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Abstract

This paper studies the determinants of the equity premium as implied by producers’ first-

order conditions. A simple closed form expression is presented for the Sharpe ratio as a function

of investment volatility and technology parameters. Calibrated to the U.S. postwar economy,

the model can match the historical first and second moments of the market return and the risk

free interest rate. The model also generates a very volatile Sharpe ratio and market price of

risk.
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In the twenty-five years since Mehra and Prescott’s (1985) paper on the equity premium many

studies have proposed and evaluated utility functions for their ability to explain the most salient

aggregate asset pricing facts. Several specifications have demonstrated considerable improvements

over a basic time-separable constant relative risk aversion setup. Despite this progress, however, it

seems that we have not yet reached the state where there would be a widely accepted replacement

for the standard time-separable utility specification.

In contrast to the consumption side, the production side of asset pricing has received con-

siderably less attention. Focusing on the production side shifts the burden towards representing

production technologies and interpreting production data. While a number of asset pricing studies

have considered nontrivial production sectors, these have generally been studied jointly with some

specific preference specification. Thus, the analysis could not escape the constraints imposed by

the preference side. A pure production asset pricing literature has emerged from the Q theory of

investment. However, these studies typically consider a limited set of implications for the links

between investment and stock returns, not including the equity premium.1

The more limited attention given to production-based versus consumption-based models can

seem surprising in light of some views widely held by economists. For instance, a reasonably strong

case can be made for firms behaving rationally. Friedman (1953) and others have pointed out that

competition among firms creates a strong driving force for profit maximization lest they go out

of business. In contrast to that, the popularity of behavioral finance and behavioral economics

suggests a more pessimistic and complex view about consumer rationality.

In this paper I am interested in studying the macroeconomic determinants of asset prices given

by a multi-input aggregate production technology. The focus is exclusively on the producers’

first-order conditions that link production variables and state prices, with investment in different

capital goods playing the key role. Two sets of questions are considered. First, what properties

of investment and production technologies are important for the first and second moments of risk

free rates and aggregate equity returns? Second, does a model plausibly calibrated to the U.S.

economy have the ability to replicate first and second moments of risk free rates and aggregate

equity returns?

This paper does not offer another candidate solution for the equity premium puzzle emphasized

1An incomplete list of contributions comprises: for successful utility functions, Abel (1990), Campbell and

Cochrane (1999), Constantinides (1990); for models with nontrivial production sectors Jermann (1998) and Rouwen-

horst (1995); for production asset pricing studies, Cochrane (1988, 1991, and 1993), Li, Vassalou and Xing (2003),

Gomes, Yaron and Zhang (2002), and Belo (2007). Other examples of related asset pricing studies with rich pro-

duction structures are Berk, Green and Naik (1999), Carlson, Fisher and Giammarino (2003), Hugonnier, Morellec

and Sundaresan (2005), Novy-Marx (2005), and Tuzel (2007).
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in the literature, in the sense that the historic equity premium seems too high given the low

aggregate consumption volatility and our priors about risk aversion coefficients. By focusing on

production, this paper is able to completely sidestep this issue. It offers a different perspective

about the fundamental determinants of the equity premium and the state price process more

generally.

The work most closely related to mine are Cochrane’s papers on production-based asset pricing

(1988, 1991). One of the features that differentiates my analysis is that I focus explicitly on the

equity premium. In particular, one of my main contributions is to characterize the equity premium

analytically as a simple function of investment volatility and adjustment cost curvature. Also, in

order to enhance the model’s empirical realism, I use more general functional forms for adjustment

cost, and base the quantitative evaluation on the two main types of U.S. fixed capital investment,

namely equipment & software as well as structures.

The key quantitative findings are the following. For unconditional moments, the model can

match the historical first and second moments of the market return and the risk free interest rate

with reasonable parameter values. For conditional moments, the expected excess stock return, the

market’s Sharpe ratio and the market price of risk are very volatile.

The paper is organized as follows. We start with a preview of the main results in Section

1. Section 2 presents the model and section 3 some general asset pricing implications. Section 4

introduces functional forms. Section 5 characterizes the theoretical links between asset prices and

investment. Section 6 describes the calibration and section 7 the quantitative analysis.

1 Preview and intuition of the main results

In Cochrane (1991) it was shown that under constant returns to scale in production, the market

return of a firm equals the return of investing a marginal unit into the firm’s production technology.

This key result is a version of the Q theory of investment, according to which the investment to

capital ratio is tightly linked to the market to book value (Q). At an aggregate level, this theory

has been quite successful empirically, because aggregate investment is reasonably strongly related

to the aggregate stock market. In this paper, I go one step further and explicitly derive the equity

premium as implied by producers’ first-order conditions. This section previews some of the main

findings of the paper and provides some intuition. More formal and detailed analyses follow in the

rest of the paper.

A first step of my analysis is to show under what conditions the equity premium from the

production-based model is positive and large. In my setting with two types of capital, a positive

equity premium requires a production technology where the capital stock with the relatively higher
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expected return is also the one whose return is more volatile. While this is a priori intuitive, my

analysis shows which features of the production technology can contribute to this. For instance,

the capital adjustment cost functions have to be convex enough. I show that the equity premium

increases as the spread between the two expected returns increases relative to the spread between

the standard deviations. A higher curvature in the adjustment cost functions contributes to this.

One way to generate a high equity premium, therefore, would be to use capital adjustment

cost functions with high curvature—this is in some sense related to the use of a high risk aver-

sion coefficient in consumption-based models. However, this strategy is only partially successful,

because higher curvature also strongly contributes to a higher volatility of returns. As we know

from the Q theory of investment, with quadratic adjustment costs, the investment to capital ratio

is proportional to Q. This is because the derivative of the adjustment cost function (the marginal

cost) is linear in investment. With an adjustment cost function that has a higher curvature than

the quadratic one, Q will move more than proportionally with the investment to capital ratio.

Thus, for a given investment process, the higher the curvature, the more volatile the return to the

aggregate stock market. Because investment series on structures and equipment both display sub-

stantial volatility, relatively low adjustment cost curvatures can match the historical stock return

volatility. So to fully match the historical equity premium, without excessively volatile returns, an

additional channel is needed. In particular, the marginal product has to be higher for the capital

stock that has the more volatile return.

The behavior of the conditional equity premium in the model is driven by expected stock re-

turns that are more volatile than risk free rates, another feature of the model that seems consistent

with available empirical evidence. From the previous literature, for instance Cochrane (1991), we

know about the drivers of production-based expected stock returns. What is new in my paper is

that I also derive and characterize a risk free rate that is consistent with these risky returns. I can

therefore explicitly characterize the conditional equity premium. In the model, one of the main

drivers of expected stock returns are the current investment to capital ratios. In particular, if the

investment to capital ratio is currently high, then Tobin’s Q is high, and expected returns are low.

Empirically, investment to capital ratios display important low frequency movements, and the

model can therefore generate large movements in expected returns that are countercyclical with

respect to investment to capital ratios. Because the model can match the relatively low volatility

of the risk free rate, the conditional equity premium is then primarily driven by expected stock

returns.

One way to look at the derivation of the equity premium in my model is as the derivation

of the risk free return that is consistent with the risky investment opportunities offered by the
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production technology. From this perspective, if two risky investment opportunities are perfectly

positively correlated, then going long the less volatile return and shorting a smaller amount of

the more volatile return is a way to synthetically engineer a risk free return. If capital stocks

display some heterogeneity in the volatility of their expected returns, then the risk free rate will

typically be less volatile than the expected return of the aggregate market. That is because the

less volatile return has a bigger weight in the construction of the risk free rate. My production

model that allows for different adjustment cost parameters across capital stocks can generate this

outcome. Given that the two capital stocks in my model, structures and equipment, are very

different in nature, heterogeneity in the adjustment cost parameters seems a reasonable property.

Moreover, empirical evidence on aggregate investment behavior, as well as on firm returns, suggest

that structures require larger adjustment costs than equipment. As documented in the paper,

empirical investment growth rates for structures display a higher positive serial correlation than

for equipment. This can be interpreted as a reflection of firms’ objective to smooth investment over

time due to the relatively higher adjustment costs. Concerning firms’ returns, a recent study by

Tuzel (2009) suggests that the firms in the Compustat Industrial Annual database with relatively

larger fractions of structures in their capital stocks have relatively higher expected returns. My

model with higher adjustment costs for structures than for equipment is consistent with this.

The properties described here are first presented analytically in a continuous-time version of

the model in Section 5. Section 7 will then illustrate these properties quantitatively for a model

calibrated to data on investment and capital stocks.

2 Model

The model represents the producer’s choice of capital inputs for a given state price process. Key

ingredients are capital adjustment costs and stochastic productivity.

