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Abstract

This paper studies repeated games with imperfect public monitoring
where the players are uncertain both about the payoff functions and about
the relationship between the distribution of signals and the actions played.
We introduce the concept of perfect public ex-post equilibrium (PPXE), and
show that it can be characterized with an extension of the techniques used to
study perfect public equilibria. We develop identifiability conditions that are
sufficient for a folk theorem; these conditions imply that there are PPXE in
which the payoffs are approximately the same as if the monitoring structure
and payoff functions were known. Finally, we define PTXE, which allows
players to condition their actions on their initial private information, and we
provide its linear programming characterization.
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1 Introduction

The role of repeated play in facilitating cooperation is one of the main themes of
game theory. Past work has shown that reciprocation can lead to more cooperative
equilibrium outcomes even if thereirmperfect public monitoringso that players

do not directly observe their opponents’ actions but instead observe noisy public
signals whose distribution depends on the actions played. This work has covered
a range of applications, from oligopoly pricing (e.g. Green and Porter (1984)
and Athey and Bagwell (2001)), repeated partnerships (Radner, Myerson, and
Maskin (1986)) and relational contracts (Levin (2003)). These applications are
accompanied by a theoretical literature on the structure of the set of equilibrium
payoffs and its characterization as the discount factor approdchesst notably
Abreu, Pearce, and Stachetti (1986), Abreu, Pearce, and Stachetti (1990, here-
after APS), Fudenberg and Levine (1994, hereafter FL), Fudenberg, Levine, and
Maskin (1994, hereafter FLM), and Fudenberg, Levine, and Takahashi (2007). All
of these papers assume that the players know the distribution of public signals as
a function of the actions played. In some cases this assumption seems too strong:
For example, the players in a partnership may know that high effort makes good
outcomes more likely, but not know the exact probability of a bad outcome when
all agents work hard. This paper allows for such uncertainty, and also allows for
uncertainty about the underlying payoff functions.

Specifically, we study repeated games in which the state of the world, chosen
by Nature at the beginning of the play, influences the distribution of public signals
and/or the payoff functions of the stage game. The effect of the state on the payoff
functions can be direct, and can also be an indirect consequence of the effect of
the state on the distribution of signals. For example, in a repeated partnership,
the players will tend to have higher expected payoffs at a given action profile at
states where high output is most likely, so even if the payoff to high output is
known, uncertainty about the probability of high output leads to uncertainty about
the expected payoffs of the stage game.

Because actions are imperfectly observed, the players’ posterior beliefs need
not coincide in later periods, even when they share a common prior on the dis-
tribution of states. This complicates the verification of whether a given strategy
profile is an equilibrium, and thus makes it difficult to provide a characterization



of the entire equilibrium set. Instead, we consider a subset of Nash equilibria,
calledperfect public ex-post equilibriar PPXE A strategy profile is a PPXE if

it is public- i.e. it depends only on publicly available information- and if its con-
tinuation strategy constitutes a Nash equilibrium given any state and given any
history. In a PPXE, a player’s best reply does not depend on her belief, so that
the equilibrium set has a recursive structure and the analysis is greatly simplified.
Moreover, like other forms of ex-post equilibrium, PPXE are robust to variations
in priors beliefs: A PPXE for a given prior distribution is a PPXE for an arbitrary
prior?

Before developing our general characterization of PPXE, we give a few ex-
amples. The first two examples consider special structures that make it easy to
give explicit constructions of PPXE. One important fact these examples illustrate
is that even though players start out not knowing the state, conditioning play on
outcomes can indirectly allow the state to determine play and equilibrium pay-
offs. For example, if the outcome perfectly reveals the state, there can be PPXE
where playetl’s preferred PPE is played from peri@dbn in statew; and player
2's preferred PPE is played from peri@on in statew,. The third and fourth
examples are partnership games where the uncertainty concerns the productivity
of effort. Here the non-constructive characterization that we develop in the rest of
the paper lets us show that the folk theorem applies in Example 3 while payoffs
can be bounded away from efficiency in Example 4. In both of these examples,
the distribution of outcomes can reveal the state and the folk theorem would hold
in each state if the state were known; the key is that in Example 4 the states are
“entangled” while in Example 3 they are not.

To characterize the limit of the set of PPXE payoffs as the discount factor
goes to 1, we extend the linear programming characterization of the limit payoffs
of PPE. That is, we show in Section 4 that the limit of the set of payoff vectors
to PPXE as the discount factor goesltt the intersection of the “maximal half-

1As a referee points out, the fact that PPXE is independent of beliefs about the state simplifies
the analysis even in the case where actions are observed so that players have common beliefs.

2See Bergemann and Morris (2007) for a discussion of various definitions of ex-post equilib-
rium. Miller (2007) analyzes a different sort of ex-post equilibrium: he considers repeated games
of adverse selection, where players report their types each period, as in Section 8 of FLM, and
adds the restriction that announcing truthfully should be optimal regardless of the announcements
of the other players.



spaces” in various directions, where each componghof the direction vector

A corresponds to the weight attached to playgpayoff in statew. The main

new feature is that in a PPXE, the equilibrium payoffs are allowed to vary with
the state, and can do so even if the state does not influence the expected payoffs
to each action profile- for example there can be PPXE where plagees better

in statecy and player2 does better in statep. Thus PPXE can involve a form

of “utility transfer” across states. For this reason, the “maximal half space” in
these “cross-state directions” can be the whole space, while in FL the maximal
half space in each direction is bounded by the feasible set.

In Section 5, we use this characterization to prove an “ex-post” folk theorem:
For any map from states to payoff vectors that are feasible and individually ra-
tional in that state, there is a PPXE whose payoffs in each state approximate the
target map as the discount factor tendsltoThis theorem uses individual and
pairwise full rank conditions as in FLM, and adds the assumption that for every
pair (i,w) and( j, @) of individuals and states, there is a profil¢hat has “state-
wise full rank,” which means roughly that the observed signals reveal the state
regardless of whetheror j (but not both!) unilaterally deviate from.

As in FLM, a weaker, “static-threats,” version of the folk theorem holds under
milder informational conditions. Section 6 shows that pairwise full rank can be
replaced by the condition of “pairwise identifiability,” which can be satisfied with
a smaller number of signals, and that statewise full rank can be relaxed to “state-
wise distinguishability.” Very roughly speaking, this condition says that for every
pair of players, j and pair of states, @, there is a strategy profile whose sig-
nal distribution distinguishes between the two states regardless of the deviations
of player j, and such that continuation payoffs can give a large reward to player
I in statew without increasing players incentive to deviate and without affect-
ing player j's payoff in statec. We use this condition to explain the difference
between Example 3 and Example 4.

Finally, we explain how to extend our analysis to games where the players
have initial private information. In such games, the PPXE still satisfy all of the
incentive constraints and are still PPXE; they now correspond to pooling equilib-
ria where all types of a given player use the same strategy. We then introduce the
concept of “perfect type-contingently public ex-post equilibria” or “PTXE;” this
concept allows players to condition on their initial private information as well as



the subsequent public history. The set of PTXE has a recursive structure, and the
set of limit payoffs can be characterized by an extension of the linear programming
algorithm that allows the action profile used to generate a given score to depend
on the vector of types. However, despite the similar formal structure, the set of
limit payoffs can be very different than before, as the players now have additional
sources of information about the state. Thus we postpone a detailed exploration
of PTXE to Fudenberg and Yamamoto (2009), where we provide weaker suffi-
cient conditions for a folk theorem and then provide a detailed analysis of several
special cases, including that of games with a known monitoring structure.

While the study of uncertain monitoring structures is new, there is a substan-
tial literature on repeated games with unknown payoff functions and perfectly
observed actions, notably Forges (1984), Sorin (1984), Hart (1985), Sorin (1985),
Aumann and Maschler (1995), Cripps and Thomas (2003), Gossner and Vieille
(2003), Wiseman (2005), &¢tner and Lovo (2009), Wiseman (2008), andrkkr,

Lovo, and Tomala (2009) Our work makes two extensions to this literature- first

to the case of unknown payoff functions and imperfectly observed actions but a
known monitoring technology, and from there to the case where the monitoring
structure is itself unknown. Our work is closest to that @irker and Lovo (2009)

and Hirner, Lovo, and Tomala (2009), as PTXE reduces to the belief-free equi-
libria they consider when actions are perfectly observed; we say more about these
papers in Fudenberg and Yamamoto (2009). PPXE is also related to belief-free
equilibria in repeated games with private monitoring, as in Piccione (2002), Ely
and Valimaki (2002), Ely, Horner, and Olszewski (2005), Yamamoto (2007), Kan-
dori (2008), and Yamamoto (2009} owever, unlike the belief-free equilibria in
those papers, the ex-post equilibria we consider do not require that players be in-
different, and so it is not subject to the robustness critiques of Bhaskar, Mailath,
and Morris (2008); this is what motivates our choice of a different name for the

SCripps and Thomas (2003), Gossner and Vieille (2003), and Wiseman (2005) study
symmetric-information settings. In Aumann and Hart (1992), Aumann and Maschler (1995),
Horner and Lovo (2009), Wiseman (2008), andrkker, Lovo, and Tomala (2009), players re-
ceive private signals about the payoff functions and so can have different beliefs. (In Wiseman
(2008) the players privately observe their own realized payoff each period, in the other papers the
players do not observe their own realized payoffs, and the private signals are the players’ initial
information or “type.”

“4Belief-free equilibria and the use of indifference conditions have also been applied to repeated
games with random matching (Takahashi (2008), Deb (2008)).
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concept.

2 Unknown Signal Structure and Perfect Public Ex-Post
Equilibria
2.1 Model

Letl ={1,---,1} represent the set of players. At the beginning of the game, Na-
ture chooses the state of the woddrom a finite setQ = {wy, ..., wo}. Assume
that players cannot observe the true stat@and letu € AQ denote the players’
common prior ovew.® For now we assume that the game begins with symmetric
information: Each player’s beliefs abowtcorrespond to the prior. We relax this
assumption in Section 7.

Each period, players move simultaneously, with playen choosing an ac-
tion g from a finite setA;. Given an action profila = (& )ic| € A= XA,
players observe a public signalfrom a finite sety according to the probabil-
ity function ®(a) € AY; we call the functionr® the “monitoring technology.”
Playeri’s realized payoff isu-‘*’(a; y), so that her expected payoff conditional on
we Qandonac Aisg®(a) = yyey P (Q)uP(a,Y); g¥(a) denotes the vector of
expected payoffs assomated with action pradile

In the infinitely repeated game, players have a common discount factor
(0,1). Let(af,y") be the realized pure action and observed signal in periadd
denote playei’s private history at the end of peridd> 1 by ht = (af,y*)t_,.

