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1. Introduction

There is a large literature aimed at characterizing the social choice functions
that can be implemented in Bayes Nash equilibria. This literature typically takes
agents�information as exogenously given and �xed throughout the analysis. While
for some problems this may be appropriate, the assumption is problematic for
others. A typical analysis, relying on the revelation principle, maximizes some
objective function subject to truthful revelation being a Bayes equilibrium. It is
often the case that truthful revelation is not ex post incentive compatible, that
is, for a given agent, there are some vectors of the other agents�types for which
the agent may be better o¤ by misreporting his type than truthfully revealing it.
Truthful revelation, of course, may still be a Bayes equilibrium, because agents
announce their types without knowing other agents types: choices must be made
on the basis of their beliefs about other agents�types. The di¢ culty with assuming
that agents�information is exogenous is that when truthful revelation is not ex
post incentive compatible, agents have incentives to learn other agents�types. To
the extent that an agent can, at some cost, learn something about other agents�
types, agents�beliefs when a mechanism is applied must be treated as endogenous.
A planner who designs a mechanism for which truthful revelation is ex post

incentive compatible can legitimately ignore agents�incentives to engage in espi-
onage to discover other agents�types, and consequently, ex post incentive compat-
ibility is desirable. The Clarke-Groves-Vickrey mechanism (hereafter CGV)1 for

1See Clarke (1971), Groves (1973) and Vickrey (1961).



private values environments is a classic example of a mechanism for which truthful
revelation is ex post incentive compatible. For this mechanism, each agent submits
his or her valuation for each possible choice. The mechanism selects the outcome
that maximizes the sum of the agents� submitted valuations, and prescribes a
transfer to each agent an amount equal to the sum of the values of the other
agents for the outcome. With these transfers, each agent has a dominant strategy
to reveal his valuation truthfully. Cremer and McLean (1985) (hereafter CM)
consider a similar problem in which agents have private information, but interde-
pendent valuations; that is, each agent�s valuation can depend on other agents�
information. They consider the mechanism design problem in which the aim is to
maximize the revenue obtained from auctioning an object. They analyze revela-
tion games in which agents announce their types, and construct transfers similar
to those in the CGV mechanism. The transfers are such that for each outcome,
(roughly) each agent receives a transfer equal to the sum of the valuations of the
other agents. Because each agent�s valuation depends on other agents�announced
types, truthful revelation will not generally be a dominant strategy. Cremer and
McLean show, however, that under certain conditions2 truthful revelation will, as
in the CGV mechanism, be ex post incentive compatible.
There has recently been renewed interest in mechanisms for which truthful

revelation is ex post incentive compatible. Dasgupta andMaskin (2000), Perry and
Reny (2002) and Ausubel (1999) (among others) have used the solution concept
in designing auction mechanisms that assure an e¢ cient outcome. Chung and
Ely (2001) and Bergemann and Morris (2003) analyze the solution concept more
generally. These papers (and Cremer and McLean), however, restrict attention to
the case that agents�private information is one dimensional, a serious restriction
for many problems. Consider, for example, a problem in which an oil �eld is to be
auctioned, and each agent may have private information about the quantity of the
oil in the �eld, the chemical characteristics of the oil, the capacity of his re�nery
to handle the oil and the demand for the re�ned products in his market, all of
which a¤ect this agent�s valuation (and potentially other agents� valuations as
well). While the assumption that information is single dimensional is restrictive,
it is necessary: Jehiel et. al. (2002) show that for general mechanism design
problems with interdependent values and multidimensional signals, for nearly all
valuation functions, truthful revelation will be an ex post equilibrium only for
trivial outcome functions.
Thus, it is only in the case of single dimensional information that we can

2The conditions are discussed in section 3.

2



hope for ex post equilibria for interdependent value problems. But even in the
single dimensional case, there are di¢ culties. Most work on mechanism design in
problems with asymmetric information begin with utilities of the form ui(c; ti; t�i),
where c is a possible outcome, ti represents agent i�s private information and
t�i is a vector representing other agents�private information. In the standard
interpretation, ui is a reduced form utility function that gives agent i�s utility of
the outcome c under the particular circumstances likely to obtain given the agents�
information. In the oil �eld problem above, for example, an agent�s utility for the
oil may depend on (among other things) the amount and chemical composition
of the oil and the future demand oil products, and other agents� information
a¤ects i�s (expected) value for the �eld insofar as i�s beliefs about the quantity
and compostion of the oil and the demand for oil products are a¤ected by their
information. In this paper, we begin from this more primitive data in which i
has a utility function vi(�; ti), where � is a complete description of the state of
the world and ti is his private information. For the oil example, � would include
those things that a¤ect i�s value for the oil �the amount and compostion of the
oil, the demand for oil, etc. The relationship between agents�private information
and the state of the world is given by a probability distribution P over � � T .
This formulation emphasizes the fact that other agents�information a¤ects agent
i precisely to the extent that it provides information about the state of the world.
The reduced form utility function that is normally the starting point for

mechanism design analysis can be calculated from this more primitive structure:
u(c; t) � ��vi(�; t)P (�jt). Most work that employs ex post incentive compatibility
makes additional assumptions on the reduced form utility functions ui. It is typi-
cally assumed that each agent�s types are ordered, and that agents�valuations are
monotonic in any agent�s type. Further, it is assumed that the utility functions
satisfy a single-crossing property: a movement of a given agent from one type to a
higher type causes his valuation to increase at least as much as any other agent�s
valuation. We show that the conditions on the primitive data of the problem that
would ensure that the reduced form utility functions satisfy the single crossing
property are very stringent; the reduced form utility functions associated with
very natural single dimensional information problems can fail to satisfy the single
crossing property.
In summary, while ex post incentive compatibility is desirable, nontrivial mech-