Assume an environment where uncertainty is modelled as the realization of s, one out of a

finite set S = (s1, s2, ...sN), with st the current period realization and st ≡ (s0, s1, ...st) the history
up to and including t. Assume an aggregate revenue function

F
³©
Kj
¡
st−1

¢ª
j∈J , s

t
´
,

where the presence of st allows for a technology shock, and Kj
¡
st−1

¢
is the j-th capital stock,

which, in the standard way, is chosen one period before it becomes productive. F (.) represents

the resources available after the firm has optimally chosen and paid factors of production that are

selected within the period, for instance labor. Capital of type j accumulates through

Kj
¡
st
¢
= Kj

¡
st−1

¢
(1− δj) + Zj

¡
st
¢
Ij
¡
st
¢
, (1)
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where δj is the depreciation rate, and Zj
¡
st
¢
represents the technology for producing capital goods

out of investment expenditure Ij
¡
st
¢
(which is in units of the final good). Assume Zj

¡
st
¢
=

Zj
¡
st−1

¢ · λZj (st), with λZj (st) following a N -state Markov process. The total cost of investing

in capital good of type j is given by

Hj
¡
Kj
¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢¢
.

This specification will be further specialized below.

Taking as given state prices P
¡
st
¢
, the representative firm solves the following problem

max
{I,K0}

∞X
t=0

X
st

P
¡
st
¢⎡⎣F ³©Kj ¡st−1¢ªj∈J , st´−X

j

Hj
¡
Kj
¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢¢⎤⎦

s.t. Kj
¡
st−1

¢
(1− δj) + Zj

¡
st
¢
Ij
¡
st
¢−Kj ¡st¢ = 0, ∀st, j

with s0 and Kj (s−1) given, and P (s0) = 1 without loss of generality.

Labeling the multiplier on the capital accumulation equations by P
¡
st
¢
qj
¡
st
¢
, q represents

the marginal value of one unit of installed capital in terms of the numeraire of the same period. In

equilibrium, it is also the cost of installing one unit of capital including adjustment cost. Given the

homogeneity assumptions made below qZ is the ratio of the market value over the book value of

capital, that is, Tobin’s Q. Indeed, 1/Z is equal to the price of a unit of capital in terms of the final

good. The book value (or replacement cost) of the capital stock is then K/Z. The introduction of

the investment specific technology Z allows the model to capture the historical downward trend

observed in U.S. equipment prices. However, as we show in our quantitative analysis, Z doesn’t

end up playing an important role. Our main quantitative results hold even with Zj
¡
st
¢
= 1.

First-order conditions, for each j, are summarized by

qj
¡
st
¢
= Hj,2

¡
Kj
¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢¢
/ Zj

¡
st
¢
,

and

qj
¡
st
¢
=
X
st+1

P
¡
st, st+1

¢
P (st)

⎛⎝ FKj

³©
Ki
¡
st
¢ª
i∈J , s

t, st+1

´
−Hj,1

¡
Kj
¡
st
¢
, Ij
¡
st, st+1

¢
, Zj

¡
st, st+1

¢¢
+ (1− δj) qj

¡
st, st+1

¢
⎞⎠ .

Slightly rearranging and in a more compact notation, this last equation becomes

1 =
X
st+1

P
¡
st+1|st

¢ÃFKj

¡
st, st+1

¢−Hj,1 ¡st, st+1¢+ (1− δj) qj
¡
st, st+1

¢
qj (st)

!
=

X
st+1

P
¡
st+1|st

¢
RIj
¡
st, st+1

¢
for each j, where the notation P

¡
st+1|st

¢
shows the price of the numeraire in st+1 conditional on

st and in units of the numeraire at st. This expression implicitly defines the investment return
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RIj
¡
st, st+1

¢
. RIj

¡
st, st+1

¢
is the rate of return realized in st+1 from adding a marginal amount of

capital of type j in state st. The first-order conditions show that at the optimum investing one

unit in a given type of capital produces a change in the profit plan that is worth one unit.2

3 From investment returns to state prices and asset returns

In order to recover state prices uniquely from the producers first-order conditions it is necessary

to have as many types of capital inputs as there are states of nature. This "complete technolo-

gies" requirement represents the producers’ ability to move resources across all states of nature.

Representing the first-order conditions in matrix form yields for the case with two states of nature

and two capital inputs ⎡⎣ RI1 ¡st, s1¢ RI1
¡
st, s2

¢
RI2
¡
st, s1

¢
RI2
¡
st, s2

¢
⎤⎦⎡⎣ P ¡s1|st¢

P
¡
s2|st

¢
⎤⎦ = 1, (2)

or more compactly RI
¡
st
¢ · p ¡st¢ = 1. The state price vector is obtained by the matrix inversion

p
¡
st
¢
=
¡
RI
¡
st
¢¢−1

1.

Clearly, it isn’t necessarily the case that this matrix inversion is feasible nor that state prices are

necessarily positive for any chosen set of returns. As further discussed below, the requirement for

positive state prices will constrain my empirical implementation.

In this environment, the risk free return is given by

1/Rf
¡
st
¢
= 1p

¡
st
¢
= P

¡
s1|st

¢
+ P

¡
s2|st

¢
.

Consider aggregate capital returns

R
¡
st, st+1

¢ ≡ D ¡st, st+1¢+ V ¡st, st+1¢
V (st)

,

where D
¡
st, st+1

¢
= F

¡©
Kj
¡
st−1

¢ª
, st
¢−PjHj

¡
Kj
¡
st−1

¢
, Ij
¡
st
¢
, Zj

¡
st
¢¢
represents the div-

idends paid by the firm and V
¡
st, st+1

¢
the ex-dividend value of the firm. Assuming constant

returns to scale in F (.) and Hj (.), a version of Hayashi’s (1982) result applies, and this return

will be equal to a weighted average of the investment returns:

R
¡
st, st+1

¢
=
X
j

qj
¡
st
¢
Kj
¡
st
¢P

i qi (s
t)Ki (st)

·RIj
¡
st, st+1

¢
. (3)

2Strict concavity will be assumed below, so that first-order and transversality conditions (given below) are

sufficient for a maximum.
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The market price of risk, aka the highest Sharpe ratio, also has a simple expression. Let us,

introduce the stochastic discount factor m
¡
st+1|st

¢
by dividing and multiplying through by the

probabilities π
¡
st+1|st

¢
, so that

P
¡
st+1|st

¢
=

Ã
P
¡
st+1|st

¢
π (st+1|st)

!
π
¡
st+1|st

¢
= m

¡
st+1|st

¢
π
¡
st+1|st

¢
.

Ruling out arbitrage implies Et
¡
m
¡
st+1|st

¢
Re
¡
st, st+1

¢¢
= 0, for ∀Re ¡st, st+1¢ defined as an

excess return. It is then easy to see that

max
E
£
Re
¡
st, st+1

¢ |st¤
Std [Re (st, st+1) |st] =

Std
£
m
¡
st, st+1

¢ |st¤
E [m (st, st+1) |st] =

vuuutP
st+1

P (st+1|st)2 /π (st+1|st)hP
st+1

P (st+1|st)
i2 − 1.

4 Functional Forms

This section presents the functional forms and the simulation strategies.

4.1 Investment cost function

The investment cost function plays a crucial role in the analysis. Its form is chosen to satisfy two

criteria. First, I require investment returns to be stationary. This is achieved through a particular

type of homogeneity. Second, I want the curvature of the cost function to be slightly more general

than the standard quadratic specification.

A simple functional form that satisfies these criteria is

H (K, I, Z) =

½
b

ν
(ZI/K)ν + c

¾
(K/Z) ,

with b, c > 0, ν > 1. For each capital stock, different parameter values will be allowed. For

compactness, the notation doesn’t express that. As can easily be seen, this function is convex in

I for ν > 1. Adjustment cost and the direct cost for additional capital goods are separable, triv-

ially so because H (K, I, Z) = [H (1, ZI/K)− ZI/K + ZI/K] · (K/Z) = [H (1, ZI/K)− ZI/K] ·
(K/Z) + I ≡ C (1, ZI/K) · (K/Z) + I. I impose restrictions on the parameters of H (.) so that
C (1, ZI/K) ≥ 0, that is, the pure adjustment cost is nonnegative.

The cost function is homogenous of degree 1 in I and K/Z. This is required for balanced

growth. Indeed, given the capital accumulation equation, IZ and K are cointegrated, and so are

I and K/Z. With this homogeneity assumption, the investment cost H(.) will share the same

trend as I and K/Z. As further discussed below, additional balanced growth requirements will

contribute to making investment returns stationary.

For a given investment process, the curvature parameter ν determines the volatility of the

market price of capital. This parameter will be a crucial contributor to return volatility and risk
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premiums. From the first-order conditions the following relationship between the investment rate,

IZ/K, and Tobin’s Q, qZ, is obtained

qZ = b (IZ/K)ν−1 .

Clearly, if I limit myself to a quadratic adjustment cost functions with ν = 2, then the variance

of the logarithm of Tobin’s Q is constrained to be equal to the variance of the logarithm of the

investment rate. As shown below, with ν = 2, in the continuous-time limit, the variance of the

return to a given capital is constrained to be equal to the variance of the investment growth

rate. Allowing a more general choice for the curvature parameters ν avoids such an empirically

unappealing restriction.3

The parameters b and c are less important for asset pricing implications. They provide the

flexibility to center the adjustment cost function and to minimize the amount of resources lost

due to adjustment cost. It is easy to see that by setting ν = b = 1, and c = 0, the case without

adjustment cost is obtained

H (K, I,Z) = I.

