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Abstract
We study the asymptotic distribution of three-step estimators of a �nite dimensional

parameter vector where the second step consists of one or more nonparametric regressions
on a regressor that is estimated in the �rst step. The �rst step estimator is either para-
metric or non-parametric. Using Newey�s (1994) path-derivative method we derive the
contribution of the �rst step estimator to the in�uence function. In this derivation it is
important to account for the dual role that the �rst step estimator plays in the second step
non-parametric regression, i.e., that of conditioning variable and that of argument. We
consider three examples in more detail: the partial linear regression model estimator with
a generated regressor, the Heckman, Ichimura and Todd (1998) estimator of the Average
Treatment E¤ect and a semi-parametric control variable estimator.
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1 Introduction

In a seminal contribution Pagan (1984) derived the asymptotic variance of regression coe¢ cient
estimators in linear regression models, if (some of) the regressors are themselves estimated in
a preliminary step. Pagan called such regressors generated regressors and he characterized the
contribution of the estimation error in the generated regressors to the total asymptotic variance
of the regression coe¢ cient estimators. Examples of generated regressors are linear predictors
or residuals from an estimated equation as in Barro (1977) or Shefrin (1979). The estimators
considered by Pagan are special cases of standard two-step estimators, and such estimators can
be conveniently analyzed as single-step GMM estimators, as in Newey (1984) or Murphy and
Topel (1985). These methods of adjusting the asymptotic variance for the �rst-stage estimation
error are now so well-understood that they can be found in textbooks such as Wooldridge (2002,
Chapter 12.4).
Pagan (1984) considered parametric linear regression models with parametrically estimated

generated regressors. However, econometrics has evolved since then, and the �rst step estima-
tors these days can be non-parametric estimators obtained by kernel or sieve methods. Newey
(1994) discusses a general method of characterizing the asymptotic variance of two-step GMM
estimators of a �nite dimensional parameter vector, if the moment condition depends on a
conditional expectation or a density that is estimated non-parametrically. A special instance
of his method deals with the case of a linear regression model with a non-parametrically es-
timated generated regressor. Newey uses path derivatives to obtain the in�uence function for
semi-parametric GMM estimators. The asymptotically linear representation of the estimator
gives the asymptotic variance of the estimator. After this derivation it still has to be shown
that that the di¤erence between the semi-parametric GMM estimator and its asymptotically
linear representation converges to 0 at a rate that is faster than the parametric rate. Su¢ -
cient conditions for this in general depend on the non-parametric estimator and smoothness of
the conditional expectation or density that is estimated. Given the complexity of the multi-
step estimators it is useful to have the in�uence function before one considers the asymptotic
properties of remainder terms.
The asymptotic properties of non-parametric two-step estimators where both the generated

regressor and the second-stage regression are estimated non-parametrically have been studied
by Sperlich (2009) and Song (2008). Non-parametric multi-step estimators are not considered
in this paper. As in Newey (1994) we will only consider semi-parametric estimators for �nite
dimensional parameters. The di¤erence with Newey is that we consider three-step estimators
where the second step is a non-parametric regression on a generated regressor. As we discuss in
this paper the e¤ect of the �rst-stage estimation error on the asymptotic variance of estimator
of the �nite dimensional parameter is qualitatively di¤erent for the two- and three-step semi-
parametric estimators. Also the results for two-step non-parametric estimators cannot be used
directly to obtain the in�uence function for semi-parametric three-step estimators.
The purpose of this note is to use Newey�s path-derivative method to derive the asymptotic

variance of three- or even multi-step estimators of a �nite dimensional parameter in which one
of the steps is a non-parametric regression with a generated regressor. The generated regressor
that is estimated in the �rst step can be estimated parametrically or non-parametrically. Since
Newey (1994), a number of estimators have been suggested that have this structure with one
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of the steps a non-parametric regression on a generated regressor. We consider three examples:
(i) the partially linear regression model with a generated regressor in Wooldridge and Lee
(2002) and Newey (2009), (ii) the Average Treatment E¤ect (ATE) estimator for the case of
unconfounded treatment assignment suggested by Heckman, Ichimura, and Todd (1998) that
involves two non-parametric regressions on the estimated propensity score, (iii) a parametric
control variate estimator that depends on a non-parametric regression on a residual estimated
in a �rst stage. These examples illustrate the method that can also be used to derive the
asymptotic variance of other estimators with the same structure not covered here, for instance
the production function estimators of Pakes and Olley (1995) and Olley and Pakes (1996).
The key issue in the application of Newey�s path-derivative method is to account for the con-

tribution of the �rst-stage estimation error of the generated regressor on the sampling variation
of the second-stage nonparametric regression. This contribution consists of two parts. First,
there is the e¤ect of the �rst-step estimation error on the estimate of the generated regressor.
However, there is a second contribution to the sampling variation of the conditional expecta-
tion, because we condition on an estimated instead of a population value of the regressor. It is
the latter contribution that is easily forgotten.
One can wonder whether the reformulation of the two-step estimator of Pagan (1984) as a

one-step GMM estimator as in Newey (1984) or Murphy and Topel (1985) can be generalized
to the three or more step estimator considered here. In particular, Ai and Chen (2007) recently
considered a variety of conditional moment restriction estimators, some with a more complicated
structure than in this paper, where the conditioning variables are not estimated. Therefore our
results are not a special case of, but rather complementary to the results in Ai and Chen.
Whether our asymptotic variance can be derived from a one step GMM problem as in Ai and
Chen (2007) is the subject of ongoing research.
This paper has the following structure. In Section 2, we present a parametric example that

provides the basic intuition underlying our results. Our main result is in Section 3. In Sections
4, 5 and 6, we discuss the three applications mentioned above.

2 A Parametric Example

To gain intuition for the results later on we consider a fully parametric, be it somewhat arti�cial
example. Consider the following scenario. We have a random sample wi = (yi; xi; zi) ; i =
1; : : : ; n from a joint distribution. The scalar parameter � is estimated by a three-step estimator.
In the �rst step, we estimate the scalar parameter � by b� such that

p
n (b�� ��) =

1p
n

nX
i=1

 (xi; zi) + op (1)

with E [ (xi; zi)] = 0 and �� the population value of the parameter. In the second step, we
estimate the coe¢ cients 
� = (
1�; 
2�; 
3�) of the linear projection of y on 1; x; v with v =
' (x; z; ��), i.e., the solution to min
1;
2;
3 E

�
(y � 
1 � 
2x� 
3v)

2�. Because we do not know
��, we use the estimated bvi = ' (xi; zi; b�), so that the estimator b
 of 
� is the OLS estimator of y
on x; bv. The estimator of �� is obtained in the third step b� = 1

n

Pn
i=1 (b
1 + b
2xi + b
3' (xi; zi; b�)),

so that �� = E[
1� + 
2�x + 
3�'(x; z; ��)]. Our interest is to characterize the �rst order
asymptotic properties of this estimator.
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A standard argument suggests that it su¢ ces to consider the expansion of the form

p
n
�b� � ��

�
=
1p
n

nX
i=1

(
1� + 
2�xi + 
3�' (xi; zi; ��)� ��)

+
�
1 E [x] E [' (x; z; ��)]

�p
n (b
 � 
�)

+ E
�

3�

@' (x; z; ��)

@�

�p
n (b�� ��) + op (1) :

Let us now focus on the adjustments to the in�uence function that account for the estimation
error in the �rst and second step, i.e., the sum of the second and third terms on the right, which
we will call �. A routine calculation (presented in Appendix A) reveals that

� = �
�
1 E [x] E [' (x; z; ��)]

�
G�1


1p
n

nX
i=1

24 "i
xi"i

' (xi; zi; ��) "i

35+ op (1) ; (1)

where

G
 = �E

24 1 x ' (x; z; ��)
x x2 x' (x; z; ��)

' (x; z; ��) x' (x; z; ��) ' (x; z; ��)
2

35 :
The expansion (1) can be given an intuitive interpretation by considering an infeasible

estimator. Assume that �� is known to the econometrician, and vi = ' (xi; zi; ��) is used in
the regression. Let e
 denote the resulting OLS estimator of 
�. The �rst order asymptotic
properties of e� = 1

n

Pn
i=1 (e
1 + e
2xi + e
3' (xi; zi; ��)) can be analyzed using the expansion

p
n
�e� � ��

�
=
1p
n

nX
i=1

(
1� + 
2�xi + 
3�' (xi; zi; ��)� ��)

+
�
1 E [x] E [' (x; z; ��)]

�p
n (e
 � 
�) + op (1)

A routine calculation (presented in Appendix A) also establishes that�
1 E [x] E [' (x; z; ��)]

�p
n (e
 � 
�) (2)

= �
�
1 E [x] E [' (x; z; ��)]

�
G�1


1p
n

nX
i=1

24 "i
xi"i

' (xi; zi; ��) "i

35+ op (1)

Comparing the correction terms (1) and (2) leads us to an interesting conclusion: The in�uence
function for b� is equal to that of the unfeasible estimator e� that ignores the estimation error
in the �rst step, i.e., that in b�!
In order to understand this apparent puzzle, it is convenient to de�ne b
 (�) = (b
1 (�) ; b
2 (�) ; b
3 (�))

as the OLS estimator with y as the dependent and x and v = '(x; z; �) as the independent
variables. Note that b
 = b
 (b�) and e
 = b
 (��). Also 
(�) is the vector of coe¢ cients of the
linear projection of y on 1; x; '(x; z; �). A naïve derivation of the in�uence function of b� would
use the following decomposition
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1. Main term that re�ects the uncertainty left if we know 
� and ��:

1p
n

nX
i=1

(
1� + 
2�xi + 
3�' (xi; zi; ��)� ��)

2. A term that accounts for the sampling variation in b
 (��) if we know ��:

�
�
1 E [x] E [' (x; z; ��)]

�
G�1


1p
n

nX
i=1

24 "i
xi"i

' (xi; zi; ��) "i

35
3. A term that accounts for the sampling variation in b�:

E
�

3�

@' (x; z; ��)

@�

�p
n (b�� ��)

This naïve decomposition is missing one additional term,1 i.e.,

�
�
1 E [x] E [' (x; z; ��)]

�
G�1
 G�

1p
n

nX
i=1

 (xi; zi) (3)

where

G� = E

264 �
3� @'(x;z;��)@�

�
3�xi @'(x;z;��)@�

�2
3�' (x; z; ��) @'(x;z;��)@�

375
As shown in Appendix A, �G�1
 G�

1p
n

Pn
i=1  (xi; zi) is the e¤ect of the sampling variation in b�

on the sampling distribution of b
. De�ning 	(�) = E [
1 (�) + 
2 (�)x+ 
3 (�)' (x; z; ��)], we
show in Appendix B that the missing term is asymptotically equivalent to

p
n (	 (b�)�	(��)).