anisms for which truthful revelation is ex post incentive compatible fail to exist for
a large set of important problems. We introduce in this paper a notion of "�ex
post incentive compatibility: a mechanism is "�ex post incentive compatibile if
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truthful revelation is ex post incentive compatible with probability at least 1� ".
If truthful revelation is "-ex post incentive compatible for a mechanism, agents�
incentive to collect information about other agents� is bounded by " times the
maximal gain from espionage. If espionage is costly, a mechanism designer can be
relatively comfortable in taking agents�beliefs as exogenous when " is su¢ ciently
small. We show that the existence of mechanisms for which there are "-incentive
compatible equilibria is related to the concept of informational size introduced
in McLean and Postlewaite (2001, 2002). When agents have private information,
the posterior probability distribution on the set of states of the world � will vary
depending on a given agent�s type. Roughly, an agent�s informational size corre-
sponds to the maximal expected change in the posterior on � as his type varies,
�xing other agents�types. We show that for any ", there exists � such that if each
agent�s informational size is less than �, there exists an e¢ cient mechanism for
which truthful revelation is an "-incentive compatible equilibrium.
The "-ex post incentive compatible mechanism that is used in the proof of

the result elicits agents�private information and employs payments to agents that
depend on their own announcement and the announcements of others. The pay-
ments employed are nonnegative and are small when agents are informationally
small. When there are many agents, each will typically be informationally small,
and hence, the payment needed to elicit truthful revelation of any agent�s pri-
vate information will be small. But the accumulation of a large number of small
payments may be large. We show, however, that for a replica problem in which
the number of agents goes to in�nity, agents�informational size goes to zero ex-
ponentially and the aggregate payments needed to elicit the private information
necessary to ensure e¢ cient outcomes goes to zero.
We describe the model in the next section and provide a brief history of ex

post incentive compatibility in Section 3. In Section 4 we introduce a generalized
CGV mechanism, along with an alternative e¢ cient mechanism.

2. The Model

Let � = f�1; ::; �mg represent the �nite set of states of nature and let Ti be the
�nite set of types of player i. Let C denote the set of social alternatives. Agent
i0s payo¤ is represented by a nonnegative function vi : C ��� Ti ! <+:We will
assume that there exists c0 2 C such that vi(c0; �; ti) = 0 for all (�; ti) 2 � � Ti
and that there exists M > 0 such that vi(�; �; �) � M for each i. We will say that
vi satis�es the pure common value property if vi depends only on (c; �) 2 C � �
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and the pure private value property if vi depends only on (c; ti) 2 C � Ti: Note
that a problem satisfying the pure common value property does not imply that all
agents have the same value for a given decision, but only that each agent�s value
depends only on the state �; and not on any private information he may have.
Let (e�;et1;et2; :::;etn) be an (n+1)-dimensional random vector taking values in

�� T (T � T1 � � � � � Tn) with associated distribution P where

P (�; t1; ::; tn) = Probfe� = �;et1 = t1; :::;etn = tng:
We will make the following full support assumptions regarding the marginal dis-
tributions: P (�) =Probfe� = �g > 0 for each � 2 � and P (ti) =Probfeti = tig > 0
for each ti 2 Ti: If X is a �nite set, let �X denote the set of probability measures
on X. The set of probability measures on �� T satisfying the full support con-
ditions will be denoted ��

��T : If P 2 ��
��T ; let T

� := ft 2 T jP (t) > 0:g (The
set T � depends on P but we will suppress this dependence to keep the notation
lighter.)
In many problems with di¤erential information, it is standard to assume that

agents have utility functions ui : C � T ! R+ that depend on other agents�
types. It is worthwhile noting that, while our formulation takes on a di¤erent
form, it is equivalent. Given a problem as formulated in this paper, we can de�ne
ui(c; t�i; ti) =

P
�2� [vi(c; �; ti)P (�jt�i; ti)] : Alternatively, given utility functions

ui : C � T ! R+; we can de�ne � � T and de�ne vi(c; t; t0i) = ui(c; t�i; t0i): Our
formulation will be useful in that it highlights the nature of the interdependence:
agents care about other agents�types to the extent that they provide additional
information about the state �.
A social choice problem is a collection (v1; ::; vn; P ) where P 2 ��

��T : An
outcome function is a mapping q : T ! C that speci�es an outcome in C for each
pro�le of announced types. We will assume that q(t) = c0 if t =2 T �, where c0
can be interpreted as a status quo point. A mechanism is a collection (q; x1; ::xn)
(written simply as (q; (xi)) where q : T ! C is an outcome function and the
functions xi : T ! < are transfer functions. For any pro�le of types t 2 T �; let

v̂i(c; t) = v̂i(c; t�i; ti) =
X
�2�

vi(c; �; ti)P (�jt�i; ti):

Although v̂ depends on P , we suppress this dependence for notational simplicity
as well.
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De�nition: Let (v1; ::; vn; P ) be a social choice problem. Amechanism (q; (xi))
is:
ex post incentive compatible if truthful revelation is an ex post Nash equilib-

rium: for all i, all ti; t0i 2 Ti and all t�i 2 T�i such that (t�i; ti) 2 T �;

v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti) � v̂i(q(t�i; t0i); t�i; ti) + xi(t�i; t0i):

interim incentive compatible (IC) if for each i 2 N and all ti; t0i 2 TiX
(t�i;ti)2T �

[v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti)]P (t�ijti)

�
X

(t�i;ti)2T �
[v̂i(q(t�i; t

0
i); t�i; ti) + xi(t�i; t

0
i)]P (t�ijti)

ex post individually rational (XIR) if

v̂i(q(t); t) + xi(t) � 0 for all i and all t 2 T �:

feasible if for each t 2 T �; X
j2N

xj(t) � 0:

balanced if for each t 2 T �; X
j2N

xj(t) = 0:

outcome e¢ cient if for each t 2 T �;

q(t) 2 argmax
c2C

X
j2N

v̂j(c; t).

Clearly, strong ex post IC implies ex post IC which in turn implies interim IC.
If v̂i(c; t) does not depend on t�i; then the notions of ex post dominant strategy and
ex post Nash equilibrium coincide.3 We will need one more incentive compatibility
concept.

3For a discussion of the relationship between ex post dominant strategy equilibrium, dominant
strategy equilibrium, ex post Nash equilibrium and Bayes-Nash equilibrium, see Cremer and
McLean (1985).
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De�nition: Let " � 0: A mechanism (q; (xi)) is "� ex post incentive compat-
ible if for all i and all ti; t0i 2 Ti;

Pr obfv̂i(q(~t�i; t0i); ~t�i; ti)+xi(~t�i; t0i)) � v̂i(q(~t�i; ti); ~t�i; ti)+xi(~t�i; ti)+"j~ti = tig � 1�":

Note that (q; (xi)i2N) is a 0� ex post incentive compatible mechanism if and only
if (q; (xi)) is an ex post incentive compatible mechanism.