4.2 Revenue function

I choose a revenue function that is consistent with stationary investment returns and that is easily

tractable. Specifically, the revenue function is linearly separable in the capital stocks

F
³©
Kj
¡
st
¢ª
j∈J , s

t, st+1

´
=
X
j

Aj
¡
st+1

¢
Zj (st+1)

Kj
¡
st
¢
.

Marginal products of capital are then

FKj

³©
Kj
¡
st
¢ª
j∈J , s

t, st+1

´
=
Aj
¡
st+1

¢
Zj (st+1)

.

The term Zj is introduced to guarantee stationary returns. It implies, for instance, that as a

given type of capital gets cheaper to produce, that is as Z increases, it also becomes less productive.

This is related to one of the properties implied by Greenwood, Hercowitz and Krusell’s (1997)

balanced growth path. Aj
¡
st+1

¢
can be thought of as a productivity shock.4

3 In open economy real business cycle models, similar adjustment cost functions that allow for a general curvature

or elasticity parameter are common. They are important to generate realistic investment volatilities. See for instance

Baxter and Crucini (1993).
4This revenue function could for instance be derived from a production function j aj,tKj,t

α

N1−α
t , where

aj,t are shocks, 0 < α < 1 and where labor N is paid its marginal product.
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4.3 Simulation strategy and stationarity of returns

For the quantitative analysis, the optimal investment process is taken as given. The implied

investment returns and state prices can then easily be derived. As mentioned above, I require

returns to be stationary. This imposes additional restrictions on the investment process. These

issues are discussed here in detail.

I will assume a stochastic process for investment growth rates λIj
¡
st+1

¢
, implicitly defined by

Ij
¡
st, st+1

¢
= Ij

¡
st
¢
λIj
¡
st+1

¢
. Under the assumed functional forms, investment returns can then

be written as

RIj
¡
st, st+1

¢
=

³
1/λ

Zj
t+1

´
· Aj,t+1

b (ZjtIj,t/Kj,t)
ν−1 (4)

+
³
1/λ

Zj
t+1

´
· b
¡
1− 1

ν

¢
(Zj+1tIjt+1/Kjt+1)

ν − c
b (ZjtIj,t/Kj,t)

ν−1

+
³
1/λ

Zj
t+1

´
· (1− δj) · b (Zjt+1Ij,t+1/Kj,t+1)

ν−1

b (ZjtIj,t/Kj,t)
ν−1 ,

where for compactness the state-dependence is not explicit.

The dynamic structure of the variables of interest can be summarized in the following expres-

sions. Realized investment returns displayed in equation (4) can be written as a function of four

elements:

RIj
¡
st, st+1

¢
= RIj

Ã
Zj
¡
st
¢
Ij
¡
st
¢

Kj (st−1)
;λIj

¡
st+1

¢
,λZj

¡
st+1

¢
, Aj

¡
st+1

¢!
for j = 1, 2. (5)

For the simulations, I can generate realizations of all the quantities of interest based on a proba-

bility matrix describing the law of motion for the exogenous state st+1. In particular, combining

the capital accumulation equations, (1) , with the specifications for Ij
¡
st, st+1

¢
and Zj

¡
st, st+1

¢
,

the investment-capital ratios evolve as

Zj
¡
st+1

¢
Ij
¡
st+1

¢
Kj (st)

=

⎛⎜⎝ Zj(st)Ij(st)
Kj(st−1)

(1− δj) +
Zj(st)Ij(st)
Kj(st−1)

⎞⎟⎠λIj
¡
st+1

¢
λZj

¡
st+1

¢
for j = 1, 2. (6)

In order to compute the aggregate return defined in equation (3), it is also necessary to keep track

of the ratio of the book values of the two types of capital. It is easy to show that this ratio evolves

as

K1
¡
st
¢

Z1 (st)
/
K2
¡
st
¢

Z2 (st)
=

Ã
K1
¡
st−1

¢
Z1 (st−1)

/
K2
¡
st−1

¢
Z2 (st−1)

! µ1− δ1 +
Z1(st)I1(st)
K1(st−1)

¶
³
1− δ2 +

Z2(st)I2(st)
K2(st−1)

´ λZj2
¡
st
¢

λZ1 (st)
.

Inspection of equation (4) reveals that given the various assumptions made on the exoge-

nous processes and functional forms, and assuming stationary shocks λIj
¡
st+1

¢
,λZj

¡
st+1

¢
and

Aj
¡
st+1

¢
, investment returns are stationary. However, stationarity of the investment returns is
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not sufficient for the stationarity of the aggregate asset return. Indeed, as shown in equation (3),

the aggregate return equals a weighted average of the investment returns. For stationarity, the

weights need to be stationary too. Aggregate returns are given by

R
¡
st, st+1

¢
=
X
j

b(ZjtIj,t/Kj,t)
ν−1

Zj,t
Kj,t+1P

i
b(ZitIi,t/Ki,t)

ν−1
Zi,t

Ki,t+1
RIj
¡
st, st+1

¢
.

A sufficient (and necessary) condition for stationarity, given the previous assumptions, is that

K1,t+1/Z1,t and K2,t+1/Z2,t are cointegrated. Given that the investment capital ratios ZjtIj,t/Kj,t

are stationary, this is equivalent to I1,t and I2,t being cointegrated. Setting investment expenditure

growth rates equal across sectors, that is λI1 (st+1) = λI2 (st+1), guarantees that I1,t and I2,t are

cointegrated. While investment expenditure growth realizations are assumed to be equal across the

two types of capital, I remain free to choose the realizations for λZ1t and λZ2t independently. This

is less restrictive than it might appear. As seen above, what matters for the investment returns

is the behavior of the product λI1t λZ1t , and not λ
I1
t individually. That is, in general, it would be

more important to fit the process of real investment growth λI1t λZ1t rather than the growth in

investment expenditure λI1t . Moreover, for the considered empirical counterparts, as shown below,

the historical volatilities of λI1and λI2 are nearly identical, and realizations of the two growth

rates are strongly positively correlated. Alternatively, one could introduce additional components

for each process that have purely transitory effects and would thus not need to be restricted to

ensure balanced growth. However, given the requirement to keep the number of states small, the

additional flexibility introduced in this way would be rather limited.

5 Analytical results

This section contains a series of analytical results that illustrate key model mechanisms. First, the

determinants of the equity premium are considered. I present simple closed form expressions for

the Sharpe ratio and the risk free rate depending on the technology parameters and investment

volatility. Second, I describe the measures taken to insure that the simulations are consistent with

nonnegative state prices and finite firm values.

5.1 What determines the equity premium?

The analysis proceeds in two steps. First, I show that in order to have a positive equity premium,

the investment return that is expected to be higher needs to be the more volatile. Second, I show

conditions under which the production technology and the investment choices are consistent with

this property.
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For the analysis in this subsection, a continuous-time representation turns out to be more

transparent than the discrete-time model used sofar. As a counterpart to the two-state represen-

tation in discrete time, consider a one-dimensional Brownian motion. Investment returns for the

two types of capital are given by

dRj
Rj

= µj (.) dt+ σj (.) dz, for j = 1, 2, (7)

and the state-price process also has this form

dΛ

Λ
= −rf (.) dt+ σ (.) dz. (8)

Assume that the two returns are positively (perfectly) correlated so that sign (σ1) = sign (σ2).

The drift and diffusion coefficients are allowed to change with the state of the economy. For

compactness, from now on, the notation will not explicitly acknowledge this.

The objective is to derive the drift and diffusion terms of the state-price process, −rf and
σ, from the given return processes, that is from the four values µj and σj for j = 1, 2. In this

environment, the absence of arbitrage implies that

0 = Et

µ
dΛt
Λt

¶
+Et

µ
dRjt
Rjt

¶
+Et

µ
dΛt
Λt

dRjt
Rjt

¶
, (9)

so that

0 = −rfdt+ µidt+ σiσdt,

and thus there are 2 equations and 2 unknowns. The solution of this system is

rf =
σ2µ1 − σ1µ2
σ2 − σ1

(10)

−σ =
µ2 − µ1
σ2 − σ1

. (11)

Clearly, in order to be able to recover the state price process from the two returns, the two

volatility terms have to be different, that is σ2−σ1 6= 0. This is an invertibility requirement similar
to the one for the discrete time case. However, there is no issue here about possibly negative state

prices. Indeed, a process such as (8) cannot become negative if it is initially positive.

From the pricing equation (9), the volatility term equals the Sharpe ratios

−σ = µ1 − rf
σ1

=
µ2 − rf

σ2
,

and using the solutions derived above

µj − rf = −σσj = σj

∙
µ2 − µ1
σ2 − σ1

¸
. (12)

With positively correlated returns, that is sign (σ1) = sign (σ2), the signs of both risk premiums

are identical, and thus the sign of the aggregate equity premium, a weighted average of the two
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premiums, will be the same as for the two premiums. From equation (12) it is easy to see that

there is a positive equity premium in the aggregate if, and only if, the return with the higher risk

premium is more volatile.5

Let us now apply these expressions to the returns derived from our production model. I consider

a model without technology shocks, where the only source of uncertainty are the state prices.