The expression 
1 (�) + 
2 (�)x+ 
3 (�)' (x; z; ��) that appears in the de�nition of 	(�) can
be given an interesting interpretation. It is the linear projection of y on 1; x; ' (x; z; �) when
after projection we substitute ' (x; z; ��) for ' (x; z; �). Note that the linear projection of y
on 1; x; ' (x; z; �) has coe¢ cients 
(�). This speci�es a function of x; ' (x; z; �) that can be
evaluated at any value of these arguments and here we choose the values x; '(x; z; ��). Hence,
� plays two roles. First, it determines the functional form of the projection, here only the
coe¢ cients 
(�), because the projection is restricted to be linear. Second, � enters in the
variables at which the (linear) projection is evaluated, here x; ' (x; z; ��). If we substitute the
estimator b� then the two correction terms that account for the estimation error in b� correspond
to these two roles of � and in this example these two correction terms are opposites so that
their sum is 0. The naïve derivation of the in�uence function ignores the e¤ect of � on the
coe¢ cients of the linear projection.
In this paper we propose a method that accounts for the full contribution of b� to the

in�uence function, i.e., we improve on step 3 above. The full (accounting for the two distinct

1See Appendix A.
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roles of �) contribution of the sampling variation of b�, i.e., with the projection coe¢ cients equal
to 
1(b�); 
2(b�); 
3(b�), is

1p
n

nX
i=1

(
1(b�) + 
2(b�)xi + 
3(b�)' (xi; zi; b�) � 
1� � 
2�xi � 
3�' (xi; zi; ��))

=
1

n

nX
i=1

@

@�
(
1( �) + 
2(�)xi + 
3(�)' (xi; zi; �))

�����
�=��

p
n(b�� ��) + op(1)

=
@

@�
E[
1(�) + 
2(�)xi + 
3(�)' (xi; zi; �)]

����
�=��

p
n(b�� ��) + op(1)

Now the projection of y on 1; x; '(x; z; �) implies that for all constants s1; s2; s3 and for all �

0 = E [(s1 � 1 + s2 � x+ s3 � ' (x; z; �)) (y � 
1 (�)� 
2 (�)x� 
3 (�)' (x; z; �))]

Taking s1 = 1, s2 = 0, and s3 = 0, and di¤erentiating the �rst equation with respect to � and
evaluating the derivative at � = ��, we obtain

@

@�
E [
1 (��) + 
2 (��)x+ 
3 (��)' (x; z; ��)] = 0

Therefore we conclude that the contribution of the sampling variation in b� to the sampling
variation of b� is 0. This derivation is simpler than that in Appendix A and can be generalized
to the case of general projections that are not restricted to be linear.
In general the �rst step estimate plays these two distinct roles. The example in this section

was relatively simple because the linear functional relation can be summarized by a �nite
dimensional vector 
 (�). The challenge to the econometrician is that when the projection
is non-parametric, as is the case when the generated regressor is used in a non-parametric
regression, such simplicity disappears. By separately considering the two roles that sampling
variation in the �rst step plays when we evaluate its e¤ect on the second stage projection, we
can properly adjust the in�uence function. In general the two corresponding correction terms
are not opposite as in the simple example considered here.

3 The In�uence Function of Semi-parametric Three-Step
Estimators

We now present our two main results on semi-parametric three-step estimators. In the �rst step
we estimate a regressor. In the second step we estimate a non-parametric regression with the
generated regressor as one of the independent variables. In the third step we estimate a �nite
dimensional parameter (without loss of generality we consider the scalar case) that satis�es a
moment condition that also depends on the non-parametric regression estimated in the second
step. We distinguish between two cases. The �rst result concerns the case where in the �rst step
the regressor is estimated by a parametric method. The second result concerns the case where
in the �rst step the regressor is estimated by a non-parametric method. As was emphasized in
the introduction, our characterization is based on Newey�s (1994) path-derivative method.
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3.1 Parametric First Step, Non-parametric Second Step

We assume that we observe i.i.d. observations wi = (yi; xi; zi) ; i = 1; : : : ; n. The �rst step is
identical to that in Section 2, i.e., we have an estimator b� such thatpn (b�� ��) =

1p
n

Pn
i=1  (xi; zi)+

op (1) with E [ (xi; zi)] = 0. The parameter vector � indexes a relation between a dependent
variable that is a component of x (and that we later denote by u) and independent variables
that are some or all of the other variables in x and those in z. Either the predicted value
(Sections 4 and 5) or the residual (Section 6) of this relationship is an independent variable in
the second step non-parametric regression. The notation '(x; z; �) covers both cases. If ' is a
residual then both x and ' can enter in the second step non-parametric regression. The second
step is di¤erent from the parametric example, because our goal is to estimate

� (x; v�) = E [y j x; v�]

where v� = ' (x; z; ��), i.e., we no longer restrict the projection to be linear. Because we do
not observe ��, we use bvi = ' (xi; zi; ; b�) in the non-parametric regression. Our goal is to
characterize the �rst order asymptotic properties of

b� = 1

n

nX
i=1

h (b
 (xi; ' (xi; zi; b�)))
with b
 the non-parametric regression of y on x and bv. We can consider b� as the solution of a
sample moment equation that is derived from a population moment equation that depends on
� and �(x; '(x; z; ��)). As will be seen below it matters whether h is linear (as in Section 2)
or not.
Using Newey�s (1994) path-derivative approach, we express the in�uence function of b� as a

sum of three terms: (i) the main term

1p
n

nX
i=1

(h (� (xi; ' (xi; zi; ��)))� ��)

(ii) a term that adjusts for the estimation of b
, i.e.,
1p
n

nX
i=1

(h (b
 (xi; ' (xi; zi; ��)))� h (� (xi; ' (xi; zi; ��))))

and (iii) an adjustment related to the estimation of b�, i.e.,
1p
n

nX
i=1

(h (
 (xi; ' (xi; zi; b�)))� h (� (xi; ' (xi; zi; ��)))) :

The decomposition here is based on the fact that Newey�s approach can be used �term-by-term�.
Therefore, we may without loss of generality assume that � is a scalar.2

2The fact that Newey�s approach can be used �term-by-term�is illustrated in an earlier version of the paper,
which is available upon request. There, we consider the case where the moment function includes multiple non-
parametric objects, all of which are obtained by non-parametric regressions with possibly di¤erent independent
variables.
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The second component in the decomposition can be easily analyzed as in Newey (1994, pp.
1360 �61). It is equal to

1p
n

nX
i=1

E
�
@h (� (xi; v�i))

@�

���� xi; v�i� (yi � � (xi; v�i)) + op (1)

=
1p
n

nX
i=1

@h (� (xi; v�i))

@�
(yi � � (xi; v�i)) + op (1)

As in Section 2 we therefore focus on the analysis of the third component

1p
n

nX
i=1

(h (
 (xi; ' (xi; zi; b�)))� h (� (xi; ' (xi; zi; ��))))

We de�ne


 (x; v�;�) = E [y j x; ' (x; z; �) = v�]

g (w; �1; �2; 
) = h (
 (x; ' (x; z; �1) ;�2))

Note that the two roles that � plays are made explicit in g (w; �1; �2; 
) that is obtained by
substituting v� = '(x; z; �1) in 
(x; v�;�2). Note also that � (x; v�) = 
 (x; v�;��). The notation
�1; �2 is just an expositional device, since �1 = �2 = �.
With these de�nitions, we can now write

1

n

nX
i=1

h (
 (xi; ' (xi; zi; b�) ; b�)) = 1

n

nX
i=1

g (xi; zi; b�1; b�2; 
̂)
where b�1 = b�2 = b�, but we keep them separate to emphasize the two roles of b�. This is helpful
in order to deal with the two roles that b� plays in the expansion by linearization, an expansion
that amounts to taking partial derivatives:

1p
n

nX
i=1

(h (
 (xi; ' (xi; zi; b�) ; b�))� h (
 (xi; ' (xi; zi; ��) ;��)))

=
1p
n

nX
i=1

(g (wi; b�1; b�2; 
̂)� g (wi; ��; ��; 
�))

=

�
E
�
@g (w; ��; ��; 
�)

@�1

�
+ E

�
@g (w;��; ��; 
�)

@�2

��p
n(b�� ��) + op (1)

Therefore we must compute E
h
@g(w;��;��;
�)

@�1

i
and E

h
@g(w;��;��;
�)

@�2

i
. The computation of the

�rst expectation is easy. Because 
 (x; ' (x; z; �) ;��) = � (x; ' (x; z; �)), we have

E
�
@g (w;��; ��; 
�)

@�1

�
= E

�
@h (� (x; ' (x; z; ��)))

@�

@� (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�
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The headache is to compute the second expectation. By the chain rule

E
�
@g (w; ��; ��; 
�)

@�2

�
= E

�
@h (� (x; ' (x; z; ��)))

@�

@
 (x; ' (x; z; ��) ;��)

@�

�
(4)

Unfortunately, it is not obvious how to di¤erentiate 
 (x; ' (x; z; ��) ;�) with respect to �. After
all, 
 (x; ' (w;��) ;�) has the functional form of E [y j x; ' (x; z; �) = v�] that depends on �.
The next theorem gives the solution.