3. Historical Perspective

As mentioned in the introduction, the typical modeling approach to mechanism
design with interdependent valuations begins with a collection of functions ui :
C � T ! < as the primitive objects of study. In this approach, the elements of
each Ti are ordered and a single crossing property (see below) is imposed. To our
knowledge, the earliest construction of an ex post IC mechanism in this framework
appears in Cremer and McLean (1985). In their setup, Ti = f1; 2; :::;mig and
C = [0; c] is an interval. Let u0i(c; t�i; ti) denote the derivative of ui(�; t�i; ti)
evaluated at c 2 C.

De�nition: Let q be an outcome function. An E(xtraction)- mechanism is
any mechanism (q; (xi)i2N) satisfying

xi(t�i; ti) = xi(t�i; 1)�
tiX

�i=2

[ui(q(t�i; �i); t�i; �i)� ui(q(t�i; �i � 1); t�i; �i)]

whenever t�i 2 T�i and ti 2 Tinf1g:

There are many E- mechanisms, depending on the choice of xi(t�i; 1) for each
t�i 2 T�i: In their 1985 paper, CM de�ne such mechanisms and use them (in
conjunction with a full rank condition) to derive their full extraction results.
If q and ui satisfy certain assumptions, then there exists an E-mechanism that
implements q as an ex post Nash equilibrium and is also ex post individually
rational. This is summarized in the next result.

Theorem 1: Suppose that
(i)

u0i(c; t�i; ti + 1) � u0i(c; t�i; ti) � 0
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for each i 2 N; t�i 2 T�i; ti 2 Tinfmig and c 2 C: [This is assumption 2 in
CM.]
(ii) The social choice rule q is monotonic in the sense that

q(t�i; ti + 1) � q(t�i; ti)

for each i 2 N; t�i 2 T�i; ti 2 Tinfmig:
Then any E-mechanism is ex post IC. If, in addition,

ui(0; t) = 0 for all t 2 T;
then there exists an E-mechanism fq; (xi)i2Ng satisfying feasibility, ex post IC

and ex post IR.
Proof : If assumptions (i) and (ii) are satis�ed, then any E-mechanism is

ex post IC as a result of Lemma 2 in CM (1985). Suppose that, in addition,
ui(0; t) = 0 for all t 2 T: For each t�i; de�ne

xi(t�i; 1) = �ui(q(t�i; 1); t�i; 1):

Feasibility follows from the assumption that ui(q(t�i; 1); t�i; 1) � 0 and the obser-
vation that ui(q(t�i; �i); t�i; �i) � ui(q(t�i; �i � 1); t�i; �i) � 0 for each �i: Since
the resulting E-mechanism is ex post IC, it follows that

ui(q(t�i; ti); t�i; ti) + xi(t�i; ti) � ui(q(t�i; 1); t�i; ti) + xi(t�i; 1)

=

Z q(t�i;1)

0

u0i(y; t�i; ti)dy + xi(t�i; 1)

�
Z q(t�i;1)

0

u0i(y; t�i; 1)dy + xi(t�i; 1)

= ui(q(t�i; 1); t�i; 1) + xi(t�i; 1)

= 0:

It is important to point out that the family of E-mechanisms includes ex post
IC mechanisms that are ex post IR but do not extract the full surplus (such as
the mechanism de�ned in the proof of Theorem 1 above) as well as ex post IC
mechanisms that extract the full surplus but are not ex post IR (such as the
surplus extracting mechanisms constructed in CM (1985) that satisfy interim IR
but not ex post IR.)
If one is interested in implementing a speci�c outcome function (e.g., an ex

post e¢ cient outcome function), then one must make further assumptions that
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guarantee that q satis�es the monotonicity condition (ii). This can be illustrated in
the special case of a single object auction with interdependent valuations studied
in CM (1985). In this case, a single object is to be allocated to one of n bidders. If
i receives the object, his value is the nonnegative number wi(t): In this framework,
q(t) = (q1(t); ::; qn(t)) where each qi(t) � 0 and q1(t) + � � �+ qn(t) � 1 and

ui(q(t�i; t
0
i); t�i; ti) + xi(t�i; t

0
i) = qi(t�i; t

0
i)wi(t�i; ti) + xi(t�i; t

0
i):

Finally, outcome e¢ ciency means thatX
i2N

qi(t)wi(t) = max
i2N

fwi(t)g:

Theorem 2: Suppose that
(i) for each i 2 N; t�i 2 T�i; ti 2 Tinfmig

wi(t�i; ti) � wi(t�i; ti + 1)

(ii) For all i; j 2 N; t�i 2 T�i; ti 2 Tinfmig

wi(t�i; ti) � wj(t�i; ti)) wi(t�i; ti + 1) � wj(t�i; ti + 1)

wi(t�i; ti) > wj(t�i; ti)) wi(t�i; ti + 1) > wj(t�i; ti + 1)

Then there exists an outcome e¢ cient, ex post IR, ex post IC auction mechanism.

Condition (ii) in Theorem 2 guarantees that i�s probability of winning qi(t�i; ti)
is nondecreasing in i�s type ti. Other authors have employed a marginal condition
that implies (ii) when bidders�values are drawn from an interval. Dasgupta and
Maskin (2000) and Perry and Reny (2002) (in their work on ex post e¢ cient
auctions) and Ausubel (1999) (in his work on auction mechanisms) assume that
types are drawn from an interval and that the valuation functions are di¤erentiable
and satisfy
(i0)

@wi
@ti
(t) � 0

and (ii0)
@wi
@ti
(t) � @wj

@ti
(t):
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These are the continuum analogues of the discrete assumptions in Theorem 2
above.
In this paper, we do not take the ui : C � T ! < as the primitive objects of

study. Instead, we derive the reduced form v̂i : C � T ! < from the function
vi : C � � � Ti ! R+ and the conditional distributions P�(�jt): In an auction
framework (such as that studied in McLean and Postlewaite (2002)), this reduced
form is de�ned by the reduced form valuation function

wi(t) =
X
�

wi(�; ti)P�(�jt):

