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Abstract

We present a theoretical model of the provision of a durable public good over an in�nite

horizion. In each period, there is a societal endowment of which each of n districts owns a

share. This endowment can either be invested in the public good or consumed. We char-

acterize the planner�s optimal solution and time path of investment and consumption. We

then consider alternative political mechanisms for deciding on the time path, and analyze

the Markov perfect equilibrium of these mechanisms. One class of these mechanisms involves

a legislature where representatives of each district bargain with each other to decide how to

divide the current period�s societal endowment between investment in the public good and

transfers to each district. The second class of mechanisms involves the districts making inde-

pendent decisions for how to divide their own share of the endowment between consumption

and investment. We conduct an experiment to assess the performance of these mechanisms,

and compare the observed allocations to the Markov perfect equilibrium.

Keywords: Dynamic political economy, voting, public goods, bargaining, experiments.
JEL Classi�cation: D71, D72, C78, C92, H41, H54



1 Introduction

Most public goods provided by governments are durable, and hence dynamic in nature. It

takes time to accumulate them, and they depreciate slowly, projecting their bene�ts for

many years. Prominent examples are national defense, environmental protection and public

infrastructure. Although a large literature has studied public good provision in static models

both theoretically and empirically, much less is known about dynamic environments. First

of all: how serious is free riding in these cases? Laboratory experiments have shown that

theoretical predictions tend to overestimate the seriousness of free riding in static environ-

ments.1 No empirical evidence, however, has been collected for the more realistic dynamic

environments discussed above, either from �eld data or from laboratory experiments Sec-

ondly, to what extent does the free rider problem depend on the institutions that govern

public decision making? Again, here little work has been done except for static environ-

ments. The institutional environment does not only determine the extent to which the

policy will re�ect the welfare of the citizens when the policy is chosen, but it also determines

the extent to which political actors will internalize the bene�ts that will accrue in future

periods; in a word, how "shortsighted" the policy is. The dynamic nature of public goods

and the institutional setting, therefore cannot be studied separately: on the one hand, the

institutional setting will determine the shortsightedness of the policy and the nature of the

free rider problem; on the other hand, the dynamic free rider problem should be an important

factor in evaluating the institutional setting.

In this work we make a �rst attempt to answer these questions by proposing a theoretical

model of dynamic public good provision under alternative institutional settings and testing it

in a laboratory experiment. Experimental analysis is particularly important when studying

a highly structured dynamic environment that cannot be easily replaced by �eld data; this

is because strategic behavior can be observed only if there is a precise measurement of the

"state variable" and the actions space available to the players. To our knowledge, this is the

�rst experimental study of the dynamic accumulation process of a durable public good.

The economy we study has a continuum of in�nitely lived citizens who live in n equal-

sized districts. A durable public good can be accumulated and depreciates at rate d < 1.

We consider two institutional mechanisms by which public good investment decisions can

be taken. The �rst is a purely decentralized mechanism, which we call Autarky, whereby

each district retains full property rights over its share of the societal endowment and in each

period chooses on its own how to allocate it between investment in the public good (which

1See Ledyard [1995] for a survey. The failure of theoretical predictions seems more serious in cases where

the equilibrium level of investment is zero. In experiments where the equilibrium level of investment is

positive, the results are mixed, and sometimes very close to equilibrium or even underprovision. See, for

example, Palfrey and Prisbrey [1996,1997], Palfrey and Rosenthal [1991], Holt and Laury [2008].
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accrues bene�ts to by all districts) and private consumption, taking as given the current and

future strategies of the other districts. The total economy-wide investment in the public good

in each period is given by the sum of the district investments. In the second mechanism, the

policy is taken by a centralized body, the Legislature, composed of a single representative from

each district. The legislature is endowed with the power to tax and allocate revenues between

public good investment and targeted transfers. Representatives bargain in the legislature

over the allocation of resources. For both mechanisms, we characterize the trajectory of

public policies that would result from a symmetric Markov perfect equilibrium, and compare

them with the optimal policy of a benevolent social planner.

The equilibrium generates predictions about how the dynamics of investment are a¤ected

by the political mechanism used to make these decisions. The model implies that the leg-

islative mechanism will generate a higher level of investment and a higher steady state of the

public good than the autarky model. For both mechanisms, investment should continue until

a steady state is reached. For both mechanisms, both the investment level along the transi-

tion path and the steady state are predicted to be substantially lower than in the benevolent

planner�s solution. These key predictions of the theory are con�rmed by the experimental

data. We do, however, observe some di¤erences between the �ner details of the theoretical

predictions and the data. The clearest such deviation is a statistically signi�cant overinvest-

ment that characterizes the legislative model and, to a lesser extent, the autarchy model.

This phenomenon is similar to the �nding in experiments on static public good provision,

but is more complex in our dynamic setting: we observe a large initial overinvestment in

the early rounds, followed by a signi�cant disinvestment approaching the equilibrium steady

state.

Consistent with the equilibrium of the mechanisms, players are clearly forward looking,

and the expected continuation value function are signi�cant variables explaining voting be-

havior. However, we detect some evidence of non stationary behavior in proposals. For

example, voters tend to punish past proposers who made proposals in a non-egalitarian way

or "greedily" (by proposing policies that favor themselves too much). The observed punish-

ments apparently are not su¢ ciently powerful to enforce an e¢ cient outcome; indeed more

than being part of a "trigger strategy" equilibrium, they seem to follow from a myopic behav-

ioral response, perhaps motivated by an aversion to non-egalitarian proposals. We conclude

that observed behavior lies somewhat in between the prediction of a purely forward look-

ing Markov equilibrium, and an equilibrium in which agents look back in a limited way at

the past to punish "unfair" proposals, resulting in only slight increases in investment above

equilibrium levels.

This work contributes primarily to a growing literature on dynamic political economy.

Two papers are related to the institutional settings that we study. The �rst is Battaglini
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and Coate [2006], who have studied public good accumulation in a legislative model. As

in Battaglini and Coate, in our model legislative bargaining is dynamic in the sense that

the policy choice at t will a¤ect utilities and choices in the following periods through a

change of the state variable, the level of accumulated public good. Although the solution of

our model maintains some features of the solution in Battaglini and Coate, the equilibrium

is di¤erent because the model of the underlying economy and the bargaining protocol are

di¤erent. The second paper is Fershtman and Nitzan [1991] which studies a model similar

to our autarky mechanism, except in the assumptions of continuous time and quadratic

payo¤s, and identi�es the dynamic free riding e¤ect.2 Neither of these two papers, however,

provides a comparative study of di¤erent institutional settings; and, given the di¤erences in

the models, do not present results that can be directly compared, even from a qualitative

point of view. These two papers, moreover, do not provide any empirical evidence about

behavior, under the mechanisms.

The �ndings of this paper contribute to the literature on dynamic political economy at

a more general level. Previous work in the dynamic political economy literature typically

explores a single speci�c political mechanism in a dynamic environment,3 rather than con-

ducting a comparative analysis of alternative institutions as in this paper. More importantly,

this paper takes a �rst step in providing experimental evidence about the empirical valid-

ity of the equilibrium predictions.4 This evidence is particularly useful for assessing the

comparative static predictions of the model, as well as various assumptions common in the

literature, e.g., the assumptions of symmetry and stationarity of the equilibrium. Much of

the literature has focused attention on Markov equilibria in which strategies depend only

on a restricted number of state variables;5 some previous work has also focused on Pareto

e¢ cient equilibria sustained by punishment strategies.6 Our evidence allows us to provide

an assessment of these model restrictions.
2A common pool model related to our Autarky model and Fershtman and Nitzan [1991] has been recently

applied by Harstad [2009] to study climate agreements.
3Recent contributions in dynamic bargaining are Baron [1996], Battaglini and Coate [2006, 2008, 2009],

Baron, Diermeier and Fong [2009], Diermeier and Fong [2009], Duggan and Kalandrakis [2008], Kalandrakis

[2004, 2005], Penn [2009].
4Diermeier and Gailmard [2006], Diermeier and Morton [2006], Frechette, Kagel, Lehrer [2003], Frechette,

Kagel, Morelli [2005], and McKelvey [1991] provide important experimental analyses of legislative bargaining

à la Baron and Ferejohn [1989], but in a static setting with purely distributive policies. Frechette, Kagel,

Morelli [2009] extend the experimental analysis to policy spaces with public goods using a model by Volden

and Wiseman [2006]. All of this works, however, limit the analysis to static environments in which only a

single policy outcome is decided. Battaglini and Palfrey [2007] study a simple dynamic model of legislative

bargaining, but limit the analysis to purely distributive policies in which public goods cannot be accumulated.
5See Battaglini and Coate [2008, 2009], Baron, Diermeier and Fong [2009], Duggan and Kalandrakis

[2008], Harstad [2009], Hassler, Rodriguez-Mora, Storesletten and Zilibotti [2003].
6See for example Acemoglu, Golosov and Tsyvinsky [2006], Yared [2007], Sleet and Yeltekin [2007].
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Finally, our work contributes to the experimental literature on public good provision.

This literature has traditionally focused on static environments and identi�ed a number of

behavioral biases in public good contributions. In our work we contribute to documenting

and qualifying the extent to which these biases extend to dynamic settings, and to the

provision of durable public goods, where current investment decisions have long term e¤ects

on welfare.

2 The model

Consider an economy in which a continuum of in�nitely lived citizens live in n districts

and each district contains a mass one of citizens. There are two goods: private good x

and a public good g. An allocation is an in�nite nonnegative sequence of public policies,

z = (x1; g1) where x1 = (x11; :::; x
n
1 ; :::; x

1
t ; :::; x

n
t ; :::) and g1 = (g1; :::; gt; :::). We refer to

zt = (xt; gt) as the public policy in period t. The utility U j of a representative citizen in

district j is a function of zj = (xj1; g1), where x
j
1 = (x

j
1; :::; x

j
t ; :::) We assume that U

j can

be written as:

U j(zj) =
1X
t=1

�t�1
�
xjt + u(gt)

�
;

where u(�) is continuously twice di¤erentiable, strictly increasing, and strictly concave on
[0;1), with limg!0+ u

0(g) =1 and limg!1+ u0(g) = 0. The future is discounted at a rate �.

There is a linear technology by which the private good can be used to produce public

good, with a marginal rate of transformation p equal to 1. The private consumption good

is nondurable, the public good is durable, and the stock of the public good depreciates at a

rate d 2 [0; 1] between periods. Thus, if the level of public good at time t� 1 is gt�1 and the
total investment in the public good is It, then the level of public good at time t will be

gt = (1� d)gt�1 + It:

Because all citizens in district j are identical, we refer collectively to the �behavior of a

district" as described by the behavior of a representative citizen j. Henceforth we will simply

refer to district j. In period t, each district j is endowed with wjt units of private good, and

we denote W t=
Pn

i=1w
j
t . We will restrict attention in this paper to symmetric economies,

where wjt =
Wt

n 8j; and W t=W 8t. The initial stock of public good is g0 � 0, exogenously
given.
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The public policy in period t is required to satisfy three feasibility conditions:

xjt � 0 8j
It � �(1� d)gt�1 8t

It +
nX
j=1

xjt � Wt 8t

The �rst two conditions guarantee that allocations are nonnegative. The third condi-

tion requires that the current economy-wide budget is balanced. These conditions can be

rewritten slightly. If we denote y � gt = (1 � d)gt�1 + It as the new level of public good
after an investment It when the last period�s level of the public good is gt�1, then the public

policy in period t can be represented by a vector (y; x1t ; :::; x
n
t ). Dropping the t subscripts

and substituting y, the budget balance constraint It +
nX
j=1

xjt � Wt can be rewritten as:

nX
j=1

xj + [y � (1� d)g] � W;

recalling that we use y to denote the post-investment level of public good attained in period

t, and (1� d)g for the pre-investment level of public good inherited from period t� 1. The
one-shot utility to district j from this public policy, (y; x1; :::; xn), is U j = xj + u(y).