Technology shocks could be added for this analysis, but given their relatively minor quantitative

impact, as shown later in the paper, keeping the expressions simple seems preferable. As shown

in the appendix, the realized return to a given capital stock equals⎧⎪⎨⎪⎩ A− c
b
³
It
Kt

´ν−1 +µ1− 1ν
¶
It/Kt − δ + (ν − 1)

∙¡
λI − 1¢− (It/Kt − δ) +

1

2
(ν − 2)σ2I

¸⎫⎪⎬⎪⎭ dt+(ν − 1)σIdz,
(13)

where
¡
λI − 1¢ and σI are drift and diffusion terms of investment. Given the previous analysis,

in particular equation (13), if we consider an investment policy for which σI1 = σI2 , then in order

to be able to recover the state price process ν1 6= ν2 is required.

The risk premium for each type of capital can now be computed by substituting drift and

diffusion terms from equation (13) for each type of capital into equation (12). In order to obtain

more transparent expressions, consider this return when It/Kt =
¡
λI − 1¢+ δ. This holds at the

deterministic steady state for a given
¡
λI − 1¢, assuming ¡λI − 1¢ + δ > 0.6 The return then

simplifies to ½¡
R̄− 1¢+ 1

2
(ν − 1) (ν − 2)σ2I

¾
dt+ (ν − 1)σIdz, (14)

where R̄ is the return in a deterministic model at the steady state with the same technology

parameters and with investment growth equal to λI .7 Focusing on the return at this steady state

point is informative about average model behavior. An example at the end of the quantitative

analysis illustrates this by comparing the steady state to the unconditional expectation. In order to

further simplify expressions, we consider an optimal choice for which investment is equally volatile

for both types of capital. This isn’t just a benchmark that should have independent appeal, for the

types of capital considered below, historical investment growth volatilities are roughly the same.

Proposition 1 Assume σIj = σI and ν1 6= ν2, then steady state values for the Sharpe ratio and

5 Indeed, if σ1,σ2 > 0, this implies that if µ2−µ1 > 0, one needs σ2−σ1 > 0, and it can be seen that µj−rf > 0.
Alternatively, if σ1,σ2 < 0, this condition implies that if µ2 − µ1 > 0 one needs σ2 − σ1 < 0 (sector 2 is more

volatile), and then again µj − rf > 0.
6 In particular, consider a path where dz = 0 for a very long time. Then, under the assumptions made here, for

a given constant λI , It/Kt will converge to λI − 1 + δ.
7 R̄ = A−c

b(λI−(1−δ))ν−1
+ 1− 1

ν
λI + 1

ν
(1− δ) .
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the risk free rate are given by

µj − rf
σj

|ss = R̄2 − R̄1
(ν2 − ν1)σI

+
ν1 + ν2 − 3

2
σI , (15)

and

rf |ss =
(ν2 − 1)

¡
R̄1 − 1

¢− (ν1 − 1) ¡R̄2 − 1¢
ν2 − ν1

− (ν1 − 1) (ν2 − 1)
2

σ2I . (16)

Equation (15) highlights two ways to generate a positive Sharpe ratio and thus a positive equity

premium in this model. First, as shown by the first term, a difference in the deterministic returns

R̄j contributes to an increase in the Sharpe ratio, if the higher deterministic return corresponds to

the more volatile return. This mechanism is consistent with our previous discussion as summarized

in equation (12).8

Second, if R̄j = R, because σj and σI have the same sign (given νj > 1), a necessary and

sufficient condition for a positive equity premium is that ν1 + ν2 > 3. Under this condition,

the more volatile return also has the higher mean. To relate this to our previous discussion as

summarized in equation (12), consider for instance the case where νj > 1.5 for both j. Then,

differentiating the drift term in (14) (for a fixed R̄) yields

∂ (ν − 1) (ν − 2)
∂ν

= 2 (ν − 1.5) which implies ∂ (ν − 1) (ν − 2)
∂ν

> 0 if ν > 1.5,

so that the capital with the higher ν has the higher expected return. Because (ν − 1) multiplies
σIdz in the return equations (13) and (14), the capital with the higher ν will also have the more

volatile return.

Equation (15) suggests that the curvature parameters ν have a similarly important role as

the risk aversion coefficient in the basic consumption-based model. However, the equation for

the Sharpe ratio, together with the return equations (13) and (14), highlight a trade-off when

choosing values for ν. Increasing the curvature parameters increases the equity premium, but

this also makes returns more volatile. Therefore, asset price volatility will impose a clear limit

on how much curvature can be used to generate large risk premiums. In standard consumption-

based asset pricing models this trade-off is much less present. In fact, as is well known, in a basic

constant relative risk aversion environment, for the benchmark case with IID consumption growth,

increasing risk aversion increases the equity premium without affecting return volatility.

Equation (16) for the risk free rate shows how investment uncertainty contributes to a lower

steady state interest rate by an extent that is affected by the amount of the adjustment cost

8Clearly, in a deterministic model, R̄j = R̄ would be required to rule out arbitrage (assuming both capitals are

used). However, in a model with uncertainty, there is no such requirement.
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curvature. This parallels the precautionary saving effect on interest rates in standard consumption-

based models. The equation for the risk free rate further simplifies if it is assumed that R̄j = R:

rf |ss =
¡
R̄− 1¢− (ν1 − 1) (ν2 − 1)

2
σ2I . (17)

To illustrate the behavior of the risk free interest rate more generally, we can rewrite equation

(10) as

rf =
σ2

σ2 − σ1
µ1 −

σ1
σ2 − σ1

µ2 = αµ1 + (1− α)µ2, (18)

with α ≡ σ2/ (σ2 − σ1), where the subindexes refer again to two generic returns. Thus, the risk

free rate equals a weighted average of the two expected returns. However, as can be seen from the

definition of α, if the two returns are perfectly positively correlated, sign (σ1) = sign (σ2), one

of two weights is negative and the other is larger than one. Intuitively, with perfectly positively

correlated returns, the risk free rate is replicated synthetically by going long the return with the

lower volatility and by shorting a smaller amount of the return with the higher volatility. As can

also be seen in equation (18), when the volatility of one of the returns is zero, this return equals

the risk free rate.

Using equation (13) that displays the return in the production model, and assuming that

σIj = σI , we have that

rf =
ν2 − 1
ν2 − ν1

µ1 −
ν1 − 1
ν2 − ν1

µ2.

Therefore, in this case, movements in the risk free rate are driven solely by movements in the

expected returns, µ1 and µ2, but not by changing "weights". For the limiting case where ν1 goes

to one (without loss of generality), the risk free rate equals µ1, and as can be seen from equation

(13), µ1 is constant in the limit. Thus, by setting at least one of the adjustment cost curvatures

close to 1, the risk free rate can be made arbitrarily smooth.

Note that the limiting case with a constant interest rate is a problematic one. In this particular

example, setting ν = 1, makes the firm’s problem linear, and the first-order conditions are no longer

sufficient for describing optimal firm behavior. More generally, with ν > 1, if the interest rate is

constant in every period, then, for a model without technology shocks, the returns to the firm (and

the investment return) are equal to the interest rate. This result is formally shown in the appendix.

Intuitively, with constant interest rates and no technology shocks, firms face no uncertainty, and

with convex adjustment cost it is not optimal to introduce fluctuations into an optimal plan. This

implies that there is no "nice" benchmark model with a constant interest rate that we can use for

our analysis.
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5.2 What is an admissible investment process?

In this section I consider the requirements for an investment process to be admissible, in the sense

that it has to represent a solution to the firm’s problem for the implied state price process, and

that this price process is itself well behaved. The two key requirements are that the derived state

prices have to be positive and that the implied firm value has to be finite. While a large set of

investment processes are admissible, these requirements nevertheless impose constraints on the

investment process and on the specification of model. For this reason, this section also provides

the motivation for some of the choices made in the empirical analysis.

5.2.1 Positive state prices

Solving equation (2) gives the state prices in the two-state case as

P
¡
s1|st

¢
=
RI2
¡
st, s2

¢−RI1 ¡st, s2¢
|R| , and P

¡
s2|st

¢
=
RI1
¡
st, s1

¢−RI2 ¡st, s1¢
|R| , (19)

with

|R| = RI1
¡
st, s1

¢
RI2
¡
st, s2

¢−RI2 ¡st, s1¢RI1 ¡st, s2¢ .
As equation (19) makes clear, state prices in this model are state-non-separable. That is, the

price for goods delivered in a given state depends on the investment returns of the other state, in

addition to return of the same state. This is unlike CRRA-implied state prices that depend solely

on consumption growth of the same state. Considering the ratio of the state prices offers some

intuitive insights about what is required for positive state prices

P
¡
st, s1

¢
P (st, s2)

=
RI2
¡
st, s2

¢−RI1 ¡st, s2¢
RI1 (s

t, s1)−RI2 (st, s1)
. (20)

A necessary condition for positive state prices is that the terms in the numerator and in the

denominator of the right hand side of (20) have the same sign. Each of these two terms represents

the spread between the two investment returns in a given state. As is clear from (20), the two

terms can only have the same sign if each type of investment dominates the other in one of the

two states. Indeed, optimal choice with positive prices would imply that if one type of investment

were to generate a higher return in both states, then resources would be reallocated into this type

of capital from the other.