Let ho 0, and for each > 1, letH! be the set of alh!. Likewise, a public history
up to periodt > 1 is denoted byn' = (y")}_,, andH! denotes the set of dif. A
strategy for player is defined to be a mappirg: Ui oH! — AA. LetS be the
set of all strategies for playérand letS= xic|S. Note that the case of a known

SBecause our arguments deal only with ex-post incentives, they extend to games without a
common prior. However, as Dekel, Fudenberg, and Levine (2004) argue, the combination of
equilibrium analysis and a non-common prior is hard to justify.

6As written, this formulation assumes that players do not observe their realized payoffs
u®(a,y), unless the realized payoff does not dependuwpnSince we restrict attention to ex-
post equilibria, where players’ belief about the state do not matter, we do not need to impose this
restriction, with the exception of Lemma 9, where the restriction is explicitly stated. If players ob-
serve the realized payoff then playirprivate history after periotialso includegu®(al,y"))t _,
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public monitoring structure corresponds to a single possible $ate{w}.
We define the set of feasible payoffs in a given stat® be

V(w) = cof(g®(a))lac A} = {g“(n)In € A(A)};

whereA(A) is the set of all probability distributions ovéx. As in the standard
case of a game with a known monitoring structure, the feasible set is both the set
of feasible average discounted payoffs in the infinite-horizon game when players
are sufficiently patient and the set of expected payoffs of the stage game that
can be obtained when players use of a public randomizing device to implement
distributionn over the action profiles.

Next we define the set of feasible payoffs of the overall game to be

V= XwEQV(w)v

sothata point € V = (V& V&) = (Vg2 -+ W), (VO V™)),

Note that a giverv € V may be generated using different action distributions
n(w) in each statev. If players observev at the start of the game and are very
patient then any payoff il can be obtained by a state-contingent strategy of the
infinitely repeated game. Looking ahead, there will be equilibria that approximate
payoffs inV if the state isdentifiedby the signals, so that players learn it over
time. Note also that, even if players have access to a public randomizing device,
the set of feasible payoffs of the stage game is the smaller set

VE ={g”(n)In € AA)} e,

because play in the stage game must be a constant independent of

2.2 Perfect Public Ex-Post Equilibria

This paper studies a special class of Nash equilibria caietect public ex-post
equilibria or PPXE; this is an extension of the concept of perfect public equi-
librium that was introduced by FLM. Given a public strategy pradile Sand a
public historyht € Ht, let s|;; denote its continuation strategy profile aftér

Definition 1. A strategys € S is publicif it depends only on public information,
i.e., forallt>1,h = (a,y")t_; € H, andhf = (&7, 7). _, € H! satisfyingy” =
forall T <t, s(h!) = si(ﬁ}). A strategy profiles € Sis publicif s is public for all
iel.



Definition 2. A strategy profiles € Sis aperfect public ex-post equilibriumhfor
everyw € Q the profile is a perfect public equilibrium of the game with known
monitoring structurer®.’

Given a discount factod € (0,1), let E(J) denote the set of PPXE payoffs,
i.e., E(J) is the set of all vectors = (V?); o)c1 <o € R'/?l such that there is a

PPXEs € Ssatisfying
S, w) =V

foralli € I andw € Q. Note thatv € E(d) specifies the equilibrium payoff for all
players and for all possible states. Note also that the set of PPXE can be empty,
in contrast to the case of perfect public equilibria of games with a known%tate.
However, the conditions of our ex-post folk theorem imply that PPXE exist for
sufficiently large discount factors.

Because PPXE is an ex-post equilibrium concept, each player’s payoffin each
state must be at least the minmax value in that statevf etming ; max, g (&, a—)
be the minmax payoff for playerin statew, and let

1-3)E | § o' gP(@
( )(tz g(a)

Vi={veV|Vvicl,YwecQ, v >’}

be the subset of the feasible payoff state where each player receives at least her
minmax payoff in each state. Th&{d) C V*.
By definition, any continuation strategy of a PPXE is also a PPXE. Thus any
PPXE specifies PPXE continuation play after each signalhere the continua-
tion payoffsw(y) = (W(y))i,w)el xq corresponding to this signal specify payoffs
for every player and every state. We will writé€’(a) - wi for 5, i’ (a)w(y),
which is playeri’s expected continuation payoff at stateunder action profile
a. This recursive structure of the equilibrium payoff set motivates the following

definition.

'That is, s is a public strategy, and for evanye Q, and any public historpt € H!, the
continuation strategy profilg: is a Nash equilibrium of the “continuation game” corresponding
to {h', w}. In this continuation game, players know that the state,iand because all opponents
are using public strategies, each player can compute the expected payoff to any of their strategies
(public or private) even thougfh', w} is not the root of a proper subgame.

8Wwith a known state, repeated play of a static Nash equilibrium is a perfect public equilibrium
of the repeated game. Similarly, repeated play of a static ex-post equilibrium is a PPXE, but static
ex-post equilibria need not exist.



Ford € (0,1) andW C R'™*19l a pair(a,v) € (xjc] AA) x R™*19 of an action
profile and a payoff vector iex-post enforceable with respectd@andW if there
is a functionw = (W®),eq 1 Y — W such that

v’ = (1-0)g”(a) +on®(a)-w”
foralliel andw € Q, and
VP > (1-93)g”(a, a—i) + 0m“(aj, a_i) - W

foralliel, we Q, andag € A,.

For eachd € (0,1), W C R™I9 anda e xic| AA;, letB(5,W, a) denote the
set of all payoff vectors € R'*I€l such that(a,v) is ex-post enforceable with
respect tad andW. Let B(d,W) be a union oB(d,W, a) over alla € xjc| AA.

To prove our main results, we will use the fact that various useful properties
of PPE extend to PPXE.

Definition 3. A subseW of R %12 is ex-post self-generating with respectdaf
W C B(d,W).

Theorem 1. If a subsetV of R %€l is bounded and ex-post self-generating with
respect tad thenW C E(9d).

Proof. See the online supplementary materials. The proof is very similar to APS.
The key is that whelV is ex-post self-generating, the continuation payuiffg)

used to enforce € V ¢ R™*I9 have the property that for eagte Y, the vector
w(y) € R*®l can in turn be ex-post generated using a single next-period action
a (independent otv) so that the strategy profile constructed by “unpacking” the
ex-post generation conditions does not directly depena.on Q.E.D.

Definition 4. A subsetV of R *I9 islocally ex-post generatinifjfor eachv e W,
there existd, € (0,1) and an open neighborhodd|, of v such thatW nU, C
B(dv,W).

Theorem 2. If a subsetV of R'*I?l is compact, convex, and locally ex-post gen-
erating, there is> € (0,1) such thaW C E(5) for all & € (5,1).

Proof. See the supplementary materials; this is a straightforward generalization
of FLM. Q.E.D.



3 Examples

Before proceeding with the general analysis, we present several examples to illus-
trate properties of PPXE. The first two examples make special assumptions that
permit the explicit construction of PPXE strategies. The third and fourth exam-
ples are variants of a repeated partnership game. Here we use our non-constructive
technigues to show that whether incentive problems lead to inefficiency depends
on certain details of the information structure.

Example 1. There are two playerd, = {1,2}, and two possible state§) =
{w1,wp}. In every stage game, play&rchooses an action from; = {U,D},
while player2 chooses an action frody = {L,R}. Their expected payofig® (a)
are as follows.

L R L R
Uui22|01 u|11|{00
D|{00]|11 D|10 22

Here, the left table shows expected payoffs for stateand the right table shows
payoffs for statev,. Note that the feasible payoff set at staiés full dimensional
for eachw, and so is the feasible payoff 3¢bf the entire game. Suppose that the
set of possible public signalsY¥s= A x Q, and that the monitoring technology is
such thatt’(a) = € > 0fory # (a,w), andrn’(a) = 1 7¢ for y = (a, w).

Note that(U,L) is a static Nash equilibrium for each state. Hence, play-
ing (U,L) in every period is a PPXE, yielding the payoff vectd®,2),(1,1)).
Likewise, playing(D,R) in every period is a PPXE, yielding the payoff vector
((1,1),(2,2)). “Always (U,L)” Pareto-dominates “alway&®,R)” for state cw,,
but is dominated for state,. Note that these equilibrium payoff vectors are in
VC, the set of feasible payoff vectors with a constant (state-independent) proba-
bility distribution over actions. LeY(w;) be the sefy = (a,w) € Y|w = w },
andY () be the sefy = (a,w) € Y|w = ap}. Consider the following strategy
profile:

e In period one, playU,L).
e If ye Y(wy) occurs in period one, plaJ,L) afterwards.

e If ye Y(wp) occurs in period one, pladD, R) afterwards.
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After every one-period public histohy € H1, the continuation strategy profile
is a PPXE. Also, given any state € Q, nobody wants to deviate in period one,
since(U, L) is a static Nash equilibrium and players cannot affect the distribution
of the continuation play. Therefore, this strategy profile is a PPXE; its payoff
vector converges to* = ((2—4€,2—4¢),(2—4¢,2—4¢)) asd — 1. Observe
thatv* ¢ V< if £ € (0, %). In particular, this equilibrium approximates the efficient
payoff vector((2,2),(2,2)) as the noise parameteigoes to zero.

The idea of this construction is that continuation play depends on what players
have learned about the state. When players obseev¥(w;) and learn thato
is more likely, they choose “alway¥,L),” which yields an efficient payoff2, 2)
in statew,, but gives an inefficient outcon(d, 1) in wy,. Likewise, when players
observey € Y(wp) and learn thato, is more likely, they choose “alway®, R)”
to achieve an efficient payof®,2) in statew, but an inefficient payoff irw;. In
this sense PPXE allows “utility transfers” across states.

Example 1 is misleadingly simple, because there is an ex-post equilibrium of
the static game, and for this reason there is a PPXE for all discount factors. It
is also very easy to construct equilibria that approximate efficient payoffs in this
example: simply specify thqU, L) is played forT periods, and then eith¢d, L)
or (D,R) is played forever afterwards, depending on which state is more likely. In
the next example there is no static ex-post equilibrium, and hence no PPXE for a
range of small discount factors.

Example 2. Now we consider the game where players can learn the true state
from observed signals. Suppose that there are two players and two states, so that
| ={1,2} andQ = {w, w,}. The payoffs for statey are shown in the left panel,

and those for statey, in the right.

L R L R
ul| 1,1 |-12 uj| 00 |2 -1
D{2-1| 0,0 D|l-1,2 1,1

Note that the stage game is prisoner’s dilemma for each state, but the role of
actions are reversed; specifically),L) is efficient for statecyy while (D,R) is
efficient for statew,.

Assume that the set of possible public signalg is A x Q, and that the mon-
itoring technology is perfectrg’(a) = 1if y = (a,w), andg’(a) = O otherwise.

10



As we will see, this example satisfies all of the full-rank conditions of our general
ex-post folk theorem, so in particular a PPXE exists, but our proof of the general
folk theorem is not constructive.