In this special case, the second condition is quite restrictive. For example, suppose
that vi(�; ti) = �i� + �i for each i where �i > 0: Then

wi(t) = �i
X
�

�P�(�jt) + �i := �i�(t) + �i:

Assuming that �(�) is di¤erentiable, then the second condition (ii0) is satis�ed only
if

(�i � �j)
@�

@ti
(t) � 0

and

(�j � �i)
@�

@tj
(t) � 0

for each i and j. If it is also required that @wi
@ti
(t) = �i

@�
@ti
(t) � 0 and @wj

@tj
(t) =

�j
@�
@tj
(t) � 0 with strict inequality for some t, then �i = �j:
In this paper, we do not investigate the assumptions that vi and P�(�jt) would

need to satisfy in order for Theorem 1 to be applicable to the reduced form v̂i:
Indeed, we believe that such assumptions are prohibitively restrictive. Instead, we
make certain assumptions regarding the distribution P 2 ��

��T but no assump-
tions regarding the primitive valuation function vi:
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4. A Generalized Clarke-Groves-Vickrey Mechanism

Let q be an outcome function and de�ne transfers as follows:

�qi (t) =
X
j2Nni

v̂j(q(t); t)�max
c2C

24X
j2Nni

v̂j(c; t)

35 if t 2 T �

= 0 if t =2 T �

The resulting mechanism (q; (�qi )) is the generalized CGV mechanism with in-
terdependent valuations (GCGV for short.) (Ausubel(1999) and Chung and Ely
(2002) use the term generalized Vickrey mechanisms, but for di¤erent classes of
mechanisms.) If v̂i depends only on ti (as in the case when ~� and ~t are stochas-
tically independent), then the GCGV mechanism reduces to the classical CGV
mechanism and it is well known that, in this case, the CGV mechanism satis�es
strong ex post IC. It is straightforward to show that the GCGV mechanism is ex
post individually rational and feasible. However, it will generally not even sat-
isfy interim IC. First, we show that the GCGV mechanism is ex post IC when P
satis�es a property called nonexclusive information (Postlewaite and Schmeidler
(1986).
Before proceeding to the main result for nonexclusive information, let us recap

the logic of the CGV mechanism in the case of pure private values. In that case,
we obtain (abusing notation slightly),

�qi (t) =
X
j2Nni

v̂j(q(t); tj)�max
c2C

24X
j2Nni

v̂j(c; tj)

35 if t 2 T �

= 0 if t =2 T �

In computing maxc2C
hP

j2Nni v̂j(c; tj)
i
; we maximize the total payo¤of the play-

ers inNni and, as a consequence of the pure private values assumption, only utilize
the information of the agents in Nni. Hence, the value of the optimum only de-
pends on t�i: In the interdependent case, this computation can be extended in
two ways. First, we could maximize the total payo¤ of the players in Nni using
the information of all agents. The associated transfer is equal to

X
j2Nni

v̂j(q(t); t)�max
a2A

X
j2Nni

"X
�2�

vj(a; �; tj)P (�jt�i; ti)
#
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Alternatively, we could maximize the total payo¤ of the players in Nni using only
the information of the agents in Nni. The associated transfer is equal to

X
j2Nni

v̂j(q(t); t)�max
a2A

X
j2Nni

"X
�2�

vj(a; �; tj)P (�jt�i)
#
:

The �rst method yields a transfer function that depends on t�i and ti while the
second method yields a function that depends only on t�i. In the �rst payment
scheme, agent i pays the cost that he imposes on other agents assuming that
they have access to his information even though he is not present. In the second
scheme, agent i pays the cost that he imposes on other agents assuming that the
other agents do not have access to his information. In the pure private values
model, these two approaches yield the same transfer scheme. Not surprisingly,

max
a2A

X
j2Nni

"X
�2�

vj(a; �; tj)P (�jt�i)
#
� max

a2A

X
j2Nni

"X
�2�

vj(a; �; tj)P (�jt�i; ti)
#

whenever t 2 T �:
These payment schemes induce di¤erent games in the case of interdependent

values. We are interested in the �rst of the payment schemes that uses agent
i�s information when calculating the cost that he imposes on other agents. One
can think of the designer�s problem as extracting two di¤erent components of an
agent�s information, his �external�information about the state � and the purely
private part of the information determining his utility given the state. Our method
is to show how the designer can extract the information about � from the agents,
following which the problem becomes a private value problem. In this private
value problem, the �rst payment scheme mimics the standard CGV mechanism.
Under the next assumption, however, the two payment schemes de�ned above

are equivalent.

De�nition: A measure P 2 ��
��T satis�es nonexclusive information (NEI) if

t 2 T � ) P�(�jt) = P�(�jt�i) for all i 2 N:

Proposition A: Let fv1; ::; vng be a collection of payo¤ functions. If P 2
��
��T exhibits nonexclusive information and if q : T ! C is outcome e¢ cient for

the problem fv1; ::; vn; Pg; then the GCGV mechanism (q; �qi ) is ex post IC and
ex post IR.
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Proof : See appendix.

Nonexclusive information is a strong assumption. Note however, that the pure
private values model is a special case: simply choose j�j = 1: Our goal in this
paper is to identify conditions under which we can modify the GCGV payments
so that the new mechanism is interim IC and approximately ex post IC. In the
next section, we discuss the two main ingredients of our approximation results:
informational size and the variability of agents�beliefs.

5. Informational Size and Variability of Beliefs

5.1. Informational Size

If t 2 T �; recall that P�(�jt) 2 �� denotes the induced conditional probability
measure on �. A natural notion of an agent�s informational size is the degree
to which he can alter the best estimate of the state � when other agents are
announcing truthfully. In our setup, that estimate is the conditional probability
distribution on � given a pro�le of types t. Any pro�le of agents� types t =
(t�i; ti) 2 T � induces a conditional distribution on � and, if agent i unilaterally
changes his announced type from ti to t0i, this conditional distribution will (in
general) change. We consider agent i to be informationally small if, for each ti;
there is a �small�probability that he can induce a �large�change in the induced
conditional distribution on � by changing his announced type from ti to some
other t0i. This is formalized in the following de�nition.