To see some of the properties needed to satisfy this positivity requirement, consider a second-

order Taylor-series approximation of the investment return around the deterministic steady state.

To focus on the quantitatively important channels, I again consider a model without technol-

ogy shocks where the only source of uncertainty are the state prices. A second-order Taylor
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approximation is obtained by assuming that the investment-capital ratio is at its steady state

It
¡
st
¢
/Kt

¡
st−1

¢
= λ̄− 1 + δ, for a given steady state growth rate λ̄, so that

RIt,t+1 = R̄+ (ν − 1)∆λ0 +
B

2

¡
∆λ0

¢2
+ o

³¡
∆λ0

¢2´ (21)

where ∆λ0 = λ0 − λ̄ and

B =
ν − 1
λ

½
ν − 1− 1− δ

λ

¾
.9

Assume equally sized up and down movements in a two-state setting so that

∆λj (s2) = −∆λj (s1) ≡ ∆λj , for each j ∈ (1, 2) .

Assume also, like in subsection 5.1, that the investment growth volatilities are equal in the two

sectors and positively correlated, so that

∆λ1 = ∆λ2 = ∆λ.

With this approximation, the ratio determining relative state prices is given as

P (., s1)

P (., s2)
=
[ν2 − ν1]∆λ+

h¡
R̄2 − R̄1

¢
+ 1
2 (B2 −B1)

¡
∆λ
¢2i

+ o
³¡
∆λ
¢2´

[ν2 − ν1]∆λ−
h¡
R̄2 − R̄1

¢
+ 1
2 (B2 −B1)

¡
∆λ
¢2i

+ o
³¡
∆λ
¢2´ (22)

As shown by equation (22), in order to have positive prices at steady state, the first term in

the fraction, [ν2 − ν1]∆λ, needs to dominate the second. In general, this will require a minimum

amount of asymmetry in the curvature parameters νj across types of capital.

Away from steady state, in particular when investment-capital ratios reach lower levels, some

state prices in my quantitative setup have a tendency to eventually turn negative. That this

might happen is suggested by equation (4). As the current investment-capital ratio gets close to 0,

returns can get arbitrarily large, and the spread between two returns for a given state can switch

sign. In order to deal with this in the simulations, the marginal product term, A, is allowed to be

state-contingent with the objective to rule out negative state prices. I describe the exact approach

in the calibration section below. Below it is also shown that shocks to A have only second-order

effects on the considered asset price implications. This is because the level of A is small relative

to the other terms in the return equation (4).

5.2.2 Finite value and transversality condition

In my model it is feasible to generate a sequence of investment returns and state prices without fully

specifying the process for investment and possible technology shocks. Indeed, as shown in equation
9The only difference compared to the continuous-time equation derived above is the second-order term. With

(1− δ) = λ = 1, we would have B = (v − 1) (v − 2), which is the term in the continuous time counterpart.
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(5), returns are fully determined by the current period investment-capital ratios and next periods

investment growth and technology shock realizations. However, because I fully specify investment

growth and technology shocks processes, it needs to be made sure that these processes imply a

finite firm value and satisfy the transversality condition.

The transversality condition that guarantees optimality of the path satisfying the first-order

condition is

lim
t→∞

X
st

P
¡
st
¢

P (s0)

©
A
¡
st
¢
+HI

¡
st
¢
(1− δ)−HK

¡
st
¢ª
Kt
¡
st−1

¢
= 0.

In the simulations, I check numerically that firm values are finite. Given the setup used, it can

be shown that if firm values are finite, the transversality condition is also satisfied. Typically, the

finiteness requirement is satisfied by bounding the investment-capital ratios. Specifically, consider

a two-state process for the growth rates in investment and Z, where the realizations are fixed

functions of the two realizations of s. Then, the extreme paths of repeating forever either the

higher or the lower of the two growth rates, λIj (s) and λZj (s), will generate natural upper and

lower bounds for the investment-capital ratios, as is clear from (6). For the parameterizations

considered, such two-state processes do not satisfy finiteness. However, finiteness can be achieved

with tighter bounds. I implement this by making the investment growth rates λIj a function of

not only the current realization of s, but also of the current investment-capital ratios, as described

in more detail in the calibration section. Intuitively, to have a finite firm value, I need to rule out

paths for which the growth rates of the capital stocks are very high.

6 Calibration

Parameter values are assigned based on 3 types of criteria. First, a set of parameter values are

picked to match direct empirical counterparts. Second, some parameters are chosen to yield the

best implications for key asset pricing moments. Third, some parameters are chosen to make sure

the derived state-prices are admissible. I first present a short summary of the baseline calibration.

The details and the specification with shocks to the investment technology are given thereafter.

6.1 Summary

Table 1 lists the main parameters chosen for the baseline case. In the baseline case there are no

shocks to the investment specific technologies Zj , we consider these in the sensitivity analysis.
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Table 1: Parameter values

Investment growth rates λI (s1) ,λ
I (s2) = 0.9587, 1.1078

Serial correlation ρ = 0.2 or 0

Depreciation rates δE, δS = 0.112, 0.031

Relative value of capital stocks (KE/ZE) / (KS/ZS) = 0.6

Adjustment cost parameters bE, bS , cE, cS so that qZ = 1.5

Adjustment cost curvatures νE , νS = 2.115, 3.854

Marginal products of capital AE , AS so that R̄E , R̄S = 1.04644, 1.08026

ρ stands for the first-order serial correlation of investment growth. A set of parameters is chosen

based on direct empirical counterparts; namely, λI (s1), λI (s2), ρ, (δE, δS), and (KE/ZE) / (KS/ZS).

In order to replicate steady-state values for qZ, (bE, bS) are selected; (cE , cS) are then determined

to generate the lowest possible total adjustment cost. The curvature parameters, νE and νS , and

the steady state returns R̄E and R̄S , (implicitly AE and AS), are chosen to match historical first

and second moments of the market return and the risk free rate.

6.2 Details of calibration

This section provides additional information about parameter choices and data sources.

6.2.1 Investment and productivity processes

I consider the Bureau of Economic Analysis’ (BEA) quantity indexes of investment for equipment

& software as well as for structures as the empirical counterparts to investment in units of capital

goods, IZ. Because Z measures the number of units of capital goods that can be produced from

one unit of the final good, ruling out arbitrage implies that 1/Z is the price of the capital good

in terms of the final good. Equivalently, 1/Z is the replacement cost for capital (not including

adjustment cost), or the book value of capital. For both types of capital, Z is computed as the

deflator for nondurable consumption and services divided by the deflator of the investment good.

Investment expenditure, I, can then be obtained by combining the series for IZ and Z. Based

on annual data covering 1947-2003, the properties of the growth rates of these series are shown in

Table 2.
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Table 2: U.S. Investment 1947-2003 (Growth rates)

Mean Standard Deviation 1st Autocorrelation

Investment expenditure IE 3.81% 6.98% .08

IS 2.85% 7.94% .27

Investment IZE 5.71% 7.81% .13

IZS 2.29% 6.86% .28

Investment technology ZE 1.82% 2.56% .66

ZS −.44% 2.35% .31

As is well known, the price of equipment & software has been decreasing over time. The 1.82%

annual increase in Z shows that in Table 2. Table 2 also shows that the volatilities of investment,

and investment expenditure, are very similar for the two types of capital.

The calibration of the investment growth process proceeds in two steps. First, the proba-

bility matrix is determined to match the serial correlation and the frequency of low and high

growth states. These two moments do not depend on the shock values themselves but only on the

probabilities. Specifically, the two diagonal elements of the probability matrix are given as

π11 =
ρ+ fr

1 + fr
; π22 =

1 + fr · ρ
1 + fr

,

where fr is the relative frequency of state 1, the recession state. The numbers of realizations

of investment growth rates above and below the mean are almost the same; thus I set fr = 1.

As shown in Table 2, the first-order serial correlations of the growth rates of investment are 0.13

and 0.28, respectively, and 0.08 and 0.27 for investment expenditure. The common ρ is set at

the average for investment expenditure of 0.2; the natural benchmark case where ρ = 0 is also

considered.

For the baseline calibration, I abstract from shocks to the investment technology, Z. Due

to the balanced growth requirement, the growth rates of investment expenditures are equalized

across sectors. The mean of λI − 1 is set at 3.33% per year, which is the average of the historical

investment growth rates across the two types of capital. The implied standard deviation is 7.46%,

the historic average of the standard deviations across the two types of capital. Note that the

perfect positive correlation of the investment growth rates in the model is not that far from the

historical reality. Indeed, the historical sample correlations for investment across the two sectors

are 0.61 and 0.64, for investment and investment expenditure, respectively.

