {a′i ,a′′i }
andA j = {a′j ,a′′j }, and consider the special case of a directionλ such thatλ ω

i =
λ ω̃

j = 1 and all other components ofλ are zero. Constraints (i) and (ii) for(l ,ω)∈
I ×Ω\{(i,ω),( j, ω̃)} can be satisfied by some choice of(wω

l (y))y∈Y because of

individual full rank, and constraint (iii) is vacuous for these coordinates. So the

LP problem reduces to finding(wω
i (y))y∈Y and(wω̃

j (y))y∈Y to solve

k∗(α,λ ,δ ) =max
v,w

vω
i +vω̃

j subject to

vω
i = (1−δ )gω

i (α)+δπω(α) ·wω
i ,

vω̃
j = (1−δ )gω̃

j (α)+δπ ω̃(α) ·wω̃
j ,

vω
i ≥ (1−δ )gω

i (ai ,α−i)+δπω(ai ,α−i) ·wω
i , ∀ai ∈ Ai

vω̃
j ≥ (1−δ )gω̃

j (a j ,α− j)+δπ ω̃(a j ,α− j) ·wω̃
j , ∀a j ∈ A j

vω
i +vω̃

j ≥ wω
i (y)+wω̃

j (y), ∀y∈Y.

We claim thatk∗(α,λ ,δ ) = ∞ if α has statewise full rank. It suffices to show

that for any sufficiently largevω
i andvω̃

j , there exist(wω
i (y),wω̃

j (y))y∈Y that satisfy

the first four constraints with equalities and

wω
i (y)+wω̃

j (y) = 0, ∀y∈Y.

Eliminate this last equation by solving forwω̃
j (y). Then the coefficient matrix for

the set of the remaining four equations is




(πω
y (a′i ,α−i))y∈Y

(πω
y (a′′i ,α−i))y∈Y

(π ω̃
y (a′j ,α− j))y∈Y

(π ω̃
y (a′′j ,α− j))y∈Y




The statewise full rank condition guarantees that this matrix has rank four, so the

system has a solution for any(vω
i ,vω̃

j ), and thusk∗(α,λ ) = ∞. Intuitively, this

construction makeswω
i (y) large for signalsy that are more likely under in stateω
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than in stateω̃ and makeswω
i (y) negative for signals that are more likely under

ω̃, while keeping playeri indifferent between all actions in stateω, and playerj

indifferent in stateω̃. This would not be possible if the signal distribution were

the same at the two states, or more generally if the above matrix were singular.

This example only explains why thek∗ can be made arbitrarily large when

exactly two components ofλ are non-zero, but we can use this construction to

obtain arbitrarily high scores in any directionλ that gives non-zero weight to

two or more states. For example, suppose thatλ ω
i = λ ω̃

j = λ ω
l = 1 and other

components are zero. First, choose(vω
i ,vω̃

j ,wω
i ,wω̃

j ) as in the above example, so

that constraints (i) and (ii) for(i,ω) and( j, ω̃) are satisfied,vω
i andvω̃

j are large,

andwω
i (y) + wω̃

j (y) = 0 for all y ∈ Y. What remains is to findwω
l that satisfy

constraints (i) and (ii) for(l ,ω) and the feasibility constraint

vω
i +vω̃

j +vω
l ≥ wω

i (y)+wω̃
j (y)+wω

l (y), ∀y∈Y.

The individual full rank condition implies there iswω
l (y) that satisfies constraints

(i) and (ii), and sincewω
i (y)+wω̃

j (y) = 0 andvω
i +vω̃

j can be arbitrarily large, the

feasibility constraint can be satisfied for any value ofwω
l (y).

Finally, although the argument above assumes each player has two actions, it

can easily be extended: In general after eliminatingwω̃
j (y) there will be|Ai |+ |A j |

equations to be satisfied, and the statewise full rank condition assures that the

coefficient matrix of the system of these equations has full rank. Therefore the

system has a solution for any(vω
i ,vω̃

j ) and hencek∗(α,λ ) = ∞ as before. Q.E.D.

Lemma 7. Suppose that profileα has pairwise full rank for all(i,ω) and( j,ω)
satisfyingi , j . Fix a directionλ such that for someω, λ ω

i is non-zero for at least

two i, andλ ω̃
i = 0 for all i ∈ I andω̃ , ω. Thenk∗(α ,λ ) = λ ·g(α).

Proof. It follows from Lemma 1(b) thatk∗(λ ,α) ≤ λ ·g(α). Thus, in what fol-

lows, we establish thatk∗(λ ,α)≥ λ ·g(α). To do so, we need to show that there

exist continuation payoffs inH(λ ,λ ·g(α)) that enforce(α ,g(α)).
As in the proof of Lemma 6, for eachi ∈ I andω̃ , ω, there exist(wω̃

i (y))y∈Y

such that

vω̃
i = (1−δ )gω̃

i (ai ,α−i)+δπ ω̃(ai ,α−i) ·wω̃
i

for all ai ∈ Ai . Moreover, it follows from Lemmas 4.3, 5.3, and 5.4 of FLM that
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there exist(wω
i (y))(i,y) such that

vω
i = (1−δ )gω

i (ai ,α−i)+δπω(ai ,α−i) ·wω
i

for all i ∈ I andai ∈ Ai , and

λ ·w(y) = ∑
i∈I

λ ω
i wω

i (y) = ∑
i∈I

λ ω
i vω

i = λ ·v.

Obviously, the specified continuation payoffs are inH(λ ,λ · g(α)) and enforce

(α ,g(α)), as desired. Q.E.D.

Lemma 8. Suppose thatα has individual full rank for all( j, ω̃) , (i,ω) and has

the best-response property for playeri and for stateω. Thenk∗(α,λ ) = λ ·g(α)
for directionλ such thatλ ω

i , 0 andλ ω̃
j = 0 for all ( j, ω̃) , (i,ω).

Proof. This is a straightforward generalization of Lemmas 5.1 and 5.2 of FLM.

Q.E.D.

Proof of Theorem 4.From Lemma 3, it suffices to show thatQ = V∗. To do so,

we will compute the maximum scorek∗(λ ) for each directionλ .

Case 1. Considerλ such thatλ ω
i , 0 and λ ω̃

j , 0 for someω̃ , ω and i

possibly equal toj. In this case, players can transfer utilities across different

statesω andω̃ while maintaining the feasibility constraint and this construction

allowsk∗(α ,λ ,δ ) > λ ·g(α), as Example 1 shows. In particular, from (SFR) and

Lemma 6 we obtaink∗(λ ) = ∞ for this directionλ .

Case 2. Considerλ such that(λ ω
i )i∈I has at least two non-zero components

for someω while λ ω̃
i = 0 for all i∈ I and ω̃ , ω . Lemma 4 shows that every

profileα can be approximated arbitrarily closely by a profile that has pairwise full

rank for all players, and it follows from Lemma 7 thatk∗(λ ) = supα k∗(λ ,α) =
maxv∈V λ ·v.