Our interest in this paper is to compare the performance of di¤erent mechanisms for

building public infrastructure, i.e., generating a feasible sequence of public policies, z. While

more general formulations are possible, we will consider mechanisms that are time indepen-

dent and have no commitment. That is, the mechanism is played in every period, the rules

of the mechanism are the same in every period, and the outcome of the mechanism is a

public policy for only the current period. The level of the state variable g, however, creates

a dynamic linkage across policy making periods. In such mechanisms we will characterize

the outcomes associated with symmetric Markov perfect equilibria.

3 The planner�s problem

As a benchmark with which to compare the equilibria in mechanisms, we �rst analyze the

sequence of public policies that would be chosen by a benevolent planner who maximizes the

sum of utilities of the districts. This is the welfare optimum in this case because the private

good enters linearly in each district�s utility function. The planner�s problem has a recursive

representation in which g is the state variable, and vP (g), the planner�s value function can
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be represented as:

vP (g) = max
y;x

(
X + nu(y) + �vP (y)

s:t X + y � (1� d)g � W; X � 0 ; y � 0

)
(1)

where X =
Pn

j=1 x
i is the sum of private transfers to the districts, and vP (g) is the planner�s

value function. By standard methods (see Stokey and Lucas [1989]) we can show that a

continuous, concave and di¤erentiable vP (g) that satis�es (1) exists and is unique.

Since the budget constraint, X+y�(1�d)g � W , is binding and y � 0 is never binding,7

we can rewrite the planner�s problem as:

max
y

(
W + (1� d)g � y + nu(y) + �vP (y)

X = W + (1� d)g � y � 0:

)
(2)

The optimal policy yP (g) can be characterized by studying (2). Depending on whether

the constraint is binding, there are two possible cases. In the �rst case, where it is binding,

the planner would like to invest an amount I (which equals y� (1 � d)g, by de�nition)
greater than W but cannot because of the constraint. Thus, the solution is this case is

yP (g) =W +(1� d)g, and XP (g) = 0. In the second case, the constraint is not binding and

the unconstrained optimization yields yP (g) � W + (1� d)g and XP (g) � 0. In this case a
necessary condition for yP (g) is characterized by the �rst order equation:

nu0(yP (g)) + �v
0
P (yP (g)) = 1

By the concavity of u and vP , the second order condition is satis�ed, and furthermore the

�rst order condition has a unique solution for yP (g), independent of g, which we denote y�P .

This implies the following simple rule-of-thumb optimal policy for investing in the public

good as a function of its current level g. For any values of g such that y�P�(1�d)g � W , invest
IP (g) = y

�
P � (1�d)g and total private good consumption is XP (g) =W +(1�d)g�y�P . For

any values of g such that y�P�(1�d)g > W , invest IP (g) =W and private good consumption

is XP (g) = 0. This second case is possible only if y�P � (1 � d)g � W , i.e., if g is lower or
equal to a threshold g�P :

g�P = max

�
y�P �W
1� d ; 0

�
Figure 1 represents the optimal choice of the public good. We summarize the above argument

as Proposition 1, below:

Proposition 1. The optimal solution to the planner�s problem is uniquely characterized by a
y�P solving nu

0(y�P )+�v
0
P (y

�
P ) = 1 and an investment policy function IP (g) = min fW; y�P � (1� d)gg.

7The constraint y � 0 is never binding because limg!0+ u
0(g) =1.
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Figure 1: The Planner�s Problem

This implies that the optimal public policy is time independent and given by ((XP (g); yP (g)),

where:

yP (g) = min fW + (1� d)g; y�Pg and (3)

XP (g) = W�min fW; y�P � (1� d)gg (4)

Clearly in a symmetric solution each district would receive xjP (g) =
XP (g)
n
, but any other divi-

sion is equally e¢ cient for a utilitarian planner. Formulas (3) and (4) have a clear intuition.

When the state g is su¢ ciently low, the planner invests all currently available resources (W )

in the public good: this is because the marginal value of an additional unit of the public good

is so high that each dollar invested in the public good yields more than a dollar in value. For

g >
y�P�W
1�d , however, the marginal value of the public good investment is lower than 1, so

it is more valuable to leave some resources to the districts for private consumption. In this

region of g, the planner expends resources just enough to cover depreciation and maintain

the level of the public good at y�P , where the marginal value of investment is exactly 1.

Note that if for some reason the stock of public good at period t � 1 is equal to g > y�P
1�d ,

8

then optimal investment is negative in period t. For future reference, when we will compare

this solution with the equilibria in the political systems, it is interesting to note that this

investment function IP (g) is (weakly) monotone decreasing in g. From Proposition 1, one

can see that there can actually be two cases, depending on how high the optimal steady

state, y�P , is relative to the parameters of the model fn;W; d; �; �g. The steady state is at
the intersection point between the 45o line and the investment curve (3). This is illustrated

in Figure 1.

The �rst case, shown in the left panel of the �gure is when the steady state is gSSP = y�P =

y(y�P ) and, therefore, X(g
SS
P ) > 0. The second case is when the steady state gSSP satis�es

8For example, it could be that g0 >
y�p
1�d .
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gSSP = y(gSSP ) < y�P . In this case W + (1 � d)g = g, so gSSP = W=d and X(gSSP ) = 0. If

g�P � y�P , then yP (g) crosses the 45o degree line on the right of g�P . In this case the steady
state is y�P . If g

�
P > y

�
P , then the steady state is on the left of g

�
P and lower than y

�
P .

To illustrate the planner�s solution, we derive the analytical solution for the case when

the utility function is given by u(y) = B
�
y�. In the Appendix we show that:

Proposition 2. Let u(y) = B
�
y�. If 1� �(1� d) > Bn

�
d
W

�1��
, the long run steady state in

the planner�s solution is gSSP =
�

Bn
1��(1�d)

� 1
1��

= y�P . If 1� �(1�d) � Bn
�
d
W

�1��
the steady

state is gSSP = W
d
< y�P .

This result gives us a complete characterization of the equilibrium dynamics and long

term behavior. When the economy has relatively large resources as measured by W (i.e.

1 � �(1 � d) > Bn
�
d
W

�1��
) eventually the level of the public good will reach a saturation

point at which its marginal value is equal to the marginal utility of consumption (one), and

the steady state is y�P . When 1 � �(1 � d) � Bn
�
d
W

�1��
this optimal saturation point, y�P ,

will never be reached if one starts at g0 = 0. Depreciation is too high compared to W for

the saturation point to ever be reached (W
d
< y�P ). The actual time path depends on initial

conditions. In both cases investment in public goods is a non decreasing function of g: It is

constant (= W ) for low values of g � g�P = max
n
y�P�W
1�d ; 0

o
, and strictly decreasing above

g�P .

An immediate corollary of Proposition 2 that will be useful in the experimental applica-

tion is that if d = 0, then we are always in the �rst case, and the steady state is
�
Bn
1��
� 1
1�� .

4 Political Mechanisms for Building Public Infrastruc-

ture

The set of possible mechanisms to implement sequences of public policies is obviously huge.

We limit ourselves to two di¤erent types of mechanisms.

The �rst is a purely decentralized mechanism, which we call Autarky, whereby each

district retains full property rights over a share of the endowment (W
n
) and in each period

chooses on its own how to allocate its endowment between investment in the public good

(which is shared by all districts) and private consumption, taking as given the strategies of

the other districts. The total economy-wide investment in the public good in any period is

then given by the sum of the district investments.

The second type of mechanism we consider is a bargaining mechanism for a centralized

economy-wide representative legislature, which we call the Legislative mechanism. In this

mechanism, each district cedes its property right over its share of the economy wide endow-

ment in exchange for 1=n representation in the legislature. In each period, the legislature
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decides on a uniform lump sum tax on all districts, which cannot exceed a district�s endow-

ment, W=n, and a level of investment in the public good. The legislative policy also includes

an allocation of the budgetary surplus (tax revenue minus investment) to the districts, which

is non-negative for all districts, but not necessarily uniform. Investment can be negative,

but the amount of negative investment cannot exceed the current stock of public good.

Thus, as before, we can represent a policy by the legislature at time t, by an public policy

(x1t ; :::; x
n
t ; yt) that satis�es the same feasibility constraints as in the planner�s problem. The

bargaining protocol with which a public policy is chosen in a legislature is as follows. At the

beginning of each period an agent is chosen by nature to propose a policy (x1; :::; xn; y). Each

legislator has the same probability to be recognized as proposer. If at least q 2 f1; 2; :::; ng
legislators vote in favor of the proposal, it passes and it is implemented. The legislature then

adjourns and meets in the following period with a new level of public good y. If instead the

policy does not receive a quali�ed majority, then the status quo policy is implemented. We

assume that the status quo is zero taxation, which implies zero investment in public goods

and so xj = W=n for all j. The legislature, moreover, adjourns and meets in the following

period with a new level of public good (1� d)g.9.
We study the equilibria of these two equilibria in the next two subsections.

4.1 Decentralized Provision: The Autarky Mechanism

To study the properties of the Autarky mechanism we focus on symmetric Markov-perfect

equilibria, where all districts use the same strategy, and these strategies are time-independent

functions of the state, g. A strategy is a pair (xA(�); iA(�)): where xA(g) is the level of
consumption in the district and iA(g) is a district�s level of investment in the public good

in state g. Given these strategies, by symmetry the public good in state g is yA(g) =

(1� d)g + niA(g). Associated with any equilibrium is a value function vA(g) which speci�es

the expected discounted future payo¤ to a legislator when the state is g. In the remainder we

focus on an equilibrium in which vA is concave. Proposition 3 shows that such an equilibrium

exists.

The optimization problem for district j if the current level of public good is g, and the

district�s value function is vA(y) is:

max
y;x

8>>><>>>:
x+ u(y) + �vA(y)

s:t x+ y � (1� d)g = W � (n� 1)xA(g)
W � (n� 1)xA(g) + (1� d)g � y � 0

x � (1� d)g=n+W=n

9>>>=>>>; (5)

9This bargaining protocol di¤ers from the protocol adopted in Battaglini and Coate [2008]. There, if no

agreement is reached in the previous attempts, a new legislator is randomly selected to make a proposal for

at least T times. In the last stage of the bargaining game, a legislator is chosen to make a default proposal.

9



where y is the new level of public good and x is private consumption: district j realizes that

given the other districts� contributions, his/her investment ultimately determines y. The

�rst constraint is a rewritten form of IA(g)+x = W , substituting out for IA(g) (where IA(g)

is the total investment niA(g)) The second constraint is derived from xA(g) � 0. The third
constraint is derived from iA(g) � � (1�d)g

n
: it requires that no legislator can reduce yA(g)

by more than his share (1� d)g=n.10 Note that since xA(g) is an endogenous variable that
depends on vA, (5) is not necessarily a contraction. District j, however, takes xA(g) as given.

Depending on the state g the solution of (5) falls in one of two cases: we may have

W +(1� d)g = yA(g)+ (n� 1)xA(g), so xA(g) = 0; or W +(1� d)g > yA(g)+ (n� 1)xA(g),
so xA(g) > 0.

If vA is concave, then in the latter case the solution is characterized by a unique public

good level y�A satisfying the �rst order equation:

u0 (y�A) + �v
0
A(y

�
A) = 1 (6)

The investment by each district is equal to iA(g) = 1
n
[y�A � (1� d)g] and per capita private

consumption is xA(g) =
W+(1�d)g�y�A

n
.