To help the model produce admissible outcomes, that is, positive state prices based on finite

firm values, I bound the domain of the investment capital ratios. Specifically, an upper and a
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lower bound for the investment capital ratio for equipment & software, IZ/KE, are set. The

upper bound corresponds to IZ/KE after 7 high (positive) investment growth rates starting from

the steady state value; for the lower bound it is 7 low (negative) growth rates. The presented

quantitative results are not significantly affected by the values of these bounds. However, without

the bounds, the requirement of finite firm values in particular cannot necessarily be satisfied within

the presented model specification. Mechanically, the bound is enforced by replacing IZ/KE values

beyond a given bound with the value of the bound. The implied investment growth rate λI is then

also applied to the other type of capital to ensure balanced growth. This procedure also implicitly

bounds IZ/KS .

For the case where the investment specific technology Z is allowed to vary in both sectors,

the 6 values for the realized growth rates of investment expenditure (2) and the sector specific

investment technologies (4) are set so as to match as closely as possible the 8 means and standard

deviations (equally weighted) of the growth rates of IZE, IZS , ZE and ZS . This objective can

be achieved quite well. The empirical correlation of investment with its technological growth are

0.43 and −0.32, for the two types of capital respectively, while the correlation of the technological
growth across types is 0.3. Clearly, due to limited degrees of freedom, the two-state process cannot

match all these correlations. As shown below, for most quantities of interest, the Z shocks don’t

turn out to matter that much.

6.2.2 Depreciation rates

The depreciation rates for equipment & software as well as for structures, (δE, δS), are based

on time series averages of the depreciation rates reported in the Fixed Assets tables form the

BEA. These are 13.06% and 2.7%, respectively, for the period 1947-2002. Because the BEA’s

depreciation includes physical wear as well as economic obsolescence, the data is adjusted to take

into account that depreciation in the model covers only physical depreciation. To do this the price

increase in the capital good is added, so that

δt =
Dt
Kt
+ (Zt−1/Zt − 1) ,

with Dt depreciation according to the BEA. This adjustment decreases depreciation by 1.82% for

equipment and -0.44% for structures, so that (δE, δS) = (.112, .031).

6.2.3 Relative size of capital stocks

The capital stock ratio, (KE,t/ZE,t) / (KS,t/ZS,t), is needed only for computing aggregate returns,

which, as shown earlier, are value-weighted averages of the two capital returns. Based on the
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Current-Cost Net Stocks of Fixed Assets from the BEA, for the period 1947-2002, the average

of (KE,t/ZE,t) / (KS,t/ZS,t) is 0.6. We set the steady state ratio in the model equal to this value.

In the model, the ratio of the physical capital stocks KE,t/KS,t is allowed to be nonstationary,

while—given the balanced growth requirements—the ratio of the book values of the capital stocks

(KE,t/ZE,t) / (KS,t/ZS,t), is stationary. This seems consistent with the behavior of the empirical

counterparts.

6.2.4 Adjustment costs and marginal products

Given the limited direct evidence on the precise values of νE and νS as well as R̄E and R̄S , these

parameters are chosen with the objective to get the best possible model fit for the first and second

moments of the aggregate return and the risk free rate, assuming that νS > νE. As shown below,

for the considered empirical counterparts, the four moments can be perfectly matched with the

values
¡
νE , νS, R̄E, R̄S

¢
= (2.11, 3.875, 1.04622, 1.08108); with the implied marginal product terms

(AE , AS) = (0.1762, 0.1384).10 Mechanically, I draw a sample for the exogenous state st of 100’000

periods and search in the 4 dimensional parameter space to match the 4 moments.

Given that this is a highly nonlinear model, it was not necessarily to be expected that the model

could in fact match first and second moments of stock returns and risk free rates. We provide

here some additional evidence that suggests that the chosen parameter values are empirically

reasonable.

Each of the four parameters affect all four moments, but there are differences in sensitivities. In

particular, in line with equation (13), the average of the curvature parameters affects the volatility

of the aggregate return most strongly. The level of the R̄0js has a strong effect on the mean risk

free rate, as suggest by equation (16). Consistent with expression (15), the difference between R̄E

and R̄S strongly affects the Sharpe ratio. Finally, a smaller difference between νE and νS has a

positive effect on the volatility of the risk free rate.

Most readers would probably find the assumption that νS > νE a priori reasonable. There

is also more direct evidence that suggests that the adjustment cost curvature should be larger

for structures than for equipment & software. For example, as shown in Table 2, the fact that

the first order serial correlation of the growth rates is somewhat higher for structures than for

equipment can be interpreted as an expression of the desire to smooth investment over time due

to the relatively higher adjustment cost. As another example, Guiso and Parigi (1999) examine

investment behavior for equipment and structures with Italian data on investment and sales, but

10Return data is from Ibbotson Associates (2004). Arguably, returns in the model could be compared to an

unlevered return to capital. For comparability with the literature, this isn’t done here.
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no asset price data. Their findings are also consistent with the notion that structures are more

costly to adjust than equipment.

One way to gauge whether the adjustment cost parameters are reasonable is to consider the

amount of resources lost due to the adjustment process. For the baseline calibration, the mean

average adjustment cost (from the simulated model) is 8.1% and 11.6% of investment for equipment

& software and structures, respectively. These values depend primarily on the target value for qZ,

which itself does not affect much the model’s asset pricing implications. When compared to the

extreme risk aversion coefficients required to make consumption data consistent with the equity

premium, the adjustment cost curvatures required here are much smaller. A prime reason for this

is that investment growth is substantially more volatile than consumption growth.

There is a large literature estimating adjustment costs at the microeconomic level, see for

instance the survey by Hamermesh and Pfann (1996) or more recently Hall (2004). From these,

there doesn’t emerge much agreement about the importance of adjustment cost. One difficulty

in linking the results of such studies to mine is that it is typically assumed that adjustment cost

functions are quadratic. Another difficulty is that at a disaggregated level fixed costs are likely to

play an important role.

Our parameter selection yields R̄S > R̄E. Therefore, with νS > νE, both terms in equation

(15) are contributing positively to the model’s Sharpe ratio and the equity premium. While direct

empirical evidence on the R
0
js seems elusive, existing evidence supports the model implication

that structures have higher expected returns than equipment. Indeed, Tuzel (2009) considers

portfolios of firm returns sorted on real estate capital; her definition of real estate capital based

on Compustat data is very close to structures used here. She finds that the returns of firms in

the quintile with the highest shares of real estate capital exceed that of firms in the quintile with

the lowest shares of real estate by 3-6% annually. The top quintile has a share in real estate that

is 25% above the average, the bottom quintile has a corresponding share that is 22% below the

average. Based on an average real estate share in total capital of 0.625 (as reported in Section

6.2.3 here), this implies a spread in expected returns between equipment and structures of 10-20%

annually.11 In Table 3 below we display the model implied expected excess returns for equipment

and structures to be 4.15% and 12.34%, respectively (4.18% and 11.89% for the IID case in Table

11The difference between the top and bottom quintile can be written as the difference of two portfolios each

containing structures and equipment

3% (or 6%) = 1.25w · rS + (1− 1.25w) · rE − .78w · rS + (1− .78w) · rE

with w the average share of real estate capital across all firms, and rS and rE the expected returns for structures

and equipment. With w = .625, this implies that rS − rE = 10− 20%.

23



4). The spread in model implied expected returns between the two types of capital do therefore

not appear excessive in light of Tuzel’s evidence.

The values for bj are picked to replicate steady values for Tobin’s Q, qZ of 1.5 for both types of

capital. The c0js are then picked to minimize the overall amount of output lost due to adjustment

cost. These parameters have very limited influence on the model’s return implications.

There are many examples of studies that estimate qZ. Lindenberg and Ross (1981) report

averages for two-digit sectors for the period 1960-77 between .85 and 3.08. Lewellen and Badrinath

(1997) report an average of 1.4 across all sectors for the period 1975-91. Gomes (1999) reports an

average of 1.56. Based on this, I use a steady-state target value for qZ, qZ, of 1.5 for both sectors.

One problem with using empirical studies to infer the required heterogeneity of costs across types

is that most studies consider adjustment costs by sector of activity. For the analysis here, I would

need information about the adjustment costs by type of capital.

The marginal product terms Aj
¡
st+1

¢
are made state-contingent so as to guarantee that the

implied state prices are always positive. I choose to do this by introducing state-contingency only

when needed and then in a very limited way. In particular, AE
¡
st+1

¢
is kept constant at AE

throughout. AS
¡
st+1

¢
is constant at AS except if the state price were to be negative, which is

the case for low values of IZ/KS. In this case AS
¡
st, st+1

¢
= AS

¡
1± x ¡st¢¢, with x ¡st¢ set to

obtain a state price in state 2 equal to 0. For the benchmark calibration, the shock is turned on

19.3% of the time. In 83% of these cases, x
¡
st
¢
is smaller than 0.05, 0.5% of the time it is larger

than 0.5., and no realizations are larger than 0.6. While these shocks are useful in insuring that

the implied state-prices are admissible, they have only second-order effects on key asset pricing

moments. This is because the marginal product components Aj represents a small part of the

overall return. Note also that the implied correlation between productivity shocks and investment

is positive, which seems reasonable.

7 Quantitative properties

Table 3 presents model implications for the baseline calibration as well as empirical counterparts

for a set of moments. Model results are based on a sample of 100’000 yearly periods starting

from steady state. For unconditional moments, the key finding is that the model is able to match

the historical mean equity premium and risk free rate, by also matching return volatilities for the

aggregate return and the risk free rate. In Table 4, the model with IID investment growth rates,

but otherwise unchanged, implies essentially the same unconditional moments, with the risk free

rates being slightly less volatile.