Case 3. Considerλ such thatλ ω
i , 0 for some(i,ω) andλ ω̃

j = 0 for all ( j, ω̃),
(i,ω). Suppose first thatλ ω

i > 0. Since every pure action profile has individual

full rank, a∗ ∈ argmaxa∈Agω
i (a) also has individual full rank. Therefore, from

Lemma 8,

k∗(λ )≥ k∗(a∗,λ ) = λ ω
i gω

i (a∗) = max
v∈V

λ ·v.
On the other hand, from Lemma 1(b),k∗(λ ) ≤ maxv∈V λ · v. Hence, we have

k∗(λ ) = maxv∈V λ ·v.
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Next, suppose thatλ ω
i < 0. It follows from Lemmas 5 and 8 that for every

ε > 0, there is a profileαω such that|k∗(αω ,λ )−λ ω
i vω

i |< ε. Lemma 3.2 of FL

shows thatk∗(λ )≤ λ ω
i vω

i , sok∗(λ ) = λ ω
i vω

i .

Combining these cases, we obtainQ = V∗. Q.E.D.

6 A Static-Threats Folk Theorem

In this section we present an alternative theorem that uses weaker informational

conditions to prove a “static-threats” folk theorem, meaning that the theorem only

ensures the attainability of payoffs that Pareto-dominate the payoffs of a static ex-

post equilibrium. Consequently, this theorem assume that a static ex-post equi-

librium exists. This is always true when the state only matters for the monitoring

structure but has no impact on the expected payoffs (that isgω(a) = g(a)), and

it is also satisfied for generic payoff functionsg when the state has a sufficiently

small impact on the payoff function. Several of our other assumptions in this sec-

tion seem more likely to be satisfied if the uncertainty is “small,” though that is

not necessary, as shown by Example 3.

Definition 9. For each(i,ω) and( j,ω) satisfyingi , j, profileα is pairwise iden-

tifiable for(i,ω) and( j,ω) if rankΠ(i,ω)( j,ω)(α)= rankΠ(i,ω)(α)+rankΠ( j,ω)(α)−
1.

This is the same as the FLM definition of pairwise identifiability. Note that

it does not require individual full rank, so that a given player may have several

actions that generate the same signal distributions, and not all actions need be

enforceable.

We say thatα is ex-post enforceable if it is ex-post enforceable with respect to

RI×|Ω| andδ for someδ ∈ (0,1). This is equivalent toα being enforceable with

respect toRI andδ for each information structureπω in isolation.

Condition X-Eff. If pure action profilea gives a Pareto-efficient payoff vector

for someω ∈Ω, it is ex-post enforceable.

FLM show that any Pareto-efficient action profile is enforceable. (X-Eff) ex-

tends this to ex-post enforceability, so it is automatically satisfied when there is a

single state.
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Condition U-Eff. If pure action profilea gives a Pareto-efficient payoff vector

for someω̃ ∈Ω then it gives a Pareto-efficient payoff vector for everyω.

(U-Eff) says roughly that efficient actions are uniformly efficient. It is typ-

ically satisfied if the stage-game payoffsgω
i (a) aren’t too sensitive to the state,

which in turn will be the case if the realized payoffsuω
i (y,ai) are insensitive to

ω and the various distributionsπω are sufficiently similar. (It can also be satis-

fied when the distributionsπω differ substantially, depending on the details of the

functionsuω
i .) The condition is satisfied in the partnership games in Examples 3

and 4, where(C,C) is the efficient profile in both states.

Condition PID. For each(i,ω) and( j,ω), every pure action profile is pairwise

identifiable for(i,ω) and( j,ω).

(PID) is stronger than needed, it is sufficient that it applies to the pure action

profiles that yield Pareto-efficient payoffs.

Lemma 9. If uω
i (y,ai) is independent ofω and (U-Eff) holds then (X-Eff) holds.

Proof. Because each player’s payoff depends only on their own action and the

realized signal, Lemma 6.1 of FLM applied to each stateω in isolation implies

that profilea is enforceable for eachω. Q.E.D.

As argued, statewise full rank can require that there be twice as many signals

as required by the FLM folk theorem. The following, more complex, condition

can be satisfied with far fewer signals. In part, this condition is related to the fact

that linear independence of the outcome distributions is not needed for an action

profile to be enforceable, as linear independence tests all linear combinations of

the distributions, while it is sufficient to rule out convex combinations.15

Definition 10. Profile α statewise distinguishes(i,ω) from ( j, ω̃) if there is a

vectorξ = (ξ (y))y∈Y ∈ R|Y| such that

(i) πω(α) ·ξ > π ω̃(α) ·ξ ,

15See Kandori and Matsushima (1998). In the study of mechanism design with transferable util-
ity, Kosenok and Severinov (2008) and Rahman and Obara (2008) gave a weaker sufficient condi-
tion for budget-balanced implementation; the balanced-budget constraint roughly corresponds to
directionsλ where every component is strictly positive.
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(ii) πω(α) ·ξ = πω(ai ,α−i) ·ξ ≥ πω(ãi ,α−i) ·ξ for all ai ∈ suppαi andãi ∈Ai ,

(iii) π ω̃(α) ·ξ = π ω̃(a j ,α− j) ·ξ for all a j ∈ A j .

We illustrate these conditions in Figure 1. Clause (i) implies that the signals

generated byα statistically distinguishω from ω̃ . Clearly, there must be some

such profile for there to be equilibria where the play varies with the state. Clause

(ii) says that changing playeri’s continuation payoff function in stateω from

wω
i (y) to wω

i (y)+ ξ (y) preserves incentive compatibility for playeri, and clause

(iii) says that the change in playeri’s continuation payoff (of∆wω
i (y) ≡ ξ (y))

can be offset to preserve the feasibility constraint (λ ω
i ∆wω

i (y)+ λ ω̃
j ∆wω̃

j (y) = 0)

without changing playerj ’s expected continuation payoff to any action. Note

that this transfer scheme increases playeri’s expected continuation payoff by

E[∆wω
i |α] ≡ πω(α) · ξ , so the maximal score forλ with λ ω

i > 0 can be made

infinitely large by utility transfer between statesω from ω̃ .16

πω(α)

πω(ai ,α−i)

πω(ãi ,α−i)

π ω̃(α)

π ω̃(a j ,α− j)

ξ
Loss by deviating tõai

More continuation payoffsE[∆wω
i |a]

Figure 1: Statewise Distinguishability.

Condition SD. For each(i,ω) and( j, ω̃) satisfyingω , ω̃, there is an ex-post

enforceable action profileα that statewise distinguishes(i,ω) from ( j, ω̃).

(SD) is sufficient for the static-threat folk theorem, as it implies that profileα
can generate an infinite score in all of the required “cross-state” directions.