Theorem 1 (Contribution parametric �rst-stage estimator) The adjustment to the in-
�uence function that accounts for the �rst-stage estimation error is�

E
�
@g (w; ��; ��; 
�)

@�1

�
+ E

�
@g (w;��; ��; 
�)

@�2

��p
n(b�� ��) (5)

= E
�
@2h (� (x; ' (x; z; ��)))

@�2
(y � � (x; ' (x; z; ��)))

@� (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�p
n (b�� ��) :

Proof See Appendix C.

Note that the form of the adjustment term implies that if h is linear, then the �rst-stage
estimation error has no e¤ect on the variance of the estimator of �. This was illustrated for
the fully parametric case in Section 2.

3.2 Multivariate Generalization

Suppose now that the � is multidimensional, i.e., y is a J-dimensional random vector. More
speci�cally, suppose now that we have


j (x; v
�;�) = E [yj j x; ' (x; z; �) = v�]

and b� = 1

n

nX
i=1

h (
1 (xi; ' (xi; zi; b�)) ; : : : ; 
J (xi; ' (xi; zi; b�)))
The product rule of calculus suggests that we can tackle this problem by adding the derivatives.
This is formalized in the next theorem.

Theorem 2 (Contribution parametric �rst-stage estimators) The adjustment to the in-
�uence function that accounts for the �rst-stage estimation error isX
j

E
�
@2h (� (x; ' (x; z; ��)))

@�2j
(yj � �j (x; ' (x; z; ��)))

@�j (x; ' (x; z; ��))

@v0
@' (x; z; ��)

@�

�p
n (b�� ��) :

Proof See Appendix C.
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3.3 Non-parametric First Step, Non-parametric Second Step

We now assume that the �rst step is non-parametric. Again we have a random sample wi =
(yi; xi; zi) ; i = 1; : : : ; n. The �rst-step projection of one of the components of x, that we denote
by u, on some or all of the other components of x and z is denoted by v� = '�(x; z) = E [u j x; z].
The �rst step is to estimate this projection by non-parametric regression. In the second step
we estimate 
 (x; v�) = E [y j x; v�] by non-parametric regression of y on x; bv = b'(x; z). Our
interest is to characterize the �rst order asymptotic properties of

1

n

nX
i=1

h (b
 (xi; b' (xi; zi)))
We de�ne

� (x; v�) = E [y j x; '�(x; z) = v�]


 (x; v�; v) = E [y j x; ' (x; z) = v�]

g (w; v1; v2; 
) = h (
 (x; v1; v2))

with v = '(x; z) and with v1 and v2 playing the roles of �1 and �2.
With these de�nitions, we can now write

1

n

nX
i=1

h (b
 (xi; bv1; bv2)) = 1

n

nX
i=1

g (wi; bv1; bv2; b
)
where bv1 = bv2 = bv. We keep them separate to emphasize their di¤erent roles. Our objective is
to approximate

1

n

nX
i=1

g (wi; bv1; bv2; b
)� 1

n

nX
i=1

g (wi; v1; v2; 
)

To �nd the contribution of the sampling variation in v̂ we can take 
 as known. As in Newey
(1994) we consider a path v� indexed by � 2 R such that v�� = v� . First, using the calculation
in the previous section,

E
�
@

@�1
g (w; ��; ��; 
�)

�
+ E

�
@

@�2
g (w; ��; ��; 
�)

�
=

@

@�
E
�
@2h (� (x; v�))

@�2
(y � � (x; v�))

@� (x; v�)

@v
v�

�
we obtain that

@E [h (
 (x; v�; v�))]
@�

����
�=��

=
@E [D (w; v�)]

@�

for

D (w; v�) =
@2h (� (x; v�))

@�2
(y � � (x; v�))

@� (x; v�)

@v
v�:

10



which is linear in v�. Second, for3

�1 (x; z) = E
�
@2h (� (x; '�(x; z)))

@�2
(y � � (x; '�(x; z)))

@� (x; '�(x; z))

@v

���� x; z� :
we have that for any v = '(x; z)

E [D (w; v)] = E [�1 (x; z)'(x; z)]

By Newey (1994) Proposition 4 these two facts imply that the adjustment to the in�uence
function is equal to

�1 (xi; zi) (ui � E [u j xi; zi]) = �1 (xi; zi) (ui � '�(xi; zi))

with u the component of of x that is projected on x; z.
We summarize the result in a theorem:

Theorem 3 (Contribution non-parametric �rst-stage estimator) The adjustment to the
in�uence function that accounts for the �rst-stage estimation error is

1p
n

nX
i=1

�1 (xi; zi) (ui � '�(xi; zi))

with '�(x; z) = E[ujx; z] and

�1 (x; z) = E
�
@2h (� (x; '�(x; z)))

@�2
(y � � (x; '�(x; z)))

@� (x; '�(x; z))

@v

���� x; z�
Finally we consider the adjustment for the estimation of 
. This is essentially the adjustment

to the in�uence function for
1

n

nX
i=1

h (b
 (xi; v�i))
By Newey (1994, pp. 1360 �61), we conclude that the corresponding adjustment to the in�uence
function is equal to

�2 (xi; v�i) (yi � E [y j xi; v�i])
where

�2 (x; v�) = E
�
@h (� (x; v�))

@�

���� x; v�� = @h (� (x; v�))

@�

3If '(x1; z) depends on a subvector of the variables x that enter in �, then we average over the remaining
variables in x.
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3.4 Extension

So far, we have assumed that the parameter of interest is

�� = E[h(�(x; v�))]

where h depends only on �. We now consider the extension to

�� = E[h(w; �(x; v�))]

where w is a vector of other variables that may have x; z as subvectors. We consider both the
case that ' is parametric and the case that this function is non-parametric. Because as before
the main term and the contribution of the estimation of E(yjx; v�) do not raise new issues, the
next two theorems only give the contribution of the �rst-stage estimator. In these theorems we
use the function

� (x; v) = E
�
@h (w; � (x; v�))

@�

���� x; ' (x; z; ��) = v

�
(6)

with an obvious adjustment for the non-parametric case.

Theorem 4 (Contribution parametric �rst-stage estimator) The adjustment to the in-
�uence function that accounts for the �rst-stage estimation error is�

E
��

@h (w; � (x; ' (x; z; ��)))

@�
� � (x; ' (x; z; ��))

�
@� (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�
+

E
�
@� (x; ' (x; z; ��))

@v
(y � 
 (x; ' (x; z; ��) ;��))

@' (x; z; ��)

@�

��p
n (b�� ��)

Now, we consider the case where the �rst step is non-parametric. The discussion preceding
Theorem 3, which summarizes Newey�s argument, implies that

Theorem 5 (Contribution non-parametric �rst-stage estimator) The adjustment to the
in�uence function that accounts for the �rst-stage estimation error is

1p
n

nX
i=1

�3 (xi; zi) (ui � '�(xi; zi))

with '�(x; z) = E[ujx; z] and

�3 (x; z) = E
��

@h (w; � (x; '� (x; z)))

@�
� � (x; '� (x; z))

�
@� (x; '� (x; z))

@v

���� x; z�
+ E

�
@� (x; '� (x; z))

@v
(y � 
 (x; '� (x; z)))

���� x; z�
Suppose that � (x; '� (x; z)) = 0 in Theorem 4. The adjustment is then equal to the deriv-

ative with respect to �1, i.e., the naive derivative (see equation (21) in the proof of Theorem
4). Therefore, it may be useful to check whether � (x; '� (x; z)) = 0 in speci�c models. If it
is the case, we need not worry about the e¤ect of �rst-step estimation on the second-stage
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non-parametric regression. Note also that the e¤ect of the �rst-stage estimation now consists
of two terms, the �rst of which is 0 in Theorem 1 and 3.
It is also useful to point out the theorems can be applied to general semi-parametric GMM

estimators. If we consider the moment condition

E[m(w; �(x; v�); ��)] = 0

and we linearize the corresponding sample moment condition we obtain

p
n(�̂ � ��) =

�
E
�
@m(w; �(x; v�); ��)

@�0

���1
1p
n

nX
i=1

m (wi; 
̂(xi; '̂(xi; zi)); ��) + op(1)

Therefore, the contribution of the �rst-stage estimate to the asymptotic distribution of �̂ can
be found by applying Theorem 5 to 1p

n

Pn
i=1m (wi; 
̂(xi; '̂(xi; zi)); ��).

3.5 Discussion

The e¤ect of the �rst-stage estimation error is qualitatively di¤erent for three-stage and two-
stage semi-parametric estimators. To show this we contrast our results with two results available
in the literature. First, consider the standard two-stage estimator (with a non-parametric �rst
stage) of the form b� = 1

n

nX
i=1

h (xi; b' (xi; zi))
where b' is an estimator of ' (x; z) = E [ujx; z]. As discussed in Newey (1994), among others,
the contribution of the estimation of ' to the in�uence function is @h(x;'(x;z))

@v
(u� ' (x; z)).

This involves the �rst derivative of h, so that this contribution is nonzero if h is linear. This in
contrast to the three-stage estimator, in which case the contribution is zero with h linear.
Second, we can compare our results with those on the asymptotic distribution of the

non-parametric regression estimator b
 (x; ' (x; z; b�)) following a �rst-step parametric estima-
tion. Because the b� typically converges at the parametric rate, the asymptotic distribution ofb
 (x; ' (x; z; b�)) for all x; z is una¤ected by the �rst-step estimation error. If we would take this
result to the third-step estimation of �� by

b� = 1

n

nX
i=1

h (b
 (xi; ' (xi; zi; b�)))
we would incorrectly conclude that the �rst-step estimation of b� does not a¤ect the third-step
estimator whether h is linear or not. This example makes it clear that our results cannot
be derived from the results in, e.g., Song (2008) or Sperlich (2009) for the non-parametric
regression on generated regressors estimated in the �rst step.