In the other possible case, if xA(g) = 0, then yA(g) =W+(1�d)g and investment by each
district is iA(g) = W

n
. This second condition is possible only if and only ifW � y�A�(1�d)gA,

that is if g is below some threshold gA de�ned by:

gA = max

�
y�A �W
1� d ; 0

�
We summarize this in the following proposition, which also proves the existence of an

equilibrium:

Proposition 3. A concave equilibrium exists. In a concave equilibrium of the Autarky game,
public investment is: yA(g) =min fW + (1� d)g; y�Ag where y�A is a constant with y�A < y�P .

The public good function yA(g) is qualitatively similar to the corresponding planner�s

function yP (g). The main di¤erence is that y�A < y
�
P and gA < gP , so public good provision

is typically smaller (and always smaller in the steady state). This is a dynamic version of

the usual free rider problem associated with public good provision: each agent invests less

than is socially optimal because he/she fails to fully internalize all legislators�utilities. Part

of the free rider problem can be seen from (6): in choosing investment, legislators count only

the marginal bene�t to their district, u0(y) + �v0A(y), rather than nu
0(y) + �nv0A(y)), but all

10Legislators choose yA(g) � g for any g that is reached on the equilibrium path when the initial level g0
is below the steady state. As in the legislative model, however, legislators can reduce g if they want. In a

decentralized system as the VC game, y � n�1
n g guarantees that (out of equilibrium) the sum of reductions

in g can not be larger than the stock of g.
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the marginal costs (�1). In this dynamic model, however, there is an additional e¤ect that
reduces incentives to invest, called dynamic free riding.11 To see this, consider the value

function for g > gA (where we have an interior solution):

v(g) = W � (n� 1)xA(g)� (y�A � (1� d)g) + u (y�A) + �vA(y�A)

=
W � (y�A � (1� d)g)

n
+ u (y�A) + �vA(y

�
A)

where the last equation follows by the fact that in a symmetric equilibrium: xA(g) = W �
(n � 1)xA(g) � (y�A � (1 � d)g). A marginal increase in g has two e¤ects. An immediate

e¤ect, corresponding to the increase in resources available in the following period: (1� d)g.
But there is also a delayed e¤ect on next period�s investment: the increase in g triggers a

reduction in the future investment of all the other districts through an increase in xA(g):

for any level of g > gA, yA(g) will be kept at y�A. In a symmetric equilibrium, if district j

increases the investment by 1 dollar, he will trigger a reduction in future investment by all

future districts by 1=n dollars; the net value of the increase in g for j will be only �=n.

In the experimental analysis it is convenient to have a unique equilibrium. The next

result guarantees that this is the case when, as we assume in the experiment, u(y) = B
�
y�

and d = 0:

Proposition 4. When u(y) = B
�
y� and d = 0 in the Autarky game there is a unique

equilibrium steady state y�A =
�

Bn
n��(1�d)

� 1
1��
.

In the experimental study of the Autarky game we always assume � = 0:5, d = 0,

� = :75, B = 1 (the same parametrization we use in the legislative game). We consider two

treatments (corresponding to similar treatments in the legislative game): n = 3, W = 15;

and n = 5, W = 20. For both these parameterization, we obtain that gA = 0; moreover y�A
is equal to

�
4
3

�2
in the n = 3 case, and to

�
20
17

�2
in the n = 5 case. By proposition 4, these

two treatments have a unique steady state: y�A =
�
4
3

�2
in the n = 3 case, and y�A =

�
20
17

�2
in

the n = 5.

4.2 Centralized Provision: The Legislative (L) Mechanism

As in the previous section, to characterize behavior when policies are chosen by a legisla-

ture we look for a symmetric Markov perfect equilibrium. In this type of equilibrium any

representative selected to propose at some time t uses the same strategy, and this depends

only on the current stock of public good (g). Similarly, the probability a legislator votes for

a proposal depends only on the proposal itself and the state g. As is standard in the theory

11A similar dynamic free riding e¤ect arises in the Fershtman and Nitzan [1991] model, though in the

context of a di¤erential game with quadratic utilities.
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of legislative voting, we focus on weakly stage-undominated strategies, which implies that

legislators vote for a proposal if they prefer it (weakly) to the status quo. Without loss of

generality, we focus on an equilibrium in which proposals are accepted with probability one.

As it is easy to verify, in a symmetric Markov equilibrium, a proposer would either make

no monetary transfer to the other districts, or would make a transfer only to q�1 legislators,
selected randomly each with the same probability of being selected. An equilibrium can

therefore be described by a collection of functions fyL(g), sL(g)g that speci�es the choice
made by the proposer in a period in which the state is g. Here yL(g) is the proposed new

level of public good and sL(g) is a transfer o¤ered to the districts of the q � 1 randomly
selected representatives. The proposer�s district receives the surplus revenues xL(g) = W �
yL(g)+(1�d)g�(q�1)sL(g). Associated with any symmetric Markov perfect equilibrium in
the L game is a value function vL(g) which speci�es the expected future payo¤ of a legislator

when the state is g.

Contrary to the Planner�s case of the previous section, the policy is now chosen by a self

interested proposer who maximizes the utility of his own district. Given vL, the proposer�s

problem is:

max
x;y;s

8>>>><>>>>:
x+ u(y) + �vL(y)

s:t s+ u(y) + �vL(y) � W
n
+ u [g(1� d)] + �vL(g(1� d))

(q � 1)s+ x+ y � (1� d)g � W
x � 0; s � 0

9>>>>=>>>>; (7)

where x is the transfer to the proposer. This problem is similar to the planner�s problem (2):

the second inequality is the budget balance constraint, and the last two inequalities are the

feasibility constraints.12 The �rst inequality is however new: it is the incentive compatibility

constraint that needs to be satis�ed if a proposal is to be accepted by q � 1 other districts.
The solution to (7) is complicated by the fact that the set of binding constraints is state

dependent and the value function is not typically concave in g. Despite this, the next result

shows a su¢ cient condition for the existence of a Markov equilibrium that is satis�ed by the

parameters of the experiment. We say that an equilibrium is well behaved if the associated

value function is continuous, non decreasing and almost everywhere di¤erentiable. We have:

Proposition 5. Assume d = 0. There is a � and a W such that for � > �, and W > W

a well-behaved Markov equilibrium exists in which the public good level is given by

yL(g) =

8><>:
y�1 g � g1(y�1)ey(g) g 2 (g1(y�1); g2(y�2)]
y�2 else

(8)

12It can be veri�ed that the constraint y � 0 is never binding and therefore it can be ignored without loss
of generality.
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where y�1 and y
�
2 are constants with y

�
2 > y

�
1; g1(y

�
1); g2(y

�
2) are functions respectively of y

�
1

and y�2; and ey(g) is an increasing function of g.
Figure 2 provides a representation of the equilibrium for one of the two parameter con-

�gurations that we use in the experiment (the other case is qualitatively similar)13. There

is an intuitive explanation for the shape of the investment function (8). For g � g1(y�1) the
proposer acts as if the other districts did not exist: he diverts resources only toward his own

district and chooses the investment without internalizing the other districts�welfare. This

implies that the proposer can choose y such that

y�1 2 argmax
y
fu(y)� y + �vL(y)g (9)

The other districts accept this policy because the investment y�1, is su¢ ciently high to make

this policy better than the status quo. When g � g1(y
�
1), the proposer can not a¤ord to

ignore the other districts. He �rst �nds it optimal to "buy" their approval by increasing

g and investing ey(g) > y�1 (in the interval (g1(y
�
1); g2(y

�
2)]): ey(g) is chosen large enough to

satisfy the incentive compatibility constraint as an equality. For g > g2(y
�
2), however, the

proposer �nds it optimal to provide pork to a minimal winning coalition of districts, and to

invest y�2. In choosing y now the proposer must internalize the utility of q legislators, so:

y�2 2 argmax
y
fqu(y)� y + �qvL(y)g (10)

It is interesting to note that when the proposer�s strategy is constant (at y�1 or at y
�
2) we

have a dynamic free rider problem similar to the one discussed in Section 4.1: an increase

in investment above, say, y�2, at t would induce a proportional reduction in investment

at t + 1, and so discourage public good accumulation. This is an important reason for

underinvestment in the steady state. When yL(g) = ey(g) the dynamic free riding problem
is mitigated because an increase in g induces an increase in ey(g). This occurs because the
increase in g makes the incentive constraint at t+ 1 more binding, so it forces the proposer

in the following period to increase the investment in public goods.

To compute an equilibrium we note that there is a two way relationship between the

equilibrium value vL(g) and y�1,y
�
2. First, using yL(g) and xL(g) described in Proposition 5

13See Table 1 for details on the equilibrium values for both cases.
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Figure 2: Legislative mechanism with n=3, i(g), y(g) and V(g)

we can represent the value function as a function only of y�1; y
�
2:
14

vL(g) =

8>>><>>>:
1
n
[W � [y�1 � (1� d)g]] + u(y�1) + �vL(y�1)) g � g1(y�1)

1
n
[W � [ey(g)� (1� d)g]]
+u(ey(g)) + �vL(ey(g))) g 2 (g1(y�1); g2(y�2)]

1
n
[W � [y�2 � (1� d)g]] + u(y�2) + �vL(y�2) else

(11)

Second, given a value function vL, we can �nd y�1; y
�
2 by solving (9) and (10). In the exper-

iment the state space G is �nite, with m states. In this case, for a given y�1; y
�
2, (11) is a

system of m equations in m unknowns: we can then easily solve for a function v(g; y�1; y
�
2).

Given this v(g; y�1; y
�
2), we can �nd the (new) optimal y

�
1; y

�
2 using (11). An equilibrium

corresponds to a �xed point of this correspondence that maps <2+ to itself.
As for the Autarky case, here too it is convenient to have a unique equilibrium outcome

for the experimental analysis. The next result guarantees that this is the case when, as we

assume in the experiment, u(y) = B
�
y� and d = 0:

Proposition 6. When u(y) = B
�
y� and d = 0 in the Legislative game there is a unique

equilibrium steady state y�L =
�

Bn
n
q
��(1�d)

� 1
1��
.

In all experiments we assume u(y) = B
�
y� with � = 0:5, B = 1, d = 0, and � = :75. The

two treatments that we study in the laboratory are n = 3, q = 2, W = 15; and n = 5, q = 3,

14To write the value function for g � g2 note that in this range the value function of a proposer is:

W�[y�2 � (1� d)g]�(q�1)
�
W
n +	((1� d)g)�	(y

�
2)
�
+	(y�A) and the probability of being a proposer is 1=n.

The value of a legislator who receive pork transfers, on the other hand, is
�
W
n +	((1� d)g)�	(y

�
A)
�
+	(y�A),

where 	(x) = u(x) + �vL(x) and the probability of receiving a transfer s(g) conditional on not being a

proposer is (q � 1)=(n � 1). Finally, the value of a legislator excluded from transfers is simply 	(y�A), and

the probability of being in this state conditional on not being a proposer is 1�(q�1)=(n�1). The expression
in (11) follows from these expressions by taking expectations. The other cases can be computed in a similar

way.
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W = 20. By Proposition 6 the equilibria in these two cases will be associated with a unique

steady state y�2 = 16 when n = 3, and y
�
2 =

�
3

3=2�:75

�2
t 30 when n = 5. It is interesting to

note that although the steady state is lower than the e¢ cient level, it is considerably higher

than in the Autarky regime. The reason for this improvement is that the voting rule forces

the proposer to internalize the utility of other q � 1 agents when choosing a policy.
The �rst panel of Figure 2 represents the investment function IL(g):

IL(g) =

8><>:
y�1 � (1� d)g g � g1ey(g)� (1� d)g g 2 (g1; g2]
y�2 � (1� d)g else

(12)

(where for simplicity g1 is the equilibrium value g1(y�1), and similarly for g2). It is interesting

to note that while in the planner�s IP (g) is a monotonically (weakly) decreasing function,

in the political equilibrium IL(g) is not monotonic (compare (12) with the expression in

Proposition 1). The non-monotonicity of the investment function is a consequence of the

fact that the incentive compatibility constraint is not always binding and that the value of

the status quo is endogenous. When g is small the marginal value of the public good is

high. The cost if the bargaining proposal fails is therefore high. In this case the proposer

can implement his preferred policy ignoring the incentive compatibility constraint. When

this happens (in g � g1), the proposer will not accumulate more than y�1 (except, of course,
if forced by the incentive compatibility constraint). When g � g1, however, the proposer is
forced to internalize the utility of at least a minimal winning coalition of other legislators:

and so it will have to invest until the marginal utility of g is at least 1=q. The �nal range in

which investment is declining linearly corresponds to the region in which accumulating more

than y�2 is not pro�table even when the q � 1 utilities of the other members of the minimal
winning coalition are internalized.