De�nition: Let

I i"(t
0
i; ti) = ft�i 2 T�ij(t�i; ti) 2 T �; (t�i; t0i) 2 T � and jjP�(�jt�i; ti)�P�(�jt�i; t0i)jj > "g

The informational size of agent i is de�ned as

�Pi = max
ti2Ti

max
t0i2Ti

minf" � 0j Probf~t�i 2 I i"(t0i; ti)j~ti = tig � "g:

Loosely speaking, we will say that agent i is informationally small with respect
to P if his informational size �Pi is small. If agent i receives signal ti but reports
t0i 6= ti, the e¤ect of this misreport is a change in the conditional distribution on �
from P�(�jt�i; ti) to P�(�jt�i; t0i): If t�i 2 I"(t0i; ti); then this change is �large�in the
sense that jjP�(�jt̂�i; ti)�P�(�jt̂�i; t0i)jj > ": Therefore, Probf~t�i 2 I"(t0i; ti)j~ti = tig
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is the probability that i can have a �large�in�uence on the conditional distribution
on � by reporting t0i instead of ti when his observed signal is ti: An agent is
informationally small if for each of his possible types ti, he assigns small probability
to the event that he can have a �large�in�uence on the distribution P�(�jt�i; ti);
given his observed type. Informational size is closely related to the notion of
nonexclusive information: if all agents have zero informational size, then P must
satisfy NEI. In fact, we have the following easily demonstrated result: P 2 ��

��T
satis�es NEI if and only if �Pi = 0 for each i 2 N:

5.2. Variability of Agents�Beliefs

Whether an agent i can be given incentives to reveal his information will depend
on the magnitude of the di¤erence between PT�i(�jti) and PT�i(�jt0i); the conditional
distributions on T�i given di¤erent types ti and t0i for agent i: To de�ne the measure
of variability, we �rst de�ne a metric d on �� as follows: for each �; � 2 ��; let

d(�; �) =

 �

jj�jj2
� �

jj�jj2


2

where jj � jj2 denotes the 2-norm. Hence, d(�; �) measures the Euclidean distance
between the Euclidean normalizations of � and �: If P 2 ���T , let P�(�jti) 2 ��

be the conditional distribution on � given that i receives signal ti and de�ne

�Pi = min
ti2Ti

min
t0i2Tinti

d(P�(�jti); P�(�jt0i))2:

This is the measure of the �variability�of the conditional distribution P�(�jti) as
a function of ti:
As mentioned in the introduction, our work is related to that of Cremer and

McLean (1985,1989). Those papers and subsequent work by McAfee and Reny
(1992) demonstrated how one can use correlation to fully extract the surplus in
certain mechanism design problems. The key ingredient there is the assumption
that the collection of conditional distributions fPT�i(�jti)gti2Ti is a linearly inde-
pendent set for each i. This of course, implies that PT�i(�jti) 6= PT�i(�jt0i) if ti 6= t0i
and, therefore, that �Pi > 0: While linear independence implies that �

P
i > 0, the

actual (positive) size of �Pi is not relevant in the Cremer-McLean constructions,
and full extraction will be possible. In the present work, we do not require that
the collection fPT�i(�jti)gti2Ti be linearly independent (or satisfy the weaker cone
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condition in Cremer and McLean (1988)). However, the �closeness�of the mem-
bers of fPT�i(�jti)gti2Ti is an important issue. It can be shown that for each i,
there exists a collection of numbers & i(t) satisfying 0 � � i(t) � 1 andX

t�i

[& i(t�i; ti)� & i(t�i; t0i)]PT�i(t�ijti) > 0

for each ti; t0i 2 Ti if and only if �Pi > 0: The elements of the collection f& i(t)gi2I;t2T
can be thought of as �incentive payments�to the agents to reveal their informa-
tion. The above inequality assures that, if the posteriors fPT�i(�jti)gti2Ti are all
distinct, then the incentive compatibility inequalities above are strict. However,
the expression on the left hand side decreases as �P ! 0. Hence, the di¤erence
in the expected reward from a truthful report and from a false report will be
very small if the conditional posteriors are very close to each other. Our results
require that informational size and aggregate uncertainty be small relative to the
variation in these posteriors.

6. Implementation and Informational Size

6.1. The Results

Let fzigi2N be an n-tuple of functions zi : T ! <+ each of which assigns to each
t 2 T a nonnegative number, interpreted as a �reward�to agent i. If (q; x1; ::xn)
is a mechanism, then the associated augmented mechanism is de�ned as (q; x1 +
z1; ::xn + zn) and will be written simply as (q; xi + zi):

Theorem A: Let (v1; ::; vn) be a collection of payo¤ functions.

(i) Suppose that P 2 ��
��T satis�es �

P
i > 0 for each i and suppose that

q : T ! C is outcome e¢ cient for the problem fv1; ::; vn; Pg: Then there exists an
augmented GCGV mechanism (q; �qi + zi) for the social choice problem problem
(v1; ::; vn; P ) satisfying ex post IR and interim IC.

(ii) For every " > 0; there exists a � > 0 such that, whenever P 2 ��
��T

satis�es
max
i
�Pi � �min

i
�Pi ;

and whenever q : T ! C is outcome e¢ cient for the problem fv1; ::; vn; Pg; there
exists an augmented GCGV mechanism (q; �qi + zi) with 0 � zi(t) � " for every i
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and t satisfying ex post IR, interim IC and "�ex post IC. Furthermore, for each
t 2 T �;

0 �
X
i2N

(�i(t) + zi(t)) =
X
i2N

�i(t) + n":

6.2. Discussion

Our results rely on the following key lemma.