Because this example has perfect monitoring, it is easy to give an explicit con-
struction of a PPXE whose payoffs converge to the efficient frontier in each state.
The basic idea is to wait one period, learn the state, and play a subgame-perfect
equilibrium for the corresponding known-state game. However, the strategies used
in the construction need to be a bit more complicated, as the recursive nature of
PPXE requires that the strategies specify incentive compatible play following ev-
ery sequence of signals, including those that have probability O unless “Nature
deviates.”

Consider a strategy with the following four phases:

e Phase “Regulaty.” Players play(U, L), which gives the efficient payoffs
for statewy. If y=((U,L), ), stay. Ify=((D,L),w1),y= ((U,R), ),
ory= ((D,R), ), go to “Punishw;.” If y= ((U,L), wp), go to “Regular
wp.” Otherwise, go to “Punislay.”

e Phase “Punishy;.” Players play(D, R), which gives the minimax payoffs

for stateay. If y= ((D,R),w»), go to “Regularawy,.” If y= ((U,R), wp),
y=((D,L),ap), ory=((U,L), wp), go to “Punishw,.” Otherwise, stay.

e Phase “Regulaty,.” Players play(D,R), which gives the efficient payoffs
for statew,. If y=((D,R), wp), stay. Ify=((U,R),ar),y=((D,L), ), or
y=((U,L), ), then go to “Punistw,.” If y=((D,R),w1), go to “Regular
w,.” Otherwise, go to “Punislay,.”

e Phase “Punishw,.” Players play(U,L), which gives the minimax payoffs

for statew,. If y=((U,L),w1), go to “Regularay.” If y= ((D,L),w),
y=((U,R),wn), ory=((D,R),w), go to “Punishw,.” Otherwise, stay.

It is straightforward to check that this strategy profile with initial state “Regu-
lar wy” is a PTXE and approximatg$2,2),(2,2)).

Claim 7 in the appendix shows how to extend the idea of this construction to
any case where actions and states are perfectly observed, and uses it to prove a
folk theorem for this observation structure.

11



The next two examples are partnership games with two acfiGn®;} per
player, corresponding to high and low effort on the group project. There are three
possible outcomebl, M, L, two states, and stage game payoffs that niaka
dominant strategy in each state. The probability distribution generatdohbi,)
is known and so independent of the state; what is unknown is the productivity of
high effort. Moreover the monitoring structure (or production function) in these
games is additive: the change in probabilities induced by pliég/ehanging from
Ci to D; is the same regardless of the action of the other player.

Example 3. In this example the uncertainty is symmetric in the state: In stafe

if player 1 choose£; instead ofD4 then the probabilities dff andM increase by

py andpy, while player2’s choice ofC, increases the probabilities loy; andgy;

in statewy, the roles are reversed. The realized payoff functions are independent
of w and given by

ui(G,y) =ri(y)—e& and u(Dj,y) =ri(y)
foreachi € 1, w € Q, andy € Y. We assume that for eack I,

ri(H) > I’i(M) > ri(L),
& > pu(ri(H) —ri(L)) + pm(ri(M) —ri(L)),
& > gu(ri(H) —ri(L)) +am(ri(M) —ri(L)).

Here the left-hand side of the second inequality is the cost of plEyehoice of

C, for statew, (or the cost of playe?’s choice ofC, for statewy), and the right-
hand side is an increase in playles benefit from the project when he choosis
instead ofD; for statew, (or an increase in playet's benefit when he chooses
C, for statewp). Since the left-hand side is greater than the right-hand side, we
conclude thaD1 strictly dominate<; for statew;, andD> strictly dominate<C,

for statew,. Likewise, the third inequality asserts tHat strictly dominatesCy

for statew,, andD-, strictly dominate<£, for statew,;. Thus,D; strictly dominates

C; for each state. Moreover, we assume that for each,

) (
) (

& < pr(ri(H) +ra(H) —ra(L) —ra(L)) + pm(ra(M) +rz2(M) —ry(L) —r2(L))

and
& < Au(ra(H)+rz(H) —ra(L) —ra(L)) +am(ra(M) +ra(M) —ry(L) —rz(L)),

12



so that choosing; instead ofD; always increases the total surplus. Summing
up, the payoff matrix of the stage game corresponds to a prisoner’s dilemma for
each sate; henc&/* has a non-empty interior and1,D,) is a static ex-post
equilibrium.

Example 4. In this example, the state only influences the productivity of player
2's effort: If player1 choose£; instead ofD4 then the probabilities dff andM
increase bypy andpy, independent of the state. In contrast, if plagehooses
C, instead ofD, then the probabilities dfi andM increase byyy andqy in state
wy, but they increase only b§qy andfBqu in statew,, where0 < 3 < 1.

As in Example 3, the payoffs have the form

u(G,y)=ri(y)—e and u(Diy)=ri(y)

for eachi € | andy € Y. We once again impose restrictions on the realized payoffs
so that the stage game payoffs in each state correspond to a prisoner’s dilemma:
D; is a dominant strategy, §®1,D>) is a static ex-post equilibrium{Cy,Cy) is
efficient, andvV* has a non-empty interidr.

In both of these examples, the conditions of FLM’s Theorem 6.1 apply in each
state considered in isolation, so if the state were known the folk theorem would
apply. Moreover in each example there are action profiles that reveal the state, in
the sense that the outcome distribution at that profile is different at siatean
at statewp,. However our ex-post-threats folk theorem applies to Example 3, but
in Example 4 the folk theorem fails, and moreover PPXE payoffs can be bounded
away from efficiency.

As we will show, the key difference is that in Example 4, the two states are
“entangled” in the sense that for any, the distributioni®2(a1,Cy) is a convex
combination of®:(a1,C,) andn®2(a1,D2), while this is not the case in Example
3 provided thatr, assigns positive probability tb;. Hence in Example 4, low-
ering the expected value of the continuation payoffs urmf&a1,D,) (which

9The conditions on the payoffs are somewhat different here due to the difference in the
monitoring structure. Now we assuntgH) > ri(M) > ri(L); e > pu(ri(H) —ry(L)) +
pum(ri(M) —ra(L)); & > gu(ra(H) —ra(L)) +am(ra(M) —ra(L)); er < pu(ra(H) +ra(H) —
ri(L) —ra(L)) + pm(ra(M) +ro(M) —ra(L) —r2(L)); andex; < Bow(ra(H) +ra(H) —ru(L) —
ra(L)) +Bam(ri(M) +ra(M) —ra(L) —ra(L)).
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can be necessary to provide incentives) also lowers the continuation payoffs un-
der®2(a;,Cy), and this bounds the set of PPXE payoffs away from the efficient
frontier.

4 Characterizing E(9)

4.1 Using Linear Programming to BoundE(9d)

In this subsection, we provide a bound on the set of PPXE payoffs that holds
for any discount factor; the next subsection shows that this bound is tight as the
discount factor converges to one.
Consider the following linear programming problem. leet x| AA;, A €
R'*I? andd € (0,1).
(LP-Average) k*(a,A,0) = m.a)\é\ A-v subject to
wy R
() v°=(1-9)g"(a)+om(a) w
foralli el andw € Q,
(i) v >(1-0)g”(a,a-i)+0m*(a,a-i) - W’
foralliel, we Q, anda; € A,

(i) A-v>A-w(y) forallyeY.
If there is no(v,w) satisfying the constraints, l&t'(a,A,d) = —c. If for ev-
ery K > 0 there is(v,w) satisfying all the constraints antl-v > K then let

K*(a,A,0) = co.

Here condition (i) is the “adding-up” condition, condition (ii) is ex-post in-
centive compatibility, and condition (iii) requires that the continuation payoffs lie
in half-space corresponding to direction veckoand payoff vector. Note that
whenA® #0 and/\j‘b # 0 for somew # @, condition (iii) allows “utility trans-
fer” across states. This utility transfer is the most significant way that LP-average
differs from the linear program in FL, so we will discuss it in more detail below.

As we show in Lemma 1(a), the vali&(a, A, d) is independent 0d, so that
we denote it byk*(a,A). Now let

K*(A) =supk(a,A)

a

14



be the highest score that can be approximated in diredtiby any choice ofx.
For each € R'*191\ {0} andk € R, letH(A,k) = {ve R™I?|A.v <k}. For
k=oworA=0,letH(A,k) = R*I® Fork=—w andA £0, let H(A,k) = 0.
Then, let
H*(A) =H(A,K*(A))

be the maximal half-space in directidn and set

Q= (] H*().

AeR!Ix1Q

Lemma 1.
(@) k*(a,A,d) is independent od.

(b) If (A%)ier # O for somew and (A%)ic; = 0 for all @ # w thenk*(A) <
sup, A -g(a).

(c) If A® < 0 for some(i, w) and/\f’ =0 forall (j,®) # (i,w) thenk*(A) <
ACVP.

(d) Consequentl C V*.

Proof. As in past work, part (a) follows from the fact that the constraint set in
(iii) is a half-space: If(v,w) satisfies constraints (i) through (iii) in LP-Average
for (a,A,d), then (v,W) satisfies the constraints fcéu,)\,S), whereWw(y) =
5?1*_‘35)v+ gg:gw(y). ~Let A* be the set ofA € R'*I19l such that(A®)ic # 0

for somew € Q and(A?)ic; = 0 for all @ # w. Since parts (b) and (c) consider
a single statev they follow from FL Lemma 3.1. Thu§))p- H*(A) CV*, and

part (d) follows fromQ C N ca H*(A). Q.E.D.

Since we already know th&(d) C V*, part (d) of this lemma shows th&t
is “not too big”: it doesn’t contain any payoff vector we can rule outaopriori
grounds. The next lemma shows tlaats “big enough” to contain all the payoffs
of PPXE.

Lemma 2. For everyd € (0,1), E(d) C E*(d) C Q, whereE*(9) is the convex
hull of E(9).
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Proof. The proof is the same as in Fudenberg, Levine, and Takahashi (2007);
we restate it in the supplementary materials to make it easy to see that the proof
applies to the present setting. Q.E.D.

To help explain the role of cross-state utility transfers, we will show that the
conclusion of Lemma 2 does not hold if constraint (iii) is replaced by the uniform-
over-states version

(iii") Z)\i‘*’vi‘” > Z/\iwwi‘”(y) forallwe QandyeY.
le le

The resulting “uniform” LP problem corresponds to a form of ex-post enforce-
ability on half-spaces. This condition is too restrictive to capture all of the payoffs
of PPXE, as shown by the combination of the following claim and the example
that follows it.

Claim 1. In the LP-Uniform problem formed by replacing (iii) in LP-Average with
(ii"), the solutiork (a, A, 0) satisfiesk” (a,A,5) < A -g(a) for eacha and A.
Therefore,kY (A,8) = sup, kY (a,A,8) < sup, A -g(a), and the corresponding
set of payoff€QV is a subset of the payoff&© that can be attained with actions
that are independent of the state.