16If λ ω
i < 0, then playeri’s continuation payoff must be decreased to achieve a high score. This

requires a different sort of transfer and in turn requires a different condition on the information
structure, but this condition is not needed for a static-threats folk theorem.
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Theorem 5. Suppose that (PFR) holds or (X-Eff) and (PID) hold. Suppose also

that (SD) holds. Assume that there is a static ex-post equilibriumα0, and let

V0≡ {v∈V|∀i ∈ I∀ω ∈Ω vω
i ≥ gω

i (α0)}. Then, for any smooth strict subsetW

of V0, there isδ ∈ (0,1) such thatW ⊆ E(δ ) for all δ ∈ (δ ,1).

This theorem is established by the following lemmas that determine the max-

imal scorek∗ in various directions. The next lemma says that score of a static

ex-post equilibrium can be enforced in any direction; this score will be used to

generate the score in directions that minimize a player’s payoff.

Lemma 10.Suppose that there is a static ex-post equilibriumα0. Thenk∗(α0,λ )≥
λ ·g(α0) for any directionλ .

Proof. Let vω
i = wω

i (y) = gω
i (α0) for all i ∈ I , ω ∈Ω, andy∈Y. Then, this(v,w)

satisfies constraints (i) through (iii) in LP-Average, andλ ·v = λ ·g(α0). Hence,

k∗(α0,λ )≥ λ ·g(α0). Q.E.D.

The next lemma determines the maximal score for directionλ that considers a

single stateω and has a positive component or at least two non-zero components,

when (X-Eff) holds.

Lemma 11.

(a) Suppose that (PFR) or (X-Eff) and (PID) hold, and that profilea gives

Pareto-efficient payoffs for someω ∈Ω. Thenk∗(a,λ ) = λ ·g(a) for direc-

tion λ such that(λ ω
i )i∈I has at least two non-zero components whileλ ω̃

j = 0

for all j ∈ I andω̃ , ω.

(b) Suppose that (PFR) or (X-Eff) and (PID) hold. Thenk∗(λ ) = maxv∈V λ ·v
for directionλ such thatλ ω

i > 0 andλ ω̃
j = 0 for all ( j, ω̃) , (i,ω).

Proof. Part (a). Lemma 1(b) shows that the maximum score in directionλ is at

mostλ ·g(a). Becausea is a pure action profile, and it is enforceable for allω and

pairwise identifiable from (X-Eff) and (PID), is enforceable on hyperplanes cor-

responding toλ from Theorem 5.1 of FLM, so the scoreλ ·g(a) can be attained.

If (PFR) holds this follows from Lemmas 4 and 7.

Part (b). Leta be a Pareto-efficient profile that maximizes playeri’s payoff in

stateω. If (X-Eff) holds, a is ex-post enforceable, and since the profile has the
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best-response property in stateω, Lemma 5.2 of FLM implies it is enforceable on

λ . If (PFR) holds, this follows from Lemma 8. Q.E.D.

The following lemma shows that (SD) is sufficient for the maximal score to be

infinite in every cross-state directionλ that has at least one positive component.

See the appendix for the proof.

Lemma 12. Suppose thatα is ex-post enforceable and statewise distinguishes

(i,ω) from ( j, ω̃). Thenk∗(α ,λ ) = ∞ for directionλ such thatλ ω
i > 0 andλ ω̃

j ,
0.

We now apply these concepts to demonstrate the differences between the two

partnership games that we introduced in Section 3.

Example 3. Recall Example 3 from Section 3, where the effect of the uncertainty

is symmetric across states and players: In stateω1, if player1 choosesC1 instead

of D1 then the probabilities ofH andM increase bypH andpM, while player2’s

choice ofC2 increases the probabilities byqH andqM; in stateω2, the roles are

reversed. Note that individual full rank is satisfied, and that pairwise full rank is

satisfied at every profile and every state if the matrix
(

pH pM

qH qM

)

has full rank. For example, the matrixΠ(1,ω1)(2,ω1)(D1,C2) is represented by




oH +qH oM +qM 1− (oH +qH +oM +qM)
oH + pH +qH oM + pM +qM 1− (oH + pH +qH +oM + pM +qM)

oH +qH oM +qM 1− (oH +qH +oM +qM)
oH oM 1− (oH +oM)


 ,

and this matrix has rank three if the above two-by-two matrix has full rank. There-

fore, the profile(D1,C2) has pairwise full rank for(1,ω1) and (2,ω1). On the

other hand, statewise full rank is not satisfied at any profile, as there are only

three signals, while four signals would be needed to satisfy this stronger condi-

tion. Nevertheless, we will show that the static-threat folk theorem holds in this

example, because statewise distinguishability is satisfied.
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Claim 2. In Example 3,(D1,C2) statewise distinguishes(i,ω) from ( j, ω̃) satis-

fying ω , ω̃.

Proof. First, consider((i,ω),( j, ω̃)) = ((1,ω1),(2,ω2)). In this case, letξ =
(ξ (y))y∈Y be a solution to the system

pHξ (H)+ pMξ (M)+(1− pH − pM)ξ (L) = 0

qHξ (H)+qMξ (M)+(1−qH −qM)ξ (L) = K

for someK > 0. This system has a solution, since the matrix
(

pH pM

qH qM

)

has full rank, and the solution satisfies

πω1(C1,C2) ·ξ = πω1(D1,C2) ·ξ = πω2(D1,C2) ·ξ +K = πω2(D1,D2) ·ξ +K

so statewise distinguishability holds.

For((i,ω),( j, ω̃))= ((2,ω1),(2,ω2)), we can use the sameξ . For((i,ω),( j, ω̃))=
((1,ω2),(1,ω1)) or ((i,ω),( j, ω̃)) = ((2,ω2),(1,ω1)), useξ that solves

pHξ (H)+ pMξ (M)+(1− pH − pM)ξ (L) = 0

qHξ (H)+qMξ (M)+(1−qH −qM)ξ (L) =−K

for someK > 0. For((i,ω),( j, ω̃))= ((1,ω1),(1,ω2)) or ((i,ω),( j, ω̃))= ((2,ω1),(1,ω2)),
useξ that solves

pHξ (H)+ pMξ (M)+(1− pH − pM)ξ (L) =−K

qHξ (H)+qMξ (M)+(1−qH −qM)ξ (L) = 0

for someK > 0. Finally, for((i,ω),( j, ω̃))= ((1,ω2),(2,ω1)) or ((i,ω),( j, ω̃))=
((2,ω2),(2,ω1)), useξ that solves

pHξ (H)+ pMξ (M)+(1− pH − pM)ξ (L) = K

qHξ (H)+qMξ (M)+(1−qH −qM)ξ (L) = 0

for someK > 0. Q.E.D.
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This claim shows that (SD) holds in Example 3, so that the static-threat folk

theorem applies to Example 3. In contrast, payoffs are bounded away from ef-

ficiency in Example 4, which is a related partnership game. This is because the

states in Example 4 are “entangled” in the following sense:

Definition 11. Profile α entangles statesω and ω̃ for player j if there is π ∈
co{π ω̃(a j ,α− j)|a j ∈ A j} such thatπ ω̃(α) = κπω(α)+ (1− κ)π for someκ ∈
(0,1].

