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Abstract

We develop a novel approach to consistent checks of parametric regression models

when many regressors are present. The principle is to replace the nonparametric

alternative by a class of semiparametric alternatives, namely single-index models,

that is rich enough to allow detection of any nonparametric alternative. We propose

an omnibus test based on the kernel method that performs against a sequence

of directional local nonparametric alternatives as if there was one regressor only,

whatever the number of regressors. This test can also be viewed as a smooth

version of the integrated conditional moment (ICM) test of Bierens. For these

reasons, we label our test the smooth ICM test. Moreover, qualitative information

can be easily incorporated in the procedure to further improve its power. In an

extensive simulation study, we provide evidence that our test is little sensitive to

the smoothing parameter and performs better than several known lack-of-fit tests

in multidimensional settings.
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1 Introduction

Parametric forms are frequently used in regression models to estimate the association

between a response variable and predictors. Checking the adequacy of a parametric re-

gression function is then useful in many applications, whether in econometrics or in other

applied fields. Popular graphical displays of residuals against fitted values or covariates

can fail to detect an inadequate model when many covariates are present. Hence, since

the end of the eighties, many regression checks have been developed. With few excep-

tions, notably Bierens (1982, 1990) and Stute, Gonzalez Manteiga and Presedo Quindimil

(1998), most rely on some smoothing method, such as kernels, splines, local polynomi-

als, or orthogonal series, from the earlier work of Cox and al. (1988), Azzalini, Bowman

and Härdle (1989), Eubank and Spiegleman (1990), Hart and Wehrly (1992), Eubank and

Hart (1993), to the more recent papers by Dette (1999), Aerts, Claeskens and Hart (1999),

Spokoiny (2001), Baraud, Huet and Laurent (2003). The nice monograph by Hart (1997)

reviews this statistical literature, but almost exclusively deals with the one predictor case.

Among the authors who explicitly studied the many regressors case, Härdle and Mammen

(1993) used an L2 distance between the parametric regression and the nonparametric one;

Zheng (1996), Aerts, Claeskens and Hart (1999), and Guerre and Lavergne (2005) used a

score approach; Fan, Zhang and Zhang (2001) adopted a likelihood-ratio approach. The

ability of these omnibus tests to detect deviations from the parametric model quickly

vanes when there is more than a couple of regressors. Indeed, since the nonparametric

estimators suffer from the “curse of dimensionality” as shown by Stone (1980), so too

do the related tests, see e.g. Guerre and Lavergne (2002). Hence, their usefulness is

questionable for many applications, in particular in econometrics where the number of

covariates can be large. To circumvent this issue, one can aim at testing the paramet-

ric regression against some non-saturated semiparametric alternatives. Fan, Zhang and

Zhang (2001) studied varying coefficients linear models. Aerts, Claeskens and Hart (2000)

and Guerre and Lavergne (2005) proposed tests tailored for additive alternatives. Hart

(1997, Section 9.3) considered alternatives of the form m(t(X)), where m(·) is nonpara-

metric and t(X) is the vector of the first principal components of the covariance matrix

X; he noted that there is however no guarantee that lack-of-fit will manifest itself along

principal components. Fan and Huang (2001) similarly relied on scores from principal

components analysis. The alternative dimension-reduction test of Zhu (2003) assumes

independence of the parametric residuals with the regressors. All these proposals thus
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rely on some auxiliary assumptions that allow to restrict the alternative model, but they

yield tests that are not omnibus.

Our goal is to device a powerful regression check that researchers could confidently

apply in the presence of many regressors without imposing restrictions on the form of the

alternative. In this aim, we develop a novel approach that improves on known regression

checks based on smoothing methods. The approach is related to a previous proposal

by Zhu and Li (1998) that we discuss further on. It can also be viewed as a further

elaboration of the integrated conditional moment (ICM) test proposed by Bierens (1982),

and for this reason we label our test the smooth ICM test. Moreoever, our approach allows

to incorporate a priori qualitative information the procedure to improve its power. Our

theoretical results show that the smooth ICM test is consistent against any alternative,

yet it is not affected by the dimension of the regressors, since it behaves as if there was only

one regressor. In practice, we found that the test is more powerful than known lack-of-fit

tests in multidimensional settings. Specifically, it outperforms not only the kernel-based

test of Zheng (1996), but also the ICM test by Bierens (1982) and the projection-based test

recently proposed by Escanciano (2006). Moreover, it is little sensitive to the smoothing

parameter choice.

Acknowledging that testing directly against saturated alternatives yield low power, our

key principle is to replace the nonparametric alternative by a class of a semiparametric

alternatives that is rich enough to allow detection of any nonparametric alternative, thus

reducing the dimension of the problem while preserving consistency. Specifically, we look

at the class of single-index regression models. Formally, let (Y1, X
′
1)
′, . . . (Yn, X

′
n)′ be

independent observations from a population (Y,X ′)′ ∈ R1+q, where X is a continuous

random vector. We want to check whether the regression function E(Y |X) belongs to a

parametric family {µ(·, θ) : θ ∈ Θ}, for instance of linear or logistic functions. Our null

hypothesis then writes

H0 : E [Y − µ(X, θ0)|X] = 0 for some θ0 . (1.1)