13



4 The Partial Linear Model with a Generated Regressor

In this section, we apply the results in the previous section to a semi-parametric model, the
partial linear regression model,

yi = xi�� +m (� (wi; ��)) + "i;

where xi is a component of wi, andm is non-parametric. The error term "i satis�es E ["ijxi; � (wi; ��)] =
0. The parameter of interest is ��. We initially consider the case that the generated regressor
is estimated parametrically, but we also give the contribution to the in�uence function for the
case that it is estimated non-parametrically.
The model can be estimated by regressing yi � E [yij � (wi; b�)] on xi � E [xij � (wi; b�)]. By

Newey (1994), Proposition 2 the estimation of the conditional expectation E [xij � (wi; ��)] has
no contribution to the in�uence function of �̂. By substitution we �nd that

p
n
�b� � ��

�
can

be written as E
�
(x� E [xj � (w; ��)])2

��1
times

1p
n

nX
i=1

(xi � E [xj � (wi; b�)]) "i
+

1p
n

nX
i=1

(xi � E [xj � (wi; b�)]) (m (� (wi; ��))� E [m (� (w; ��))j � (wi; b�)])
� 1p

n

nX
i=1

(xi � E [xj � (wi; b�)])E ["j � (wi; b�)] + op (1) : (7)

To assess the contribution of the estimation error of b� we linearize with respect to �. The
coe¢ cient in the linearization, i.e., that of

p
n(b�� ��) is, using the notation v� = v(w; ��),

@

@�
E [(x� E [xj � (w; �)]) "]

����
�=��

(8)

+
@

@�
E [(x� E [xj � (w; �)]) (m (��)� E [m (��)j ��])]

����
�=��

(9)

+
@

@�
E [(x� E [xj ��]) (m (��)� E [m (��)j � (w; �)])]

����
�=��

(10)

� @

@�
E [(x� E [xj � (w;�)])E ["j ��]]

����
�=��

(11)

� @

@�
E [(x� E [xj ��])E ["j � (w; �)]]

����
�=��

(12)

Because E("jv�) = 0 and E(m(v�jv�)) = m(v�), (9) and (11) are equal to 0. The other terms
are analyzed using Theorem 4. For (8) we have for �1(v�) = E[xjv�]

h1(x; "; �1) = (x� �1(v�))"
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so that
@h1(x; "; �1)

@�1
= �"

and �1(v) = �E("jv� = v) = 0 for all v with �1 as de�ned in (6). Therefore the coe¢ cient ofp
n(b�� ��) in the in�uence function is

�E
�
"
@�1 (��)

@�

@� (w; ��)

@�

�
For (10) we de�ne

h2(x; �2) = (x� E [xj ��]) (m (��)� �2)

with �2(v) = E[m(v�)jv(w; �) = v] so that

@h2(x; �2)

@�2
= � (x� E [xj ��])

and �2(v) = 0 for all v with �2 as de�ned in (6). Therefore by Theorem 4 the coe¢ cient ofp
n(b�� ��) in the in�uence function is

�E
�
�
@m (��)

@�

@� (w; ��)

@�

�
for � = x� E [xj ��], because �2(v)j�=�� = m(v).
Finally for (12) we de�ne

h3(x; �3) = (x� E [xj ��])�3
with �3(v) = E ["j � (w; �)], so that

@h3(x; �3)

@�3
= x� E [xj ��]

and �3(v) = 0 for all v with �3 as de�ned in (6). Therefore by Theorem 4 the coe¢ cient ofp
n(b�� ��) in the in�uence function is

E
�
(x� E [xj ��])

@�3 (��)

@�

����
�=��

@� (w;��)

@�

�
= 0

because �3(v)j�=�� = E["jv� = v] = 0 for all v.
To conclude, the adjustment in the in�uence function of b� corresponding to the estimation

error in b� is
�
�
E
�
"
@�1 (v(w; ��))

@�

@� (w; ��)

@�

�
+ E

�
�
@m (v(w;��))

@�

@� (w; ��)

@�

��p
n (b�� ��)

Note that the E
h
"@�1(v(w;��))

@�
@�(w;��)

@�

i
= 0 if we assume that E ["jw] = 0, and in that case our

result is the same as in Newey (2009) or Li and Wooldridge (2002). Because �(v) as de�ned in
Theorem 4 is 0 for all v, the e¤ect of the estimation of �̂ on the conditional expectation is 0.
In other words, the �naive�linearization is valid.
Combining this result with Newey (1994) we �nd that the contribution in the case that v(w)

is estimated by non-parametric regression of u on w is equal to

�
�
E ["jw] @�1 (v(w; ��))

@�
+ E [�jw] @m (v(w; ��))

@�

�
(u� v�(w))
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5 Regression on the Estimated Propensity Score

We consider an intervention with potential outcomes y0; y1 that are the control and treated
outcome, respectively. The treatment indicator is d and y = dy1 + (1 � d)y0 is the observed
outcome. The vector x contains covariates that are not a¤ected by the intervention. As shown
by Rosenbaum and Rubin (1983) unconfounded assignment, i.e., the assumption that y1; y0 ?
djx, implies y1; y0 ? dj' (x) with ' (x) = Pr(d = 1jx) probability of selection or propensity
score. As a consequence the ATE given x can be identi�ed by E [yjd = 1; x] � E [yjd = 0; x]
or by E [yjd = 1; ' (x)] � E [yjd = 0; ' (x)]. These observations have led to a large number
of estimators that can be classi�ed into three groups. Most of these estimators rely on the
propensity score, but some do not. The asymptotic variance of the estimators can be compared
to the semi-parametric e¢ ciency bound for the ATE derived by Hahn (1998).
The most popular estimators are the matching estimators that estimate the ATE given x

or given ' (x) by averaging outcomes over units with a �similar�value of x or ' (x) (and subse-
quently average over the distribution of x or ' (x) to estimate the ATE). Abadie and Imbens
(2009a), (2009b) are recent contributions. They show that matching estimators that have an
asymptotic distribution that is notoriously di¢ cult to analyze, are not asymptotically e¢ cient.
The second class of estimators do not estimate the ATE given x or ' (x) but use the propensity
scores as weights Hahn�s (1998) estimator and the estimator of Hirano, Imbens and Ridder
(2003) are examples of such estimators. These estimators are asymptotically e¢ cient, which
suggests that the propensity score is needed to achieve e¢ ciency. The third class of estima-
tors use non-parametric regression to estimate E [yjd = 1; x], E [yjd = 0; x] or E [yjd = 1; ' (x)]
, E [yjd = 0; ' (x)]. Of these estimators the estimator based on E [yjd = 1; x], E [yjd = 0; x],
the imputation estimator, is known to be asymptotically e¢ cient, which suggests that there
is no role for the propensity score. The missing result is that for the estimator that uses the
non-parametric regression on a propensity score that is estimated in a preliminary step. This
estimator that was suggested and analyzed by Heckman, Ichimura, and Todd (HIT) (1998) �ts
into our framework and is analyzed here.4

Our conclusion is that the HIT estimator has the same asymptotic variance as the imputation
estimator, so that there is no e¢ ciency gain in using the propensity score. This should settle
the issue whether there is a role for the propensity score in achieving semi-parametric e¢ ciency.
That does not mean that there is no role for the propensity score in assessing the identi�cation
or in improved small sample performance of ATE estimators. Although the estimator based on
regressions on the propensity score has the same structure as the general estimator discussed in
Section 3, the results of that section have to be adapted, because the non-parametric regressions
are for the treated and controls separately, i.e., for subpopulations.

5.1 Parametric First Step, Nonparametric Second Step

We have a random sample wi = (yi; xi; di) ; i = 1; : : : ; n. The propensity score Pr(d = 1jx) =
'(x; �) is parametric and its parameters � are estimated in the �rst step, by e.g. Maximum

4Heckman, Ichimura, and Todd actually consider an estimator of the Average Treatment E¤ect on the
Treated (ATT) that we also analyze.
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Likelihood are OLS (Linear Probability model) or any other method, such that

p
n (b�� ��) =

1p
n

nX
i=1

 (di; xi) + op (1)

with E [ (di; xi)] = 0. In the second step, we estimate

� ('(x; ��)) = (E [y j '(x; ��); d = 1] ;E [y j '(x; ��); d = 0])0 ;

Because we do not observe ��, we use ' (xi; b�) in the non-parametric regression.
Our interest is to characterize the �rst order asymptotic properties of

b� = 1

n

nX
i=1

(b
1 (' (xi; b�))� b
2 (' (xi; b�)))
This estimator has the structure of that Section 3.2 with h(
) = 
1 � 
2, except for the fact
that we do not regress y non-parametrically on '(x; ��) in the full population, but in the
subpopulations of the treated and controls. This will require a modi�cation of the proof of
Theorem 3.
We de�ne


 (v;�) = (E [y j d = 1; ' (x; �) = v] ;E [y j d = 0; ' (x; �) = v])0

g(w; �1; �2) = h(
('(x; �1);�2)

The functions 
 (' (x; �) ;�) solve the minimization problem

min
p1;p2

E
�
d (y � p1 (' (x; �)))

2 + (1� d) (y � p2 (' (x; �)))
2�

Note that this is equivalent to minimizing the �rst term with respect to p1 and the second with
respect to p2. Therefore for all functions (s1 (' (x; �)) ; s2 (' (x; �)))

0

E [d (y � 
1 (' (x; �) ;�)) s1 (' (x; �))] = 0

E [(1� d) (y � 
2 (' (x; �) ;�)) s2 (' (x; �))] = 0

In particular, this should hold for

s1 (' (x; �)) =
1

' (x; �)

s2 (' (x; �)) =
1

1� ' (x; �)

These function s1 is chosen in view of the fact that

E
�

dy

'(x; �)

����'(x; �)� = E[dj'(x; �)]
1('(x; �);�)
'(x; �)
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i.e. the projection in the subpopulation is obtained by projecting the outcome in the subpop-
ulation weighted by the probability of observation on '(x; �). This gives 
1 up to a correction
factor that is equal to 1 if � = ��. A similar observation can be made for s2.
The orthogonality conditions yield the following two equations that hold for all �

E
�

dy

' (x; �)

�
= E

�
d
1 (' (x; �) ;�)

' (x; �)

�

E
�
(1� d) y

1� ' (x; �)

�
= E

�
(1� d) 
2 (' (x; �) ;�)

1� ' (x; �)

�
with the left-hand sides equal to E

h
'(x;��)E[yjx;d=1])

'(x;�)

i
and E

h
(1�'(x;��))E[yjx;d=0]

1�'(x;�)

i
, respectively.