Lemma 13. If profile α statewise distinguishes(i,ω) from ( j, ω̃) thenα does not

entangleω andω̃ for player j.

Proof. If α entangles statesω andω̃ for player j then for anyξ such thatπ ω̃(α) ·
ξ = π ω̃(a j ,α− j)·ξ for all a j ∈A j , we haveπ ω̃(α)·ξ = π ·ξ for all π ∈ co{π ω̃(a j ,α− j)|a j ∈
A j}, so thatπ ω̃(α) · ξ = πω(α) · ξ . Thusα does not statewise distinguish(i,ω)
from ( j, ω̃). Q.E.D.

Example 4. Recall Example 4, where the state only influences the productivity

of player2’s effort: If player1 choosesC1 instead ofD1 then the probabilities of

H andM increase bypH and pM, independent of the state. In contrast, if player

2 choosesC2 instead ofD2 then the probabilities ofH andM increase byqH and

qM in stateω1, and byβqH andβqM in stateω2. Individual full rank and pairwise

full rank are satisfied at every profile and every state if the matrix
(

pH pM

qH qM

)

has full rank. However, every profile entanglesω2 andω1 for player2, essen-

tially because player2 working with probabilityx in stateω2 generates the same

signal distribution as player2 working with probabilityβx in stateω1 , so the suf-

ficient conditions for the static-threats folk theorem are not satisfied. Moreover,

we will show that the folk theorem fails in this example, and more specifically

that the maximal scorek∗(λ ) in directionλ ′ = ((1,0),(0,1)) is strictly less than

λ ′ ·g(C1,C2), which in turn is less thanmaxv∈V∗ λ ′ ·v.

To show that the folk theorem fails, we use the fact that the monitoring tech-

nology has an additive form, so that it suffices to consider only the pure action
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profiles, as in Lemma 4.1 of FL.17

Claim 3. For α = (C1,C2),

k∗(α ,λ ′)≤ λ ′ ·g(C1,C2)− 1−β
β

(gω2
2 (C1,D2)−gω2

2 (C1,C2)).

Proof. See the appendix. The inefficiency here comes from the fact that the two

states are entangled for player2 and hence the profile(C1,C2) does not statewise

distinguish(1,ω1) from (2,ω2). Q.E.D.

Claim 4. For α =(D1,C2), k∗(α ,λ ′)≤ λ ′ ·g(D1,C2)− 1−β
β (gω2

2 (D1,D2)−gω2
2 (D1,C2)).

Proof. The same as in the previous claim. Q.E.D.

Claim 5. For α = (C1,D2), k∗(α,λ ′)≤ λ ′ ·g(C1,D2).

Proof. Sinceπω1(C1,D2) = πω2(C1,D2) andπω1(D1,D2) = πω2(D1,D2), the set

of the constraints in the LP-Average problem forλ ′ is isomorphic with that for

λ ′′ = ((0,0),(1,1)). Then the maximal score forλ ′ equals that forλ ′′, and the

statement follows from Lemma 1(b). Q.E.D.

Claim 6. For α = (D1,D2), k∗(α,λ ′)≤ λ ′ ·g(D1,D2).

Proof. The same as in the last claim. Q.E.D.

Now we combine these claims to show thatk∗(λ ′) < λ ′ · g(C1,C2). Since

gω1
1 (C1,D2) = gω2

1 (C1,D2), we have

λ ′ ·g(C1,D2) = gω1
1 (C1,D2)+gω2

2 (C1,D2) = gω2
1 (C1,D2)+gω2

2 (C1,D2)

< gω2
1 (C1,C2)+gω2

2 (C1,C2)≤ gω1
1 (C1,C2)+gω2

2 (C1,C2) = λ ′ ·g(C1,C2).

Also,

λ ′ ·g(D1,C2) =gω1
1 (D1,C2)+gω2

2 (D1,C2)

=gω1
1 (C1,C2)+gω2

2 (C1,C2)

+(gω1
1 (D1,C2)+gω1

2 (D1,C2)−gω1
1 (C1,C2)−gω1

2 (C1,C2))

<gω1
1 (C1,C2)+gω2

2 (C1,C2)

=λ ′ ·g(C1,C2).

17FL used a more restrictive definition of “additive monitoring structure,” but the proof of their
Lemma 4.1 applies to any case where the effect of one player’s action on the distribution of signals
is independent of the action of the other player.
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Here, the second equality comes from the state independence of player1’s marginal

contribution, which implies thatgω1
2 (D1,C2)−gω1

2 (C1,C2)= gω2
2 (D1,C2)−gω2

2 (C1,C2).
Combined with the previous claims, it follows thatk∗(λ ′) < λ ′ ·g(C1,C2), so that

the folk theorem fails. Moreover, because the player’s equilibrium payoffs cannot

be below their minmax level in any state, this bound implies that for some param-

eter values player2’s PPXE payoff in stateω2 is strictly less thangω2
2 (C1,C2).18

7 Incomplete Information and PTXE

So far we have assumed that the players have symmetric information about the

state. Now suppose that each playeri observes a private signalθi ∈ Θi at the

beginning of the game, whereΘi is a partition ofΩ. Letθi(ω)3ω be the partition

element thati observes when the state isω, which we will call playeri’s type, and

let θ(ω) = (θi(ω))i∈I . Any public strategysi of the game where playeri has the

trivial partitionΘi = {Ω} induces a public strategy for any non-trivial partitionΘi :

playeri simply ignores his type and setss′i(h,θi) = si(h) for all h and allθi . Since

by definition play in a PPXE is optimal regardless of the state, any PPXE for the

symmetric-information game (where all players have the trivial partition) induces

a PPXE for any incomplete-information game (any partitionsΘi) with the same

payoff functions and prior. Thus the PPXE of the incomplete-information games

are isomorphic to the PPXE of the associated symmetric-information game, so

the limit PPXE payoffs can be computed using LP-average, and in particular our

sufficient conditions for the folk theorem are still sufficient.

However, we expect there to be other equilibria where different types of a

given player use different strategies. To analyze these equilibria, we extend the

notion of PPXE toperfect type-contingently public ex-post equilibriaor PTXE.