As we face the “curse of dimensionality” in estimating the above conditional expectation,

the resulting estimate will be imprecise in small and moderate samples, and the related

test will lack power. Our approach consists in estimating conditional expectations given

a linear index X ′β for any β and thus to replace one conditional expectation given all

the regressors by all conditional expectations given one single linear index only. The

advantage is that each expectation can be estimated accurately for a reasonable sample
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size since it depends on a single linear index only. The apparent drawback is that we

have to estimate many conditional expectations. However, this cumbersome task can be

avoided by combining expectations into a single integral and estimating this integral at

once. We show indeed below that H0 is equivalent to∫
Sq

E
[
E2 (Y − µ(X, θ0)|X ′β) fβ(X ′β)

]
dβ = 0 for some θ0 , (1.2)

where Sq is the hypersphere {β ∈ Rq : ‖β‖ = 1} and fβ(·) is the density of the linear index

X ′β. Our approach thus reduces the dimension of the problem without any knowledge

about the form of the alternatives. The resulting test is truly omnibus and the rate of

convergence of the test statistic under H0 equals the rate one would obtain in the one-

dimensional case. Moreover, it behaves against local directional alternatives as if there

was one regressor only. We also show that when the regressors are bounded, it is sufficient

to consider the above integral on a subset of the hypersphere with nonempty interior. This

readily allows to incorporate some qualitative information in the procedure. For instance,

if it is known that the marginal effects of two regressors X1 and X2 always have the same

sign, one can choose B as the domain where the corresponding β1 and β2 are positive.

The rest of the paper is organized as follows. Section 2 explains the principle on

which our approach relies. In Section 3, we propose a test statistic based on the kernel

method, detail its practical computation, and study its asymptotic behavior under the

null hypothesis. We also justify the validity of a bootstrap method to obtain critical values

for samples of small or moderate size. In Section 4, we study the test under a sequence

of directional alternatives and report the results of an extensive simulation study that

compare our approach to different tests previously proposed in the literature. We also

provide some evidence that explains why the smooth ICM test is powerful. The technical

proofs are gathered in the Appendix.

2 The principle

The following lemma is the crux of our approach. It provides a direct justification for

considering all conditional expectations given one single linear index for testing H0. Part

(ii) shows that when X is bounded, it is even sufficient to consider infinitely many of

these conditional expectations. Note that X is bounded can be assumed without loss

of generality, since we can always find a one-to-one transformation that maps X in a

bounded set and retains all conditioning information, see e.g. Bierens (1982).
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Lemma 2.1 Let Sq = {β ∈ Rq : ‖β‖ = 1} be the hypersphere with radius one. Consider

random vectors Z ∈ R with E(Z2) <∞ and X ∈ Rq with bounded density f(·). Let fβ(·)
be the density of X ′β and assume that for some C, |fβ(·)| ≤ C for any β ∈ Sq.

(i) E(Z | X) = 0 is equivalent to∫
Sq

E
[
E2 (Z|X ′β) fβ(X ′β)

]
dβ = 0 . (2.3)

(ii) If X is bounded, then E(Z | X) = 0 is equivalent to∫
B

E
[
E2 (Z|X ′β) fβ(X ′β)

]
dβ = 0 (2.4)

for any B ⊂ Sq with nonempty interior.

Lemma 2.1 can be deduced from Bierens (1982, Theorem 1), but since it is the key of our

approach, we provide here a simple proof and we comment it thereafter. Proof. (i) The

implication is straightforward. By elementary properties of the conditional expectation,

for any β ∈ Sq and any t ∈ R,

ψβ(t) := E [exp{itX ′β}E(Z | X ′β)] = E [exp{itX ′β}E(Z | X)] , (2.5)

where i =
√
−1. For any β ∈ Sq, E (Z|X ′β) fβ(X ′β) ∈ L1(R) ∩ L2(R), and Parseval’s

formula yields, see e.g. Rudin (1987),∫
R
|ψβ(t)|2 dt = 2π E

[
E2 (Z|X ′β) fβ(X ′β)

]
and

∫
Sq

∫
R
|ψβ(t)|2 dt dβ = 2π

∫
Sq

E2 [E (Z|X ′β) fβ(X ′β)] dβ .

If this integral equals zero, this implies ψβ(t) = 0 for all β and all t. By the unicity of the

Fourier transform, E(Z | X) = 0.

(ii) Clearly, E(Z | X) = 0 implies (2.4). The equivalence for B = Sq follows from Part

(i). Since

2π

∫
B

E
[
E2 (Z|X ′β) fβ(X ′β)

]
dβ =

∫
B

∫
R
|ψβ(t)|2 dt dβ ,

(2.4) implies ψβ(t) = 0 for all β ∈ B and t. Since X is bounded, this yields E(Z|X) = 0

by Theorem 1 of Bierens (1982).

The proof clearly shows how (2.3) naturally appears from Fourier analysis. It is also useful

to see that, because of the symmetry of the Fourier transform, our lemma holds not only

for the hypersphere Sq, but for any half-hypersphere. By half-hypersphere, we mean any
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subset H of Sq such that (i) H ∪H− = Sq, where H− = {β− : β− = −β, β ∈ H} and (ii)

H ∩H− has Lebesgue measure zero. Hence, the assumption of a bounded X is necessary

for Part (ii) only if B is not included in a half-hypersphere.

As a consequence of Lemma 2.1, our null hypothesis (1.1) can be written as (1.2).

Moreover, when X is bounded, we can incorporate some qualitative information by con-

sidering only a restricted subset B. Our approach is related to the ICM test of Bierens

(1982) and Bierens and Ploberger (1997), which is based on the fact that for X bounded,

E(Z|X) = 0 iff ∫
Rq

|E [Zψ (X ′u)]|2 dµ(u) = 0 ,

for some probability measure µ(·) and a well-chosen function ψ(·), such as exp(·). As

is clear from Lemma 2.1, our approach is similar, but instead of choosing a particular

ψ (·) at the outset, we select for each β the function that maximizes the above quantity.