The second panel of Figure 2 shows the equilibrium proposed level of the public good,

as a function of the state, yL(g). This curve fully describes the dynamics of public good

provision and the steady state. The steady state level of public good g� corresponds to the

point where the 45o line intersects the investment curve. As in the Autarky game, we can

have di¤erent types of steady states and corresponding equilibria. If g� � g2, in the steady
state the proposer can extract transfers from his district without paying any transfer to the

other districts; if g� > g2, instead, in the steady state there is always a minimal winning

coalition of legislators who receive positive transfers for their own districts. In Figure 2, as

in all our experiments, the steady state corresponds to the case g� = y�2.

The panels representing the value function and yL(g) makes clear the complications in-

volved with computing and studying the equilibrium. When g passes from the region in

which the incentive compatibility constraint is not binding (i.e., g � g1) to the region with
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a binding incentive compatibility constraint (g > g1), the expected marginal value of g in-

creases, because the incentive compatibility constraint forces the proposer to internalize the

utility of more agents. As can be seen from Figure 2, investment in g increases, thereby

reducing the ine¢ ciency, and the value function becomes non concave.

5 Experimental Design

The experiments were all conducted at the Social Science Experimental Laboratory (SSEL)

using students from the California Institute of Technology. Subjects were recruited from a

pool of volunteer subjects, maintained by SSEL. Eight sessions were run, using a total of

102 subjects. No subject participated in more than one session. Half of the sessions used

the Legislative mechanism with simple majority rule, and half used the Autarky mechanism.

Half were conducted using 3 person committees, and half with 5 person committees. In

all sessions there was zero depreciation (d = 0), the discount factor was � = 0:75, and the

current-round payo¤ from the public good was proportional to the square root of the stock

at the end of that round (� = :5). In the 3 person committees, we used the parameters

W = 15, while in the 5 person committees W = 20. Payo¤s were renormalized so subjects

could trade in fractional amounts.15. Table 1 summarizes the theoretical properties of the

equilibrium for the four treatments. It is useful to emphasize that, as proven in the previous

sections, given these parameters the steady state is uniquely de�ned both for the Autarchy

and Legislative game and for all treatments: so the theoretical predictions of the convergence

value of g is independent of the choice of equilibrium.

:

Mechanism n B W (g1;g2) y�1 y�2 gA y�A gP y�P
Legislative 3 2 15 (1,7) 5 16

Legislative 5
p
3 20 (4.83,18.5) 7.83 29.83

Autarky 3 2 15 0 1.77

Autarky 5 2 20 0 1.38

Planner 3 2 15 129 144

Planner 5 2 20 380 400

Table 1: Experimental parameters and equilibrium

15We do this in order to reduce the coarseness of the strategy space and allow subjects to make budget

decisions in line with the symmetric Markov perfect equilibrium in pure strategies. This is particularly

important for the Autarky mechanism where the steady state level of the public good is 1.77 for n=3 and

1.38 for n=5, and the equilibrium level of individual investment is, respectively, 0.59 and 0.28 in the �rst

period and 0 in all following periods.

16



Discounted payo¤s were induced by a random termination rule by rolling a die after each

round in front of the room, with the outcome determining whether the game continued to

another round (with probability :75) or was terminated (with probability :25). The n = 5

sessions were conducted with 15 subjects, divided into 3 committees of 5 members each. The

n = 3 sessions were conducted with 12 subjects, divided into 4 committees of 3 members

each.16 Committees stayed the same throughout the rounds of a given match, and subjects

were randomly rematched into committees between matches. A match consisted of one

multiround play of the game which continued until one of the die rolls eventually ended the

match. As a result, di¤erent matches lasted for di¤erent lengths. Table 2 summarizes the

design.

:

Mechanism n # Committees # Subjects
Legislative 3 70 21

Legislative 5 60 30

Autarky 3 70 21

Autarky 5 60 30

Table 2: Experimental design

Before the �rst match, instructions17 were read aloud, followed by a practice match and

a comprehension quiz to verify that subjects understood the details of the environment

including how to compute payo¤s. The current round�s payo¤s from the public good stock

(called project size in the experiment) was displayed graphically, with stock of public good

on the horizontal axis and the payo¤ on the vertical axis. Subjects could click anywhere on

the curve and the payo¤ for that level of public good appeared on the screen.

For the bargaining/voting mechanism each round had two separate stages, the proposal

stage and the voting stage. At the beginning of each match, each member of a committee

was randomly assigned a committee member number which stayed the same for all rounds

of the match. In the proposal stage, each member of the committee submitted a provisional

budget for how to divide the budget between the public good, called project investment,

and private allocations to each member. After everyone had submitted a proposal, one

was randomly selected and became the proposed budget. Members were also informed of

the committee member number of the proposer, but not informed about the unselected

provisional budgets. Each member then cast a vote either for the proposed budget or for

the backup budget with zero public investment and equal private allocations. The proposed

budget passed if and only if it received at least n+1
2
votes. Payo¤s for that round were added

to each subject�s earnings and a die was rolled to determine whether the match continued

16Two of the N = 3 sessions used 9 subjects.
17Instructions for all the sessions are available from the authors.
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to the next round. If it did continue, then the end-of-round project size became the next

round�s beginning-of-round project size.

At the end of the last match each subject was paid privately in cash the sum of his or

her earnings over all matches plus a showup fee of $10. Earnings ranged from approximately

$20 to $50, with sessions lasting between one and two hours. There was considerable range

in the earnings and length across sessions because of the random stopping rule.

6 Experimental Results

6.1 Time series of the stock of public good

6.1.1 Median values

Figure 3 shows the time series of the stock of public good by treatment.18 The horizontal

axis is the time period and the vertical axis is the stock of the public good. In order to

aggregate across committees, we use the median level of the public good from all committees

in a given treatment. Similar results hold if we use the mean or other measures of central

tendency. Superimposed on the graphs are the theoretical time paths (represented with solid

lines), corresponding to the Markov perfect equilibrium.

These time paths exhibit several systematic regularities, which we discuss below in com-

parison with the theoretical time paths.

FINDING 1. The Legislative mechanism leads to much greater public good
production than the Autarky mechanism. The median stock of public good is greater
in the L mechanism than the A mechanism in every single period in the n=3 and n=5

treatments.19 With three districts, the median stock of public good is more than �ve times

greater in the L3 treatment than the A3 treatment, averaged across all 13 rounds for which

we have data (31.3 vs. 5.6). In 4 of the 13 rounds, the stock of public good in the L3 is more

than 10 times greater than in the A3 treatment. The di¤erence is also very large for the �ve

district treatments. The median stock of public good is more than three times greater in the

L5 treatment than the A5 treatment, averaged across all 10 rounds for which we have data

(34.7 vs. 9.6). The di¤erences between the L and the A mechanisms are relatively small in

18These and subsequent �gures show data from the �rst ten rounds. Data from later rounds are excluded

from the graphs because there were so few observations. The data from later rounds are included in all the

statistical analyses.
19The di¤erence between the stock of public good in the two mechanisms is statistically signi�cant at the

1% level (p-value<0.01) according to the results of a t-test on the equality of means and a Kolmogorov-

Smirnov test on the equality of distributions.
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Figure 3: Median time paths of the stock of g, all mechanisms, all treatments

the initial round, but they increase sharply as more rounds are played. By round 10, the

gaps in the median stock of public good are very large (26.2 vs. 2.5 for three districts and

30.3 vs. 5.5 for �ve districts).

FINDING 2. Both mechanisms lead to public good levels signi�cantly below
the optimal steady state.20 The optimal steady state is y*=144 for the three district

treatments and y*=400 for the �ve district treatments. The optimal investment policy is

the fastest approach: invest W in every period until y* is achieved. In the L mechanism, the

stock of public good levels out at about 30 in both treatments. The median stock averages

30.1 in rounds 7-10 in L3, and 31.8 in rounds 7-10 in L5. These very ine¢ cient long run

public good levels in the L treatment occur in spite of initial round median investment that is

fully e¢ cient, with I=W in both treatments. In the A mechanism, the stock of public good

levels out in the single digits in both treatments. The median stock averages 3.8 in rounds

3-10 for A3, and 7.9 in rounds 3-10 for A5.

FINDING 3. In both mechanisms, there is overinvestment relative to the
equilibrium in the early rounds, followed by signi�cant disinvestment, approach-
ing the steady state. The median investment in the �rst three rounds of L3 are 15,11.2,
20In both mechanisms the stock of public good in the last rounds (rounds 8 to 13) is signi�cantly smaller

than the level predicted by the social planner solution (the optimal steady state for n=3 and the level

attainable investing W each round for n=5) according to the results of a t-test on the equality of means and

a Kolmogorov-Smirnov test on the equality of distributions (p-value<0.01 for both).
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and 7.2. As a result the median public good stock by the end of round 3 equals 33.4. This

compares with the equilibrium investment policies in the �rst three rounds equal to 5,8, and

3, and a level of stock equal to 16. Thus, in L3, committees overshoot the equilibrium in

early rounds by a factor of two. The scenario in early rounds is similar in L5. The median

investment in the �rst three rounds of L5 are 20,10.7, and 9.3. As a result the median public

good stock by the end of round 3 equals 40. This compares with the equilibrium investment

policies in the �rst three rounds of L5 equal to 7.8,5, and 7.7, and a level of stock equal to

20.5. Thus, in L5, committees also overshoot the equilibrium in early rounds by a factor

of two. This overshooting is largely corrected in later rounds. The stock of public good

then declines over the later rounds. In the L5 treatment, convergence is especially close to

equilibrium, with the di¤erence between the median public good levels and the equilibrium

public good levels in the last 4 rounds of data measuring less than 2 units of the public good

(31.79 vs. 29.83). A similar pattern of overshooting in the A mechanisms is also evident.

The median aggregate investment in the �rst two rounds of A3 are 7.9 and 3.5. As a result

the median public good stock by the end of round 2 equals 11.4. This compares with the

equilibrium aggregate investment in the �rst two rounds equal to 1.8 and 0, with a equilib-

rium level of stock at the end of round 2 equal to 1.8. The median aggregate investment in

the �rst two rounds of A5 are 12.6 and 4.1. As a result the median public good stock by the

end of round 2 equals 16.8. This compares with the equilibrium aggregate investment in the

�rst two rounds equal to 1.4 and 0, with a equilibrium level of stock at the end of round 2

equal to 1.4. Beginning in round 3, the stock of public good in both A treatments declines

sharply, with the median public good stock averaging 3.8 in rounds 3-10 of the A3 treatment

and 7.9 in rounds 3-10 of the A5 treatment.

FINDING 4. The L mechanism leads to lower levels of the durable public
good for n=3 than n=5. The stock of public good in L3 is predicted to be less than
L5 in every round, and we �nd that the median stock of public good is less in 8 out of 10

rounds.21 For L5, equilibrium is equal to 29.8, and this closely approached in the long run

(median in round 10 equals 30.3). For L3, equilibrium is equal to 16, and after overshooting,

declines to about 26 in round 10. This is less than what we observe in the L5 groups, but

still somewhat above the equilibrium long run stead state of 16.