Lemma A: Suppose that q : T ! C is an e¢ cient outcome function for the
problem fv1; ::; vn; Pg: If (t�i; ti); (t�i; t0i) 2 T �; then

(v̂i(q(t�i; t
0
i); t�i; ti) + �

q
i (t�i; t

0
i))� (v̂i(q(t�i; ti); t�i; ti) + �

q
i (t�i; ti))

� 2M(n� 1)jjP�(�jt�i; ti)� P�(�jt�i; t0i)jj

In the case of the GCGV mechanism, Lemma A provides an upper bound
on the �ex post gain�to agent i when i�s true type is ti but i announces t0i and
others announce truthfully. If agents have zero informational size � that is, if
P exhibits nonexclusive information � then jjP�(�jt�i; ti) � P�(�jt�i; t0i)jj = 0 if
(t�i; ti); (t�i; t

0
i) 2 T �: Hence, truth is an ex post Nash equilibrium and Proposition

A follows. If vi does not depend on �, then (letting j�j = 1), we recover Vickrey�s
classic dominant strategy result for the CGV mechanisms in the pure private
values case.
If agent i is informationally small, then (informally) we can deduce from

Lemma A that

Pr obfjjP�(�j~t�i; ti)� P�(�j~t�i; t0i)jj � 0j~ti = tig � 1

so truth is an �approximate�ex post equilibrium for the CGCV in the sense that

Pr obf(v̂i(q(t�i; ti); t�i; ti) + �qi (t�i; ti))

�(v̂i(q(t�i; t0i); t�i; ti) + �
q
i (t�i; t

0
i)) >�

0j~ti = tig � 1:

Lemma A has a second important consequence: if agent i is informationally small,
then truth is an approximate Bayes-Nash equilibrium in the GCGV mechanism
so the mechanism is approximately interim incentive compatible. More precisely,
we can deduce from Lemma A that the interim expected gain from misreporting
one�s type is essentially bounded from above by one�s informational size. If we
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want the mechanism to be exactly interim incentive compatible, then we must
alter the mechanism (speci�cally, construct an augmented GCGV mechanism) in
order to provide the correct incentives for truthful behavior. It is in this step
that variability of beliefs plays a crucial role. To see this, �rst note that incentive
compatibility of the augmented GCGV mechanism requires thatX
(t�i;ti)2T �

[(v̂i(q(t�i; ti); t�i; ti) + �
q
i (t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + �

q
i (t�i; t

0
i))]P (t�ijti)

+
X

:(t�i;ti)2T �
(zi(t�i; ti)� zi(t�i; t0i))P (t�ijti)

� 0

Lemma A implies that the �rst term is bounded from below by �K�Pi where K
is a positive constant independent of P . If �Pi > 0; then there exists a collection
of numbers & i(t) satisfying 0 � � i(t) � 1 andX

t�i

[& i(t�i; ti)� & i(t�i; t0i)]PT�i(t�ijti) > 0

for each ti; t0i 2 Ti: By de�ning zi(t�i; ti) = �� i(t�i; ti) and choosing � su¢ ciently
large, then we will obtain interim incentive compatibility of the augmented GCGV
mechanism. This is part (i) of Theorem A. As the informational size of an agent
decreases, the minimal reward required to induce the truth also decreases. If �Pi
large enough relative to an agent�s informational size �Pi , then we can construct
an augmented mechanism satisfying interim incentive compatibility. This is part
(ii) of Theorem A.
Heuristically, Theorem A can be described in the following way. If a problem

is pure private value problem , then CGV mechanisms will implement e¢ cient
outcomes. When there are interdependent values, these mechanisms no longer
are incentive compatible. When there are interdependent values, a given agent�s
utility depends on other agents�types insofar as their types are correlated to the
state �. If there is correlation in the parts of agents�information that a¤ects �,
that part can be elicited via payments to the agents that are of the magnitude of
their informational size; this is the �augmented�part of the augmented GCGV
mechanism. Once the part of agents�information that a¤ects other agents�values
is obtained, the problem essentially becomes a private value problem, and CGV-
type payments can be used to extract the residual private information agents may
have.
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For pure private value problems, Green and La¤ont (1979) show that the CGV
payments are essentially unique. While we cannot be sure that the particular
characteristics of the payment scheme for pure private good problems carries over
to our framework, we conjecture that the only e¢ cient social choice functions that
can be implemented in our framework embody CGV payments. For pure common
value problems, once agents�information about � is elicited, there is no residual
uncertainty since by de�nition agents�utilities depend only on �. In this case, the
only transfers that are needed are our augmented transfers that elicit information
about �.
The above discussion suggests an analogue of Theorem A for purely common

value problems with positive variability that has no relation to the CGV mecha-
nism. There is a di¢ culty in establishing such a result. It is true that when an
agent is informationally small, his expected e¤ect on the posterior distribution on
� will be small. In order to guarantee that this does not translate into a large
utility gain, we require a continuity assumption on the mapping from posterior
distributions on � into agents�utilities. We turn to this next.

6.3. Gain bounded Mechanisms

In a typical implementation or mechanism design problem, one computes the
mechanism for each instance of the data that de�nes the social choice problem.
Therefore, in many if not most cases of interest, the mechanism is parametrized by
the data de�ning the social choice problem. If we �x a pro�le (v1; ::; vn) of payo¤
functions, then we can analyze the parametric dependence of the mechanism on
the probability distribution P and this dependence can be modelled as a mapping
that associates a mechanism with each P 2 ��

��T . We will denote this mapping
P 7! (qP ; xP1 ; ::; x

P
n ): For example, the mapping naturally associated with the

GCGV mechanism is de�ned by

qP (t) 2 argmax
c2C

X
j2N

X
�2�

vi(c; �; ti)P (�jt�i; ti) if t 2 T �

qP (t) = c0 if t =2 T �

and

xPi (t) =
X
j2Nni

X
�2�

vi(q
P (t); �; ti)P (�jt�i; ti)�max

c2C

24X
j2Nni

X
�2�

vi(c; �; ti)P (�jt�i; ti)

35 if t 2 T �

= 0 if t =2 T �
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De�nition: Let (v1; ::; vn) be a pro�le of payo¤functions. For each P 2 ��
��T ,

let (qP ; xP1 ; ::; x
P
n ) be a mechanism for the social choice problem (v1; ::; vn; P ): We

will say that the mapping P 7! (qP ; xP1 ; ::; x
P
n ) is gain bounded if there exists a

K > 0 such that for all P 2 ��
��T ;�

v̂i(q
P (t�i; t

0
i); t�i; ti) + x

P
i (t�i; t

0
i)
�
�
�
v̂i(q

P (t�i; ti); t�i; ti) + x
P
i (t�i; ti)

�
� KjjP�(�jt�i; ti)� P�(�jt�i; t0i)jj

whenever (t�i; ti); (t�i; t0i) 2 T �:

If q is outcome e¢ cient, the GCGV mechanism is gain bounded. In addition,
a large class of gain bounded mechanisms are associated with e¢ cient outcome
functions generated by payo¤ functions satisfying the pure common value assump-
tion.