Di¤erentiation with respect to � gives the derivatives of 
1 and 
2 with respect to the � in the
conditioning variable, i.e., the parametric propensity score. Substitution gives the contribution
of the estimation of �̂ to the in�uence function that is equal to (more details in Appendix D)

E
�
@g (w;��; ��; 
�)

@�1

�
+ E

�
@g (w; ��; ��; 
�)

@�2

�p
n(�̂� ��) =

�E
��
E [yjx; d = 1]� �1 (' (x; ��))

' (x; ��)
+
E [yjx; d = 0]� �2 (' (x; ��))

1� ' (x; ��)

�
@' (x; ��)

@�

�p
n(�̂� ��)

The contribution of b
 can be derived using Newey (1994), and is given in the next section.
We also consider the HIT estimator of the Average Treatment E¤ect on the Treated (ATT)

�̂ =
1

n

nX
i=1

di
p
(b
1 (b'(xi))� b
2 (b'(xi)))

with p = Pr(d = 1). This estimator is a special case of that considered in Theorem 4 with
h(w; 
1; 
2) =

d
p
(
1 � 
2) except for the fact that the non-parametric regressions 
1 and 
2 are

for subpopulations and the average is over the subpopulation of the treated. This requires some
changes in the proof. The functions s1; s2 are now

s1('(x; �)) =
1

p

s2('(x; �)) =
'(x; �)

p(1� '(x; �))

These are obtained by multiplying the functions that we used above by '(x;�)
p
, a factor that

re-weights the orthogonality conditions from the full population to the subpopulation of the
treated. This gives two equations that hold for all �

E
�
'(x; ��)E[yjx; d = 1]

p

�
= E

�
'(x; ��)
1 (' (x; �) ;�)

p

�

E
�
(1� '(x; ��))' (x; �)E[yjx; d = 0]

p (1� ' (x; �))

�
= E

�
(1� '(x; ��))' (x; �) 
2 (' (x; �) ;�)

p (1� ' (x; �))

�
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Di¤erentiation with respect to � gives the derivatives of 
1 and 
2 with respect to the �
in the conditioning variable, i.e., the parametric propensity score. Note that these derivatives
are di¤erent from those for the estimation of the ATE which shows that these derivatives
depend on the third stage of the estimator that is di¤erent for the ATE (averaging over the full
population) and the ATT (averaging over the subpopulation of the treated). Substitution gives
the contribution of the estimation of �̂ to the in�uence function that is equal to (more details
in Appendix D). With

g(w; �; �; 
) =
' (x; ��)

p
(
1('(x; �);�)� 
2('(x; �);�))

we �nd that the contribution is�
E
�
@g (w;��; ��; 
�)

@�1

�
+ E

�
@g (w; ��; ��; 
�)

@�2

��p
n(�̂� ��) =

�E
�
E[yjx; d = 0]� �2 (' (x; ��))

p (1� ' (x; ��))

@'(x; ��)

@�

�p
n(�̂� ��)

5.2 Non-parametric First Step, Non-parametric Second Step

The analysis in the previous section combined with the results in Newey (1994) show that in
the case that the �rst stage is non-parametric the contribution of the �rst-stage estimation to
the in�uence function of the ATE estimator is

�
�
E [yjx; d = 1]� �1 ('� (x))

'� (x)
+
E [yjx; d = 0]� �2 ('� (x))

1� '� (x)

�
(d� '�(x))

which can be alternatively written as

� E [yjx; d = 1]� �1 ('� (x))

'� (x)
d+ (E [yjx; d = 1]� �1 ('� (x)))

+
E [yjx; d = 0]� �2 ('� (x))

1� '� (x)
(1� d)� (E [yjx; d = 0]� �2 ('� (x))) (13)

To obtain the complete in�uence function of b� we need the contribution of the estimation
error in b
. This contribution is derived in Appendix E and is equal to

(�1 ('� (x))� �2 ('� (x))� ��)+ (14)

d

'� (x)
(y � �1 ('� (x)))�

1� d

1� '� (x)
(y � �2 ('� (x)))

Adding (13) and (14), we obtain the in�uence function of the estimator based on regressions
on the estimated propensity score:

(E [yjx; d = 1]� E [yjx; d = 0]� ��)+
d

'� (x)
(y � E [yjx; d = 1])� 1� d

1� '� (x)
(y � E [yjx; d = 0])
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which is the in�uence function of the e¢ cient estimator and also that of the imputation esti-
mator b�I = 1

n

nX
i=1

(b�1(xi)� b�2(xi))
with �1 (x) = E[yjx; d = 1]; �2 (x) = E[yjx; d = 0]. The imputation estimator involves nonpara-
metric regressions on x and not on the estimated propensity score. However these two estima-
tors have the same in�uence function which shows that regressing on the non-parametrically
estimated propensity score does not result in an e¢ ciency gain. The infeasible estimator that
depends on non-parametric regressions on the population propensity score is less e¢ cient than
the estimator that uses the estimated propensity score.
For the estimator of the ATT the contribution of the �rst stage is

�E[yjx; d = 0]� �2 ('�(x))

p (1� '�(x))
(d� '�(x))

The main term and the contribution of the estimation of the (infeasible) non-parametric re-
gressions is

d

p
(y � �1 ('� (x)))�

(1� d)'� (x)

p (1� '� (x))
(y � �2 ('� (x))) +

d

p
(�1 ('� (x))� �2 ('� (x))� ��)

which can be derived using an argument virtually identical to Appendix E. Adding these
expressions we obtain the full in�uence function

d

p
(y � E[yjx; d = 1])� (1� d)'�(x)

p(1� '�(x))
(y � E[yjx; d = 0]) + d

p
(E[yjx; d = 1]� E[yjx; d = 0]� ��)

As in the case of the ATE the in�uence function is the same as that for the estimator that
involves non-parametric regressions on x and not on the estimated propensity score, so that
again there is no �rst-order asymptotic e¢ ciency gain if we use the estimated propensity score
in the non-parametric regressions.
It should be noted that the in�uence functions derived in this section are di¤erent from those

found in the literature. Recently, Mammen, Rothe, and Schienle (2010) derived the in�uence
function for the ATE estimator considered in this section. They concluded that it is identical
to that of the infeasible estimator that regresses on the population propensity score. This is
because they imposed the index assumption E [yj d; x] = E [yj d; '(x)], which is implicitly ruled
out in standard program evaluation literature. HIT derived the in�uence function for the ATT
estimator that is also di¤erent from ours. In this case, the derivation fails to account for the
e¤ect of the �rst-stage estimation on the conditional expectation in the second stage. Only the
variability of the �rst-stage estimator as an argument is considered.

5.3 Approximating the In�uence Function for the Non-parametric
First Step with a Parametric First Step

We assume that for the population propensity score

'� (x) = '(x; ��) = p (x)0 ��
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where p (x) is a �nite-, possibly high-dimensional vector of functions of x. We can think of this
expression as a series approximation of the propensity score with basis functions in the vector
p (x). The in�uence function for the least squares estimator of �� is�

E
�
p (x) p (x)0

���1
p (x) (d� '� (x)) (15)

Using the result in subsection 5.1, the adjustment to the in�uence function for the �rst step
estimation is

�E
��
E [yjx; d = 1]� �1 (' (x; ��))

' (x; ��)
+
E [yjx; d = 0]� �2 (' (x; ��))

1� ' (x; ��)

�
@' (x; ��)

@�0

�p
n (b�� �)

= �E
�
	(x) p (x)0

�p
n (b�� �) (16)

where

	(x) =
E [yjx; d = 1]� �1 (' (x; ��))

' (x; ��)
+
E [yjx; d = 0]� �2 (' (x; ��))

1� ' (x; ��)

for simplicity. Combining (15) and (16), we conclude that the adjustment to the in�uence
function can be written as

�E
�
	(x) p (x)0

� �
E
�
p (x) p (x)0

���1
p (x) (d� '� (x)) (17)

Now
�
E
�
p (x) p (x)0

���1 E [p (x)	 (x)] are the coe¢ cients of the linear projection of 	(x) on
p (x). In other words, we can write

p (x)0
�
E
�
p (x) p (x)0

���1 E [p (x)	 (x)] = � (	 (x)j p (x))
where �( �j p (x)) denotes the projection on the linear space spanned by p (x). If the dimension
of p (x) is su¢ ciently large, then approximately �(	 (x)j p (x)) � E [	 (x)jx] = 	 (x). It
follows that the adjustment to the in�uence function in (17) is

� E
�
	(x) p (x)0

� �
E
�
p (x) p (x)0

���1
p (x) (d� '� (x))

� �	(x) (d� '� (x))

= �
�
E [yjx; d = 1]� �1 (' (x; ��))

'� (x)
+
E [yjx; d = 0]� �2 (' (x; ��))

1� '� (x)

�
(d� '� (x))

which is the result in the previous section, i.e., if the parametric approximation to the population
propensity score is good, then the in�uence function is close to e¢ cient in�uence function.