Of particular interest is the model’s ability to generate substantial time variation in expected
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excess returns and in Sharpe ratios. Indeed, the standard deviation of the one-period ahead

conditional equity premium is 6.32% and 5.42% for the baseline calibration with and without

serially correlated investment growth rates, respectively. It is worth emphasizing that despite

the high volatility in risk premiums, the volatility of the risk free rate is not excessive, with a

standard deviation of 2.07% and 1.76%, respectively. A number of empirical studies measure

excess return predictability. For example, Campbell and Cochrane (1999) report R20s of 0.18 and

0.04 for regressions of excess returns on lagged price-dividend ratios at a one-year horizon for the

periods 1947 − 95 and 1871 − 1993, respectively. Combining the R2 with the volatility of the
excess returns,

√
R2std

¡
R−Rf¢ provides an estimate of the volatility of the conditional equity

premium. Setting R2 = 0.1 this would be
√
0.1×0.17 = 5.27%. Thus, the model’s values of 6.32%

and 5.42% are close.

In the model, the high volatility of the (conditional) equity premium can be understood as

the combination of volatile expected investment returns for both types of capital and a relatively

stable risk free rate. The main driver of the expected return of a given type of capital is its

investment capital ratio, as is clearly shown in the return equations (4) and (13). In the calibrated

model, investment-capital ratios are negatively related to expected returns. Figure 1 illustrates

this relationship by plotting the (simulated) expected investment returns for each type of capital

against its own investment-capital ratio. In this case, the state of the economy consists of the

two investment-capital ratios and the realized investment growth rate. The realized investment

growth rate matters, because with serially correlated growth rates, it affects the forecast of next

period’s growth rate. Higher expected growth rates increase expected returns, as can clearly be

seen in the return equation (13). Thus, in Figure 1, the upper line (or set of points) in each

panel corresponds to the high growth rate, and for the IID case (not shown) there would be only

one line in each graph. In addition to the investment growth rate, for equipment, the expected

return depends only on its own investment-capital ratio. For structures, with extreme investment-

capital ratios, the investment-capital ratio of equipment matters too because of the shocks to the

marginal product terms (in the lower range only) and because of the bounds on the investment-

capital processes. Intuitively, the main mechanism at work is that when an investment-capital

ratio is high, the current cost of adding capital (that is Tobin’s Q, b (IZ/K)ν−1) is high, and thus

the expected return going forward is low. Given the considerable volatility of expected returns

illustrated in Figure 1, and given the relatively stable risk free rates, expected excess returns (and

thus the equity premium) inherit most of the dynamic properties of expected returns. Given that

investment-capital ratios are strongly pro-cyclical (positively correlated with GDP), a model with

IID investment growth rate predicts a counter-cyclical equity premium.
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From the more general perspective of merely assuming the absence of arbitrage, the conditional

equity premium can be written as

Et

³
Rt+1 −Rft

´
= −σt (mt+1)

Etmt+1
σt (Rt+1) ρt (mt+1, Rt+1) .

In the model, the conditional return volatility σt (Rt+1) doesn’t move very much, with standard

deviations of 1.11% and 0.87% for the benchmark cases with and without serial correlation dis-

played in Table 3 and 4. For the continuous-time approximation, as shown in equation (13),

with homoscedastic investment growth rates, instantaneous returns are also homoscedastic. In

this case, the conditional standard deviation of aggregate returns moves only through shifts in

the relative value-weights of the two capital stocks. In the simulated model, the shocks to the

marginal product terms and the limits on the range of the investment-capital process also create

some heteroscedasticity. Given the relatively stable conditional return volatility, the Sharpe ratio

implied by the aggregate market, Et
³
Rt+1 −Rft

´
/σt (Rt+1), inherits the dynamic properties of

the conditional equity premium. A number of recent studies provide empirical support for volatile

and countercyclical Sharpe ratios, see for instance Brandt and Kang (2004) and Ludvigson and

Ng (2007). The model with IID investment growth is consistent with these findings. In the model,

the Sharpe ratio is mainly driven by time-variation in the market price of risk, σt (mt+1) /Etmt+1.

However, the correlation between the stochastic discount factor and the market return is also

time-varying. Of course, this being a two-state model, conditional correlations are either 1 or -1.

While the correlation is typically equal to -1, it changes sign at times when the investment-capital

ratios are very high, that is, when Sharpe ratios are very low. The slightly higher volatility of the

Sharpe ratio compared to the Market price of risk, as displayed in Table 3 and 4, is a reflection of

this.

To further illustrate model properties, I consider the implications from feeding the investment

realizations for the U.S. for the period 1947-2003 through the model.12 Given that investment

growth in the model follows a two-state distribution, the fit of the driving process is not perfect.

Nevertheless, as shown in Figure 2, the fit can be very good, with correlations between the model

and the data of 0.78 and 0.71 for equipment and structures, respectively. Figure 3 shows that the

model-generated returns are indeed related to actually realized stock returns, with a correlation

of 0.48 between the two.

Figure 4, a and b, show conditional moments. In Figure 4a, the high frequency movements

in expected returns as well as Sharpe ratios are driven by the forecastable component of the

investment growth rates; the low frequency movements are driven by the investment-capital ratios.

12 In particular, if the average of the deviations from the unconditional means for the two types of capital is

positive, the common investment growth realization is set to the high rate and vice versa.
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For the IID case displayed in Figure 4b, investment-capital ratios are the only drivers of time-

varying asset returns. It is interesting to consider the 1990s. As shown in Figure 2, the decade

produced a series of eight high investment growth realizations in a row. Through that sequence,

investment-capital ratios are continuously increasing. As shown in Figure 4b, at the end of this

sequence, the expected equity premium becomes negative, and thus the conditional correlation

between the stochastic discount factor and realized returns has switched sign. From the perspective

of the firms making investment decisions, the story told by the model is that throughout the 90’s

firms continued to invest heavily, despite declining expected returns, because investment returns

were considered less and less risky.

7.1 Sensitivity and discussion

I consider here the effects of the investment specific technology shocks and the shocks to the

marginal product terms. The quantitative content of the continuous-time approximations is also

examined.

Tables 5 and 6 show results for the calibrations with investment specific technology shocks Z.

In Table 5 the correlation of Z with the investment growth of the same type equals, 1; in Table 6,

it is -1. While there are some quantitative differences compared to the baseline case, and between

the two cases considered here, none of the main conclusions are affected.

Table 7 illustrates the effect of the shocks to the marginal product terms. In this case, the

shocks to the marginal product term AS are always turned on at ±30%, and sometimes higher if
needed to make prices stationary. Comparing this to the benchmark case in Table 3 without the

shocks (except if needed to make prices stationary), there is little difference. Having the shocks

on all the time, increases the risk free rate by 81 basis points and reduces the equity premium

roughly by the same amount. Return volatilities are essentially the same in the two cases.

Finally, I reconsider the closed form expressions derived for the continuous-time model at

steady-state for the Sharpe ratio and the risk free rate. This allows us to compare the continuous-

time setup to the more fully specified simulated discrete-time model, as well as to appreciate the

difference between steady state values and unconditional averages.

As shown in equation (15) and (16) the Sharpe ratio and the risk free rate at steady-state in

the continuous-time model are function of
¡
νE, νS , R̄E, R̄S

¢
and σI only. Based on the values of

these parameters used for the baseline calibration, the Sharpe ratio and the risk free rate equal

0.3762 and 1.54%,

respectively. The discrete-time model with IID shocks evaluated at steady state when the invest-
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ment growth rate is set equal to the average implies

0.3721 and 1.62%,

for these two quantities. Thus, in these two dimensions, continuous-time and discrete-time versions

are very close. For mean values reported in Table 4 the two are

0.51 and 1.01%.

In this case, averages are somewhat different from steady-state values. The key feature that makes

the average Sharpe ratio relatively larger can be seen in Figure 1. Indeed, for structures—that have

the higher adjustment cost curvature—expected returns are strongly convex in the investment-

capital ratio.

8 Conclusions

This paper has examined the implications of producers’ first-order conditions for asset prices in

a model where convex adjustment cost play a major role. Closed-form expressions are presented

that show how investment behavior and production technologies are linked to the returns on the

aggregate stock market and on risk free bonds. A carefully calibrated model is shown to be able to

replicate empirical first and second unconditional moments of the returns on the aggregate stock

market and on risk free bonds. As far as conditional moments are concerned, the expected excess

stock return, the market’s Sharpe ratio, and the market price of risk are found to be very volatile.

Overall, these rather positive findings derived from relatively basic assumptions should encourage

further research on the production side of asset pricing.
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Appendix: Continuous-time model

This appendix presents a continuous-time investment model that replicates the setup of the

discrete-time environment. The technology side of the model follows Abel and Eberly (1994) but

without shocks. The main difference is that here the firm faces changing state prices, while in

their case pricing is risk neutral with constant interest rates. The steps needed to derive the return

equation (13) are also presented.