In what follows, letht
i denote playeri’s private history from period one to

periodt, that is,ht
i = (aτ

i ,y
τ)t

τ=1. Let Ht
i denote the set of allht

i . Likewise, let

ht = (yτ)t
τ=1 be a public history from period one to periodt, andHt be the set of all

ht . Playeri’s overall strategy is a mapsi : Θi×⋃∞
t=0Ht

i →4Ai . Playeri’s strategy

18For example, suppose thatpH = .5, pM = 0, qH = 0, qM = .5, β = .8, r i(H) = 100, r i(M) =
99, r i(L) = 0, e1 = 99, and e2 = 79. Then the minmax payoffs are 0 for all players and all
states,gω1

1 (C1,C2) = 0.5, gω2
2 (C1,C2) = 10.6, andgω2

2 (C1,D2) = 50. Using Claim 3, we have
v1

1 +v2
2 < 1.25, and sincev1

1 ≥ 0, v2
2 < 1.25, it cannot achieve payoffgω2

2 (C1,C2) = 10.6.
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si ∈Si is type-contingently publicif it depends only onθi ∈Θi andht ∈Ht , that is,

if si(θi ,ht
i) = si(θi , h̃t

i) wheneverht
i andh̃t

i correspond to the same public history.

A strategy profiles∈Sis type-contingently public ifsi is type-contingently public

for eachi ∈ I . Given a type-contingently public strategy profiles∈ S, let si |(θi ,ht)

denote playeri’s continuation strategy when his type isθi and the past public

history isht , ands|(θ ,ht) = (si |(θi ,ht))i∈I .19

Definition 12. A strategy profiles∈Sis aperfect type-contingently public ex-post

equilibriumif it is type-contingently public, and ifs|(θ(ω),ht) is a Nash equilibrium

for anyω ∈Ω andht ∈ Ht .

Note that PTXE coincides with PPXE if there is no asymmetric information,

i.e.,Θi = {Ω} for all i ∈ I . In addition it corresponds to the belief-free equilibrium

of Hörner and Lovo (2009) and Ḧorner, Lovo, and Tomala (2009) in games with

observed actions and incomplete information: These papers define a belief-free

equilibrium to be a strategy profiles such that for each stateω, profile s is a

subgame-perfect equilibrium of the game where all players know the state isω.

By definition, any continuation strategys|ht = (s|θ(ω),ht )ω∈Ω of a PTXE is

also a PTXE. Thus any PTXE specifies PTXE continuation play after each signal

y, where the continuation payoffsw(y) = (wω
i (y))(i,ω)∈I×Ω corresponding to this

signal specify the payoffs for every player and every state. This recursive structure

allows us to extend our linear programming characterization to PTXE.

First we need to define some notation. We will writeπω(α) ·wω
i for the the

expected continuation payoff at stateω under action profileα , wherewω
i is the

vector(wω
i (y))y∈Y. Let~αi = (αθi

i )θi∈Θi whereαθi
i ∈4Ai for eachθi ∈Θi , and let

~α = (~αi)i∈I . In words,~α is a type-contingent action profile; it specifies a mixed

action for each private signalθi of each playeri. For example, if the true state is

ω then players have type profileθ(ω), so that~α says to playαθ(ω) = (αθi(ω)
i )i∈I .

The definitions of ex-post enforceability extends to PTXE in the obvious way:

Definition 13. Forδ ∈ (0,1) andW⊆ RI×|Ω|, a pair(~α,v)∈ (×i∈I ×θi∈Θi 4Ai)×
RI×|Ω| is ex-post contingently enforceable with respect toδ andW if there is a

functionw : Y→W such that

vω
i = (1−δ )gω

i (αθ(ω))+δπω(αθ(ω)) ·wω
i

19Here, the word “continuation strategy” is an abuse of language, becausesi |(θi ,ht ) is not a
strategy for the entire game; it specifies a play for a given typeθi but not forθ̃i , θi .
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for all i ∈ I andω ∈Ω, and

vω
i ≥ (1−δ )gω

i (ai ,α
θ−i(ω)
−i )+δπω(ai ,α

θ−i(ω)
−i ) ·wω

i

for all i ∈ I , ω ∈Ω, andai ∈ Ai .

Note that this definition takes into account the possibility that the action profile

α varies withθ . Note also that the second condition is imposed at every stateω,

so it does not depend on playeri’s typeθi .

Using the idea of type-contingent enforcement, we can extend the definition

of ex-post self-generation and local ex-post generation to PTXE, and it is easy

to verify that Theorems 1 and 2 hold as stated with this extension whenE(δ ) is

interpreted as the payoffs of PTXE.

In a similar way, we can extend the linear programming characterization of the

limit equilibrium payoffs. The key difference is that the players’ actions can now

depend on their type, so the action profiles used to generate the maximal scores

are allowed to depend on the type profile. Thus the linear programs we consider

are

k∗(~α,λ ,δ ) = max
v∈RI×|Ω|

w:Y→RI×|Ω|

λ ·v subject to

(i) vω
i = (1−δ )gω

i (αθ(ω))+δπω(αθ(ω)) ·wω
i

for all i, ω,

(ii) vω
i ≥ (1−δ )gω

i (ai ,α
θ−i(ω)
−i )+δπω(ai ,α

θ−i(ω)
−i ) ·wω

i

for all i, ω, andai ∈ Ai ,

(iii) λ ·v≥ λ ·w(y) for all y∈Y.

If there is no(v,w) satisfying the constraints, letk∗(~α ,λ ,δ ) = −∞. If for ev-

ery K > 0 there is(v,w) satisfying all the constraints andλ · v > K then let

k∗(~α ,λ ,δ ) = ∞.

If we use this program to define the setQ then Theorem 3 holds as before:

Theorem 6. If dimQ = I ×|Ω| thenlimδ→1E(δ ) = Q.

However, the nature of this setQ can be very different than before, as the

players now have three possible sources of information about the state: (i) infer-

ence based on the public signals at state-independent action profile, as in the bulk
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of this paper; (ii) the information contained in their own types; and (iii) infer-

ences based on the correlation between the opponents’ actions and the opponents’

types. In the sequel to this paper (Fudenberg and Yamamoto (2009)), we provide

weaker sufficient conditions for a folk theorem that takes advantage of all three

of these information channels. We then focus on cases with additional structure

that simplifies the characterization of limit payoffs, such as games with a product

structure, where there is a separate and independent signal associated with each

player’s action, and each player knows the effect of his action on the signal distri-

bution while the others do not. We also examine games with a known monitoring

structure, where we show that the set of limit equilibrium payoffs with imperfectly

observed actions is the same as in the observed-action case studied by Hörner and

Lovo (2009) and Ḧorner, Lovo, and Tomala (2009) provided that the monitor-

ing structure satisfies a full-rank condition. In addition, our techniques provide a

simpler sufficient condition for the existence of belief-free equilibrium.20

8 Concluding Remarks

This paper has shown that the sets of PPXE and PTXE payoffs have a recursive

structure and that their limit payoffs can be analyzed with extensions of the tech-

niques used to analyze PPE in games where the monitoring structure is known.

When the statewise full rank conditions hold, along with the standard individual

and pairwise full rank conditions, the set of PPXE satisfies an ex-post folk the-

orem, even if the set of static ex-post equilibria is empty. When a static ex-post

equilibrium does exist, there is an ex-post PPXE folk theorem under even milder

informational conditions.