6 A Semi-parametric Control Variable Estimator

Hahn, Hu and Ridder (2008) consider a model that is nonlinear in a mismeasured independent
variable. The details of their model are not important here. For our purpose it su¢ ces to
note that their estimator uses a control variable and the asymptotic analysis requires dealing
with a generated regressor in a V-statistic. Because of the V-statistic structure, the results in
Section 3 do not apply directly, but the basic approach can be easily modi�ed. Suppose that
an econometrician observes a random sample wi = (yi; xi; zi) ; i = 1; : : : ; n. The estimator of a
parameter � has the following three steps:
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1. Estimate a �nite dimensional parameter b� by nonlinear least squares of x on  (z; �) and
obtain the residual bv = x�  (z; b�) = '(x; z; b�) that is our generated regressor.

2. Estimate �(x; v�) = E [y j x; v�] nonparametrically using the sample (yi; xi; bvi) ; i = 1; : : : ; n.
Call the estimator b
(x; bv). Let L (x) = Ev� [�(x; v�)] and bL (x) = 1

n

Pn
j=1 b
(x; bvj).

3. Assume that L (x) = R (x; ��) for a known function R and de�ne b� as the solution of the
minimization problem

min
�

1

n

nX
i=1

1C (xi)
�bL (xi)�R (xi; �)

�2
for some set C. In the sequel we will ignore the indicator function 1C for simplicity.

Let b� denote the solution to the preceding minimization problem that satis�es the moment
condition

0 =
1

n

nX
i=1

�bL (xi)�R
�
xi; b��� @R

�
xi; b��
@�

:

Characterization of asymptotic distribution of b� requires characterization of the in�uence func-
tion of

1p
n

nX
i=1

�bL (xi)� L (xi)
�
r (xi) ;

where r (xi) = @R (xi; ��)/ @�. We de�ne

' (x; z; �) = x�  (z; �)


 (x; v�;�) = E [y j x; ' (x; z; �) = v�]

g (x; �1; �2; 
; Fxz) =

Z

 (x; ' (~x; ~z; �1) ;�2) r (x) dFxz(~x; ~z)

where an integral with respect to bFxz is just an average over x; z. Note that because of the V
statistic structure we integrate with respect to the distribution of x; z that appear in '(x; z; �).
With these de�nitions, we can now write

1

n

nX
i=1

bL (xi) r (xi) = 1

n

nX
i=1

g
�
wi; b�1; b�2; b
; bFxz� ;

where b�1 = b�2 = b� but written separately to emphasize the dual role of �. The contribution
of b
 and bFxz can be derived as in Newey (1994) and by the V-statistic projection theorem,
respectively, and we concentrate on the contribution of b�.
The contribution of the estimation error of b� is that error multiplied by the sum of the

derivatives with respect to �1, i.e., the � that appears in the argument, and �2, i.e., the � in
the conditioning variable. We have

@

@�1
Ex
�Z


 (x; ' (~x; ~z; �1) ;��) r (x) dFxz(~x; ~z)

�����
�=��

= Ex
�Z

@

@�1
� (x; ' (~x; ~z; �1)) r (x) dFxz(~x; ~z)

�����
�=��
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= �Ex
�Z

@� (x; ' (~x; ~z; ��))

@v

@ (~x; ~z; ��)

@�
r (x) dFxz(~x; ~z)

�
� �1

For the derivative with respect to �2 we �rst observe that

Ex
�Z


 (x; ' (~x; ~z; ��) ;�) r (x) dFxz(~x; ~z)

�
=

Z Z

 (x; v�;�) r (x)

f (x) f (v�)

f (x; v�)
f (x; v�) dxdv�

= E
�

 (x; v�;�) r (x)

f (x) f (v�)

f (x; v�)

�
We compute the derivative of the �nal expression. For that we note that 
 (x; ' (x; z; �) ;�)
solves the minimization problem minp E

�
(y � p (x; ' (x; z; �)))2

�
so that

0 = E [(y � 
 (x; ' (x; z; �) ;�)) s (x; ' (x; z; �))]

for all square integrable function s (x; ' (x; z; �)) and all �. In particular, we have for all �

E
�
(y � 
 (x; ' (x; z; �) ;�)) r (x)

f (x) f (' (x; z; �))

f (x; ' (x; z; �))

�
= 0

If we di¤erentiate with respect to � and evaluate at � = �� we obtain

E
�
@
 (x; v�;��)

@�2
r (x)

f (x) f (v�)

f (x; v�)

�
= E

"
(y � 
 (x; v�;��)) r (x) f (x)

@ f(v�)
f(x;v�)

@v

@' (x; z; ��)

@�

#

� E
�
@
 (x; v�;��)

@v
r (x)

@' (x; z; ��)

@�

f (x) f (v�)

f (x; v�)

�
We therefore obtain

@

@�2
E
�

 (x; v�;��) r(x)

f (x) f (v�)

f (x; v�)

�
= E

��
@� (x; v�)

@v
� (y � � (x; v�))

�
@ ln f(v�)

@v
� @ ln f(x; v�)

@v

��
r (x)

@ (z; ��)

@�

f (x) f (v�)

f (x; v�)

�
� �2

The contribution of the �rst step estimation to the in�uence function is then

(�1 + �2)
p
n(b�� ��)

7 Conclusion

We studied the asymptotic distribution of three-step estimators of a �nite dimensional para-
meter vector where the second step consists of one or more non-parametric regressions on a
regressor that is estimated in the �rst step. The �rst step estimator is either parametric or non-
parametric. We showed that Newey�s (1994) path-derivative method can be used to determine
the contribution of the �rst-step estimation error on the in�uence function. In doing so it is
essential to recognize that the �rst-stage estimate has two e¤ects on the sampling distribution
of the �nite-dimensional parameter vector. First, the �rst-stage estimate enters the argument
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at which the conditional expectation is evaluated, second, the �rst-stage estimate changes the
conditional expectation itself. In the literature the second contribution of the �rst-stage esti-
mate to the in�uence function is sometimes forgotten. Our contribution is that we show how
to derive this contribution so that we obtain the correct in�uence function for three- or more
stage estimators.
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Appendix

A Proof of (1)

We �rst examine the adjustment to the in�uence function of b
 to account for the estimation
error of b�. Noting that b
 is an M-estimator corresponding to the population moment equation

E

2664
y � 
1 � 
2x� 
3' (x; z; �)

x (y � 
1 � 
2x� 
3' (x; z; �))
' (x; z; �) (y � 
1 � 
2x� 
3' (x; z; �))

 (x; z)� �

3775 = 0
we obtain upon linearizing the corresponding sample moment equation and upon solving forp
n(b
 � 
�)

p
n (b
 � 
�) = �G�1


1p
n

nX
i=1

0@24 "i
xi"i

' (xi; zi; ��) "i

35+G� (xi; zi)

1A+ op (1)

where
"i = yi � 
1� � 
2�xi � 
3�' (xi; zi; ��)

G
 = �E

24 1 x ' (x; z; ��)
x x2 x' (x; z; ��)

' (x; z; ��) x' (x; z; ��) ' (x; z; ��)
2

35
and

G� = �E

264 
3�
@'(x;z;��)

@�


3�x
@'(x;z;��)

@�

2
3�' (x; z; ��)
@'(x;z;��)

@�

375
Likewise, we obtain from the population moment equation

E

24 y � 
1 � 
2x� 
3' (x; z; ��)
x (y � 
1 � 
2x� 
3' (x; z; ��))

' (x; z; ��) (y � 
1 � 
2x� 
3' (x; z; ��))

35 = 0
that

p
n (e
 � 
�) = �G�1


1p
n

nX
i=1

24 "i
xi"i

' (wi; ��) "i

35+ op (1)
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It follows that

� =�
�
1 E [x] E [' (x; z; ��)]

�
G�1


1p
n

nX
i=1

24 "i
xi"i

' (xi; zi; ��) "i

35
�
�
1 E [x] E [' (x; z; ��)]

�
G�1
 G�

1p
n

nX
i=1

 (xi; zi)

+ E
�

3�

@' (x; z; ��)

@�

�
1p
n

nX
i=1

 (xi; zi)

Now note that

�
�
1 E [x] E [' (x; z; ��)]

�
G�1


=
�
1 E [x] E [' (x; z; ��)]

�0@E
24 1 x ' (x; z; ��)

x x2 x' (x; z; ��)

' (x; z; ��) x' (x; z; ; ��) ' (x; z; ��)
2

351A�1

=
�
1 0 0

�
and therefore,

E
�

3�

@' (x; z; ��)

@�

�
�
�
1 E [x] E [' (x; z; ��)]

�
G�1
 G�

= E
�

3�

@' (x; z; ��)

@�

�
+
�
1 0 0

�
E

264 �
3� @'(x;z;��)@�

�
3�x@'(x;z;��)@�

�2
3�' (x; z; ��) @'(x;z;��)@�

375
= 0

It follows that

� = �
�
1 E [x] E [' (x; z; ��)]

�
G�1


1p
n

nX
i=1

24 "i
xi"i

' (xi; zi; ��) "i

35 :
B Interpretation of (3)

In order to understand the additional term

�
�
1 E [x] E [' (x; z; ��)]

�
G�1
 G�

1p
n

nX
i=1

 (xi; zi) ;

we examine

(
1 (b�) + 
2 (b�)E [x] + 
3 (b�)E [' (x; z; ��)])�(
1 (��) + 
2 (��)E [x] + 
3 (��)E [' (x; z; ��)])
=
�
1 E [x] E [' (x; z; ��)]

�
(
 (b�)� 
 (��))
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Because 
 (�) is de�ned by the moment equation

E

24 y � 
1 (�)� 
2 (�)x� 
3 (�)' (x; z; �)
x (y � 
1 (�)� 
2 (�)x� 
3 (�)' (x; z; �))

' (x; z; �) (y � 
1 (�)� 
2 (�)x� 
3 (�)' (x; z; �))

35 = 0
which holds for all �, we can take the derivative with respect to � to derive

@
 (�)

@�
= �G�1
 G�

It follows that

@

@�
(
1 (�) + 
2 (�)E [x] + 
3 (�)E [' (x; z; ��)]) =

�
1 E [x] E [' (x; z; ��)]