Formally, we look for the L2-function that maximizes E [Zψ (X ′β) fβ(X ′β)]. However, we

do have to normalize the function ψ(·) to obtain a finite solution. Under our assumptions,

a convenient normalization is given by

E
[
ψ2 (X ′β) fβ(X ′β)

]
= E

[
E2(Z | X ′β)fβ(X ′β)

]
. (2.6)

Hence ψ(·) minimizes E
[
(Z − ψ (X ′β))2 fβ(X ′β)

]
under this constraint, and the solution

is clearly E(Z | X ′β).

3 The smooth ICM test

3.1 The test statistic

Let (Yi, X
′
i)
′, i = 1, . . . n, be a random sample from (Y,X ′)′ ∈ R1+q. The vector X is

assumed to be continuously distributed, since regressors with fixed discrete support have

no theoretical influence on the asymptotic power of a regression check. The model to be

checked writes

Y = µ(X, θ0) + ε, E (ε|X) = 0 .

An estimated candidate θ̂n for the parameter θ0 can be obtained by least-squares. The

parametric residuals are then Ûi = Yi − µ(Xi, θ̂n), i = 1, . . . n. We use the kernel method

to estimate (2.4), as it yields a very tractable statistic. We could certainly accommodate

for other nonparametric methods, such as splines, local polynomials, or orthogonal series,

6



but we do not pursue this issue here. We first define

1

n(n− 1)

∑
j 6=i

ÛiÛj
1

h
Kh ((Xi −Xj)

′β) , (3.7)

as an estimator of E [E2 (Y − µ(X, θ0)|X ′β) fβ(X ′β)]. Here Kh (·) = K (·/h), where K(·)
is an univariate symmetric density and h a bandwidth. This statistic is the one studied

by Zheng (1996) and Li and Wang (1998) applied to the index X ′β and has an asymptotic

centered normal distribution with rate nh1/2 under H0. As noted by Dette (1999), Zheng’s

statistic is comparable to Härdle and Mammen’s one (1993) with weight function equal

to the squared density, which is exactly what is needed here. The quantity in (2.4) is thus

estimated by

In = In(B) =
1

n(n− 1)

∑
j 6=i

ÛiÛj
1

h

∫
B

Kh ((Xi −Xj)
′β) dβ .

Zhu and Li (1998) first proposed to use an unweighed integral of expectations conditional

upon single linear indices, yielding a statistic close to, but different than, In for checking

a linear regression model. However, they do not study the related test. Instead, their test

is based on their integral statistic plus a term of the form (1/n)
∑n

i=1 Ûiφ (‖Xi‖), where

φ(·) is the standard normal univariate density (or any other known function). Hence,

they combine a test statistic based on nonparametric methods with a directional test

statistic. The asymptotic behavior of their test statistic under H0 is completely driven by

the second one. By contrast, we directly base our test on the integral statistic In. Let v2
n

be the variance of nh1/2In under H0, which is positive and finite as shown below. With

at hand a consistent estimator v̂2
n, an asymptotic α-level test is given by

Reject H0 if nh1/2In ≥ z1−αv̂n ,

where z1−α is the (1−α)-th quantile of the standard normal distribution. The conditional

variance of nh1/2In writes

v2
n =

2

n(n− 1)

∑
j 6=i

σ2(Xi)σ
2(Xj)h

−1E2
B [Kh ((Xi −Xj)

′β)] ,

where EB [g(β)] :=
∫

B
g(β) dβ for any function g(·) of β. In general, the conditional

variance σ2 (·) is unknown, but with at hand a nonparametric estimator such that

sup
1≤i≤n

∣∣∣∣ σ̂2(Xi)

σ2(Xi)
− 1

∣∣∣∣ = oP(1) , (3.8)
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v2
n can be consistently estimated by

v̂2
n =

2

n(n− 1)

∑
j 6=i

σ̂2(Xi)σ̂
2(Xj)h

−1E2
B [Kh ((Xi −Xj)

′β)] .

Many nonparametric estimators could be used. For instance, one can consider

σ̂2(x) =

∑n
i=1 Y

2
i I {‖x−Xi‖ ≤ b}∑n

i=1 I {‖x−Xi‖ ≤ b}
−
(∑n

i=1 YiI {‖x−Xi‖ ≤ b}∑n
i=1 I {‖x−Xi‖ ≤ b}

)2

,

where b is a bandwidth parameter converging to zero as the sample size increases, which

can be selected independently of h. Guerre and Lavergne (2005) provide some primitive

conditions for (3.8). It is then straightforward to show that v̂2
n/v

2
n = 1 + oP(1) under H0.

Given our focus, we will proceed assuming this condition holds.

The use of a nonparametric estimator of the error’s variance does not affect the test

at a first order. A simpler alternative is to plug estimated parametric residuals in the

expression of v2
n in place of the unknown variance components, which gives

v̂2
n =

2

n(n− 1)

∑
j 6=i

Û2
i Û

2
j h

−1E2
B [Kh ((Xi −Xj)

′β)] .

This alternative estimator is consistent for v2
n under H0, but overestimates it when the

parametric model is incorrect, and thus likely yields some loss in power for the test. For

this reason, we do not recommend its use in practice. Nevertheless, our asymptotic results

allows for its use.