Of course for a given discount factor the full set of sequential equilibria of

these games is larger than the set of ex-post equilibria, and can permit a larger

set of payoffs. In particular, because the game has finitely many actions and sig-

nals per period and is continuous at infinity, sequential equilibria exist for any

discount factor, even if the set of PPXE or PTXE is empty. This follows from the

facts that sequential equilibria exist in the finite-horizon truncations (Kreps and

Wilson (1982)) and that the set of equilibrium strategies is compact in the prod-

20Hörner, Lovo, and Tomala (2009) give tight conditions ensuring that the setQ is non-empty;
this set equals the set of limit payoffs of PTXE when it has a non-empty interior.
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uct topology (Fudenberg and Levine (1983)). So neither concept is well-adapted

to the study of games with uncertain monitoring structures and very impatient

players. Conversely, when players are patient and mostly concerned with their

long-run payoff, our informational conditions imply that there are PPXE where

players eventually learn what the state is, and obtain the same payoffs as if the

state was publicly observed.21 Moreover, if players have initial private informa-

tion, there can be folk theorems in the set of PTXE even when the set of PPXE is

small or empty; Fudenberg and Yamamoto (2009) develops the relevant informa-

tion conditions and studies the set of PTXE payoffs in some cases of interest.

Appendix

A.1 An Ex-Post Folk Theorem with Perfect Monitoring

Claim 7. Suppose that monitoring is perfect, that is,Y = A×Ω andπω
y (a) = 1

if y = (a,ω). Fix a payoff vectorv ∈ intV∗. Then there isδ such that for all

δ ∈ (δ ,1) there is a PPXE where players play a pure action profileα in period

one and then along the equilibrium path playsω(δ ) from period two, wheresω(δ )
is a subgame-perfect equilibrium for stateω and discount factorδ with payoffvω .

Proof. Let v= (vω)ω∈Ω ∈ intV∗, and letε > 0 be such that for eachω, any payoff

vector within ε of vω is in the setV∗(ω). Then letδ ∈ (0,1) be such that (i)

ε > 1−δ
δ ∑i∈I (maxa∈Agi(a)−mina∈Agi(a)), (ii) for eachω, there is a subgame-

perfect equilibriumsω,vω
for stateω and discount factorδ with payoffvω , and (iii)

for eachω ∈ Ω and for any payoff vector̃vω within ε of vω , there is a subgame-

perfect equilibriumsω,ṽω
for stateω and discount factorδ . Note that these three

conditions hold ifδ is close to one; the last condition (iii) comes from Theorem

6.2 of FLM.

Consider the following strategy profile:

21When the ex-post folk theorem holds, and a feasible payoff vectorv is not a limit payoff of
PPXE then for some player/state pair the payoffvω

i is not ex post individually rational, so that
the payoff vectorv cannot pointwise dominate any pointv′ ∈ V∗. However, as Olivier Gossner
pointed out, there may be priors such that the expected payoffs to a sequential (but not ex-post)
equilibrium Pareto-dominates all of the ex-post equilibrium payoffs, essentially because revealing
information destroys opportunities for insurance, as in Hirshleiffer (1971).
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Phase1 : Play a pure action profilea in period one. If there is no unilateral

deviator froma andω is observed then go to Phase(ω,vω). If player i unilaterally

deviates froma andω is observed then go to Phase(ω ,(vi− 1−δ
δ (maxã∈Agi(ã)−

minã∈Agi(ã)),(vω
j ) j,i)).

Phase(ω, ṽω) (Here, ω ∈ Ω and ṽω is within ε of vω .) : Play a subgame

perfect equilibriumsω ,ṽω
in the remaining periods, as long asω is observed in

every period of this phase. (Recall thatsω ,ṽω
is a subgame-perfect equilibrium

for stateω with payoffs ṽω .) If in any periodt, ω t , ω t−1 then go to phase

(ω t ,wωt
(at)) in the next period, wherewωt

(at) = (wωt

i (at))i∈I is chosen so that

wωt

i (at) = vωt

i +
1−δ

δ
(vωt

i −gωt

i (at))

for all i ∈ I .

This strategy profile is well-defined, aswωt
(at) is within ε of vω by construc-

tion, and it is easy to see that this strategy profile is a PPXE. Q.E.D.

A.2 Proof of Lemma 6

Lemma 6. Suppose that a profileα has statewise full rank for(i,ω) and ( j, ω̃)
satisfyingω , ω̃ and thatα has individual full rank for all players and states.

Thenk∗(α ,λ ) = ∞ for directionλ such thatλ ω
i , 0 andλ ω̃

j , 0.

Proof. Let (i,ω) and( j, ω̃) be such thatλ ω
i , 0, λ ω̃

j , 0, andω̃ , ω. Let α be a

profile that has statewise full rank for all(i,ω) and( j, ω̃) satisfyingω , ω̃.

First, we claim that for everyK > 0, there existzω
i = (zω

i (y))y∈Y andzω̃
j =

(zω̃
j (y))y∈Y such that

πω(ai ,α−i) ·zω
i =

K
δλ ω

i
(1)

for all ai ∈ Ai ,

π ω̃(a j ,α− j) ·zω̃
j = 0 (2)

for all a j ∈ A j , and

λ ω
i zω

i (y)+λ ω̃
j zω̃

j (y) = 0 (3)

for all y∈Y. To prove that this system of equations indeed has a solution, elimi-

nate (3) by solving forzω̃
j (y). Then, there remain|Ai |+ |A j | linear equations, and
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its coefficient matrix isΠ(i,ω)( j,ω̃)(α). Since statewise full rank implies that this

coefficient matrix has rank|Ai |+ |A j |, we can solve the system.

Next, for each(l ,ω) ∈ I ×Ω, we choose(w̃ω
l (y))y∈Y so that

(1−δ )gω
l (al ,α−l )+δπω(al ,α−l ) · w̃ω

l = 0 (4)

for all al ∈ Al . Note that this system has a solution, sinceα has individual full

rank. Intuitively, continuation payoffs̃wω are chosen so that players are indifferent

over all actions and their payoffs are zero.

Let K > maxy∈Y λ · w̃(y), and choose(zω
i (y))y∈Y and(zω̃

j (y))y∈Y to satisfy (1)

through (3). Then, let

wω
l (y) =





w̃ω
i (y)+zω

i (y) if (l ,ω) = (i,ω)
w̃ω̃

j (y)+zω̃
j (y) if (l ,ω) = ( j, ω̃)

w̃ω
l (y) otherwise

for eachy∈Y. Also, let

vω
l =





K
λ ω

i
if (l ,ω) = (i,ω)

0 otherwise

.