� @
 (�)
@�

= �
�
1 E [x] E [' (x; z; ��)]

�
G�1
 G�

so that
p
n (	(b�)�	(��)) = pn � 1 E [x] E [' (x; z; ��)]

�
(
 (b�)� 
 (��))

=
�
1 E [x] E [' (x; z; ��)]

� @
 (��)
@�

p
n (b�� ��)

= �
�
1 E [x] E [' (x; z; ��)]

�
G�1
 G�

p
n (b�� ��)

= �
�
1 E [x] E [' (x; z; ��)]

�
G�1
 G�

1p
n

nX
i=1

 (xi; zi)

C Proof of Theorems in Section 3

Proof of Theorem 1 We compute the right hand side of (4)

E
�
@h (� (x; ' (x; z; ��)))

@�

@
 (x; ' (x; z; ��) ;��)

@�2

�
We note that 
 (x; ' (w;�) ; �) solves the minimization problem

min
p
E
�
(y � p (x; ' (x; z; �)))2

�
so that for all square integrable functions s of x; ' (x; z; �)

E [(y � 
 (x; ' (x; z; �) ;�)) s (x; ' (x; z; �))] = 0

If we choose

s (x; ' (x; z; �)) =
@h (� (x; ' (x; z; �)))

@�

we have for all �

E
�
(y � 
 (x; ' (x; z; �) ;�))

@h (� (x; ' (x; z; �)))

@�

�
= 0
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We now take the derivative and evaluate it at � = ��. We �nd

E
�
@g (w; ��; ��; 
�)

@�2

�
= E

�
@
(x; '(x; z; ��);��)

@�2

@h (� (x; ' (x; z; ��)))

@�

�
=

�E
�
@
(x; '(x; z; ��);��)

@v

@'(x; z; ��)

@�

@h (� (x; ' (x; z; ��)))

@�

�
+

E
�
(y � 
 (x; ' (x; z; ��) ;��))

@2h (� (x; ' (x; z; ��)))

@�2
@� (x; ' (x; z; ��))

@v

@'(x; z; ��)

@�

�
Adding E

h
@g(w;��;��;
�)

@�1

i
and noting that

E
�
@
(x; '(x; z; ��);��)

@v

@'(x; z; ��)

@�

@h (� (x; ' (x; z; ��)))

@�

�
=

E
�
@�(x; '(x; z; ��))

@v

@'(x; z; ��)

@�

@h (� (x; ' (x; z; ��)))

@�

�
we �nd the desired result 2

Proof of Theorem 2 As before, we write

1p
n

nX
i=1

(h (
 (xi; ' (xi; zi; b�) ; b�))� h (
 (xi; ' (xi; zi; ��) ;��)))

=
1p
n

nX
i=1

(g (wi; b�1; b�2)� g (wi; ��; ��))

=

�
E
�
@g (w;��; ��)

@�1

�
+ E

�
@g (w;��; ��)

@�2

��p
n(b�� ��) + op (1)

Therefore we must compute E
h
@g(w;��;��;
�)

@�1

i
and E

h
@g(w;��;��;
�)

@�2

i
. The computation of the �rst

expectation is easy. Because 
 (x; ' (x; z; �) ;��) = � (x; ' (x; z; �)), we have

E
�
@g (w; ��; ��; 
�)

@�1

�
= E

�
@h (� (x; ' (x; z; ��)))

@�0
@� (x; ' (x; z; ��))

@v0
@' (x; z; ��)

@�

�
=
X
j

E
�
@h (� (x; ' (x; z; ��)))

@�j

@�j (x; ' (x; z; ��))

@v0
@' (x; z; ��)

@�

�
where �j denotes the j-th component of �, etc. We now tackle the second expectation. By the
chain rule

E
�
@g (w; ��; ��; 
�)

@�2

�
= E

�
@h (� (x; ' (x; z; ��)))

@�0
@
 (x; ' (x; z; ��) ;��)

@�2

�
(18)
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We compute the right hand side of (18). We note that each component 
j (x; ' (w;�) ; �) of

 (x; ' (w;�) ; �) solves the minimization problem

min
p
E
�
(yj � p (x; ' (x; z; �)))2

�
for each component yj of y, so that for all square integrable functions s of x; ' (x; z; �)

E [(yj � 
j (x; ' (x; z; �) ;�)) s (x; ' (x; z; �))] = 0

If we choose

s (x; ' (x; z; �)) =
@h (� (x; ' (x; z; �)))

@�j

we have for all �

E
�
(yj � 
j (x; ' (x; z; �) ;�))

@h (� (x; ' (x; z; �)))

@�j

�
= 0

We now take the derivative and evaluate it at � = ��. We �nd
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�
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@
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Adding E

h
@g(w;��;��;
�)
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i
and noting that

E
�
@h (� (x; ' (x; z; ��)))
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@v0
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�
@h (� (x; ' (x; z; ��)))
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@v0
@'(x; z; ��)
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�
we �nd the desired result.2

Proof of Theorem 4 The contribution of b� is the sum of

E
�
@h (w; 
 (x; ' (x; z; ��) ;��))

@�1

�p
n (b�� ��) (19)

and

E
�
@h (w; 
 (x; ' (x; z; ��) ;��))

@�2

�p
n (b�� ��) (20)

29



Note that

E
�
@h (w; 
 (x; ' (x; z; ��) ;��))

@�1

�
= E

�
@h (w; � (x; ' (x; z; ��)))

@�(x; '(x; z; ��))

@�

@v

@' (x; z; ��)

@�

�
(21)

and

E
�
@h (w; 
 (x; ' (x; z; ��) ;��))

@�2

�
= E

�
@h (w; � (x; ' (x; z; ��)))

@�

@
 (x; ' (x; z; ��) ;��)

@�2

�
(22)

Because @
(x;'(x;z;��);��)
@�2

is a function of (x; ' (x; z; ��)), we have

E
�
@h (w; 
 (x; ' (x; z; ��) ;��))

@�2

�
= E

�
@h (w; � (x; ' (x; z; ��)))

@�

@
 (x; ' (x; z; ��) ;��)

@�2

�
= E

�
E
�
@h (w; � (x; ' (x; z; ��)))

@�

���� x; ' (x; z; ��)� @
 (x; ' (x; z; ��) ;��)@�2

�
= E

�
� (x; ' (x; z; ��))

@
 (x; ' (x; z; ��) ;��)

@�2

�
(23)

We now note that 
 (x; ' (x; z; �) ; �) solves the minimization problem

min
s
E
�
(y � s (x; ' (x; z; �)))2

�
we have that for all �

E [(y � 
 (x; ' (x; z; �) ;�))� (x; ' (x; z; �))] = 0

We now take the derivative with respect to � and evaluate it at � = ��:

E
�
@
 (x; ' (x; z; ��) ;��)

@�2
� (x; ' (x; z; ��))

�
= E

�
(y � 
 (x; ' (x; z; ��) ;��))

@� (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�
� E

�
� (x; ' (x; z; ��))

@� (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�
(24)

Combining (21) - (24), we conclude that

E
�
@h (w; 
 (x; ' (x; z; ��) ;��))

@�1

�
+ E

�
@h (w; 
 (x; ' (x; z; ��) ;��))

@�2

�
= E

��
@h (w; � (x; ' (x; z; ��)))

@�
� � (x; ' (x; z; ��))

�
@� (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�
+ E

�
@� (x; ' (x; z; ��))

@v
(y � 
 (x; ' (x; z; ��) ;��))

@' (x; z; ��)

@�

�
which gives us the desired result 2
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D Details of Derivations in Section 5

Derivation of the contribution of �̂ for ATE The �rst step is the same as in Theorem 3

E
�
@g (w; ��; ��; 
�)

@�

�
= E

�
@g (w; �1; ��; 
�)

@�1

�
+ E

�
@g (w; ��; �2; 
�)

@�2

�
(25)

= E
�
@

@�1
(
1 (' (x; �1) ;��)� 
2 (' (x; �1) ;��))

�����
�1=��

+ E
�
@

@�2
(
1 (' (x; ��) ;�2)� 
2 (' (x; ��) ;�2))

�����
�2=��

= E
��

@�1 (' (x; ��))

@v
� @�2 (' (x; ��))

@v

�
@' (x; ��)

@�

�
+ E

"
@
1 (' (x; ��) ;�2)

@�2

����
�2=��

� @
2 (' (x; ��) ;�2)

@�2

����
�2=��

#

Using the orthogonality conditions in Section 5 we �nd that for all �

E
�
' (x; ��)E[yjx; d = 1])

' (x; �)

�
= E

�
d
1 (' (x; �) ;�)

' (x; �)

�

E
�
(1� ' (x; ��))E[yjx; d = 0]

1� ' (x; �)

�
= E

�
(1� d) 
2 (' (x; �) ;�)

1� ' (x; �)

�
Di¤erentiating these two equations with respect to � we obtain

�E
�
E[yjx; d = 1]
' (x; ��)

@' (x; ��)

@�

�
= (26)

E
��

@
1 (' (x; ��) ;��)

@v
� 
1 (' (x; ��) ;��)

' (x; ��)

�
@' (x; ��)

@�

�
+ E

�
@
1 (' (x; ��) ;��)

@�2

�
and

E
�
E[yjx; d = 1]
1� ' (x; ��)

@' (x; ��)

@�

�
= (27)

E
��

@
2 (' (x; ��) ;��)

@v
+

2 (' (x; ��) ;��)

1� ' (x; ��)

�
@' (x; ��)

@�

�
+ E

�
@
2 (' (x; ��) ;��)

@�2

�
Substituting (26) and (27) in (25) we obtain

E
�
@g (w; ��; ��; 
�)

@�

�
=

�E
��
E [yjx; d = 1]� �1 (' (x; ��))

' (x; ��)
+
E [yjx; d = 0]� �2 (' (x; ��))

1� ' (x; ��)

�
@' (x; ��)