3.2 Practical considerations

A first practical issue relates to the fact that the same bandwidth is used for all directions

X ′β. Hence it is desirable to transform the regressors to make different linear combinations

comparable. An easy way is to center and rescale the matrix of observations on X so that

it has mean zero and variance identity. Alternatively, as suggested by Bierens (1982) for

the ICM test, one can map each regressor onto (0, 1).

Implementation of our test requires integration on the (half) hypersphere or a subset

of it. To approximate the integral in practice (up to a constant), it is sufficient to draw

a large number of points randomly distributed on the (half) hypersphere, to evaluate the

function under the integral for each draw and to compute the average. A draw can be

easily performed by sampling independent zi, i = 1, . . . q, distributed as N(0, 1) and to

define β as the vector z/‖z‖. By the radial symmetry of the normal distribution, this
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gives points uniformly distributed on the hypersphere. In some cases, it may be possible

to derive the analytic form of the integral. From the previous arguments, we have that∫
Sq

K(u′β) dβ =

∫
Rq

K(
u′z

‖z‖
)φ(z)dz

where φ(·) is the q-variate standard normal density. By a suitable change of variables,

this equals ∫
Rq

K(‖u‖ z1

‖z‖
)φ(z)dz ,

and thus depends only depends on ‖u‖. However, deriving the analytic formula of this

function can be quite tedious, even with symbolic computation engines, while numerical

approximation is quite fast and easy. Matlab codes to implement the test are available

from the authors upon request.

3.3 Behavior under the null hypothesis

To avoid technicalities, the parametric regression is taken to be linear in variables. How-

ever, we do not restrict the data to exhibit normality or homoscedasticity. Our results

extend to a general parametric regression, see for instance Lavergne and Patilea (2006)

for necessary assumptions. We first state our general assumptions on the data-generating

process, the kernel and smoothing parameter.

Assumption D (a) The random vectors (ε1, X
′
1)
′, . . . , (εn, X

′
n)′ are independent copies

of the random vector (ε,X ′)′ ∈ R1+q, where E(ε | X) = 0 and E(ε4) <∞.

(b) Let σ2(x) = E(ε2 | X = x). There exist constants σ2 and σ2 such that for any x

0 < σ2 ≤ σ2(x) ≤ σ2 <∞.

(c) X is continuous with bounded density f(·), and the density fβ(·) of X ′β is such that

for some C, |fβ(·)| ≤ C for any β ∈ B. If B is not included in a half-hypershpere, X is

assumed to be bounded.

(d) Let Z = [Zi, i = 1, . . . n] = [(1, X ′
i), i = 1, . . . n] be the design matrix. There exists a

positive definite matrix A such that n−1Z ′Z
p−→A. θ ∈ Θ, a compact of R1+q.

Assumption K (a) The kernel K(·) is a bounded symmetric density with K(0) > 0 and

an integrable Fourier transform. (b) h→ 0 and (nh2)
α
/ lnn→∞ for some α ∈ (0, 1).

Assumptions D(c) comes from our Lemma 2.1 and rules out multicollinearity among the

regressors. For a bounded X, a bounded density for X implies that fβ(·) is bounded
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uniformly in β ∈ Sq. The assumptions on the kernel K(·) are satisfied by most kernels

used in practice. The restrictions on the bandwidth are compatible with optimal choices

for regression checks, see Guerre and Lavergne (2002). The following theorem states the

asymptotic validity of the smooth ICM test.

Theorem 3.1 Under Assumptions D and K and if v̂2
n/v

2
n = 1 + oP(1) under H0, the test

based on In has asymptotic level α conditionally on the Xi.

While the test can be implemented using asymptotic critical values for large samples,

the asymptotic approximation is likely not accurate for small or moderate samples, as is

the case for most regression checks. The wild bootstrap, initially proposed by Wu (1986),

is thus often used to compute small sample critical values, see e.g. Härdle and Mammen

(1993) and Stute and al. (1998). Here we use a generalization of this method, the smooth

conditional moments bootstrap introduced by Gozalo (1997). It consists in drawing n i.i.d.

random variables ωi independent from the original sample with Eωi = 0, Eω2
i = 1, and

Eω4
i <∞, and to generate bootstrap observations of Yi as Y ∗

i = µ(Xi, θ̂n) + σ̂(Xi)ωi, i =

1, . . . n. A bootstrap test statistic is built from the bootstrap sample as the original test

statistic was. When this scheme is repeated many times, the bootstrap critical value

z∗1−α,n at level α is the empirical (1 − α)-th quantile of the bootstrapped test statistic.

This critical value is then compared to the initial test statistic. The following theorem

can be shown following the lines of Theorem 3.1’s proof.

Theorem 3.2 Under the assumptions of Theorem 3.1 and Condition (2.7), the bootstrap

critical value yields a test based on In with asymptotic level α conditionally on the Xi.

4 Power analysis

4.1 Power under local alternatives

Let us investigate the ability of our test to detect directional departures from the null

hypothesis. Consider a real-valued function δ(X) such that

E[(1, X ′)δ(X)] = 0 and 0 < E[δ4(X)] <∞ . (4.9)

The first condition ensures that δ(·) is orthogonal to any linear combination of the regres-

sors. We do not impose smoothness restrictions on the function δ(·) as is frequent in this

kind of analysis. We consider the sequence of local directional alternatives

H1n : E [Y |X] = (1, X ′) θ0 + rnδ(X), n ≥ 1 . (4.10)
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Such directional alternatives can be detected if r2
nnh

1/2 → ∞, where h applies to the

univariate variable defined by a single linear index in X. By comparison, when one

uses a regression check based on a standard “multidimensional” nonparametric estima-

tor, r2
nnh

q/2 → ∞ is needed for consistency. Hence, from the theoretical point of view,

the asymptotic power of our test against directional alternatives is not affected by the

dimension of the regressors.