Proof. Inspection of the constraints in the LP-Uniform problem shows that it
is equivalent to solving a separate LP problem for each stateQ in isola-
tion. As FL show, a solution to the LP problem for givéa,w) cannot ex-
ceedSic A%g®(a). Thereforek!(a,A,d), the maximal score in LP-Uniform
for a givena, is at mosty ,cq Sic A29%(a) = A -g(a), sosup, kY (a,A,0) <
sup, A -g(a). Q.E.D.

In both Examples 1 and 2, we constructed PPXE with payoffs outsid¥ of

4.2 Computing the Limit of E(d) as Players Become Patient

Now we show that the sé&(d) of PPXE payoffs expands to equal all@fas the
players become sufficiently patient, provided that a full-dimensionality condition
is satisfied. For each sBt let intB denote the interior oB, and bd denote the
boundary ofB.
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Definition 5. A subsetW of R' ¥l is smoothif it is closed and convex; it has a
non-empty interior; and there is a unique unit normal for each point . ¥4

Lemma 3. For any smooth strict subs&V of Q, there isé  (0,1) such that
W C E(8) for & € (5,1).

Proof. From lemma 1(d)Q is bounded, and hen®# is also bounded. With this
fact in hand, the rest of the proof is standard; we include it in the supplementary
materials for completeness. Q.E.D.

Because any full-dimensional convex subsefRbf/?l can be approximated
arbitrarily closely by a smooth subsétthis lemma together with Lemma 2 proves
the following theorem.

Theorem 3. If dimQ =1 x |Q| thenlims_,,E(d) = Q.

Itis possible thatimQ < | x |Q|, so that this theorem does not apply, but that
lims_1E(d) # 0. A trivial example of this occurs when the statehas no effect
on either the monitoring structure or the payoffs, so that it cannot possibly be
observed, but is simply a nuisance parameter. In this E&8¢is a subset of the
spacevV of payoff that can be generated with actions that are independent of the
state, sdQ C E(d) has dimension at most The solution is obviously to ignore
the state and characterize the perfect public equilibria of the game wherex{any)
is known; these equilibria correspond to the full set of PPXE of the game with
the noise parameter added. More generally, the full-dimension conditions could
fail due to the imperfect observability @b, but v might matter for the payoff
functions. In this case one might be able to charactdiag ., E(J) using an
extension of the iterative algorithm in Fudenberg, Levine, and Takahashi (2007),
but this remains a topic for future research.

5 A Perfect Ex-Post Folk Theorem

In this section we give simple and easy-to verify sufficient conditions for a folk
theorem to hold in PPXE. This theorem shows that any map from states of the

10A sufficient condition for each point on W to have a unique unit normal is that\Wwds a
C?-submanifold ofR' <1,

UThis is a standard result, see e.g. Fudenberg, Levine, and Takahashi (2007) Lemma A.1 for a
proof.
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world to feasible and individually rational payoffs in that state can be approxi-
mated by equilibrium payoffs as the discount factor goels tnd in particular by
payoffs of a PPXE. More formally, our folk theorem gives conditions under which
lims_,E(8) = V*.12 When this is true, so that efficient payoffs can be approx-
imated by PPXE, the payoffs do not provide much incentive for players to play
other sorts of equilibria or to try to change the monitoring structure. On the other
hand, when the set of PPXE is empty, or when all PPXE are far from efficient
but there are efficient sequential equilibria, the payoffs do provide an incentive for
change, and the PPXE restriction might be less compelling.

Since we have already shown tiaC V* and thatim5_,; E(8) = Q under the
full-dimension condition, it remains to show that C Q, which is equivalent to
showing thak*(A) > max.cy- A -vfor each direction\ . Our sufficient conditions
are actually stronger than that: they will imply tH&tA) = oo for directionsA
with non-zero components in two or more states. Conversely, the folk theorem
fails if there is aA such thak*(A) < maxey+A -v; we use this fact in Example 4
below.

Foreach € I, a € xje| AA, andw € Q, letT; , () be a matrix with rows

(7(ay, 0_i))yey for all a € A

Definition 6. Profile a hasindividual full rank for (i, w) if M ., (a) has rank
equal to|Aj|. Profilea hasindividual full rankif it has individual full rank for all
players and all states.

Individual full rank implies that at each state, every possible deviation of any
one player leads to a statistically different distribution on outcomes; on this con-
dition there are continuation payoffs that make every player indifferent between
all actions. However, as we discuss in Section 6, many of our results hold under
weaker but harder-to-verify conditions.

Let i o) (j,a) () be a matrix constructed by stacking matri€gs,, (o) and

|_|(J7a,)(a)

Definition 7. For each(i,w) and (], w) satisfyingi # j, profile a haspairwise
full rank for (i, w) and (j, w) if M 4)(j.w) (@) has rank equal toA |+ [Aj| — 1.

12Recall thalv* = {ve V|Vi € |, Vw € Q, v¥ > Vv¥}.
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Pairwise full rank implies that deviations by playean be distinguished from
deviations byj. It is satisfied for generic distributions on outcomes provided
that the number of outcomes is at le@st + |Aj| — 1. In the partnership games
of Examples 3 and 4, each player has two actions, and there are three possible
outcomes. This is why the folk theorem can apply there when the state is known
With only two signals, as in Radner, Myerson, and Maskin (1986), equilibrium
payoffs are bounded away from efficiency uniformly in the discount factor.

Definition 8. For each(i,w) and(j, @) satisfyingw # @, profile o hasstatewise
full rank for (i, w) and (j, &) if M 4. () has rank equal thAi] +|Aj].

Note that both pairwise full rank and statewise full rank imply individual full
rank. Note also that the pairwise full rank conditions require as many outcomes
as required by pairwise full rank in FLM, and the statewise full rank conditions
require at most twice as many outcom@€Once again, these conditions are sat-
isfied by generic distributions on outcomes provided that the number of outcomes
is as large as the number of rows that need to be linearly independent.

The statewise full rank condition guarantees that the observed signals will re-
veal the state, regardless of the play of playier statew and the play of player
j (possibly equal ta) in statedo, assuming that everyone else plays according to
a. This condition is more restrictive than necessary for the existence of a strat-
egy that allows the players to learn the state: For that it would suffice that there
be a single profilead where the distributions on signals are all distinct, which
requires only two signal* On the other hand, the condition is less restrictive
than the requirement that the state is revealed to an outside observer even if a
pair of players deviates. For example, statewise full rank is consistent with a sig-
nal structure where a joint deviation by playdrand2 could conceal the state
from the outside observer, as in a two-player game With=- A, = {L,R} and
n’(L,R) = rgf’(R, L). Intuitively, since equilibrium conditions only test for uni-
lateral deviations, the statewise full rank condition is sufficient for the existence
of an equilibrium where the players eventually learn the state. In Section 6, we

B3|f all players have the same numb@rof actions, statewise full rank requir@® signals,
which is one more than in FLM; if one player has more tltarr 2 actions and all other players
have two actions, statewise full rank requiBgsactions as opposed ®+2—-1=D+ 1.

“Note that players only need to distinguish between a finite set of signal distributions, and not
between all possible convex combinations of them.
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introduce the more complicated but substantially weaker condition of statewise
distinguishability, and show that it is sufficient for a static-threat version of the
folk theorem.

The following is an ex-post folk theorem. Note that the set of assumptions of
this theorem is generically satisfied¥f| > 2|A| for alli € I.

Condition IFR. Every pure action profile has individual full rank.

Condition PFR. For each(i,w) and (j,w) satisfyingi # j, there is an action
profile o that has pairwise full rank fafi, w) and(j, w).

Condition SFR. For each(i,w) and (], @) satisfyingw # @, there is an action
profile a that has statewise full rank.

Theorem 4. Suppose that (IFR), (PFR), and (SFR) hold. Then, for any smooth
strict subseW of V*, there isd € (0,1) such thatv C E(5) for all & € (3, 1).

The following lemmas are useful in this proof.

Lemma 4. Suppose that (PFR) holds. Then there is an open and dense set of
profiles each of which has pairwise full rank for &ll w) and (j, w) satisfying

i # J.

Proof. Analogous to that of Lemma 6.2 of FLM. Q.E.D.

Lemma 5. Suppose that (IFR) holds. Then forany |, w € Q, ande > 0, there
is a profilea® such thato® € argmax, g*(ai, a®)); |g”(a®) —v®| < g; and a®
has individual full rank for all(j, @) # (i, w).

Proof. Analogous to that of Lemma 6.3 of FLM. Q.E.D.

Lemma 6. Suppose that a profile has statewise full rank fofi, w) and (j, @)
satisfyingw # @ and thata has individual full rank for all players and states.
Thenk*(a,A) = o for directionA such thatz® # 0 and)\j‘z’ # 0.

Remark 1. Becaus&*(a,A) < A -g(a) in the known-monitoring-structure case

of FL, this lemma shows a key difference between that setting and the uncertain
monitoring structure case we consider here. The idea is that under statewise full
rank, the continuation payoffs in such half-spaces can give plagefery large
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payoff in statew by giving playerj a very low payoff in that state, while reversing
this transfer in staté.

The appendix has a direct proof of this lemma that some readers have found
opaque; the proof we present below is less concise but more revealing.

Proof. Assume to begin with that each player has only two actiéns; {&, &'}
andA; = {&j, 4]}, and consider the special case of a direcfiosuch that® =

/\ ® — 1 and all other components afare zero. Constraints (i) and (ii) for, @)

I x Q\ {(i,w),(j,®)} can be satisfied by some choice(ef’(y))ycy because of
individual full rank, and constraint (iii) is vacuous for these coordinates. So the

LP problem reduces to findingv®(y))yey and(wf)(y))yey to solve

K*(a,A,5) :maxvf*’+vj:’ subject to

V0 = (1—8)g®(a) + dm®(a) - we,
VP = (1-8)g”(a) +om°(a) - we,
VP> (1-9)g”(ai,a-i) +Om“(aj, a-i) -w{’, Va € A
VP> (1- >g?<a, P)+0mP(ay,a-) WP, Vaj €A
VO VP > wl(y) +wP(y), Yy eY.

We claim thatk*(a,A,0) = « if a has statewise full rank. It suffices to show
that for any sufficiently large® andvf’, there exis(wi‘*’(y),wf)(y))yey that satisfy
the first four constraints with equalities and

w2 (y) +wP(y) =0, vy €Y.

Eliminate this last equation by solving fwf’(y). Then the coefficient matrix for
the set of the remaining four equations is

(T§°(&, a-i))yev
(&, a-i))yev
(16°(&], a-))yev
(”?)(a/j/aa—j))er

The statewise full rank condition guarantees that this matrix has rank four, so the
system has a solution for ar(yi‘“,vf’), and thusk*(a,A) = . Intuitively, this
construction makes(y) large for signaly that are more likely under in state
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than in state’o and makesv(y) negative for signals that are more likely under
@, while keeping player indifferent between all actions in staég& and playerj
indifferent in statedo. This would not be possible if the signal distribution were
the same at the two states, or more generally if the above matrix were singular.