FINDING 5. The A mechanism leads to lower levels of the durable public
good for n=3 than n=5. The median level of public good is less in all of the �rst 10
21The di¤erence between the stock of public good in L3 and in L5 is statistically signi�cant (p-value<0.01)

in all rounds but one according to the results of a t-test on the equality of means (all di¤erences signi�cant

except for round 7) and a Kolmogorov-Smirnov test on the equality of distributions (all di¤erences signi�cant

except for round 10).
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Figure 4: Quartiles of time paths of g, (a) 3-district L mechanism, (b) 5-district L mecha-

nism, (c) 3-district A mechanism, (d) 5-district A mechanism. The number of observations

(committees) per round is reported on the x axis below the round number

rounds of the A3 treatment, compared to the A5 treatment.22 The di¤erences, however, are

not large in magnitude. In the last three rounds for which we have data for both treatments

(rounds 11-13), the di¤erence is negligible (less than 1.2 units of the public good).

6.1.2 Variation across committees

Because of possibility of nonstationary equilibria it is natural to expect a fair amount of

variation across committees. Figure 3, by showing the median time path of the stock of

public good, masks some of this heterogeneity. Do some committees reach full e¢ ciency?

Are some committees at or below the equilibrium? We turn next to these questions.

L committees Figure 4 illustrates the variation across committees by representing, for

each round, the �rst, second and third quartile of investment levels for the L3 (panel (a))

and L5 game (panel (b)).

There was remarkable consistency across committees, especially considering this was a

22The di¤erence between the stock of public good in A3 and in A5 is statistically signi�cant (p-value<0.01)

in almost all rounds according to the results of a t-test on the equality of means (all di¤erences signi�cant

except for rounds 5 and 10) and a Kolmogorov-Smirnov test on the equality of distributions (all di¤erences

signi�cant except for round 4).
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complicated in�nitely repeated game with many non-Markov equilibria.23 There were a few

committees who invested signi�cantly more heavily than predicted by the Markov perfect

equilibrium, but this only happened rarely, and nearly always such cooperation fell apart in

later rounds. The most e¢ cient committee in L5 invested W in each of the �rst 7 rounds,

resulting in a public good level of 140. That committee did not invest anything for the

remaining 2 rounds. Recall that the �rst best level of L5 is 400, so even this very successful

committee did not come close to e¢ ciency. In L3 only two committees reached levels above

60 (�rst best is 144) and not a single committee contributed W for more than 4 consecutive

rounds.

These �ndings are perhaps surprising since the planner�s solution can indeed be supported

as the outcome of a subgame perfect equilibrium of the game:24

Observation 1. When d = 0 , the e¢ cient investment path characterized in Proposition
1 is a subgame perfect equilibrium in weakly undominated strategies of both the L3 and L5

games for any � > 0.

Figure 3 and 4, therefore, make clear that the predictions of the Markov equilibrium are

substantially more accurate than the prediction of the "best" subgame perfect equilibrium

(that is the Pareto superior equilibrium from the point of view of the agents), even when

this best equilibrium is unique and reasonably focal (being the e¢ cient solution). This

observation may undermine the rationale for using the "best equilibrium" as a solution

concept.

Many committees overshoot and then fall back to approximately equilibrium levels. How-

ever, it is also true that some committees never exceed the long run steady state. One L5

committee, in a 6 round match, starts out at a public good level of 20 and declines from

there. One L3 committee, also in a 6 round match, starts out at a public good level of

approximately 3 and gradually increases, but only reaches 11 by the end of round 6.

A committees In the A mechanism, there was also a lot of uniformity across committees,

again with a few exceptions. See Figure 4, panels (c) and (d), for the A3 and A5 treatments,

respectively. Here too the Markov equilibrium predicts behavior better than the �best

subgame perfect equilibrium�. We have not characterized the entire pareto frontier of the

equilibrium set. The following observation, however, makes clear that an almost Pareto

e¢ cient equilibrium is a subgame perfect equilibrium of the game.

23The only treatment in which there is a substantial deviation is L5, for periods after the sixth. This

e¤ect is due to the fact that starting from t = 6, only 6 committees remained in the game. In periods 6-9,

only 2 committees are in the top quartile; in period 10 only one. A look at the trajectories of all committees

makes clear that these committees were outliers.
24A proof of observations 1 and 2 presented below is available from the authors.
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Figure 5: Investment per round, (a) 3-district L mechanism, (b) 5-district L mechanism, (c)

3-district A mechanism, (d) 5-district A mechanism.

Observation 2. When d = 0, there exists a subgame perfect equilibrium in weakly undomi-

nated strategies in which all players invest W until a steady state level of g equal to 141 in

A3 districts and 351 in A5 is reached.

6.2 Proposed public good investment

The data consisting of proposed public good investment is somewhat richer than the data

for the stock of public good, because our design was able to elicit proposals from non-

proposers as well as proposers. (The proposal data also includes some failed proposals.).

The results mirror the data for the state variable, y. Early round proposals o¤er signi�cant

overinvestment relatively to equilibrium, declining to equilibrium levels in later rounds. See

�gure 5.

6.3 Coalitions: Types of proposals

We now turn to the analysis of the proposed allocation of pork, as a function of g and n

in the L mechanism. For this analysis we focus primarily on the number of members re-

ceiving signi�cant amounts of pork in the proposed allocation, and whether the proposals

had negative investment in the public good. We break down the proposed allocations into 4

canonical types. These types are: (1) Invest W : 100% allocation to the public investment;

(2)Proposer only: The allocation divided between public investment and private consump-

tion of the proposer only; (3)Minimum Winning Coalition (MWC): The allocation divided
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between public investment and a minimum winning coalition that includes the proposer (2

if n=3; 3 if n=5); (4)Universal : Positive private allocations to all n members.25 The last

two categories are further broken down by whether investment in the public good is positive,

zero, or negative.

Proposal Type Observations % Accepted
INVEST W 277(97) 0.95

PROPOSER ONLY 21(8) 0.63

MWC

* with positive inv 66(20) 0.90

* with no inv 14(1) 1.00

* with negative inv 30(11) 0.55

UNIVERSAL

* with positive inv 428(138) 0.97

* with no inv 52(14) 0.93

* with negative inv 57(26) 0.73

Table 3: L3 Proposal Types

Proposal Type Observations % Accepted
INVEST W 431(88) 0.98

PROPOSER ONLY 57(7) 0.71

MWC

* with positive inv 71(16) 0.69

* with no inv 48(13) 0.54

* with negative inv 57(9) 0.56

UNIVERSAL

* with positive inv 212(40) 0.93

* with no inv 24(6) 0.17

* with negative inv 52(9) 0.44

Table 4: L5 Proposal Types

Table 3 shows the breakdown of proposals for the L3 committees and Table 4 shows the

breakdown for the L5 committees. The �rst column of each table lists the various proposal

types. The second column lists the number of observations of each proposal type. There are

25For L5, there is a �fth residual category, not shown in the table, where pork is o¤ered to exactly 4

members. There were only 14 such proposals observed and the acceptance rate was 100%.
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two numbers in this column: the number in parenthesis gives the total number of proposals

of this type that were actually voted on. The other number is the total number of provisional

budget proposals of this type. Because of the random recognition rule, in L3 there are three

times as many provisional budget proposals as budget proposals that are actually voted on.

For L5 there are �ve times as many provisional budget proposals as budget proposals that

are actually voted on. The �nal column gives the proportion of proposals of each type that

passed when they were voted on.

FINDING 6. Most proposals are either (i) invest the entire budget; or (ii)
universal private allocations with positive investment. In both L3 and L5, most

proposals were to either invest W or universal allocations with a positive amount of invest-

ment. In L3, these two proposal types account for 75% of all budget proposals (including

provisional budget proposals); in L5, these two types account for 63%. Of the remaining

proposals, approximately half were MWC proposals (17% of all provisional budgets in L5

committees and 12% in L3 committees). Proposals that o¤ered private allocation to the

proposer only were quite rare in both treatments. Proposals with zero or negative invest-

ment occurred 21% of the time in L5 committees and 16% of the time in L3 committees.

In contrast to the data, the Markov perfect equilibrium proposals should have been concen-

trated in the two categories: "proposer only" and MWC. However, it should be noted that

even when pork is provided to more than a minimum winning coalition, most of the pork is

concentrated on a minimum winning coalition.

FINDING 7. In universal allocations a minimal winning coalitions of players
receives a more than proportional share of transfers. In the L3 committees, when

positive pork is allocated, 75% of the allocated pork on average goes to the proposer and a

single other coalition partner. In the L5 committees, when positive pork is allocated, 80% of

it goes to the proposer and two other coalition partners and over 90% goes to the proposer

and three other committee members. Thus, universal allocations are not equitable in the

sense of giving non-proposers the same amount of pork.

6.4 Voting Behavior

Tables 3-4 also display the probability the proposal passes for each type of proposal. Tables 5-

6 display additional results about voting outcomes in the L3 and L5 treatments respectively.

The top part of the each table shows the proposal passage probabilities as a function of

round. The middle part of each table shows the proposal passage probabilities as a function

of g. The observed frequencies and acceptance rates of proposals are broken down by three

ranges of g are in bold. In the �rst range, beginning at g = 0, the equilibrium proposal type
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assigns strictly positive allocation to investment in the public good and private allocation to

the proposer, but zero private allocation to all other committee members. This corresponds

to region of the state space below g2 in which the proposer does not provide pork to the

other members. Between g2 and y�, the proposer is constrained and �nds it optimal to

�buy o¤" the other committee members by investing up to y� and also paying o¤ some to

minimum winning coalition of other committee member(s). After y�, the equilibrium involves

negative investment of the public good, and becomes a divide the dollar ultimatum game,

which requires the proposer to give sidepayments to a minimum winning coalition (one other

member in L3 and two other members in L5).

Round Observations % Accepted
1 210(70) 0.97

2 159(53) 0.94

3 120(40) 0.93

4 9(33) 0.91

5 75(25) 0.88

6 66(22) 0.77

7 57(19) 0.89

8 45(15) 0.80

9 45(15) 0.93

10 33(11) 0.91

11 12(4) 1.00

12 12(4) 0.75

13 12(4) 1.00

Overall 945(315) 0.91

g Observations % Accepted
0 � g � 7(g2) 264(88) 0.97

7 � g � 16(y�) 69(23) 1.00

g > 16 612(204) 0.88

Overall 945(315) 0.91

g Observations % Accepted w/ inv<0
0 � g � 7(g2) 2(0) .

7 � g � 16(y�) 7(2) 1.00

g > 16 78(35) 0.66

Overall 87(37) 0.68
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Table 5: L3 Proposal Acceptance Rates

Round Observations % Accepted
1 300(60) 0.95

2 240(38) 0.90

3 150(30) 0.60

4 90(18) 0.83

5 75(15) 0.93

6 60(12) 0.50

7 30(6) 0.83

8 30(6) 0.83

9 30(6) 0.83

10 15(3) 1.00

Overall 1020(204) 0.84

g Observations % Accepted
0 � g � 18:5(g2) 465(93) 0.92

18:5 � g � 29:83(y�) 240(48) 0.85

g > 29:83 315(63) 0.70

Overall 1020(204) 0.84

g Observations % Accepted w/ inv<0
0 � g � 18:5(g2) 9(3) 0.33

18:5 � g � 29:83(y�) 32(4) 0.50

g > 29:83 83(15) 0.67

Overall 124(22) 0.59

Table 6: L5 Proposal Acceptance Rates

FINDING 8. The vast majority of proposals pass. Overall, 84% of the L5

proposals and 91% of the L3 proposals receive majority committee support. Many of these

are unanimously supported, especially the "invest W" proposals and the universal proposals

with positive investment.26 Furthermore, the probability of acceptance declines with g.