Theorem 4.1 Under Assumptions D and K, if v̂2
n/v

2
n = OP(1) and r2

nnh
1/2 → ∞, the

test based on In is consistent conditionally on the Xi against the sequence of alternatives

H1n with δ(X) satisfying (4.9).

4.2 Small sample power

Our simulation study had two main objectives. First, we wanted to determine the sen-

sitivity of the smooth ICM test to the smoothing parameter h. Second, we wanted to

compare its small sample power to the test of Zheng (1996) and Li and Wang (1998) on

the one hand, and to the tests of Bierens (1982) and Escanciano (2006) on the other hand.

Let us first present briefly the different tests we considered. Zheng’s test is based

on the statistic (3.7) where h−1Kh ((Xi −Xj)
′β) is replaced by h−qKh (Xi −Xj) with a

multivariate kernel. When properly normalized, this statistic has an asymptotic standard

normal distribution. Li and Wang (1998) investigated application of the wild bootstrap

to this test. We used the smooth conditional moment bootstrap, which is also valid as

can be shown from standard arguments. The ICM test is based on the statistic

n

∫
Rq

∣∣∣∣∣ 1n
n∑

i=1

Ui(θ) exp(iX ′
iβ)

∣∣∣∣∣
2

φ(β)dβ =
1

n

∑
i,j

Ui(θ)Uj(θ) exp

(
−‖Xi −Xj‖2

2

)
,

where φ(β) is the standard normal density on Rq, see Bierens (1982, p. 111). Escanciano

(2006) also used this form of the ICM test for comparison. The asymptotic theory devel-

oped by Bierens and Ploberger (1997) applies only if the measure used in integration has

compact support, so that the normal distribution should be truncated at some possibly

very large values. For all practical matters however, this does not make any substantial

difference. The ICM statistic thus resembles ours, with a kernel depending only on the

norm ‖Xi−Xj‖ but a fixed bandwidth. Dominguez (2004) shows that the wild bootstrap

is valid and preserves admissibility of the test, consequently we used this method to obtain
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critical values. Finally, Escanciano’s test is based on the statistic

1

n2

∑
i,j

Ui(θ)Uj(θ)

(
1

n

∑
k

∫
Sq

I(X ′
iβ ≤ X ′

kβ)I(X ′
jβ ≤ X ′

kβ) dβ

)
,

and the wild bootstrap was used to obtain critical values. Computation of the statistic

was performed using Escanciano’s (2006) analytic results, see his Appendix B.

We consider X with dimension four and the null hypothesis

H0 : E(Y |X) = (1, X)′θ0 for some θ0 .

We generated samples of 100 observations from independent uniformly distributed vari-

ables for each component of X. The support was chosen as U
[
−
√

3,
√

3
]

to get unit

variance. We sampled errors from a standard normal distribution and we constructed the

response variable as

Yi = (1, Xi)
′θ0 + d δ(X ′

iβ0) + εi i = 1, . . . 100 ,

with θ0 = (0.5, 0.5, 0.5,−1.5), and different d and δ(·). For each experiment, the number

of replications is 5000 under the null hypothesis and 1000 under each alternative. The

number of bootstrap samples is 199 for each replication and the level is 5%. We considered

the following nonparametric tests: (i) Zheng’s test when the index X ′β0 is considered as

the only regressor, labeled as “Zheng’s test Dim 1” in our figures; (ii) Zheng’s test when

all four regressors are taken into account, labeled as “Zheng’s test Dim 4;” (iii) the smooth

ICM test where numerical integration is performed on a grid of 5000 points on an half-

hypersphere; (iv) the smooth ICM test where integration is performed on the subset

B of the hypersphere for which the first three components of β are positive. This last

situation corresponds to using the qualitative information that the influences of the first

three components of X on Y are of the same sign. To compute the test statistics, we

used a normal kernel and we selected the bandwidth as h = b n−2/(8+q), with q = 4 in

Case (ii) and 1 in the other cases, and b varies in {0.5, 1, . . . , 3}. The errors’ conditional

variance was estimated by a kernel estimator with normal kernel and bandwidth 2n−1/6.

We applied this estimator to the parametric residuals, since it yielded a better behavior

for Zheng’s multidimensional test.

In our first set of simulations, δ(X) = 0.1×(X ′β0/
√

3)2, where β0 = (1, 2, 3,−2)/
√

18.

Figure 1 illustrates that residual plots may not be informative on whether the model

is misspecified when many regressors are present. Partial residuals are defined as Y −

12



∑
j 6=k θ̂jZj, see Cook (1993) and the references therein, and the data were generated with

d = 6. Figure 2 compares the power of Zheng’s tests and our test on the sphere when

d = 6 and the bandwidth constant b varies. The key insight is that the performance of

Zheng’s tests is quite variable depending on the bandwidth, while our test appears to be

little sensitive to this parameter. Figure 3 compares the power curves of the different tests

for varying d and b = 1. Empirical levels are well approximated by the bootstrap for all

smooth tests. Bierens’ and Escanciano’s tests are under rejecting, with respective levels

3.8 and 2.52. In terms of power, there is a large loss in power for Zheng’s test when going

from dimension one to four. In practice however, the test based on the unknown single

linear index is infeasible. The second striking fact is that the smooth ICM test largely

outperforms Zheng’s test in dimension 4, as well as the other tests. The performance of

the smooth ICM test is close to the one of the infeasible test. When incorporating some

qualitative information, they practically cannot be distinguished.