This example only explains why the can be made arbitrarily large when
exactly two components of are non-zero, but we can use this construction to
obtain arbitrarily high scores in any directignthat gives non-zero weight to
two or more states. For example, suppose #fét= )\j‘b = )\F = 1 and other
components are zero. First, chocﬁsr[é’,vj*’,w{”,w?’) as in the above example, so
that constraints (i) and (ii) fofi, w) and(j, @) are satisfiedy[” andv{’ are large,
andw{’(y) +w{’(y) = 0 for all y € Y. What remains is to finav” that satisfy
constraints (i) and (i) fol, @) and the feasibility constraint

VOV P > W (y) + WP (y) +w(y), Yy e Y.

The individual full rank condition implies there ¥“(y) that satisfies constraints
(i) and (ii), and sincev®(y) +Wj’3(y) =0 andvi‘*’+vf’ can be arbitrarily large, the
feasibility constraint can be satisfied for any valuewX(y).

Finally, although the argument above assumes each player has two actions, it
can easily be extended: In general after eIiminaVinﬁ’gy) there will be|Aj| + |Aj|
equations to be satisfied, and the statewise full rank condition assures that the
coefficient matrix of the system of these equations has full rank. Therefore the
system has a solution for al(lyi‘*’,vf’) and henc&*(a,A) = » as before. Q.E.D.

Lemma 7. Suppose that profile has pairwise full rank for alli, w) and (j, w)
satisfyingi # j. Fix a directionA such that for some, A,* is non-zero for at least
twoi, andA® = 0forall i € | and@ # w. Thenk*(a,A) = A -g(a).

Proof. It follows from Lemma 1(b) thak*(A,a) < A -g(a). Thus, in what fol-
lows, we establish th&t*(A,a) > A -g(a). To do so, we need to show that there
exist continuation payoffs ikl (A, A -g(a)) that enforcga,g(a)).
As in the proof of Lemma 6, for eadhe | andd # w, there exis(wia’(y))yey
such that
VP = (1-8)0P(ai, a_i) + Om(a, a-i) - W

for all 3 € A;. Moreover, it follows from Lemmas 4.3, 5.3, and 5.4 of FLM that
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there exis{w(y))y) such that
v’ = (1-0)g"(a, a-i) +om”(a, a—i) - W
foralli € | andg € Aj, and

A-w(y) = I;Aiwwia)(y) = Ig)‘iwviw =A-v.

Obviously, the specified continuation payoffs areH(A,A - g(a)) and enforce
(a,g(a)), as desired. Q.E.D.

Lemma 8. Suppose thatr has individual full rank for all(j, @) # (i, w) and has
the best-response property for playeand for statew. Thenk*(a,A) =A -g(a)
for directionA such that\® 0 andA® = 0for all (j,®) # (i, ).

Proof. This is a straightforward generalization of Lemmas 5.1 and 5.2 of FLM.
Q.E.D.

Proof of Theorem 4From Lemma 3, it suffices to show th@t=V*. To do so,
we will compute the maximum scoké(A ) for each direction .

Case 1. Considek such thatA,® # 0 and Aj‘b # 0 for somed # w andi
possibly equal toj. In this case, players can transfer utilities across different
statesw and & while maintaining the feasibility constraint and this construction
allowsk*(a,A,d) > A -g(a), as Example 1 shows. In particular, from (SFR) and
Lemma 6 we obtail*(A ) = o for this directionA.

Case 2. Considet such that(A,“)ic; has at least two non-zero components
for somew while A® = 0 for all ic | and® # w. Lemma 4 shows that every
profile a can be approximated arbitrarily closely by a profile that has pairwise full
rank for all players, and it follows from Lemma 7 thet(A ) = sup, K" (A, a) =
maXxcy A - V.

Case 3. Consider such that,* # 0 for some(i, w) and)\j‘D =0forall (j,®)#
(i,w). Suppose first that, > 0. Since every pure action profile has individual
full rank, a* € argmaxcag®(a) also has individual full rank. Therefore, from
Lemma 8,

kK'(A) >k*(a*,A) = A%gP(@") = maxA - v.

veV
On the other hand, from Lemma 1(I¥;(A) < maxev A -v. Hence, we have
K*(A) = maxey A - V.
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Next, suppose that® < 0. It follows from Lemmas 5 and 8 that for every
€ > 0, there is a profilex® such thatk*(a®,A) —A®v®| < €. Lemma 3.2 of FL
shows thak*(A) < A®v®, sok*(A) = A2,

Combining these cases, we obt&n=V*. Q.E.D.

6 A Static-Threats Folk Theorem

In this section we present an alternative theorem that uses weaker informational
conditions to prove a “static-threats” folk theorem, meaning that the theorem only
ensures the attainability of payoffs that Pareto-dominate the payoffs of a static ex-
post equilibrium. Consequently, this theorem assume that a static ex-post equi-
librium exists. This is always true when the state only matters for the monitoring
structure but has no impact on the expected payoffs (thgt'(ia) = g(a)), and

it is also satisfied for generic payoff functiogsvhen the state has a sufficiently
small impact on the payoff function. Several of our other assumptions in this sec-
tion seem more likely to be satisfied if the uncertainty is “small,” though that is
not necessary, as shown by Example 3.

Definition 9. For each(i, w) and(j, w) satisfyingi # |, profilea is pairwise iden-
tifiable for (i, ) and(j, w) if rank; o) (j.w) (0) =rank; ., (o) +rankTj ., (o) —
1.

This is the same as the FLM definition of pairwise identifiability. Note that
it does not require individual full rank, so that a given player may have several
actions that generate the same signal distributions, and not all actions need be
enforceable.

We say thatr is ex-post enforceable if it is ex-post enforceable with respect to
R'*I® and & for somed € (0,1). This is equivalent tar being enforceable with
respect toR' andé for each information structurg® in isolation.

Condition X-Eff. If pure action profilea gives a Pareto-efficient payoff vector
for somew € Q, it is ex-post enforceable.

FLM show that any Pareto-efficient action profile is enforceable. (X-Eff) ex-
tends this to ex-post enforceability, so it is automatically satisfied when there is a
single state.
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Condition U-Eff. If pure action profilea gives a Pareto-efficient payoff vector
for somed € Q then it gives a Pareto-efficient payoff vector for every

(U-Eff) says roughly that efficient actions are uniformly efficient. It is typ-
ically satisfied if the stage-game payoff¢(a) aren’t too sensitive to the state,
which in turn will be the case if the realized payotf$(y,a;) are insensitive to
w and the various distributions® are sufficiently similar. (It can also be satis-
fied when the distributions® differ substantially, depending on the details of the
functionsu®.) The condition is satisfied in the partnership games in Examples 3
and 4, wheréC,C) is the efficient profile in both states.

Condition PID. For each(i,w) and(j,w), every pure action profile is pairwise
identifiable for(i, w) and(j, w).

(PID) is stronger than needed, it is sufficient that it applies to the pure action
profiles that yield Pareto-efficient payoffs.

Lemma 9. If u®(y, &) is independent od and (U-Eff) holds then (X-Eff) holds.

Proof. Because each player’s payoff depends only on their own action and the
realized signal, Lemma 6.1 of FLM applied to each stata isolation implies
that profilea is enforceable for eactw. Q.E.D.

As argued, statewise full rank can require that there be twice as many signals
as required by the FLM folk theorem. The following, more complex, condition
can be satisfied with far fewer signals. In part, this condition is related to the fact
that linear independence of the outcome distributions is not needed for an action
profile to be enforceable, as linear independence tests all linear combinations of
the distributions, while it is sufficient to rule out convex combinatibhs.

Definition 10. Profile a statewise distinguishe$, w) from (j, &) if there is a
vectoré = (&(y))yey € RYI such that

() m°(a)-& >n®(a)-¢&,

155ee Kandori and Matsushima (1998). In the study of mechanism design with transferable util-
ity, Kosenok and Severinov (2008) and Rahman and Obara (2008) gave a weaker sufficient condi-
tion for budget-balanced implementation; the balanced-budget constraint roughly corresponds to
directionsA where every component is strictly positive.
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(i) nm®(a)-&=n%(g,a_i)-& >n®E,a_)-& forall g € supm; and§; € A,
(i) m@(a)-&=n%(aj,a_j)-& forall aj € A,.

We illustrate these conditions in Figure 1. Clause (i) implies that the signals
generated byr statistically distinguishw from ¢@. Clearly, there must be some
such profile for there to be equilibria where the play varies with the state. Clause
(il) says that changing playeis continuation payoff function in statey from
W (y) to w®(y) + & (y) preserves incentive compatibility for playierand clause
(i) says that the change in play@s continuation payoff (ofAw®(y) = &(y))
can be offset to preserve the feasibility constraiftAw®(y) + A *AwS(y) = 0)
without changing playelj’s expected continuation payoff to any action. Note
that this transfer scheme increases playerexpected continuation payoff by
E[AwW®|a] = n®(a) - &, so the maximal score fok with A® > 0 can be made
infinitely large by utility transfer between statesfrom ¢0.1°

Figure 1: Statewise Distinguishability.

Condition SD. For each(i,w) and(j,®) satisfyingw # ¢, there is an ex-post
enforceable action profile that statewise distinguishés w) from (j, @).

(SD) is sufficient for the static-threat folk theorem, as it implies that profile
can generate an infinite score in all of the required “cross-state” directions.

181f A @ < 0, then playei's continuation payoff must be decreased to achieve a high score. This
requires a different sort of transfer and in turn requires a different condition on the information
structure, but this condition is not needed for a static-threats folk theorem.
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Theorem 5. Suppose that (PFR) holds or (X-Eff) and (PID) hold. Suppose also
that (SD) holds. Assume that there is a static ex-post equiliba®mand let
VO={veVVieclVwe Q v¥ > g®a®}. Then, for any smooth strict subskit

of VO, there isd € (0,1) such thaW C E(J) forall § € (5,1).

This theorem is established by the following lemmas that determine the max-
imal scorek® in various directions. The next lemma says that score of a static
ex-post equilibrium can be enforced in any direction; this score will be used to
generate the score in directions that minimize a player’s payoff.

Lemma 10. Suppose that there is a static ex-post equilibratn Therk* (a®,A) >
A -g(a9) for any directionA.

Proof. Letv® =w®(y) = g®(a®) foralli € |, w € Q, andy € Y. Then, this(v,w)
satisfies constraints (i) through (iii) in LP-Average, ahdv = A - g(a®). Hence,
k*(a%A) > A-g(a?). Q.E.D.

The next lemma determines the maximal score for directitimat considers a
single statev and has a positive component or at least two non-zero components,
when (X-Eff) holds.