26In L5, 67% of the "invest all" proposals pass unanimously, and 82% of such proposals pass unanimously

in L3. The corresponding percentages of unanimous ballots for universal proposals with positive investment

are 40% and 65%.
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When g � y�, proposals are accepted 98% of the time by L3 committees and 90% of the

time in L5 committees. In contrast, when g > y�, proposals are accepted 88% of the time

by L3 committees and only 70% of the time in L5 committees.

Acceptance rates di¤er by type of proposal. Some kinds of proposals are rejected some-

what frequently. This is particularly true for proposals with negative investment. In L3

committees, only 68% of proposals with negative investment pass and in L5 committees,

only 59% pass. Proposals that give private allocation only to the proposer also fare relatively

poorly, passing 63% of the time in L3 committees and 71% of the time in L5 committees.

The most common proposal types, "invest W" and "universal with positive investment"

nearly always pass. The acceptance rates for proposals to invest everything are 98% and

95% for the L5 and L3 treatments, respectively. The corresponding acceptance rates for

universal proposals with positive investment are 93% and 97%. One surprise in the data is

the relatively low acceptance rates for MWC proposals in L5.

Table 7 looks at the voting data through a di¤erent lens, and displays the results from

logit regressions where the dependent variable is vote (0=no; 1=yes). An observation is a

single voter�s vote decision on a single proposal. The proposer�s vote is excluded.27 The

data is broken down according to the treatment (n=3 or n=5). The independent variables

are: EU(status quo), the expected value to the voter of a "no" outcome (including the

discounted theoretical continuation value); EU(proposal), the expected value to the voter

of a yes outcome; and pork, the amount of private allocation o¤ered to the voter under

the current proposal. Theoretically, a voter should vote yes if and only if the expected

utility of the proposal passing is greater than or equal to the expected utility of the status

quo. This would imply a negative coe¢ cient on EU(status quo) and a positive coe¢ cient

on EU(proposal), with the magnitudes of these coe¢ cients being approximately equal. The

e¤ect of pork should be fully captured by EU(proposal) and therefore, we do not expect a

signi�cant coe¢ cient on pork

(1) (2)

Treatment L3 L5

EU(status quo) -0.082***(0.02) -0.22***(0.02)

EU(proposal) 0.080*** (0.02) 0.22*** (0.02)

pork 0.007(0.007) 0.07***(0.02)

constant 1.06(0.81) 0.1(0.97)

Pseudo-R2 0.1233 0.2905

Observations 490 576

27Proposers vote for their own proposals nearly 100% of the time (517 times out of 519).
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Table 7: Logit estimates. Dependent variable: Pr {vote=yes}. Standard errors in

parentheses; * signi�cant at 10% level; ** signi�cant at 5% level; *** signi�cant at 1% level

FINDING 9. Voters are forward looking. The results of the vote regression are

clear. The main e¤ect on voting is through the di¤erence between the expected utility of

the status quo and the proposal. The signs of the coe¢ cients are highly signi�cant, large in

magnitude, and not signi�cantly di¤erent from each other in absolute value. The residual

e¤ect of pork is nonexistent in L3 committees, and signi�cant but small in magnitude in

L5 committees. The constant term is not signi�cantly di¤erent from zero, suggesting that

voters are not a priori inclined to favor or disfavor proposals.

6.5 Evidence of non-Stationary strategies

6.5.1 L mechanism

While we observe only small departures from the predicted stationary equilibrium behavior

in the L games, at least two �ndings suggest a deeper analysis.

The �rst is the overinvestment in the public good, especially in early periods. For in-

stance, in the L3 treatment, the median level of public good peaked in round 6 at nearly three

times the equilibrium long run steady state, before declining to slightly above equilibrium

levels by rounds 9 and 10.

The second interesting observation is that most proposals are either to invest everything

or, if not, to give positive allocations to all members of the committee. In fact, we rarely

see proposals where the proposer is the only member receiving a private allocation, even

though the equilibrium path predicts such proposals in the early rounds. One possible

explanation that may be consistent with both of these observations is that, rather than

playing a stationary equilibrium, some committees are supporting more e¢ cient allocations

by using non-stationary strategies. Because this is an in�nitely repeated game with a low-

probability random stopping rule, a natural conjecture is that there are equilibria that can

support higher levels of public good provision than the Markov equilibrium we characterize

in the theoretical section of the paper.

Similarly, there could be punishment strategies imposed on proposers who do not share

the residual budget with any other committee members. Such proposals would be rejected

as part of the punishment, or possibly even accepted, but then punished by ostracism in the

future.

We next take a look at the data to see if there is evidence of punishment strategies.

We look at both voting behavior and proposal behavior. Table 8 reports the results of

a logit regression of voting behavior on the same variables a table 3, but includes three
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additional variables that could in principle indicate some degree of punishment or reward

behavior being used to a¤ect proposals and support equilibrium outcomes that di¤er from

the computed stationary solutions, in the two ways described above. The logic behind this

regression is that, under the null hypothesis that the equilibrium is Markovian, behavior

should be independent of these variables. Any evidence of dependence, therefore, is against

the original assumption.

First, we �nd evidence of overinvestment in g with respect to the equilibrium prediction,

especially in the early rounds in the data. This behavior could be supported by voting

strategies that punish proposals that do not o¤er su¢ cient public good. To verify this

conjecture, we include the proposed investment level It in the vote regression, and expect

the sign to be positive if this sort of behavior is occurring.

Second, the distribution of pork tends to be more egalitarian than predicted by the

theory. While this is not a big e¤ect, it is clearly seen in the data. We include two variables

that capture di¤erent notions of fairness. The �rst is a Her�ndahl index, h, to indicate how

unequal the proposed division of pork is across committee members. We expect the sign

on this to be negative, in the sense that proposals with greater dispersion of the private

proposals receive more negative votes.28 The second variable is "greed" which is measured

by the amount of own-private allocation by the proposer, an indicator of how slanted the

private allocations are toward the proposer. We expect the sign on this to be negative also,

in the sense that greedier proposals are punished with more negative votes.

(1) (2)

Treatment L3 L5

EU(status quo) 0.01(0.02) -0.15*** (0.03)

EU(proposal) -0.02(0.03) 0.14*** (0.03)

pork 0.14***(0.03) 0.17***(0.04)

I 0.06***(0.01) 0.03***(0.01)

h -2.81***(0.80) -1.20(1.07)

greed -3.02***(0.95) -2.05***(0.71)

constant 1.48***(0.01) 0.62(0.99)

Pseudo-R2 0.2143 0.3230

Observations 490 576

Table 8: Logit estimates. Dependent variable: Pr {vote=yes}.Including i, h, and greed.

Standard errors in parentheses; * signi�cant at 10% level; ** signi�cant at 5% level; ***

signi�cant at 1% level
28Note however, that the sign on the her�ndahl index is automatically negative if there are more members

in the winning coalition, so this may not be an indication of punishment/reward at all, but simply myopic

sel�sh optimizing.
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The results are presented in Table 8. For the L3 treatment, all the "nonstationary"

variables are signi�cant with the expected sign. More e¢ cient proposals receive greater

support, as do proposals that are more fair or less greedy. The size of the positive sign of

the e¤ect of It, however, seems too small to provide evidence in favor of an equilibrium in

which non Markovian strategies reward e¢ cient behavior, especially since a positive sign is

consistent with equilibrium behavior.29 Because of this, we are reluctant to conclude that

the signi�cant coe¢ cient on I is indicative of nonstationary behavior. On the other hand

the signi�cance of the coe¢ cients on the fairness variables demonstrates the existence of

voting behavior that rewards exactly the types of proposals we see more of relative to the

equilibrium predictions (invest W and universal). The coe¢ cients on EU(statusquo) and

EU(proposal) still have the correct (opposite) signs and are not signi�cantly di¤erent from

each other, but they are no longer signi�cantly di¤erent from 0. The coe¢ cient on pork is now

highly signi�cant, and together with I, has soaked up most of the e¤ect of EU(statusquo)

and EU(proposal). This is not surprising. pork and I are the main determinants of the

di¤erence between EU(statusquo) and EU(proposal).

Results for the L5 treatment are similar, all three of the new variables have the expected

sign, and two are highly signi�cant (I and greed). As in L3, more e¢ cient proposals receive

greater support, as do proposals that are more fair or less greedy. The coe¢ cients on

EU(statusquo) and EU(proposal) still have the correct (opposite) signs and they are highly

signi�cant: their magnitude, however, has dropped by about one-third. This parallels the

�nding in L3: the coe¢ cient on pork is now highly signi�cant and much greater in magnitude

than in Table 3.

As a �nal check for nonstationary strategies, we look at how current proposals treat the

proposer of the previous round, depending on how a current proposer was treated by the

last proposer. The hypothesis is that how well the current proposer treats the previous

proposer is increasing in how well the previous proposer treated him. Because the only way

the current round�s proposer can target a punishment or reward for the previous round�s

proposer is with pork, we run a regression where the dependent variable is the current

proposal�s private allocation to the previous round�s proposer. For observations, we use all

current round provisional budgets beginning in round 2, excluding the provisional budget

of the previous round�s proposer. The key independent variable we use for how well the

previous round�s proposer treated the current round proposer is EUratiot�1, which is the

lagged ratio of EU(proposal) and EU(statusquo), and we control for the current level of

29In equilibrium we should expect a higher level of investment to be associated with a higher probability

that a random voters votes yes to a proposal. This because when g is small, the equilibrium predicts a

high investment level and a unanimous yes vote; when g is high investment is predicted to be smaller, and

proposal are predicted to pass by minimal winning coalitions.
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public good, g. We report two di¤erent regressions in table 5. The �rst two columns include

only the above variables. The second column checks for more detailed punishment/reward

e¤ects, by including lagged versions of the I, h, and greed variables. In other words, we

check whether there are lagged e¤ects of e¢ ciency or fairness of the previous proposal on

the current proposal�s private allocation to the previous proposer. The logic is the same as

above: under the assumption of a Markov equilibrium, we should �nd no e¤ect.

(1) (2) (3) (4)

Treatment L3 L5 L3 L5

g 0.118***(0.02) 0.014(0.013) 0.112***(0.02) 0.01(0.01)

EUratiot�1 293.49***(98.95) 265.29**(119.21) 282.85***(103.41) 232.09**(113.06)

It�1 -0.02(0.02) -0.015(0.024)

ht�1 -9.74(8.21) 6.06(10.1)

greedt�1 -10.44(13.2) -27.01***(7.09)

constant -101***(33.42) -53.45**(23.85) -93.03***(35.62) -41.27*(22.67)

Pseudo-R2 0.0032 0.0222 0.0239 0.0080

Observations 384 384 384 384

Table 9: TOBIT estimates for L treatments. Dependent variable: Private allocation o¤ered

to previous round�s proposer. Standard errors in parentheses; * signi�cant at 10% level; **

signi�cant at 5% level; *** signi�cant at 1% level

The coe¢ cient on EUratiot�1 is signi�cant in both treatments. There is a signi�cant

e¤ect of the the lagged greed variable in L5. We conclude from this analysis that there is

signi�cant evidence of the use of nonstationary strategies.

FINDING 10. There is evidence of nonstationary behavior in the L mecha-
nism. In voting behavior, controlling for their own private allocation, voters punish pro-
posals that are either too greedy or too unfair. We �nd this in both the L3 and the L5

committees. In proposal behavior, current proposals discriminate against previous proposers

who were too greedy and reward previous proposers who treated them well. This nonstation-

arity in behavior seems to be motivated by fairness rather than by e¢ ciency considerations.

There is evidence that voting behavior rewards proposals that have higher investment levels:

but this e¤ect is consistent with equilibrium behavior, and too small to support an e¢ cient

outcome.

6.5.2 A mechanism

Under the Amechanism, public good levels also exhibited a time path of early overproduction

followed by negative investment, converging toward the equilibrium steady state. In nearly
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all groups, the public good levels are consistently very low. However, because the general

pattern is qualitatively similar to what we observed under the L mechanism, it is suggestive

of some small amount of cooperation that may be accountable in part by non-stationary

strategic behavior involving punishments and rewards.