Theorem B: Let (v1; ::; vn) be a collection of payo¤ functions satisfying the
pure common value assumption.

(i) Suppose that P 2 ��
��T satis�es �

P
i > 0 for each i and suppose that q

P :
T ! C is outcome e¢ cient for the problem fv1; ::; vn; Pg and P 7! (qP ; xP1 ; ::; x

P
n )

is gain bounded: Then there exists an augmented mechanism fqP ; xPi +zPi gi2N for
the social choice problem problem (v1; ::; vn; P ) satisfying ex post IR and interim
IC.

(ii) For every " > 0; there exists a � > 0 such that, whenever P 2 ��
��T

satis�es
max
i
�Pi � �min

i
�Pi ;

and whenever qP : T ! C is outcome e¢ cient for the problem fv1; ::; vn; Pg;
there exists an augmented mechanism (qP ; xPi + z

P
i ) for the social choice problem

problem (v1; ::; vn; P ) with 0 � zPi (t) � " for every i and t satisfying ex post IR,
interim IC and "�ex post IC. Furthermore,

0 �
X
i2N

zPi � n":

7. Asymptotic Results

Informally, an agent is informationally small when the probability that he can
a¤ect the posterior distribution on � is small. One would expect, in general, that
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agents will be informationally small in the presence of many agents. For example,
if agents receive conditionally independent signals regarding the state �, the an-
nouncement of one of many agents is unlikely to signi�cantly alter the posterior
distribution on �. Hence, it is reasonable to conjecture that (under suitable as-
sumptions) an agent�s informational size goes to zero in a sequence of economies
with an increasing number of agents. Consequently, the required rewards zi that
induce truthful behavior will also go to zero as the number of agents grows. We
will show below that this is in fact the case. Of greater interest, however, is the
beavior of the aggregate reward necessary to induce truthful revelation. The ar-
gument sketched above only suggests that each individual�s zi goes to 0 as the
number of agents goes to in�nity but does not address the asymptotic behavior of
the sum of the z0is. Roughly speaking, the size of the zi that is necessary to induce
agent i to reveal truthfully is of the order of magnitude of his informational size.
Hence, the issue is the speed with which agents�informational size goes to 0 as the
number of agents increases. We will demonstrate below that, under reasonably
general conditions, agents�informational size goes to 0 at an exponential rate and
that the total reward

P
i2N zi goes to zero as the number of agents increases.

7.1. Notation and De�nitions:

We will assume that all agents have the same �nite signal set Ti = A. Let
Jr = f1; 2; :::rg. For each i 2 Jr; let vri : C � � � A ! <+ denote the payo¤ to
agent i. For any positive integer r, let T r = A�� � ��A denote the r-fold Cartesian
product and let tr = (tr1; ::; t

r
r) denote a generic element of T

r:

De�nition: A sequence of prob measures fP rg1r=1 with P r 2 ���T r is a
conditionally independent sequence if there exists P 2 ���A such that

(a) For each r and each (�; t1; ::; tr) 2 �� T r;

P r(tr1; ::; t
r
rj�) = Probfetr1 = t1;etr2 = t2; :::;etrr = trj~� = �g = rY

i=1

P (tij�):

(b) For every �; �̂ with � 6= �̂; there exists a t 2 A such that P (tj�) 6= P (tj�̂):

Because of the symmetry in the objects de�ning a conditionally independent
sequence, it follows that, for �xed r, the informational size of each i 2 Jr is the
same. In the remainder of this section we will drop the subscript i and will write
�P

r
for the value of the informational size of agents in Jr:
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Lemma C: Suppose that fP rg1r=1 is a conditionally independent sequence.
For every " > 0 and every positive integer k, there exists an r̂ such that

rk�P
r � "

whenever r > r̂.

The proof is provided in the appendix and is an application of a large deviations
result due to Hoe¤ding (1960). With this lemma, we can prove the following
asymptotic result, the proof of which is also in the appendix.

Theorem C: Suppose that fP rg1r=1 is a conditionally independent sequence.
Let M and " be positive numbers. Let f(vr1; ::; vrr)gr�1 be a sequence of payo¤
function pro�les and for each r, let fqP r(r); xP r1 (r); ::; xP

r

r (r)g be an ex post IR
mechanism for the SCP (vr1; ::; v

r
r ; P

r): Suppose that
(1) jvri (�; �; �)j �M for all r and i 2 Jr
(2) For each r, (qP

r
(r); xP

r

1 (r); ::; x
P r

r (r)) is lower bounded mechanism with
constant K(P r) and for some positive integer L, r�LK(P r)! 0 as r !1:
(3) The marginal measure of P 2 on T 2 exhibits positive variability.
Then there exists an r̂ such that for all r > r̂, there exists an augmented mecha-

nism (qP
r
(r); xP

r

1 (r)+z
r
1; ::; x

P r

r (r)+z
r
r) for the social choice problem (v

r
1; ::; v

r
r ; P

r)
satisfying ex post IR and interim IC. Furthermore, for each tr 2 T r; zri (tr) � 0
and

Pr
i2Jr z

r
i (t

r) � ":

Corollary: Suppose that fP rg1r=1 is a conditionally independent sequence.
Let M and " be positive numbers. Let f(vr1; ::; vrr)gr�1 be a sequence of payo¤
function pro�les and for each r, let fqP r(r); �P r1 (r); ::; �P

r

r (r)g denote the GCGV
mechanism for the SCP (vr1; ::; v

r
r ; P

r): Suppose that jvri (�; �; �)j � M for all r and
i 2 Jr:
Then there exists an r̂ such that for all r > r̂, there exists an augmented