In our second set of simulations, we considered the hyperbolic sine alternative δ(X) =

sinh(X ′β0/
√

3). This alternative is particularly difficult to detect, because it resembles

very much a linear function. Other features of the experiments are unchanged. Figure 4

illustrates the performances of the different smooth tests for d = 6 when the bandwidth

varies. As can be seen, Zheng’s tests are very sensitive to the bandwidth, while the

smooth ICM test’s power is almost stable for a bandwidth constant varying from 0.5 to

2. When the bandwidth further increases, the power decreases to the power of the ICM

test. Figure 5 is the analog of Figure 3 for hyperbolic sine alternatives. While our test

is not as powerful as Zheng’s infeasible test, it outperforms all the considered competing

tests. The smooth ICM test on B has now power close to the one of the infeasible test.

Finally, for this alternative, Zheng’s test does a better job than the Bierens’ test, which

itself outperforms Escanciano’s test.

In a third step, we considered the sine alternative δ(X) = 0.1× sin(πX ′β0/
√

3). This

alternative is favorable to Bierens’ test, which is based on the correlation between residuals

and trigonometric functions. Figure 6 compares the power curves of the different tests. As

expected, Bierens’ test performs better than Escanciano’s test, but surprisingly Zheng’s

test does better, and the smooth ICM test outperforms them all. Restricting integration

on B further improves its power.

To show that our conclusions are not tied to single-index alternatives, we consid-

ered the two-indexes alternative δ(X) = sinh(X ′β1/
√

3) + sinh(X ′β2/
√

3), where β1 =

(0, 2, 1,−1)/
√

6 and β2 = (1, 0, 2,−1)/
√

6. As a benchmark, we took Zheng’s test based

13



on the two linear indices entering the regression function, labeled as “Zheng’s test Dim

2.” Figure 7 shows the previous qualitative results still hold.

4.3 What makes our test powerful?

To understand why our test outperforms the ICM test, recall that this procedure, as well

as the one by Escanciano, estimates a quantity of the form∫
Rq

|E [Zψ (X ′u)]|2 dµ(u) = 0 .

From a theoretical viewpoint, they are consistent against sequences of local alternatives of

the form (4.10) whenever r2
nn→∞, because the standard deviation of their statistic goes

to zero at rate n. Now, instead of working with a particular known ψ (·) at the outset,

we estimate the function of X ′β that maximizes weighted correlation with Z. Since this

function needs to be nonparametrically estimated, our test statistic has a larger variance.

However, it is also expected to have a higher mean under any alternative. Since the power

of the test depends of both mean and variance, our test can have higher power than its

competitors.

Ideally, one would like to derive the analytical power function of each test to compare

them. This is however quite intricate and would involve some asymptotic approximations

that may not be accurate in small samples. Instead, we report in Figure 8 the densities

of the statistics under the null hypothesis and the quadratic alternative with d = 10. One

can clearly see from the upper part of Figure 8 that, as expected, the smooth ICM statistic

has a lower mean than Zheng’s statistic but a much more concentrated distribution. It

also shows that, as already noted in previous simulation studies, these statistics are biased

in small samples, which calls for the use of resampling methods. The lower part of Figure

8 shows that Escanciano’s statistic is less variable and has a lower mean than the ICM

statistic. When comparing the smooth ICM and ICM statistics, we note that their mean

respectively increase by 0.67 and 0.50 when d goes from zero to 10, see Table 1. This

confirms that the smooth ICM test uses a one-dimensional function that maximizes the

difference in mean between the null and alternative hypotheses and then yields better

power performances.

We also consider in Figure 9 the case of a sine alternative with d = 10 because it yields

another interesting insight. Remember that the form of the ICM test we used is directed

against such alternatives. Indeed, we found that the mean of the ICM statistic increases

by 0.67, while the mean of the smooth ICM statistic increases only by 0.49. However,

14



the latter statistic is much more concentrated, with a standard deviation of 0.22, to be

compared to 0.35 for the ICM statistic. Hence in that case, the higher power of the

smooth ICM test seems to come from its lower dispersion. Indeed, even the variance of

the ICM statistic decreases at a faster rate with the sample size, this does not imply that

in practice its variance will be smaller.

Our analysis thus sheds light on two main facts. First, when many regressors are

present, the smooth ICM test should be powerful in most cases because it is based on

nonparametric estimation and thus maximizes the difference in behavior under the null

and alternative hypothesis. Second, even for alternatives against which the ICM test is

directed, the smooth ICM test can do a better job in small samples because it has less

dispersion. It seems that in small samples with many regressors, our test is able to balance

central tendency and dispersion so as to yield a powerful test. Clearly, such findings are

not accounted for by standard asymptotic results.

Appendix

For any function g(·) ∈ L1(Rq)∩L2(Rq), its Fourier and inverse Fourier transforms are re-

spectively defined as ĝ(t) = (2π)−q/2 ∫
Rq exp(it′x)g(x) dx and (2π)−q/2 ∫ q

R exp(−it′x)ĝ(t) dt.
In what follows, C denotes a positive constant that may vary from line to line. We first

show two lemmas that are useful for proving our main results.