The tools by which players in the A mechanism can reward or punish the other districts

are more limited than with the L mechanism. The main di¤erence is that punishments cannot

be "targeted". Under the L mechanism a proposal speci�es an individual side payment

to each legislator, which allows current proposers to punish speci�c other members of the

committee (for example by giving nothing to a previously greedy proposer). In contrast, in

the A mechanism, an individual district can only punish/reward other districts collectively

by investing less/more in the public good in future periods. With this in mind, we regress

current individual investment decisions on last period�s average investment in their group

(lagAVE), controlling for the level of public good (g) and experience, measured by how

many games they have played so far (EXP). A positive coe¢ cient would be consistent with

some sort of nonstationary behavior such as collective punishments and rewards. We also

include last period�s variance of investment decisions (lagVAR) in their group, as a high

variance will indicate the presence of shirkers in their group, which could trigger (untargeted)

punishments. A negative coe¢ cient would be consistent with untargeted punishment of

individual shirking behavior. Table 10 shows the results for the A3 and A5 treatments.

(1) (2)

Treatment A3 A5

lagAVE 0.234*** (0.062) 0.140* (0.076)

lagVAR -0.025***(0.007) -0.045***(0.006)

g -0.044 (0.029) 0.016 (0.023)

EXP -0.210 (0.238) 0.374 (0.232)

constant 4.278*** (1.568) 1.591 (1.374)

Pseudo-R2 0.0178 0.0242

Observations 495 930

Table 10: TOBIT estimates for A treatments. Dependent variable: Individual investment

decisions. Standard errors in parentheses; * signi�cant at 10% level; ** signi�cant at 5%

level; *** signi�cant at 1% level

The results are virtually identical for the two treatments. Both "punishment" variables,

lagAVE and lagVAR, have the predicted sign and are statistically signi�cant. There are no

signi�cant experience e¤ects (EXP) nor signi�cant e¤ects of the level of the public good, g.

This seems to suggest non-stationary behavior that may be consistent with strategic attempts
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to maintain higher-than-equilibrium investment levels. As with the the L mechanism, to the

extent that these attempts may have increased investment levels, the magnitude of such an

increase is rather small.

7 Discussion and Conclusions

In this paper we have studied the dynamic provision of durable public goods. Despite the

fact that most, if not all, public goods are durable, very little is known on this subject, both

from a theoretical and empirical point of view. We have attempted to provide a �rst answer

to three very basic questions that should be the starting point of any further research.

First, is the free rider problem associated with dynamic public goods substantial? There

are reasons to think that the free rider problem may not be as serious as suggested by the-

oretical predictions. A number of laboratory experiments have suggested that agents may

be less sel�sh than commonly assumed in static environments, and even achieve e¢ ciency in

some settings. Is this type of cooperative behavior present in environments with repeated

interactions and public good accumulation? In a dynamic environment agents may be able

to use trigger strategies to punish ine¢ cient behavior, so players may even have "sel�sh"

incentives to behave cooperatively. Our results, however, suggest there is little hope for

signi�cant voluntary cooperation. The theoretical predictions of the Markov equilibrium

that we use as benchmark suggest substantial underinvestment, independently of the insti-

tutional details: an investment even lower than in a static model because of the dynamic free

rider problem described in sections 4.1 and 4.2. The experimental analysis supports this

prediction. Although we observe more investment than predicted in the model, overinvest-

ment is concentrated in the early stages of the game, and does not persist: in the long run,

the public good levels approximate the Markov equilibrium steady state. In all treatments

investments are orders of magnitude below the Pareto e¢ cient levels.

The second question naturally follows from the �rst. Do institutions matter for e¢ ciency?

This question is obviously very important and preliminary to any type of normative analysis

or any attempt to improve public good providing institutions. Our model predicts that

a majoritarian Legislative institution delivers a lower ine¢ ciency level than a decentralized

Autarky institution. Here too the experiment clearly con�rms the prediction. Under com-

mon assumptions on utilities and other relevant parameters, the majoritarian Legislative

system induces from 3 to 5 times more public good provision than in the Autarky system.

This result implicitly con�rms from an experimental point of view the importance of insti-

tutions in public good provisions, and the fact that incentives matter in a way predicted by

theoretical models.

The �nal questions we attempt to address are: to what extent the models that we use
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are adequate to study this problem? What equilibrium concepts should be used? This is

a particularly important question since, depending on the equilibrium concept we can have

very di¤erent predictions for the same model. It is clearly di¢ cult to identify the equilibrium

adopted by players, but the analysis provides some interesting insights. First, as discussed

in Section 6.5.3, we observe a consistent pattern of behavior across committees, despite the

fact that we have multiplicity of potential equilibria. The Markov equilibrium that we have

adopted as benchmark does not fully capture the complexity of the agents�strategies, that

are non stationary and depend on payo¤ irrelevant variable as the distribution of pork in the

previous periods. But these e¤ects seem to be very weak, especially for larger committees

(n = 5). The aggregate evolution of g, moreover, is described reasonably well by the

Markovian prediction. The Markovian prediction is certainly superior to the prediction

of the best subgame equilibrium sustainable with nonstationary strategies, a equilibrium

re�nement that is sometime used in applied work. In our setting, this equilibrium would

predict e¢ cient or nearly e¢ cient outcomes, which is far o¤ the mark.

There are many possible directions for the next step in this research. On the experimental

side, our design was intentionally very simple and used a limited set of treatments. The

theory has interesting comparative static predictions about the e¤ect of other parameters of

the model that we have not explored in this work, such as: the size of the quali�ed majority;

the discount factor; the production technology; preferences; endowments; and depreciation

rates. We have also limited the analysis to only two polar types of institutions that di¤er on

the degree of centralization of decisions. Our political process does not have elections and

parties, there is no executive branch or "president" to oversee the general interest common

to all districts. Elections, parties, and non-legislative branches are all important components

of most political systems, and incorporating such institutions into our framework would be

a useful and challenging direction to pursue. Finally, it would be interesting to allow for a

richer set of allocations, such as allowing debt �nancing or multiple public goods.
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Appendix

Proof of Proposition 2

Two cases are possible. The �rst case is when in the steady state y(y�P ) = y
�
P and x(y

�
P ) > 0.

Since y(g) is constant for g � max
n
y�P�W
1�d ; 0

o
, it is straightforward to show that the deriva-

tive of the value function in this region is v0(g) = @
@g

�
W + (1� d)g � y�P +B 1

�
n (y�P )

� + �vP (y
�
P )
�
=

(1� d): Using the �rst order condition we must have Bn (y�P )
��1 + �(1� d) = 1, so

y�P =

�
Bn

1� �(1� d)

� 1
1��

(13)

for such an equilibrium to exist we need that y�P > g
�
P , so:

(1� d)
�

Bn

1� �(1� d)

� 1
1��

>

�
Bn

1� �(1� d)

� 1
1��

�W

that is
�

Bn
1��(1�d)

� 1
1��

< W
d
, or 1��(1�d) > Bn

�
d
W

�1��
. Assume now that the steady state

gSSP satis�es gSSP = y(gSSP ) � y�P . In this case W + (1� d)g = g, so gSSP = W=d. For this case

to be possible we need that
�

Bn
1��(1�d)

� 1
1�� � W=d:, or 1� �(1� d) � Bn

�
d
W

�1��
: �

Proof of Proposition 3

The fact that a concave equilibrium has the property stated in the proposition follows from

the discussion in the text. Here we prove existence. We proceed in two steps.

Step 1. Let y�A = [u�1]
0
(1 � � 1�d

n
), and g1A = max

n
0;

y�A�W
1�d

o
. Assume �rst that

d < W
y�A
, so y�W

1�d < y for any y � y�A. For any g > g1A de�ne a value function v
1
A(g) =

W�(y�A�(1�d)g)
n

+
u(y�A)
1�� . Note that this function is continuous, non decreasing, concave, and

di¤erentiable with respect to g, with @
@g
v1A(g) =

1�d
n
. Let g2A = max

n
0;

g1A�W
1�d

o
, and de�ne:

v2A(g) =

(
v1A(g) g � g1A

u((1� d) g +W ) + �v1A((1� d) g +W ) g 2 [g2A; g1A)

Note that vA(g) is continuous and di¤erentiable in g � g2A, except at most at g
1
A To see

that it is also concave in this interval, note that it is concave for g � g1A. Moreover, for any
g 2 [g2A; g1A) and g0 � g1A we have:

@

@g
v2A(g) = u0(((1� d) g +W ) + �v10A((1� d) g +W )

> u0(y�A) + �v
10
A(y

�
A) = 1 >

1� d
n

=
@

@g
v2A(g

0)
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The �rst inequality derives from y�A > (1� d) g +W (which is true, by de�nition of g1A and

g2A, for all g 2 [g2A; g1A)), and concavity of u(g). So v2A(g) is concave in g � g2A. Assume

that for all g � gnA, with g
n
A � 0 and either gnA < g2A or g

n
A = 0, we have de�ned a value

function vnA(g) that is concave and continuous, and that is di¤erentiable in g > g
1
A. De�ne

gn+1A = max
n
0;

gnA�W
1�d

o
, and

vn+1A (g) =

(
vnA(g) g � gnA

u((1� d) g +W ) + �vnA((1� d) g +W ) g 2
�
gn+1A ; gnA

�
We can easily show that this function is concave, continuous in g � gn+1A , and di¤erentiable

for g > g1A. Moreover, either g
n+1
A = 0 or gn+1A < gnA. We can therefore de�ne inductively a

value function vA(g) for any g � 0 that is continuous and concave, and that is di¤erentiable
at least for g > g1A and so, in particular, at y

�
A. De�ne now the following strategies:

yA(g) = min fW + (1� d)g; y�Ag , and xA(g) =
W + (1� d)g � yA(g)

n
: (14)

We will argue that vA(g); yA(g); xA(g) is an equilibrium. To see this note that by construc-

tion, if the agent uses strategies yA(g); xA(g), then vA(g) describe the expected continuation

value function of an agent. To see that yA(g); xA(g), are optimal given vA(g) note that for

g � g1A,
n
y�A;

W+(1�d)g�y�A
n

o
maximizes (5) when all the constraints except the second are

considered; and for g � g1A, W + (1� d)g > y�A, so the second constraint is satis�ed as well.
For g < g1A, we must have yA(g) =W + (1� d)g, xA(g) = 0. We conclude that yA(g), xA(g)
is an optimal reaction function given vA(g).

Step 2. Assume now that d � W
y�A
. In this case g(1 � d) +W � y�A for any g � y�A.

De�ne:

v1A(g) = max
y

(
W+(1�d)g�y

n
+ u(y) + �v1A(y)

W + (1� d)g � y � 0:

)
(15)

This is a contraction with a unique continuous, concave and di¤erentiable �xpoint v1A(y). By

the envelope theorem, we have @
@g
v1A(g) = 1+ � � 1�d

n
, where � is the Lagrangian multiplier

of the constraint in 15. De�ne:

y��A = argmax
y

�
u(y)� y + �v1A(y)

	
Because for any g @

@g
v1A(g) � 1�d

n
, y��A > y�A. De�ne now:

vA(g) =

(
v1A(g) g � y��A �W

1�d
W+(1�d)g�y��A

n
+ u(y��A ) + �v

1
A(y

��
A ) else

(16)

We now argue that the strategies yA(g); xA(g) de�ned by

yA(g) = min fW + (1� d)g; y��A g , and xA(g) =
W + (1� d)g � yA(g)

n
;
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and the value function vA(g) de�ned in (16) are an equilibrium. For any g � y��A �W
1�d , the

strategy yA(g) is W + (1 � d)g � y��A . Since d > W
y�A
, we have d > W

y��A
, and so y��A �W

1�d > y��A

It follows that starting from an initial state g0 = 0, a state g � y��A �W
1�d is never reached in

equilibrium, and the value function can be represented as (15). In a state g > y��A �W
1�d , y

�
A

is chosen. In that period, therefore the utility is W+(1�d)g�y��A
n

+ u(y��A ). From that period

onward, the expected value function is v1A(g). By construction, therefore, when players uses

strategies yA(g); xA(g), then (16) is the expected continuation value function.