Lemma 11.

(a) Suppose that (PFR) or (X-Eff) and (PID) hold, and that proélgives
Pareto-efficient payoffs for soneec Q. Thenk*(a,A) = A -g(a) for direc-
tion A such thatA?)ic| has at least two non-zero components wh'ﬁlat 0
forall jel and® # w.

(b) Suppose that (PFR) or (X-Eff) and (PID) hold. THe®A ) = maxey A -v
for directionA such thaz® > 0 and)\j‘:’ =0forall (j,&) # (i,w).

Proof. Part (a). Lemma 1(b) shows that the maximum score in directicnat
mostA -g(a). Because is a pure action profile, and it is enforceable foralhnd
pairwise identifiable from (X-Eff) and (PID), is enforceable on hyperplanes cor-
responding to\ from Theorem 5.1 of FLM, so the scole g(a) can be attained.
If (PFR) holds this follows from Lemmas 4 and 7.

Part (b). Leta be a Pareto-efficient profile that maximizes playgpayoff in
statew. If (X-Eff) holds, a is ex-post enforceable, and since the profile has the
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best-response property in stabeLemma 5.2 of FLM implies it is enforceable on
A. If (PFR) holds, this follows from Lemma 8. Q.E.D.

The following lemma shows that (SD) is sufficient for the maximal score to be
infinite in every cross-state directionthat has at least one positive component.
See the appendix for the proof.

Lemma 12. Suppose thatr is ex-post enforceable and statewise distinguishes
(i, w) from (j,®). Thenk*(ar,A) = oo for directionA such tha® >0 and/\j‘b #
0.

We now apply these concepts to demonstrate the differences between the two
partnership games that we introduced in Section 3.

Example 3. Recall Example 3 from Section 3, where the effect of the uncertainty
is symmetric across states and players: In siatef player 1 choose<; instead

of D; then the probabilities dfl andM increase bypy andpy, while player2’s
choice ofC; increases the probabilities loy; andqy; in stateay, the roles are
reversed. Note that individual full rank is satisfied, and that pairwise full rank is
satisfied at every profile and every state if the matrix

PH Pm
g+ Qm

has full rank. For example, the matiiX 1 ., )(2,e;)(D1,C2) is represented by

OH + OH OmM + 0w 1—(OH+0H+O0m+0m)
OH+PH+OH OM+PmM+0dvm 1—(OH + PH +0OH +Om+ Pm +0m)
OH + OH Om + Om 1—(oH+09n+0m+0awm) ’
OH oM 1—(oq+0m)

and this matrix has rank three if the above two-by-two matrix has full rank. There-
fore, the profile(D1,C;) has pairwise full rank fof1,w;) and (2,w;). On the
other hand, statewise full rank is not satisfied at any profile, as there are only
three signals, while four signals would be needed to satisfy this stronger condi-
tion. Nevertheless, we will show that the static-threat folk theorem holds in this
example, because statewise distinguishability is satisfied.
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Claim 2. In Example 3(D1,Cp) statewise distinguishds, w) from (j, &) satis-
fying w # @.

Proof. First, consider((i,w), (j,®)) = ((1,w1),(2,a2)). In this case, le€ =
(€(y))yey be a solution to the system

pHé(H) +pmEM) +(1—pu —pm)é(L) =0
qHEH)+aué(M)+(1—gq —au)é(L) =K

for someK > 0. This system has a solution, since the matrix
PH  Pwm
g4 Om
has full rank, and the solution satisfies
% (C1,Cp) - & = M (D1,Cp) - € = m*?(D1,Cp) - & + K = m*?(D1,Dz) - £ +K

so statewise distinguishability holds.
For((i,w),(j,®))=((2,m),(2,ar)), we can use the sande For((i,w), (j,®)) =
(1, an), (1, n)) or ((i,w),(j, &) = ((2,ar), (1, w1)), useé that solves

pré(H) +pmé(M) +(1—pn—pm)é(L) =0
HEH)+aué(M)+(1—gy —au)é&(L) = —K

for someK > 0. For ((i, w), (j, ®)) = (1, @), (1,ap)) or ((i, w), (j, @) = (2, @), (1, w2)),
useé that solves

Pé(H) +pmEM) + (1—pr — pw)é(L) = —K
gué(H)+amé (M) +(1—gu —au)é(L) =0

for someK > 0. Finally, for ((i, @), (j,®)) = (1, ), (2,w1)) or ((i, ), (j, @) =
((2,ar),(2,an)), useé that solves

PHE(H) +pmé (M) + (1—pu — pm)é(L) =K
gHé (H) +amé (M) +(1—agu —agm)é(L) =0

for someK > 0. Q.E.D.
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This claim shows that (SD) holds in Example 3, so that the static-threat folk
theorem applies to Example 3. In contrast, payoffs are bounded away from ef-
ficiency in Example 4, which is a related partnership game. This is because the
states in Example 4 are “entangled” in the following sense:

Definition 11. Profile a entangles state® and @ for player j if there isTt €
co{n®(aj,a_j)|aj; € Aj} such thatr®(a) = kt®(a) + (1 — k)Tt for somek €
(0,1].

Lemma 13. If profile a statewise distinguishés, w) from (j, @) thena does not
entanglew and @ for player j.

Proof. If a entangles statas andd for player|j then for anyé such thaln‘:’(a)-
& =m%(aj,a_)-& forallaj € Aj, we haven®(a) - & =Tt forall Tte co{i®(aj,a_j)|aj €
Aj}, so thatn®(a) - & = ®(a) - &. Thusa does not statewise distinguigh w)
from (j, ). Q.E.D.

Example 4. Recall Example 4, where the state only influences the productivity
of player2’s effort: If player1 choose<£; instead ofD1 then the probabilities of

H andM increase bypy and py, independent of the state. In contrast, if player
2 choose<>; instead ofD, then the probabilities dfl andM increase byyy and

gm in statew;, and byBgy andfBqu in statewp. Individual full rank and pairwise

full rank are satisfied at every profile and every state if the matrix

PH Pwm
gH Qm

has full rank. However, every profile entangles and «, for player2, essen-
tially because playe2 working with probabilityx in statew, generates the same
signal distribution as playe&rworking with probabilityx in statecw, , so the suf-
ficient conditions for the static-threats folk theorem are not satisfied. Moreover,
we will show that the folk theorem fails in this example, and more specifically
that the maximal scork*(A) in directionA’ = ((1,0),(0,1)) is strictly less than
A’"-g(Cq,Cy), which in turn is less thamax,cy+ A’ - v.

To show that the folk theorem fails, we use the fact that the monitoring tech-
nology has an additive form, so that it suffices to consider only the pure action
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profiles, as in Lemma 4.1 of Ft".

Claim 3. For a = (C1,Cy),
1_
K'(a,A") <A"-g(C1,Ca) — TB@%’Z(CL D) - 95%(C1,C2))-

Proof. See the appendix. The inefficiency here comes from the fact that the two
states are entangled for playzand hence the profileC;,C,) does not statewise
distinguish(1, w ) from (2, ap). Q.E.D.
Claim 4. For o = (Ds,Cp), k"(a,A") <A"-g(D1,C2) — 5P (g5%(D1, D2) — g57(D1,Co)).
Proof. The same as in the previous claim. Q.E.D.
Claim 5. For a = (C1,D2), k*(a,A’) < A’-g(Cy,D>).

Proof. Sincerr®1(Cy,Dy) = n*2(Cq,D5) andn®®(D1,D5) = n*2(D1,D>), the set

of the constraints in the LP-Average problem fdris isomorphic with that for

A" =((0,0),(1,1)). Then the maximal score fo¥’ equals that fon”, and the
statement follows from Lemma 1(b). Q.E.D.
Claim 6. For a = (D1,D3), k"(a,A’) <A’-g(D1,D>).

Proof. The same as in the last claim. Q.E.D.

Now we combine these claims to show thafA’) < A’-g(Cy,Cp). Since
9;*(C1,D2) = g72(C1,D2), we have

A’-g(C1,D2) = g3*(C1,D2) + g52(C1,D2) = 932(C1,D2) + 95 2(C1, D2)
< 07%(C1,C2) +952(C1,C2) < 97%(C1,C2) +052(C1,C2) = A’ - g(C1,Cy).

Also,

A’-g(D1,C2) =0;*(D1,Cz) + 952(D1,Co)
=0;*(C1,C2) +952(C1,C2)
+(91"(D1,C2) + 95" (D1,C2) — 97 (C1.C2) — 3™(C1,C2))
<071 (C1,C2) + 952(C1,Co)
=A"-9(C1,Cy).

YFL used a more restrictive definition of “additive monitoring structure,” but the proof of their
Lemma 4.1 applies to any case where the effect of one player’s action on the distribution of signals
is independent of the action of the other player.
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Here, the second equality comes from the state independence of ptayerginal
contribution, which implies tha;* (D1,Cz) — g3 (C1,Cz) = g52(D1,C2) —052(C1,C).
Combined with the previous claims, it follows tHatA’) < A’-g(Cq,Cy), so that

the folk theorem fails. Moreover, because the player’s equilibrium payoffs cannot
be below their minmax level in any state, this bound implies that for some param-
eter values playe2’s PPXE payoff in statew, is strictly less tham,?(Cy,Cp).18

7 Incomplete Information and PTXE

So far we have assumed that the players have symmetric information about the
state. Now suppose that each playabserves a private signé| € ©; at the
beginning of the game, whe& is a partition ofQ. Let 6(w) > w be the partition
element that observes when the statedis which we will call playeii’s type, and

let 8(w) = (6(w))ier- Any public strategys of the game where playéhas the
trivial partition®; = {Q} induces a public strategy for any non-trivial partition
playeri simply ignores his type and sed¢h, 6) = si(h) for all hand all8. Since

by definition play in a PPXE is optimal regardless of the state, any PPXE for the
symmetric-information game (where all players have the trivial partition) induces
a PPXE for any incomplete-information game (any partiti@gswith the same
payoff functions and prior. Thus the PPXE of the incomplete-information games
are isomorphic to the PPXE of the associated symmetric-information game, so
the limit PPXE payoffs can be computed using LP-average, and in particular our
sufficient conditions for the folk theorem are still sufficient.

However, we expect there to be other equilibria where different types of a
given player use different strategies. To analyze these equilibria, we extend the
notion of PPXE tgerfect type-contingently public ex-post equiliboiaPTXE.