Lemma 4.2 Let δ(·) be any non-zero function of X on the support of X and h→ 0. Un-

der Assumptions D(c) and K(a), (i) If Eδ2(X) <∞, E {δ(X1)δ(X2)h
−1EB [Kh ((X1 −X2)

′β)]}
has a strictly positive finite limit. (ii) If Eδ4(X) <∞ and nh→∞, then Un − E(Un) =

oP(1) where

Un = 1
n(n−1)

∑
j 6=i

δ(Xi)δ(Xj)h
−1EB [Kh ((Xi −Xj)

′β)].

Proof. (i) Denoting by K̂(·) the Fourier transform of K(·),

E
{
δ(X1)δ(X2)h

−1EB [Kh ((X1 −X2)
′β)]
}

= (2π)−1/2 EB

{
E
[
δ(X1)δ(X2)h

−1

∫
exp (−it(X1 −X2)

′β/h) K̂(t) dt

]}
= (2π)q−1/2 EB

{∫ ∣∣∣δ̂f(tβ)
∣∣∣2 K̂(ht) dt

}
.
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As
∣∣∣K̂(·)

∣∣∣ ≤ K̂(0) = (2π)−1/2, Lebesgue’s dominated convergence yields the limit

(2π)q−1/2

∫
R

∫
B

∣∣∣δ̂f(tβ)
∣∣∣2 dβ dt ,

provided it is finite. But the above quantity is bounded by∫
R

∫
B

∣∣∣δ̂f(tβ)
∣∣∣2 dβ dt <∞ .

Finally, the limit is shown to be strictly positive as in the proof of Lemma 2.1.

(ii) Var(Un) ≤ C
n
Var [δ(X1)δ(X2)h

−1EBKh ((X1 −X2)
′β)]

≤ C
nh

E [δ2(X1)δ
2(X2)h

−1EBKh ((X1 −X2)
′β)] ,

and the above expectation converges to a finite limit from Part (i).

Let W be the matrix with generic element EB [Kh ((Xi −Xj)
′β)] I (i 6= j) / (hn(n− 1))

and define its spectral radius as Sp(W ) = supu 6=0 ‖Wu‖/‖u‖.

Lemma 4.3 Under Assumptions D(c) and K, (i) Sp(W ) = OP(n
−1) and (ii) n2h‖W‖2

has a strictly positive limit, where ‖W‖ denotes the Euclidean matrix norm.

Proof. (i) For any u ∈ Rn,

‖Wu‖2 =
n∑

i=1

(
n∑

j=1,j 6=i

wij uj

)2

≤
n∑

i=1

(
n∑

j=1,j 6=i

wij

)
n∑

j=1,j 6=i

wij u
2
j

≤ ‖u‖2

[
max
1≤i≤n

(
n∑

j=1,j 6=i

wij

)]2

.

Hence nSp(W ) ≤ max1≤i≤n

∑
j 6=i

1
h(n−1)

EBKh ((Xi −Xj)
′β). For all j, |EBKh ((x−Xj)

′β)| ≤
C and Var [EBKh ((x−Xj)

′β)] ≤ C. Thus the Bernstein inequality yields for any t > 0

P

[(
(nh2)α

lnn

)1/2

max
1≤i≤n

∣∣∣∣∣∑
j 6=i

1

(n− 1)h
EBKh ((Xi −Xj)

′β)− E [EBKh ((Xi −Xj)
′β) |Xi]

∣∣∣∣∣ ≥ t

]

≤
∑

1≤i≤n

E

[
P

[∣∣∣∣∣ 1

(n− 1)

∑
j 6=i

EBKh ((Xi −Xj)
′β)

− E [EBKh ((Xi −Xj)
′β) |Xi]

∣∣∣∣∣≥ th

(
lnn

(nh2)α

)1/2

| Xi

]]

≤ 2n exp

(
−t

2

2

(nh2)(lnn)

C((nh2)α + th(nh2)α/2(lnn)1/2)

)
≤ 2 exp

[
lnn− t2

C ′ (lnn)(nh2)1−α

]
→ 0 ,
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since nh2 →∞ by Assumption K(b). Now

E
[
h−1EBKh ((Xi −Xj)

′β) |Xi

]
=

∫
B

∫
R
K(u)fβ(X ′

iβ − hu) du dβ

is bounded uniformly in i by Assumptions D(c) and K(a).

(ii) Write n2h‖W‖2 = 1
(n−1)2

∑
i6=j h

−1E2
BKh ((Xi −Xj)

′β) . Hoeffding’s (1963) inequality

for U -statistics yields for any α ∈ (0, 1)

P

[∣∣∣∣∣∑
j 6=i

1

n(n− 1)h
E2

BKh ((Xi −Xj)
′β)− E

[
E2

BKh ((Xi −Xj)
′β)
]∣∣∣∣∣ ≥ t

]

= P

[∣∣∣∣∣ 1

n(n− 1)

∑
j 6=i

E2
BKh ((Xi −Xj)

′β)− E
[
E2

BKh ((Xi −Xj)
′β)
]∣∣∣∣∣ ≥ th

]

≤ 2 exp

(
−t

2 (nh2)

C

)
→ 0 ,

by Assumption K(b). We have

E
[
h−1E2

BKh ((Xi −Xj)
′β)
]

= E
[
h−1

∫
B

Kh ((Xi −Xj)
′β) dβ

∫
B

Kh ((Xi −Xj)
′α) dα

]
= (2π)q−1h

∫
R

∫
R

∫
B

∫
B

K̂(ht)K̂(hu)
∣∣∣f̂ (tβ + uα)

∣∣∣2 dt du dβ dα .
By Assumption K(a),

h

∫
R

∫
R

∫
B

∫
B

|K̂(hu)|
∣∣∣f̂ (tβ + uα)