We claim that this(v,w) satisfies constraints (i) through (iii) in LP-Average. It

follows from (4) that constraints (i) and (ii) are satisfied for all(l ,ω) ∈ (I ×Ω)\
{(i,ω),( j, ω̃)}. Also, using (1) and (4), we obtain

(1−δ )gω
i (ai ,α−i)+δπω(ai ,α−i) ·wω

i

=(1−δ )gω
i (ai ,α−i)+δπω(ai ,α−i) · (w̃ω

i +zω
i )

=
K

λ ω
i

for all ai ∈ Ai . This shows that(v,w) satisfies constraints (i) and (ii) for(i,ω).
Likewise, from (2) and (4),(v,w) satisfies constraints (i) and (ii) for( j, ω̃). Fur-

thermore, using (3) andK > maxy∈Y λ · w̃(y),

λ ·w(y) = λ · w̃(y)+λ ω
i zω

i (y)+λ ω̃
j zω̃

j (y)

= λ · w̃(y) < K = λ ·v
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for all y∈Y, and hence constraint (iii) holds.

Therefore,k∗(α,λ )≥ λ ·v= K. SinceK can be arbitrarily large, we conclude

k∗(α ,λ ) = ∞. Q.E.D.

A.3 Proof of Lemma 12

Lemma 12. Suppose thatα is ex-post enforceable and statewise distinguishes

(i,ω) from ( j, ω̃). Thenk∗(α ,λ ) = ∞ for directionλ such thatλ ω
i > 0 andλ ω̃

j ,
0.

Proof. Let ξ = (ξ (y))y∈Y be as in the definition of statewise distinguishability.

Without loss of generality, assumeπ ω̃(α) ·ξ = 0. Let zω
i = (zω

i (y))y∈Y andzω̃
j =

(zω̃
j (y))y∈Y be such that

zω
i (y) =

K
δλ ω

i πω(α) ·ξ ξ (y)

and

zω̃
j (y) =− K

δλ ω̃
j πω(α) ·ξ ξ (y)

for all y∈Y. Sinceπω(α) ·ξ = πω(ai ,α−i) ·ξ > 0 for ai ∈ suppαi , we have

πω(ai ,α−i) ·zω
i =

K
δλ ω

i πω(α) ·ξ πω(ai ,α−i) ·ξ =
K

δλ ω
i

(5)

for all ai ∈ suppαi . Also, sinceπω(α) ·ξ > 0 andπω(α) ·ξ ≥ πω(ai ,α−i) ·ξ for

ai < suppαi , we have

πω(ai ,α−i) ·zω
i =

K
δλ ω

i πω(α) ·ξ πω(ai ,α−i) ·ξ ≤ K
δλ ω

i
(6)

for all ai < suppαi . Moreover, sinceπω(α) ·ξ > 0 andπ ω̃(a j ,α− j) ·ξ = 0 for all

a j ∈ A j ,

π ω̃(a j ,α− j) ·zω̃
j =− K

δλ ω̃
j πω(α) ·ξ π ω̃(a j ,α− j) ·ξ = 0 (7)

for all a j ∈ A j . Finally, it is obvious that

λ ω
i zω

i (y)+λ ω̃
j zω̃

j (y) = 0 (8)
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for all y∈Y.

Let (ṽ, w̃) be a pair of a payoff vector and a function such thatw̃ enforces

(ṽ,α). Let K > maxy∈Y λ · w̃(y)−λ · ṽ. Then, let

wω
l (y) =





w̃ω
i (y)+zω

i (y) if (l ,ω) = (i,ω)
w̃ω̃

j (y)+zω̃
j (y) if (l ,ω) = ( j, ω̃)

w̃ω
l (y) otherwise

for eachy∈Y. Also, let

vω
l =





ṽω
i +

K
λ ω

i
if (l ,ω) = (i,ω)

ṽω
l otherwise

.

We claim that this(v,w) satisfies all the constraints in LP-Average. Obviously,

constraints (i) and (ii) are satisfied for all(l ,ω) ∈ (I ×Ω) \ {(i,ω),( j, ω̃)}, as

vω
l = ṽω

i andwω̄
l (y) = w̃ω

l (y). Also, since (5) and (6) hold and̃w enforces(α, ṽ),
we obtain

(1−δ )gω
i (ai ,α−i)+δπω(ai ,α−i) ·wω

i

=(1−δ )gω
i (ai ,α−i)+δπω(ai ,α−i) · (w̃ω

i +zω
i )

=ṽω
i +

K
λ ω

i
= vω

i

for all ai ∈ suppαi , and

(1−δ )gω
i (ai ,α−i)+δπω(ai ,α−i) ·wω

i

=(1−δ )gω
i (ai ,α−i)+δπω(ai ,α−i) · (w̃ω

i +zω
i )

≤ṽω
i +

K
λ ω

i
= vω

i

for all ai < suppαi . Hence,(v,w) satisfies constraints (i) and (ii) for(i,ω). Like-

wise, it follows from (7) that(v,w) satisfies constraints (i) and (ii) for( j, ω̃).
Furthermore, using (8) andK > maxy∈Y λ · w̃(y)−λ · ṽ,

λ ·w(y) = λ · w̃(y)+λ ω
i zω

i (y)+λ ω̃
j zω̃

j (y)

= λ · w̃(y)

< λ · ṽ+K = λ ·v
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for all y∈Y, and hence constraint (iii) holds.

Therefore,k∗(α ,λ ) ≥ λ · v = λ · ṽ+ K. SinceK can be arbitrarily large, we

concludek∗(α,λ ) = ∞. Q.E.D.

A.4 Proof of Claim 3

Claim 3. For α = (C1,C2),

k∗(α ,λ ′)≤ λ ′ ·g(C1,C2)− 1−β
β

(gω2
2 (C1,D2)−gω2

2 (C1,C2)).

Proof. Consider the associated LP-Average problem, and choose(v,w) to satisfy

constraints (i) through (iii) of this problem. From player2’s IC constraint for state

ω2, we have

β (qH(wω2
2 (H)−wω2

2 (L))+qM(wω2
2 (M)−wω2

2 (L)))

≥ 1−δ
δ

(gω2
2 (C1,D2)−gω2

2 (C1,C2)).

Then,

vω1
1 +vω2

2 =(1−δ )(gω1
1 (C1,C2)+gω2

2 (C1,C2))

+δ (πω1(C1,C2) ·wω1
1 +πω2(C1,C2) ·wω2

2 )

=(1−δ )(gω1
1 (C1,C2)+gω2

2 (C1,C2))+δπω1(C1,C2) · (wω1
1 +wω2

2 )

−δ (1−β )(qH(wω2
2 (H)−wω2

2 (L))+qM(wω2
2 (M)−wω2

2 (L)))

≤(1−δ )(gω1
1 (C1,C2)+gω2

2 (C1,C2))+δ (vω1
1 +vω2

2 )

− (1−δ )(1−β )
β

(gω2
2 (C1,D2)−gω2

2 (C1,C2))

Arranging,

vω1
1 +vω2

2 ≤ gω1
1 (C1,C2)+gω2

2 (C1,C2)− 1−β
β

(gω2
2 (C1,D2)−gω2

2 (C1,C2)).