The capital stock evolves as dKt = (It − δKt) dt, and the investment cost is given by

H (It,Kt) =

½
b

ν
(It/Kt)

ν + c

¾
Kt,

which is homogenous of degree one in I and K.13 The gross profit is given as

AKt.

Assume that the state-price process is given as

dΛt = −Λtr (xt) dt+ Λtσ (xt) dzt,

where dzt is a one-dimensional Brownian motion, and

dxt = µx(xt)dt+ σx(xt)dzt.

Assume that the functions µx(xt),σx(xt), r (xt) and σ (xt) satisfy the regular conditions such that

there are solutions for the above two SDEs.

The firm maximizes its value

V = max
{It+s}

Et

½Z ∞

0
[AKt+s −H (It+s,K,t+s)] Λt+s

Λt
ds

¾
.

Given the dynamics of Λt, it is obvious that the firm’s value function V is independent of Λt.

Following from the Markov property of the state variable xt, the firm’s value function would be a

function of (Kt, xt). The HJB equation is

rV = max
{It}

½
[AKt −H (It,Kt)] + (It − δKt)VK + µxVx +

1

2
σ2xVxx + σσxVx

¾
.

The first-order condition is

HI (It,Kt) = VK ≡ qt
That is,

VK = b (It/Kt)
ν−1

It =

µ
VK
b

¶ 1
ν−1

Kt

13The model used in the main text features two capital stocks. Because these enter separably into production,

the presentation focuses here, for compactness, on a single capital stock.
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Because of constant returns to scale in Kt, following Hayashi, it is easy to see that V (Kt, xt) =

KtVK (xt). Thus, it is clear that optimal investment follows an Ito process, dIt/It = µI (Kt, xt) dt+

σI (Kt, xt) dzt.

Define realized returns to the firm as

AKt −H (It,K,t)
Vt

dt+
dVt
Vt
.

Given Hayashi’s result and the first-order conditions

AKt −H (It,K,t)
Vt

dt+
dVt
Vt

=
AKt −H (It,K,t)

qtKt
dt+

dKt
Kt

+
dqt
qt
.

Using the first-order condition qt = HI (It,Kt) together with Ito’s lemma, the last term of this

equation can be written as

dqt
qt
=
dHI (It,K,t)

HI (It,K,t)
=
HII (It,K,t) dI +HIK (It,K,t) dK + 1

2HIII (It,K,t) (dI)
2

HI (It,K,t)
,

and given the functional form for H (.), some algebra yields

dqt
qt
= (ν − 1)

∙
µI − (It/Kt − δ) +

1

2
(ν − 2)σ2I

¸
dt+ (ν − 1)σIdz.

Using this result, the return equation (13) given in the main text can then easily be derived.

As discussed in the main text in subsection (5.1), for the model without technology shocks,

constant interest rates imply constant investment returns. The continuous-time model admits

a compact proof for this property. Indeed, changing to the risk-neutral measure Q, the firm’s

problem becomes

V = max
{It+s}

EQt

½Z ∞

0
e−

t+s
t rudu [AKt+s −H (It+s,K,t+s)] ds

¾
,

with

dxt = (µx(xt) + σ(xt)σx(xt)) dt+ σx(xt)dz
Q
t

and

dKt = (It − δKt) dt.

Written in this form, it is obvious that if the interest rate ru is constant, the firm faces no

uncertainty, and thus, it will not introduce any uncertainty into an optimal investment plan.
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Table 3
Model implications for the baseline calibration, compared to historical data covering 1947-2003. 
Unconditional means and standard deviations are shown for returns denoted by: RM, market; Rf, risk free; RE, 
equipment and software; RS, structures. Standard deviations of the conditional mean, and of the conditional
standard deviation for excess returns are denoted by Std[E(RM-Rf|t)] and Std[Std(RM-Rf|t)], respectively.

 RM               RM-Rf Rf Market Price of Risk Sharpe Market
Mean 8.35% 1.09% 0.55 0.52
Std 17.24% 2.07% 0.34 0.38

 RE               RE-Rf  RS              RS-Rf

Mean 4.15% 12.34%
Std 8.48% 25.00%

Std[E(RM-Rf|t)] 6.27%
Std[Std(RM-Rf|t)] 1.03%

Real returns 1947-2003 RM                    RM-Rf Rf
Mean 8.35% 1.09%
Std 17.24% 2.07%



Table 4
Model implications with IID investment growth rates, compared to historical data covering 1947-2003. 
Unconditional means and standard deviations are shown for returns denoted by: RM, market; Rf, risk free; RE, 
equipment and software; RS, structures. Standard deviations of the conditional mean, and of the conditional
standard deviation for excess returns are denoted by Std[E(RM-Rf|t)] and Std[Std(RM-Rf|t)], respectively.

 RM               RM-Rf Rf Market Price of Risk Sharpe Market
Mean 8.25% 1.01% 0.52 0.51
Std 17.26% 1.75% 0.31 0.33

 RE               RE-Rf  RS              RS-Rf

Mean 4.18% 11.89%
Std 8.66% 24.22%

Std[E(RM-Rf|t)] 5.36%
Std[Std(RM-Rf|t)] 0.81%

Real returns 1947-2003 RM                    RM-Rf Rf
Mean 8.35% 1.09%
Std 17.24% 2.07%



Table 5
Model implications with investment specific technology shocks that are positively correlated with investment growth.
Unconditional means and standard deviations are shown for returns denoted by: RM, market; Rf, risk free; RE, 
equipment and software; RS, structures. Standard deviations of the conditional mean, and of the conditional
standard deviation for excess returns are denoted by Std[E(RM-Rf|t)] and Std[Std(RM-Rf|t)], respectively.

 RM               RM-Rf Rf Market Price of Risk Sharpe Market
Mean 6.72% 2.34% 0.55 0.52
Std 14.20% 2.52% 0.35 0.40

 RE               RE-Rf  RS              RS-Rf

Mean 2.78% 10.50%
Std 6.09% 21.75%

Std[E(RM-Rf|t)] 5.28%
Std[Std(RM-Rf|t)] 1.08%

Real returns 1947-2003 RM                    RM-Rf Rf
Mean 8.35% 1.09%
Std 17.24% 2.07%



Table 6
Model implications with investment specific technology shocks that are negatively correlated with investment growth.
Unconditional means and standard deviations are shown for returns denoted by: RM, market; Rf, risk free; RE, 
equipment and software; RS, structures. Standard deviations of the conditional mean, and of the conditional
standard deviation for excess returns are denoted by Std[E(RM-Rf|t)] and Std[Std(RM-Rf|t)], respectively.

 RM               RM-Rf Rf Market Price of Risk Sharpe Market
Mean 10.09% -0.24% 0.57 0.55
Std 19.28% 2.91% 0.34 0.39

 RE               RE-Rf  RS              RS-Rf

Mean 5.71% 14.26%
Std 10.77% 27.11%

Std[E(RM-Rf|t)] 7.20%
Std[Std(RM-Rf|t)] 1.17%

Real returns 1947-2003 RM                    RM-Rf Rf
Mean 8.35% 1.09%
Std 17.24% 2.07%



Table 7
Model implications with technology shocks for structures (AS) always turned on.
Unconditional means and standard deviations are shown for returns denoted by: RM, market; Rf, risk free; RE, 
equipment and software; RS, structures. Standard deviations of the conditional mean, and of the conditional
standard deviation for excess returns are denoted by Std[E(RM-Rf|t)] and Std[Std(RM-Rf|t)], respectively.

 RM               RM-Rf Rf Market Price of Risk Sharpe Market
Mean 7.52% 1.90% 0.45 0.42
Std 18.83% 1.91% 0.29 0.33

 RE               RE-Rf  RS              RS-Rf

Mean 3.35% 11.47%
Std 8.48% 27.67%

Std[E(RM-Rf|t)] 6.05%
Std[Std(RM-Rf|t)] 0.63%

Real returns 1947-2003 RM                    RM-Rf Rf
Mean 8.35% 1.09%
Std 17.24% 2.07%



Figure 1
Expected investment returns as a function of the capital to investment ratio.
The top graph shows expected returns to equipment & software as a function of the 
investment to capital ratio in equipment & software; the bottom graph is for structures. 
The top line of each graph shows the expected return when the growth rate of 
investment is expected to be high, the lower line is for low expected investment growth.  



Figure 2
Gross annual growth rates of investment for equipment & software and for structures 
(1948-2003), compared to the growth rates of the two-state process that is fed through 
the model.  



Figure 3
Gross annual returns to the aggregate stock market: Model compared to the data.
The data represents the CRSP value weighted market return (1948-2002) deflated by the 
price index for nondurable consumption and services.

Model

Data



Figure 4a
Model implied expected excess returns of the aggregate stock market, Sharpe ratios, 
and market prices of risk with serially correlated investment growth rates (1948-2003). 

Conditional expected excess return Sharpe ratio and market price of risk

Sharpe ratio



Figure 4b
Model implied expected excess returns of the aggregate stock market, Sharpe ratios, 
and market prices of risk with IID investment growth rates (1948-2003). 

Conditional expected excess return Sharpe ratio and market price of risk

Sharpe ratio