@�1

�
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Derivation of the contribution of �̂ for ATT The �rst step is the same as in Theorem 3

E
�
@g (w; ��; ��; 
�)

@�

�
= E

�
@g (w; �1; ��; 
�)

@�1

�
+ E

�
@g (w; ��; �2; 
�)

@�2

�
= E

�
'(x; ��)

p

@

@�1
(
1 (' (x; �1) ;��)� 
2 (' (x; �1) ;��))

�����
�1=��

+ E
�
'(x; ��)

p

@

@�2
(
1 (' (x; ��) ;�2)� 
2 (' (x; ��) ;�2))

�����
�2=��

= E
�
'(x; ��)

p

�
@�1 (' (x; ��))

@v
� @�2 (' (x; ��))

@v

�
@' (x; ��)

@�

�
+ E

"
'(x; ��)

p

 
@
1 (' (x; ��) ;�2)

@�2

����
�2=��

� @
2 (' (x; ��) ;�2)

@�2

����
�2=��

!#

As shown in Section 5 the following equations hold for all �

E
�
'(x; ��)E[yjx; d = 1]

p

�
= E

�
'(x; ��)
1 (' (x; �) ;�)

p

�

E
�
(1� '(x; ��))' (x; �)E[yjx; d = 0]

p (1� ' (x; �))

�
= E

�
(1� '(x; ��))' (x; �) 
2 (' (x; �) ;�)

p (1� ' (x; �))

�
Di¤erentiation with respect to � gives

E
�
'(x; ��)

p

@
1 (' (x; ��) ;�2)

@�2

����
�=��

�
= �E

�
'(x; ��)

p

@�1('(x; ��))

@v

@'(x; ��)

@�

�

E
�
'(x; ��)

p

@
2 (' (x; ��) ;�2)

@�2

����
�=��

�
=

E
��
E[yjx; d = 0]� �2 (' (x; ��))

p (1� ' (x; ��))
� '(x; ��)

p

@�2('(x; ��))

@v

�
@'(x; ��)

@�

�
Upon substitution we obtain

E
�
@g (w; ��; ��; 
�)

@�

�
=

�E
�
E[yjx; d = 0]� �2 (' (x; ��))

p (1� ' (x; ��))

@'(x; ��)

@�

�

E The In�uence Function of the Imputation Estimator

The ATE is
�� = E [�1 (x)� �2 (x)]
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with

�1 (x) = E [yj d = 1; x]
�2 (x) = E [yj d = 0; x]

The ATE satis�es the moment equation

0 = E [m (x; ��; �1; �2)]

where
m (x; ��; �1; �2) = �1 (x)� �2 (x)� ��

The imputation estimator for the ATE is

b� = 1

n

nX
i=1

�b�1 (xi)� b�2 (xi)�
so that we need to consider the linear functional

E[D (x)0 � (x)]

with D (x) = (1;�1)0 and D (x)0 � (x) is linear in �.
Following Newey (1994) de�ne a path indexed by the scalar parameter � for the distribution

of (y; d; x) with density f(�; �) where f(�; 0) = f(�) the population density of (y; d; x). If E�
denotes an expectation with respect to the distribution with density f(x; �), then we de�ne the
corresponding paths for the projections �1(x; �) = E�[yjx; d = 1] and �2(x; �) = E�[yjx; d = 0].
To determine the contribution of the estimation of �1; �2 to the in�uence function Newey (1994)
suggests that we compute

@E
�
D (x)0 �(x; �)

�
@�

=
@E [�1 (x; �)� �2 (x; �)]

@�
(28)

and evaluate the result at � = 0.
The path �(x; �) is the minimizer of a single objective function

E�
�
d
�
y � e�1 (x)�2 + (1� d)

�
y � e�2 (x)�2�

so that the following orthogonality condition holds

E� [d (y � �1 (x; �))) s1 (x) + (1� d) (y � �2 (x; �)) s2 (x)] = 0

for all functions (s1 (x) ; s2 (x))
0. Choose (s1 (x) ; s2 (x)) =

�
1

'�(x)
;� 1

1�'�(x)

�
with '�(x) =

E[djx], i.e., the propensity score is not that on the path, but the population propensity score.
Therefore

E�
�

d

'� (x)
(y � �1 (x; �))�

1� d

1� '� (x)
(y � �2 (x; �))

�
= 0 (29)
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or

E�
�

d

'� (x)
y � 1� d

1� '� (x)
y

�
= E�

�
d

'� (x)
�1 (x; �)�

1� d

1� '� (x)
�2 (x; �)

�
(30)

which holds for all �.
We di¤erentiate the right-hand side of (30). By the chain rule (evaluate the derivatives at

� = 0)

@E�
h

d
'�(x)

�1 (x; �)� 1�d
1�'�(x)�2 (x; �)

i
@�

=
@E�

h
d

'�(x)
�1 (x)� 1�d

1�'�(x)�2 (x)
i

@�

+
@E
h

d
'�(x)

�1 (x; �)� 1�d
1�'�(x)�2 (x; �)

i
@�

=
@E�

h
d

'�(x)
�1 (x)� 1�d

1�'�(x)�2 (x)
i

@�
+
@E [�1 (x; �)� �2 (x; �)]

@�

where we use the fact that the derivative of the projection paths at � = 0 are equal to �1; �2.
Therefore combining this with the result above

@E
�
D (x)0 �(x; �)

�
@�

=
@E [�1 (x; �)� �2 (x; �)]

@�

=
@E�

h
d

'�(x)
�1 (x; �)� 1�d

1�'�(x)�2 (x; �)
i

@�
�
@E�

h
d

'�(x)
�1 (x)� 1�d

1�'�(x)�2 (x)
i

@�

=
@

@�

�
E�
�

d

'� (x)
y � 1� d

1� '� (x)
y

�
� E�

�
d

'� (x)
�1 (x)�

1� d

1� '� (x)
�2 (x)

��
so that at � = 0

@E
�
D (x)0 �(x; �)

�
@�

=
@

@�
E�
�

d

'� (x)
(y � �1 (x))�

1� d

1� '� (x)
(y � �2 (x))

�
= E

��
d

'� (x)
(y � �1 (x))�

1� d

1� '� (x)
(y � �2 (x))

�
S (y; d; x)

�
;

with S(�) = @ ln f(�;�)
@�

���
�=0
. Therefore the adjustment to the in�uence function is

d

'� (x)
(y � �1 (x))�

1� d

1� '� (x)
(y � �2 (x))

and the in�uence function of the imputation estimator is

(�1 (x)� �2 (x)� ��) +
d

'� (x)
(y � �1 (x))�

1� d

1� '� (x)
(y � �2 (x)) (31)

so this estimator is e¢ cient, because this the e¢ cient in�uence function of Hahn (1998).
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The ATE is also equal to

�� = E [�1 ('� (x))� �2 ('� (x))]

with

�1 (x) = E [yj d = 1; '� (x)]
�2 (x) = E [yj d = 0; '� (x)]

so that the same argument as above shows that the in�uence of the imputation estimator that
uses regressions on the population propensity score is

(�1 ('� (x))� �2 ('� (x))� ��) +
d

'� (x)
(y � �1 ('� (x)))�

1� d

1� '� (x)
(y � �2 ('� (x))) (32)

The asymptotic variances implied by (31) and (32) are

E
�
(� (x)� ��)

2 +
Var (y1jx)
'� (x)

+
Var (y0jx)
1� '� (x)

�
(33)

and

E

"
(� ('� (x))� ��)

2 +
(y1 � �1 ('� (x)))

2

'� (x)
+
(y0 � �2 ('� (x)))

2

1� '� (x)

#
(34)

where � (x) = �1 (x)� �2 (x) and � ('� (x)) = �1 ('� (x))� �2 ('� (x)). Using

E
�
(y1 � �1 ('� (x)))

2
�� x� = E

�
((y1 � �1 (x)) + (�1 (x)� �1 ('� (x))))

2
�� x�

= Var (y1jx) + (�1 (x)� �1 ('� (x)))
2

E
�
(y0 � �2 ('� (x)))

2
�� x� = Var (y0jx) + (�2 (x)� �2 ('� (x)))

2

and

E
�
(� (x)� ��)

2
��'� (x)� = E �((� (x)� � ('� (x))) + (� ('� (x))� ��))

2
��'� (x)�

= E
�
(� (x)� � ('� (x)))

2
��'� (x)�+ (� ('� (x))� ��)

2

we note that

E

"
(y1 � �1 ('� (x)))

2

'� (x)

#
= E

�
Var (y1jx)
'� (x)

�
+ E

"
(�1 (x)� �1 ('� (x)))

2

'� (x)

#

E

"
(y0 � �2 ('� (x)))

2

1� '� (x)

#
= E

�
Var (y0jx)
1� '� (x)

�
+ E

"
(�2 (x)� �2 ('� (x)))

2

1� '� (x)

#
E
�
(� (x)� ��)

2� = E �(� (x)� � ('� (x)))
2�+ E �(� ('� (x))� ��)

2� :
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Therefore, we can see that the di¤erence of (34) and (33) is equal to

E

"
(�1 (x)� �1 ('� (x)))

2

'� (x)
+
(�2 (x)� �2 ('� (x)))

2

1� '� (x)

#
� E

�
(� (x)� � ('� (x)))

2�
= E

"
a (x)2

'� (x)
+

b (x)2

1� '� (x)
� (a (x)� b (x))2

#

for a (x) = �1 (x)��1 ('� (x)) and b (x) = �2 (x)��2 ('� (x)). Therefore, the di¤erence of (34)
and (33) is equal to

E
�
1� '� (x)

'� (x)
a (x)2 +

'� (x)

1� '� (x)
b (x)2 � 2a (x) b (x)

�

= E

24 s1� '� (x)

'� (x)
a (x)�

s
'� (x)

1� '� (x)
b (x)

!235 � 0
which establishes relative e¢ ciency of imputation using on x over imputation using '� (x).
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