In what follows, leth denote playei’s private history from period one to
periodt, that is,h! = (af,y")}_,. Let H! denote the set of ali{. Likewise, let
ht = (y")L_, be a public history from period one to perigdndH! be the set of all
ht. Playeri’s overall strategy is a mag: ©; x Ui oH! — AA;. Playeri’s strategy

8For example, suppose that = .5, py = 0,04 =0, gu = .5, B = .8, ri(H) = 100, r{(M) =
99, ri(L) =0, e =99, ande; = 79. Then the minmax payoffs are 0 for all players and all
states,9;*(C1,Cp) = 0.5, g52(C1,C2) = 10.6, andgy?(Cy,Dz) = 50. Using Claim 3, we have
vi+v3 < 1.25, and sincevi > 0, V3 < 1.25, it cannot achieve payoff;?(Cy,Cz) = 10.6.
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s € § istype-contingently publiif it depends only or6 € ©; andh' € Ht, that is,

if 5(8,h) =s(8,h) wheneveh andhi correspond to the same public history.
A strategy profiles € Sis type-contingently public i§ is type-contingently public
for eachi € 1. Given a type-contingently public strategy profile S lets|g )
denote playei’s continuation strategy when his type @& and the past public
history ish', ands| (g nt) = (il (g n) )ier -1

Definition 12. A strategy profiles € Sis aperfect type-contingently public ex-post
equilibriumif it is type-contingently public, and 8| g« r) is @ Nash equilibrium
foranyw € Q andht € Ht,

Note that PTXE coincides with PPXE if there is no asymmetric information,
i.e.,0;={Q} foralli € I. In addition it corresponds to the belief-free equilibrium
of Horner and Lovo (2009) anddtiner, Lovo, and Tomala (2009) in games with
observed actions and incomplete information: These papers define a belief-free
equilibrium to be a strategy profile such that for each stai®, profile s is a
subgame-perfect equilibrium of the game where all players know the state is

By definition, any continuation strate@ = (S|g(w),nt)weq Of @ PTXE is
also a PTXE. Thus any PTXE specifies PTXE continuation play after each signal
y, where the continuation payoft&(y) = (W{°(Y))(i,w)cI xq corresponding to this
signal specify the payoffs for every player and every state. This recursive structure
allows us to extend our linear programming characterization to PTXE.

First we need to define some notation. We will writé(a ) - w® for the the
expected continuation payoff at stateunder action profilex, wherew® is the
vector(W®(y))yey. Leta; = (aie"')g,e@i Whereaie' € AA; for each@ € ©;, and let
d = (G)icr- In words,d is a type-contingent action profile; it specifies a mixed
action for each private signé| of each player. For example, if the true state is
wthen players have type profig{w), so thati says to playr®@ = (a?@),, .

The definitions of ex-post enforceability extends to PTXE in the obvious way:

Definition 13. For & € (0,1) andW C R'*19l, a pair(d,v) € (xic| xgeo, AA) X
R!*19l js ex-post contingently enforceable with respecttand W if there is a
functionw : Y — W such that

W= (1-8)(@®®)) + 5°(a®@) w

Here, the word “continuation strategy” is an abuse of language, becdusg) is not a
strategy for the entire game; it specifies a play for a given 8t not for6 # 6.
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foralliel andw € Q, and
Ve > (1-8)g%(a, a’ ) + o, a% () - w
foralliel, we Q, andg € A,.

Note that this definition takes into account the possibility that the action profile
a varies with8. Note also that the second condition is imposed at every atate
so it does not depend on playi&rtype 6.

Using the idea of type-contingent enforcement, we can extend the definition
of ex-post self-generation and local ex-post generation to PTXE, and it is easy
to verify that Theorems 1 and 2 hold as stated with this extension \&lé&his
interpreted as the payoffs of PTXE.

In a similar way, we can extend the linear programming characterization of the
limit equilibrium payoffs. The key difference is that the players’ actions can now
depend on their type, so the action profiles used to generate the maximal scores
are allowed to depend on the type profile. Thus the linear programs we consider
are

k'(d,A,0)= max A-v subject to
VGR'X‘Ql
wY —R!xI€l
i) v =(1-3)g"(a®®)+an°(a’ ) -’
for alli, w,

(i) W= (1-8)gP(@a,a’' ) +on?(a,a’ @) we
foralli, w, anda € A;,

@iy A-v>A-w(y) forallye.
If there is no(v,w) satisfying the constraints, |&t‘(d,A,d) = —co. If for ev-
ery K > 0 there is(v,w) satisfying all the constraints andl- v > K then let

kK*(d,A,0) = oo.
If we use this program to define the §g¢then Theorem 3 holds as before:

Theorem 6. If dimQ =1 x |Q| thenlims_,, E(d) = Q.

However, the nature of this s€ can be very different than before, as the
players now have three possible sources of information about the state: (i) infer-
ence based on the public signals at state-independent action profile, as in the bulk
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of this paper; (ii) the information contained in their own types; and (iii) infer-
ences based on the correlation between the opponents’ actions and the opponents’
types. In the sequel to this paper (Fudenberg and Yamamoto (2009)), we provide
weaker sufficient conditions for a folk theorem that takes advantage of all three
of these information channels. We then focus on cases with additional structure
that simplifies the characterization of limit payoffs, such as games with a product
structure, where there is a separate and independent signal associated with each
player’s action, and each player knows the effect of his action on the signal distri-
bution while the others do not. We also examine games with a known monitoring
structure, where we show that the set of limit equilibrium payoffs with imperfectly
observed actions is the same as in the observed-action case studiéchey &hd

Lovo (2009) and Hrner, Lovo, and Tomala (2009) provided that the monitor-

ing structure satisfies a full-rank condition. In addition, our techniques provide a
simpler sufficient condition for the existence of belief-free equilibrit¥m.

8 Concluding Remarks

This paper has shown that the sets of PPXE and PTXE payoffs have a recursive
structure and that their limit payoffs can be analyzed with extensions of the tech-
niques used to analyze PPE in games where the monitoring structure is known.
When the statewise full rank conditions hold, along with the standard individual
and pairwise full rank conditions, the set of PPXE satisfies an ex-post folk the-
orem, even if the set of static ex-post equilibria is empty. When a static ex-post
equilibrium does exist, there is an ex-post PPXE folk theorem under even milder
informational conditions.

Of course for a given discount factor the full set of sequential equilibria of
these games is larger than the set of ex-post equilibria, and can permit a larger
set of payoffs. In particular, because the game has finitely many actions and sig-
nals per period and is continuous at infinity, sequential equilibria exist for any
discount factor, even if the set of PPXE or PTXE is empty. This follows from the
facts that sequential equilibria exist in the finite-horizon truncations (Kreps and
Wilson (1982)) and that the set of equilibrium strategies is compact in the prod-

20Hdrner, Lovo, and Tomala (2009) give tight conditions ensuring that th® s&hon-empty;
this set equals the set of limit payoffs of PTXE when it has a non-empty interior.
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uct topology (Fudenberg and Levine (1983)). So neither concept is well-adapted
to the study of games with uncertain monitoring structures and very impatient
players. Conversely, when players are patient and mostly concerned with their
long-run payoff, our informational conditions imply that there are PPXE where
players eventually learn what the state is, and obtain the same payoffs as if the
state was publicly observéd. Moreover, if players have initial private informa-
tion, there can be folk theorems in the set of PTXE even when the set of PPXE is
small or empty; Fudenberg and Yamamoto (2009) develops the relevant informa-
tion conditions and studies the set of PTXE payoffs in some cases of interest.

Appendix

A.1 An Ex-Post Folk Theorem with Perfect Monitoring

Claim 7. Suppose that monitoring is perfect, that¥s= A x Q and i’(a) = 1
if y=(a,w). Fix a payoff vectow € intV*. Then there i such that for all
5 € (8,1) there is a PPXE where players play a pure action profiléin period
one and then along the equilibrium path pk(d) from period two, where®(d)
is a subgame-perfect equilibrium for stateand discount factod with payoffv®,

Proof. Letv= (V¥)necq € intV*, and lete > 0 be such that for eaals, any payoff
vector withine of v¥ is in the setvV*(w). Then letd € (0,1) be such that (i)
£> 1;55 Yiel (MaXaeadi(a) —mingeagi(a)), (i) for eachw, there is a subgame-
perfect equilibriuns®V” for statew and discount factad with payoffv®, and (i)
for eachw € Q and for any payoff vecto?® within ¢ of v&, there is a subgame-
perfect equilibriums®? for statew and discount factod. Note that these three
conditions hold ifd is close to one; the last condition (iii) comes from Theorem
6.2 of FLM.

Consider the following strategy profile:

2lWhen the ex-post folk theorem holds, and a feasible payoff ved®not a limit payoff of
PPXE then for some player/state pair the paydfis not ex post individually rational, so that
the payoff vectow cannot pointwise dominate any powite V*. However, as Olivier Gossner
pointed out, there may be priors such that the expected payoffs to a sequential (but not ex-post)
equilibrium Pareto-dominates all of the ex-post equilibrium payoffs, essentially because revealing
information destroys opportunities for insurance, as in Hirshleiffer (1971).
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Phasel : Play a pure action profila in period one. If there is no unilateral
deviator froma andw is observed then go to Phage, v*). If playeri unilaterally
deviates froma andw is observed then go to Pha@se, (v; — 6 (maxaeAg.( a) —
MingeaGi(8)), (V) j=i))-

Phase(w,¥) (Here, w € Q andV® is within € of v%.) : Play a subgame
perfect equilibriums®? in the remaining periods, as long asis observed in
every period of this phase. (Recall trst” is a subgame-perfect equilibrium
for statew with payoffs ¥©.) If in any periodt, w' # w'~! then go to phase
(wf,w® (@) in the next period, where (at) = (W% (a!))ic; is chosen so that

we (@) = v+ 10 g ay)

o
foralliel.
This strategy profile is well-defined, ag” (a) is within € of v by construc-
tion, and it is easy to see that this strategy profile is a PPXE. Q.E.D.

A.2 Proof of Lemma6

Lemma 6. Suppose that a profile has statewise full rank fofi, w) and (j, @)
satisfyingw # @ and thata has individual full rank for all players and states.
Thenk*(ar,A) = oo for directionA such that\® 0 andA® # 0.

Proof. Let (i,w) and(j, @) be such thah® # 0, A® # 0, and® # w. Leta be a
profile that has statewise full rank for &l w) and(j, @) satisfyingw # é.

First, we claim that for everK > O, there existz” = (Z°(y))yev andzf’ =
(Z7°(Y))yey such that

K
ﬂ‘”(a,aq)-z“’zm (1)
for all g5 € A,
n®(aj,aj)-2’=0 (2)
for all a; € Aj, and
ACZy) +APZP(Y) = (3)

for all y € Y. To prove that this system of equations indeed has a solution, elimi-
nate (3) by solving fozf’(y). Then, there remaifA| + |Aj| linear equations, and
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its coefficient matrix i1 ,,(j,@) (a). Since statewise full rank implies that this
coefficient matrix has ran;| + |A;|, we can solve the system.
Next, for each(l, @) € | x Q, we chooséW®(y))ycy So that

(1-8)g”(ay,0-) +0m®(ay,a_y) - WP =0 (4)

for all 3 € A;. Note that this system has a solution, simcéas individual full
rank. Intuitively, continuation payoff&® are chosen so that players are indifferent
over all actions and their payoffs are zero.