∣∣∣2 dt du dβ dα
=

∫
R×B

∣∣∣f̂ (tβ)
∣∣∣2 dt dβ ∫

B

dα

∫
R
|K̂(u)| du <∞ . (4.11)

Now ∣∣∣∣h∫
R

∫
R

∫
B

∫
B

(
K̂(ht)− K̂(0)

)
K̂(hu)

∣∣∣f̂ (tβ + uα)
∣∣∣2 dt du dβ dα∣∣∣∣

≤ C sup
|ht|≤M

∣∣∣K̂(ht)− K̂(0)
∣∣∣

+ 2(2π)−1/2h

∫
|t|≥M/h

∫
R

∫
B

∫
B

|K̂(hu)|
∣∣∣f̂ (tβ + uα)

∣∣∣2 dt du dβ dα .
From the uniform continuity of K̂(·) and Equation (4.11), the right-hand side can be ren-

dered arbitrarily small by choosing M small enough then letting h tend to zero. Therefore

E [h−1E2
BKh ((Xi −Xj)

′β)] tends to

(2π)q−1K̂(0)

∫
R×B

∣∣∣f̂ (tβ)
∣∣∣2 dt dβ ∫

B

dα

∫
R
K̂(u) du = (2π)q−1K(0)

∫
B

dα

∫
R×B

∣∣∣f̂ (tβ)
∣∣∣2 dt dβ ,

using Assumption K(a).
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Proof of Theorem 3.1. Let ε = (ε1, . . . , εn)′. We have

In = I0n − 2I1n + I2n = ε′Wε− 2(θ̂n − θ0)
′Z ′Wε+ (θ̂n − θ0)

′Z ′WZ(θ̂n − θ0) ,

Under Assumption D, θ̂n − θ0 = OP(n
−1/2). Hence I2n ≤ Sp(W )‖Z(θ̂n − θ0)‖2 = OP(n

−1)

by Lemma 4.3(i). Let En denote the conditional expectation given the Xi, Zk be any

column of Z, k = 1, . . . d + 1, and Zk = Z ′
kW . Then Marcinkiewicz-Zygmund’s and

Minkowski’s inequalities imply that there is some C independent of n such that

En |Z ′
kWε| ≤ C

E2
n

∣∣∣∣∣
n∑

i=1

Z
2

kiε
2
i

∣∣∣∣∣
1/2


1/2

≤ C

{
n∑

i=1

Z
2

kiE2
n|εi|

}1/2

≤ C‖Z ′
kW‖ ≤ CSp(W )‖Zk‖ = OP(n

−1/2) .

Hence I1n = OP(n
−1). Now from Lemma 2(i) by Guerre and Lavergne (2005), nh1/2I0n/vn

converges to a standard normal conditionally on the Xi if ‖W‖−1Sp(W ) = oP(1). Lemma

4.3 allows to conclude.

Proof of Theorem 4.1. Under H1n, Ui(θ̂n) = εi − Zi(θ̂n − θ0) + rnδ(Xi). Letting δ =

[δ(X1), . . . δ(Xn)]′, In can be decomposed as I0n − 2I1n + I2n − 2I3n − 2I4n + I5n, where

I3n = rnδ
′WZ(θ̂n − θ0), I4n = rnδ

′Wε, and I5n = r2
nδ

′Wδ. By Assumption D(c) and

Lemma 4.3(ii), v2
n ≤ σ4n2h‖W‖2 = OP(1). Hence nh1/2I0n = OP(1). Because under our

assumptions, θ̂n − θ0 = OP(n
−1/2), I1n and I2n are both OP(n

−1) as in Theorem 3.1’s

proof. Since |u′Wv| ≤ ‖u‖‖v‖Sp(W ), r−1
n I3n ≤ ‖δ‖‖Z(θ̂n − θ0)‖Sp(W ) = OP(n

−1/2).

Also I4n = OP(rnn
−1/2) by the same arguments used for dealing with I1n. Lemma 4.2(ii)

yields I5n = r2
nC + oP(r

2
n) with C > 0. Collecting results, it follows that nh1/2In =

nh1/2r2
nC + oP(r

2
nnh

1/2). Deduce from v̂2
n/v

2
n = OP(1) and r2

nnh
1/2 → ∞ that nh1/2In/v̂n

diverges in probability.
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Figure 1: Quadratic alternative: Residuals plots
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Figure 3: Quadratic alternative
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Figure 2: Quadratic alternative — varying bandwidth
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Figure 4: Sinh alternative — varying bandwidth
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Figure 5: Sinh alternative
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Figure 7: Two-indexes alternative
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Figure 6: Sine alternative
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Figure 8: Densities for quadratic alternative
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Table 1:
Descriptive statistics

Under H0 Quadratic alternative Sine alternative
Integral ICM Esc. Integral ICM Esc. Integral ICM Esc.

Mean -1.0507 0.6741 0.4340 -0.3768 1.1785 0.7194 -0.5615 1.3403 0.7390
S. d. 0.1967 0.1649 0.0875 0.3484 0.3642 0.1986 0.2158 0.3500 0.1636
Min -1.6317 0.2993 0.2021 -1.4041 0.3737 0.3063 -1.1207 0.5250 0.3695
Median -1.0648 0.6542 0.4248 -0.3747 1.1409 0.6968 -0.5636 1.3166 0.7276
Max 0.0014 1.4150 0.8289 0.9261 3.1427 1.6997 0.4706 2.7068 1.4374

Figure 10: Densities for sine alternative
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