So we have

λ ·v≤ λ ·g(C1,C2)− 1−β
β

(gω2
2 (C1,D2)−gω2

2 (C1,C2)).

This proves the desired result. Q.E.D.
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Supplementary Materials

S.1 Proof of Theorem 1

Theorem 1. If a subsetW of RI×|Ω| is bounded and ex-post self-generating with

respect toδ thenW ⊆ E(δ ).

Proof. Let v ∈W. We will construct a PPXE that yieldsv. Sincev ∈ B(δ ,W),
there exist a profileα and a functionw :Y→W such that(α,v) is ex-post enforced

by w. Set the action profile in period one to bes|h0 = α and for eachh1 = y1 ∈Y,

setv|h1 = w(h1)∈W. The play in later periods is determined recursively, usingv|ht

as a state variable. Specifically, for eacht ≥ 2 and for eachht−1 = (yτ)t−1
τ=1∈Ht−1,

given av|ht−1 ∈W, let α|ht−1 andw|ht−1 : Y →W be such that(α|ht−1,v|ht−1) is

ex-post enforced byw|ht−1. Then, set the action profile after historyht−1 to be

s|ht−1 = α |ht−1, and for eachyt ∈Y, setv|ht=(ht−1,yt) = w|ht−1(yt) ∈W.

BecauseW is bounded andδ ∈ (0,1), payoffs are continuous at infinity so

finite approximations show that the specified strategy profiles∈ Sgeneratesv as

an average payoff, and its continuation strategys|ht yields v|ht for eachht ∈ Ht .

Also, by construction, nobody wants to deviate at any moment of time, given any

stateω ∈ Ω. Because payoffs are continuous at infinity, the one-shot deviation

principle applies, and we conclude thats is a PPXE, as desired. Q.E.D.

S.2 Proof of Theorem 2

Theorem 2. If a subsetW of RI×|Ω| is compact, convex, and locally ex-post gen-

erating then there isδ ∈ (0,1) such thatW ⊆ E(δ ) for all δ ∈ (δ ,1).

Proof. Suppose thatW is locally ex-post generating. Since{Uv}v∈W is an open

cover of the compact setW, there is a subcover{Uvm}m of W. Let δ = maxmδvm.

Chooseu ∈W arbitrarily, and letUvm be such thatu ∈ Uvm. SinceW∩Uvm ⊆
B(δvm,W), there existαu andwu : Y→W such that(αu,u) is ex-post enforced by

wu for δvm. Given aδ ∈ (δ ,1), let

w(y) =
δ −δu

δ (1−δu)
u+

δu(1−δ )
δ (1−δu)

wu(y)

for all y∈Y. Then, it is straightforward that(αu,u) is enforced by(w(y))y∈Y for

δ . Also, w(y) ∈W for all y ∈ Y, sinceu andw(y) are inW andW is convex.
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Therefore,u ∈ B(δ ,W), meaning thatW ⊆ B(δ ,W) for all δ ∈ (δ ,1). (Recall

that u andδ are arbitrarily chosen fromW and(δ ,1).) Then, from Theorem 1,

W ⊆ E(δ ) for δ ∈ (δ ,1), as desired. Q.E.D.

S.3 Proof of Lemma 2

Lemma 2. For everyδ ∈ (0,1), E(δ ) ⊆ E∗(δ ) ⊆ Q, whereE∗(δ ) is the convex

hull of E(δ ).

Proof. It is obvious thatE(δ )⊆E∗(δ ). SupposeE∗(δ )*Q. Then, since the score

is a linear function, there isv∈ E(δ ) andλ such thatλ ·v > k∗(λ ). In particular,

sinceE(δ ) is compact, there existv∗ ∈ E(δ ) andλ such thatλ · v∗ > k∗(λ ) and

λ · v∗ ≥ λ · ṽ for all ṽ ∈ E∗(δ ). By definition,v∗ is enforced by(w(y))y∈Y such

thatw(y) ∈ E(δ )⊆ E∗(δ )⊆H(λ ,λ ·v∗) for all y∈Y. But this implies thatk∗(λ )
is not the maximum score for directionλ , a contradiction. Q.E.D.

S.4 Proof of Lemma 3

Lemma 3. For any smooth strict subsetW of Q, there isδ ∈ (0,1) such that

W ⊆ E(δ ) for δ ∈ (δ ,1).

Proof. SinceW is bounded, it suffices to show that it is also locally ex-post gen-

erating, i.e., for eachv∈W, there existδv ∈ (0,1) and an open neighborhoodUv

of v such thatW∩Uv⊆ B(δv,W).
First, considerv∈ bdW. Let λ be normal toW at v, and letk = λ · v. Since

W⊂Q⊆H∗(λ ), there existα , ṽ, and(w̃(y))y∈Y such thatλ · ṽ > λ ·v = k, (α, ṽ)
is enforced using continuation payoffs(w̃(y))y∈Y for someδ̃ ∈ (0,1), andw̃(y) ∈
H(λ ,λ · ṽ) for all y∈Y. For eachδ ∈ (δ̃ ,1) andy∈Y, let

w(y,δ ) =
δ − δ̃

δ (1− δ̃ )
v+

δ̃ (1−δ )
δ (1− δ̃ )

(
w̃(y)+

v− ṽ

δ̃

)
.

By construction,(α,v) is enforced by(w(y,δ ))y∈Y for δ , and there isκ > 0 such

that |w(y,δ )−v|< κ(1−δ ). Also, sinceλ · ṽ > λ ·v = k andw̃(y) ∈ H(λ ,λ · ṽ)
for all y∈ Y, there isε > 0 such thatw̃(y)− v−ṽ

δ̃
is in H(λ ,k− ε) for all y∈ Y,

thereby

w(y,δ ) ∈ H

(
λ ,k− δ̃ (1−δ )

δ (1− δ̃ )
ε

)
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for all y ∈ Y. Then, as in the proof of FL’s Theorem 3.1, it follows from the

smoothness ofW thatw(y,δ )∈ intW for sufficiently largeδ , i.e.,(α,v) is enforced

with respect to intW. To enforceu in the neighborhood ofv, useα and a translate

of (w(y,δ ))y∈Y.

Next, considerv∈ intW. Chooseλ arbitrarily, and letα and(w(y,δ ))y∈Y be

as in the above argument. By construction,(α,v) is enforced by(w(y,δ ))y∈Y.

Also, w(y,δ ) ∈ intW for sufficiently largeδ , since|w(y,δ )− v| < κ(1− δ ) for

someκ > 0 andv∈ intW. Thus,(α ,v) is enforced with respect to intW whenδ
is close to one. To enforceu in the neighborhood ofv, useα and a translate of

(w(y,δ ))y∈Y, as before. Q.E.D.
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