Let K > maxey A -W(y), and chooséz®(y))yey and(zj*’(y))yey to satisfy (1)
through (3). Then, let

W(y) +2y) i (1,®) = (i,)
WP(y) = 8 W)+ ) i (1,@) = (1,0
|

(y) otherwise
for eachy € Y. Also, let
K . _ ,
3 if (l,w)=(i,w)

=g
0 otherwise

We claim that thigv,w) satisfies constraints (i) through (iii) in LP-Average. It
follows from (4) that constraints (i) and (ii) are satisfied for@liw) € (I x Q) \
{(i,w),(j,@)}. Also, using (1) and (4), we obtain

(1_ 5)giw(aiva*i) + 57'!0)(&;,04) Wlw
=(1-9)g”(aj,a-i) +om“(a,ai) - (W + ")
K
Ao

for all & € A;. This shows thatv,w) satisfies constraints (i) and (i) far, w).
Likewise, from (2) and (4)(v,w) satisfies constraints (i) and (ii) fdyj, ¢). Fur-
thermore, using (3) and > maxcy A - W(y),

A-w(y) = A -W(y) +A%Z°(y +)\“’z“’)
=AWy <K=A-v
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for ally € Y, and hence constraint (iii) holds.
Thereforek*(a,A) > A -v=K. SinceK can be arbitrarily large, we conclude
K*(a,A) = oo, Q.E.D.

A.3 Proof of Lemma 12

Lemma 12. Suppose thatr is ex-post enforceable and statewise distinguishes
(i, w) from (j,®). Thenk*(a,A) = o for directionA such that,” > 0 and)\j‘:’ #
0.

Proof. Let & = (£(y))yey be as in the definition of statewise distinguishability.
Without loss of generality, assunmé’(a) - & = 0. Letz® = (Z°(y))yey andz” =
(Z°(y))yev be such that

20)= gromorar £V
and ) K
Zj”(y) = —Wf()’)

forallyeY. Sincen®(a)-& = n®“(a,a_i)-& > 0for & € supmi, we have

K K
n‘*’(a;,a_i)-Z,‘”ZWn‘*’(a;,a_i)-E:W (5)
for all g € suppmi. Also, sincen®(a)-& >0andn®(a)-& > n®(a,a_i) - & for
g ¢ supm;, we have

nw(aiaa*i) Z|w

K K
SA®

:an(ai;afi)'fﬁ— (6)

for all & ¢ suppmi. Moreover, sincer®(a) - & > 0andn®(aj,a_;)-& = 0for all
aj € Aj,

g g K g

nw(ajaa—j)'ztjoz—Wﬁ*’(aj,a_j)-f:O (7)
for all aj € A;. Finally, it is obvious that
AOZ(Y) + A2 (y) =0 ®)
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forallyeY.
Let (V,W) be a pair of a payoff vector and a function such tiieénforces
(V,a). LetK > maxey A -W(y) — A - V. Then, let

W) +20y) i (1L,®) = (i)
WPy) = { R +2y) i (1,@) = (],6)

WP (y) otherwise
for eachy € Y. Also, let
. K . _ :
Vlw+_ if (l,&)):(l,w)
=g
e otherwise

We claim that thigv, w) satisfies all the constraints in LP-Average. Obviously,
constraints (i) and (ii) are satisfied for &ll,w) € (I x Q) \ {(i,w), (j,)}, as
VP = ¥ andw®(y) = WP(y). Also, since (5) and (6) hold anl enforces(a, V),
we obtain

(1-06)g°(ay,a_i) + om® (&, a_i) - w®
=(1-9)g”(a,ai) +om“(a,a_i) - (W +Z*)

for all & ¢ supmi. Hence,(v,w) satisfies constraints (i) and (ii) fdr, ). Like-
wise, it follows from (7) that(v,w) satisfies constraints (i) and (ii) fqij, @).
Furthermore, using (8) ard > max,cy A - W(y) — A -V,
A-w(y) = A -W(y) +AZ(y) + A Z0(y)
= A - W(y)
<A V4+K=A-v
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for ally € Y, and hence constraint (iii) holds.
Thereforek"(a,A) > A -v=A -V+ K. SinceK can be arbitrarily large, we
concludek*(a,A) = oo, Q.E.D.

A.4 Proof of Claim 3

Claim 3. For a = (C1,Cy),

k*(a,)\’) <A 9(Cq1,Co) — %(gg’z(cl, Do) — g‘z*’z(Cl,Cz)).

Proof. Consider the associated LP-Average problem, and ch@osg to satisfy
constraints (i) through (iii) of this problem. From play&s IC constraint for state
wp, We have

B(an (W52(H) —w52(L)) + am (W5 2(M) — W %(L)))
> ?(g?ml,Dz)—gg&(Cl,Cz))-
Then,

Vit +V5? =(1-8)(91" (C1,C2) + 652 (C1,Co))
+ 3(M(Cyp,Cp) - WE + 11%2(Cy, Cy) - WE2)
=(1-0)(97™(C1,C2) +05%(C1,C2)) + 61 (C1,Co) - (Wy™ + W5?)
—8(1~ B)(AH(W5?(H) —w5>(L)) + o (W5* (M) —w3>(L)))
<(1-0)(91*(C1,Ca) +95°(C1,C2)) + (V4™ +V3)
- B0 P (g1, Da) - g€ Ca)
Arranging,

1_
Vit 452 < g7(Ch,Co) + 932(C1,Cp) — Tﬁ(gg’z(csz) —052(C1,C2)).

So we have
1—
A-v<A-g(CL,C) — Tﬁ(g?z(cb D2) - 65°(C1,C2)).-
This proves the desired result. Q.E.D.
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Supplementary Materials

S.1 Proof of Theorem 1

Theorem 1. If a subsew of R %19l is bounded and ex-post self-generating with
respect tad thenW C E(9).

Proof. Letve W. We will construct a PPXE that yields Sincev € B(d,W),
there exist a profiler and a functiow:Y — W such thata, v) is ex-post enforced
by w. Set the action profile in period one to §go = a and for eacth! =yl c Y,
setv|;. =w(h') € W. The play in later periods is determined recursively, usipg
as a state variable. Specifically, for each?2 and for eactt 1 = (yT)tT‘:ll e H 1,
given av|-1 € W, let o|—1 andw|-1 1Y — W be such thata|i-1,V|p-1) IS
ex-post enforced by|,;-1. Then, set the action profile after histany to be
Sl-1 = a1, and for eacly! €'Y, setv]p_ -1 ) = Wly-1(y') € W.

BecausaV is bounded and < (0,1), payoffs are continuous at infinity so
finite approximations show that the specified strategy prefideS generates as
an average payoff, and its continuation strategyyields v|;; for eachh' € H!.
Also, by construction, nobody wants to deviate at any moment of time, given any
statew € Q. Because payoffs are continuous at infinity, the one-shot deviation
principle applies, and we conclude tlsas a PPXE, as desired. Q.E.D.

S.2 Proof of Theorem 2

Theorem 2. If a subsetV of R' %1€l is compact, convex, and locally ex-post gen-
erating then there i$ < (0,1) such thatW C E(J) for all & € (5,1).

Proof. Suppose thatV is locally ex-post generating. Sind&y }ycw is an open
cover of the compact s&¥, there is a subcoveiym}, of W. Let & = maxy dym.
Chooseu € W arbitrarily, and letUym be such that € Uym. SinceW NUym C
B(dm, W), there existr, andwy : Y — W such that ay, u) is ex-post enforced by
wy for &m. Given ad € (8,1), let

w(y) = 5251__2) u-+ g“((ll__df;wu(w

for ally e Y. Then, it is straightforward thdtry, u) is enforced byw(y))yey for
0. Also, w(y) e W for all y € Y, sinceu andw(y) are inW andW is convex.




Therefore,u € B(6,W), meaning thaw C B(6,W) for all 6 € (5,1). (Recall
thatu and & are arbitrarily chosen froi/ and (6,1).) Then, from Theorem 1,
W C E(8) for & € (8,1), as desired. Q.E.D.

S.3 Proof of Lemma 2

Lemma 2. For everyd € (0,1), E(d) C E*(d) C Q, whereE*(9) is the convex
hull of E(9).

Proof. Itis obviousthaE(d) C E*(d). Suppos&*(d) £ Q. Then, since the score
is a linear function, there i< E(d) andA such thatA -v > k*(A). In particular,
sinceE(d) is compact, there exist € E(J) andA such thatA - v* > k*(A) and
A-v* > A-Vforall Ve E*(0). By definition,v* is enforced by(w(y))yey such
thatw(y) € E(8) CE*(8) CH(A,A -v") forally € Y. But this implies thak*(A)
is not the maximum score for directidn a contradiction. Q.E.D.

S.4 Proof of Lemma 3

Lemma 3. For any smooth strict subs&¥ of Q, there isd € (0,1) such that
W C E(8) for & € (5,1).

Proof. SinceW is bounded, it suffices to show that it is also locally ex-post gen-
erating, i.e., for eack € W, there exis®, € (0,1) and an open neighborhoak
of v such thaww nU, C B(&,,W).

First, considev € bdW. Let A be normal toV atv, and letk = A -v. Since
W C Q C H*(A), there existr, V, and(W(y) )yey such thath -V > A -v=Kk, (a,V)
is enforced using continuation payoff(y))ycy for somed € (0,1), andw(y) €
H(A,A-V)forallyeY. Foreachd (5, 1) andy e, let

5-6 86(1-8) (. . v-V
51-3)  51-3) (W(y)+ 5 )

w(y,0) = 3

By construction{a, V) is enforced byw(y, 8))ycy for &, and there i > 0 such
that|w(y,d) — v| < k(1—9). Also, sinceA -V > A -v=kandw(y) € H(A,A -V)
for all y € Y, there ise > 0 such thati(y) — lgﬁ isinH(A,k—¢) forallye,

thereby
w(y,8) € H ()\,k— 6(1_§)e>

5(1—9)



for all y e Y. Then, as in the proof of FL's Theorem 3.1, it follows from the
smoothness &l thatw(y, &) € intW for sufficiently larged, i.e.,(a, V) is enforced
with respect to inV. To enforceu in the neighborhood of, usea and a translate
of (W(Y, 3))yev-

Next, consider € intW. ChooseA arbitrarily, and leto and (w(y, d))yey be
as in the above argument. By constructi¢a, V) is enforced by(w(y,d))yey.
Also, w(y, d) € intW for sufficiently larged, since|w(y,d) —v| < k(1 — ) for
somek > 0 andv € intW. Thus,(a,V) is enforced with respect to Mt whend
is close to one. To enforagin the neighborhood of, usea and a translate of
(W(Y, d))yey, as before. Q.E.D.