To see that yA(g); xA(g), are optimal given vA(g) note that for g � y��A �W
1�d ,

n
y��A ;

W+(1�d)g�y��A
n

o
maximizes (5) when all the constraints except the second are considered; and for g � y��A �W

1�d ,

W +(1�d)g � y��A , so the second constraint is satis�ed as well. For g <
y��A �W
1�d , the solution

of (5) must be yA(g) =W + (1� d)g. We conclude that yA(g), xA(g) is an optimal reaction
function given vA(g). �

Proof of Proposition 4

Two cases are possible. The �rst case is when in the steady state y(y�A) = y
�
A and x(y

�
A) >

0. Since y(g) is constant for g � max
n
y�A�W
1�d ; 0

o
, it is straightforward to show that the

derivative of the value function in this region is v0(g) = (1�d)
n
. Using the �rst order condition

we must have B (y�A)
��1 + � (1�d)

n
= 1, so

y�A =

�
Bn

n� �(1� d)

� 1
1��

(17)

for such an equilibrium to exist we need that y�A > gA: so n � �(1 � d) > Bn
�
d
W

�1��
, that

is always true when d = 0. In the second possible case y(y�A) < y
�
A (and so the steady state

is lower than y�A). This case is possible only if W + (1 � d)g = g: but when d = 0 this

implies W = 0, a contradiction. We conclude that when d = 0; y�A is given by (17), and the

equilibrium steady state is unique. �

Proof of Proposition 5

De�ne a function

v1L(g) =
W � (y�2 � g)

n
+ u(y�2) +

�

1� �

�
W

n
+ u (y�2)

�
=

1

1� �

�
W

n
+ u (y�2)

�
+
g � y�2
n

:

where y�2 = [u�1]
0
(1
q
� � 1�d

n
). Note that this function is continuous, increasing, concave,

and di¤erentiable with respect to g, with @
@g
v1L(g) =

1
n
. Now de�ne ey(g) implicitly by the
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equation:

u(ey(g)) + �v1L(ey(g)) = W=n+ u(g) + � �W � ey(g) + g
n

+ u(ey(g)) + �v1L(ey(g))�
This equation can be rewritten as:

u(ey(g)) (1� �) + �

n
ey(g) = u(g) + �2

n
g +

W

n
� �

�
u(y�2)� (1� �)

y�2
n

�
(18)

Note that (18) implicitly de�nes a di¤erentiable and increasing function of g with ey(g) > g.
To see this note that di¤erentiating (18) with respect to ey and g we have:

ey0(g) = u0(g) + �2

n

(1� �)u0(ey(g)) + �
n

> 0 (19)

We can therefore de�ne a point g2L = min [g � 0 jey(g) � y�2 ]. This point has the property
that for any g � g2L, we have ey(g) � y�2; moreover, g2L < y�2. Now de�ne the function:

v2L(g) =

(
v1L(g) g > g2L

W�ey(g)+g
n

+ u(ey(g)) + �v1(ey(g)) else
(20)

Let g > 0 be de�ned by g = u0�1(1). We have:

Lemma A.1. There is a � such that for � > �, ey(g) and v2L(g) are increasing and continuous
and concave respectively in g 2 [g; g2L], and in g � g2L.

Proof. We showed above that ey0(g) > 0. Furthermore, di¤erentiating (19) with respect to
g, we have:

ey00(g) = u00(g)
�
(1� �)u0(ey(g)) + �

n

�
�
h
u0(g) + �2

n

i
(1� �)u00(ey(g))ey0(g)�

(1� �)u0(ey(g)) + �
n

�2 (21)

It is clear that there is a � such that for � > �; ey00(g) < 0 for any g 2 [g; g2L]. To see this

note that for � = 1 we have ey00(g) < 0, as the numerator of (??) is smaller than 0 and its
denominator greater than 0, and recall that ey(g) is continuous. For v2L(g), note that for
g � g2L the function is linear. For g � g2L

v2L(g) =
W � ey(g) + g

n
+ u(ey(g)) + �v1L(ey(g))

=
W � ey(g) + g

n
+ u(ey(g)) + � �W � (y�2 � ey(g))

n
+

�

1� �

�
W

n
+ u (y�2)

��
=

W + g

n
+ u(ey(g)) + (� � 1) ey(g)

n
+ �

�
W � y�2
n

+
�

1� �

�
W

n
+ u (y�2)

��
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so concavity in [g; g2L] follows from the concavity of ey(g) for � su¢ ciently large. Concavity
in g � g2L follows from the fact that in this range v2L(g) is di¤erentiable everywhere except

at most at g2L, and its derivative is non increasing in g. �

De�ne y�1 = argmaxy0 fu(y0)� y0 + �v2L(y0)g and g1L = min [g � 0 jey(g) � y�1 ] : Note that
y�1 < y�2 =

�
nB
n
q
��

� 1
1��
, an upper bound that is independent of W , and g1L � g2L; moreover

g � g1L, implies ey(g) � y�1. We can now construct the following value function:
v�L(g) =

(
v2L(g) g � g1L

W�y�1+g
n

+ u(y�1) + �v
1(y�1) else

which is a continuous and non decreasing function of g. We can also construct the strategies:

y�L(g) =

8><>:
y�1 g � g1Ley(g) g 2 (g1L; g2L]
y�2 else

and x�L(g) = W � yL(g) + (1 � d)g � (q � 1)sL(g). We now show that the value function

v�L(g) and the strategies y
�
L(g) and x

�
L(g) are an equilibrium for a su¢ ciently large W and

�. Consider the Proposer�s problem (7). One of two cases is possible. First, the incentive

compatibility constraint is not binding, so the proposer can e¤ectively ignore the other

legislators. Second, the incentive compatibility constraint binds and so the proposer has

either to modify the level of public good, or provide pork transfers to a minimal winning

coalition or both.

Case 1: non binding IC. Assume �rst that we can ignore the incentive compatibility
constraint and set s = 0. The problem becomes:

max
y

(
W � [y � (1� d)g] + u(y) + �v�L(y)

s:t: W � y + (1� d)g � 0

)
(22)

If we ignore the constraint in (22), then it is optimal (without loss of generality) to choose

y such that:

y 2 argmax
y0
fu(y0)� y0 + �v�L(y0)g (23)

It is useful to have the following result:

Lemma A.2. The threshold g1L is a non increasing continuous function of W and for any

" there is a W" such that for W > W", then g1L < ".

Proof. Let k be de�ned as before by u0(k) = 1: Then since v2L(y) is non decreasing in y,

y�1 � k > 0. Let f(W ) be de�ned by

u(y�1) +
�2

n
y�1 = u(f(W )) (1� �) +

�

n
f(W )� W

n
+ �

�
u(y�2)� (1� �)

y�2
n

�
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So g1L = maxf0; f(W )g. Since f(W ) is a continuous decreasing function of W , it is then

immediate that g1L is a continuous and monotonically non increasing function of W . It is

also immediate to verify that for any " > 0 there is aW" such that g1L < " forW > W": �

By Lemma A.2 we can �nd a W1 such that for W > W1, g1L is su¢ ciently small to

guarantee that u0(y) + �v�0L (y) > 1 for any g � g1L, so

y 2 argmax
y0
fu(y0)� y0 + �v�L(y0)g

implies y > g1L. Lemma A.1 then guarantees that (22) has a unique solution y
�
1 for � � �.

It is easy to see that in correspondence to y�1 we have xL(g) � 0 if and only if g is greater
than or equal to max

n
y�1�W
1�d ; 0

o
. Since y�1 is bounded, this is veri�ed for any g � 0 when

W > W1, and W1 is chosen to be su¢ ciently large. The incentive compatibility constraint is

satis�ed if and only if ey(g) � y�1 that is if g � g1L. We can therefore conclude that, for � > �
and W > W1, when g � g1L the optimal policy is y�L(g) and x�L(g).

Case 2: binding IC constraint. When g > g1L the incentive compatibility constraint can
not be ignored. In this case, the problem solved by the proposer is:

max
y;s

8><>:
[W � [y � (1� d)g]� (q � 1)s] + u(y) + �v�L(y)
s:t:s+ u(y) + �v�L(y) � W

n
+ u (g) + �v�L(g)

s � 0

9>=>; (24)

Note that we can assume without loss of generality that the solution to this problem is larger

or equal than y�1 (if this were not the case, by increasing y the proposer would increase his

utility and relax the constraint, a contradiction). By Lemma A.1, it follows that we can treat

(24) as a concave maximization problem when � � �. There are two possibilities. First,

the proposer continues to provide no consumption to the districts of other legislators, but he

increases the provision of the public good yL(g) in order to satisfy the incentive compatibility

constraint (no transfer case). Second, he provides consumption to the districts of q�1 other
legislators and to his own district (transfers case).

Consider the second case �rst, assuming s > 0. We can write (24) as:

max
y

(
W � [y � (1� d)g]

�(q � 1)
�
W
n
+	((1� d)g)�	(y)

�
+	(y)

)
(25)

where 	(x) = u(x)+�vL(x). Choosing an optimum in problem (25) is equivalent to choosing

an optimum in problem: maxy fq	(y)� yg. So an optimal choice for the proposer is to
propose yL(g) = y�2 This case is feasible only if s = W

n
+	(g(1� d))�	(y�2) � 0, that is

if and only if g � g2L. In the case in which g 2 [g1; g2] then we must have u(y) + �vL(y) =
W
n
+ u [g] + �vL(g), so the chosen y is ey(g): It follows that in this range the optimal proposal

is y�L(g) and x
�
L(g).
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To see that v�L(g) is the expected utility of a player when the strategies are y
�
L(g), x

�
L(g),

is immediate for g > g2L. For g 2 [0; g2L], observe that, by a similar argument as in Lemma
A.2, for for any 
 there is a W
 such that for W > W
, then ey(y�1) > 
. It follow that

when W > Wg2L
, y�L(g) = ey(g) > g2L for any g 2 (g1L; g2L], so in this range the value function

is given by (20). Finally it is easy to see that for W > Wg2L
, ey(ey(g)) � ey(y�1) > g2L, so the

value function is v�L(g) in [0; g
2
L]. We conclude that there is a �, W such that for � > � and

W > W the value function v�L(g) and the strategies y
�
L(g) and x

�
L(g) are an equilibrium.

Proof of Proposition 6

Consider an equilibrium vL(g); yL(g); xL(g) when there is no depreciation, that is d = 0. In

this case the incentive compatibility constraint in state g if policy y(g) is chosen becomes:

s(yL(g)) � W

n
+	((1� d)g)�	(yL(g))

=
W

n
+	(g)�	(yL(g))

In the steady state, this condition becomes: s(ySS) � W
n
+ 	((ySS) � 	(ySS) = W=n > 0.

Without loss of generality we can assume that this constraint is satis�ed with equality. The

proposer�s policy must therefore solve

max
y

(
W � [y � (1� d)ySS]

�(q � 1)
�
W
n
+	(ySS)�	(y)

�
+	(y)

)
(26)

Moreover in a neighborhood of ySS, s(ySS) > 0, so vL(g) = 1
1��

�
W
n
+ u (ySS)

�
+ g�ySS

n
around

ySS, implying v0L(g) =
1
n
(1� d_). This fact together with the �rst order necessary condition

of (26) implies ySS =
�

Bn
n
q
��(1�d)

� 1
1��
: �
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