GCGVmechanism (qP
r
(r); �P

r

1 (r)+z
r
1; ::; �

P r

r (r)+z
r
r) for the social choice problem

(vr1; ::; v
r
r ; P

r) satisfying ex post IR and interim IC. Furthermore, for each tr 2 T r;
zri (t

r) � 0 and
Pr

i2Jr z
r
i (t

r) � ":
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8. Discussion

1. Our results are related to the work on surplus extraction (see, e.g., Cremer
and McLean 1985, 1988) and McAfee and Reny (1992). For auction problems,
our results say that a seller of an object can extract the information about �
by making payments to each agent of the order of magnitude of that agent�s
informational size. Under the mechanism in Theorem A, the seller will extract all
surplus except for the payments necessary to elicit the private information about �
and the surplus associated with the purely private component of their information.
As in the case of a purely private value problem with indpendent types, the seller
will not be able to extract all surplus. Of course, if the purely private value
components of the agents�information are correlated, one could extract some of
the surplus associated with the private values.
For the asymptotic problem, the asymptotic revenue is full extraction from

the highest value agent. This is because we extract all the surplus except the
payments in the augmentation, and the augmentation payments go to zero. This
plus the fact that the surplus the high value guy gets goes to zero since he�s getting
the object at the second highest value and the di¤erence between the highest value
and the second highest value goes to zero.
2. It is worth pointing out one further aspect of agents�informational size in

expanding economies. Roughly speaking, when an agent has informational size ",
the probability that he can change the posterior distribution on � by more than
" is less than ". One might consider an alternative de�nition of informational
size whereby an agent�s informational size is " if with probability one he cannot
change the posterior distribution on � by more than ": Formally,

De�nition: The strong informational size of agent i is de�ned as

�Pi = max
ti2Ti

max
t0i2Ti

max
t�i2T�i

jjP�(�jt�i; ti)� P�(�jt�i; t0i)jj:

We will refer to an agent as strongly informationally small if his strong informa-
tional size is small. From the de�nitions, it is clear that �Pi � �Pi . For economic
problems with a small number of agents, it is often the case that an agent may
be informationally small but not be strongly informationally small. For example,
consider a problem in with two states, �1 and �2; and three agents, each of whom
receives a noisy signal about the state �:With very accurate signals, each agent�s
signal is the true state � with high probability. In this case, it is easy to verify
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that any agent who unilaterally misreports his signal will, with high probability,
have only a small e¤ect on the posterior distribution and, consequently, agents are
informationally small. However, it is easy to see that agents will not be strongly
informationally small. Although with very accurate signals all agents�signals will
be the correct state �, there is positive probability that two agents, say agent 1
and agent 2, receive di¤erent signals. In this case, agent 3�s announcement will
have a large e¤ect on the posterior distribution; whether he announces �1 or �2,
one of the other two agents�announcements will match his announcement and
one will not. When the signals are very accurate, the posterior distribution on
� will put very high probability on agent 3�s announced state, and hence, his
announcement will have a large e¤ect on the posterior distribution in this case.
The discussion above illustrates the advantage of results that employ the

weaker notion of informational size rather than strong informational size: a large
and interesting class of problems is covered by the former notion that will not
be covered by the latter. There is, of course, a cost: theorems employing the
weaker hypothesis will have weaker consequences. If a mechanism satis�es our
notion of "�ex post IC, the probability that a change in an agent�s reported type
(given other agents�types) would increase his utility by more than " is less than
": This, of course allows the possibility that a change could lead to a large in-
crease in his utility for some (low probability) vectors of other agents�types. The
small probability of large utility gains is connected to the small probability of an
agent�s report having a large e¤ect on the posterior distribution. In interdepen-
dent type mechanisms, an agent�s transfer depends on other agents�valuations,
and those valuations depend on the posterior distribution on �; large changes in
the posterior distribution can translate into large changes in utility.
The above discussion suggests a stronger notion of approximate ex post incen-

tive compatibility:

De�nition: Let " � 0: A mechanism fq; xigi2N is strongly "- ex post incentive
compatible if for all i, all ti; t0i 2 Ti and all t�i 2 T�i such that (t�i; ti) 2 T �

(v̂i(q(t�i; t
0

i); t�i; ti) + xi(t�i; t
0

i))� (v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti)) � ":

That is, a mechanism is strongly "- ex post incentive compatible if, with prob-
ability one, no agent can increase his utility by more than " regardless of other
agents�types.
On might hope that for problems in which agents are strongly informationally

small, mechanisms that yield e¢ cient outcomes might be strongly ex post incen-
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tive compatible. We argued above that for many problems with small numbers
of agents, requiring that agents be strongly informationally small might be too
demanding. When there are many agents, however, there is some reason to think
that agents might be strongly informationally small. The three person example
discussed above illustrated how an agent�s reported type might have a large e¤ect
on the posterior distribution: when two agents �tie�in their signals about the two
states, the third agent�s announcement makes a large di¤erence. If a given agent
is one of several thousand agents receiving a noisy signal of the two alternative
states that has low accuracy, however, there will be no distribution of other
agents�signals that will make the given agent�s signal important.

9. Proofs:

9.1. Proof of Lemma A:

First, consider the GCGV mechanism. Choose (t�i; ti); (t�i; t0i) 2 T �: Then

v̂i(q(t�i; ti); t�i; ti) + �i(t�i; ti) = v̂i(q(t�i; ti); t�i; ti) +
X
j2Nni

v̂j(q(t�i; ti); t�i; ti)

�max
c2C

24X
j2Nni

v̂j(c; t�i; ti)

35
and

v̂i(q(t�i; t
0
i); t�i; ti) + �i(t�i; t

0
i) = v̂i(q(t�i; t

0
i); t�i; ti) +

X
j2Nni

v̂j(q(t�i; t
0
i); t�i; ti)

�
X
j2Nni

v̂j(q(t�i; t
0
i); t�i; ti)

+
X
j2Nni

v̂j(q(t�i; t
0
i); t�i; t

0
i)�max

c2C

24X
j2Nni

v̂j(c; t�i; t
0
i)

35
Since

v̂i(q(t�i; ti); t�i; ti)+
X
j2Nni

v̂j(q(t�i; ti); t�i; ti) � v̂i(q(t�i; t0i); t�i; ti)+
X
j2Nni

v̂j(q(t�i; t
0
i); t�i; ti)
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it follows that

(v̂i(q(t�i; ti); t�i; ti) + �i(t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + �i(t�i; t0i))

� max
c2C

24X
j2Nni

v̂j(c; t�i; t
0
i)

35�max
c2C

24X
j2Nni

v̂j(c; t�i; ti)

35
�
X
j2Nni

v̂j(q(t�i; t
0
i); t�i; t

0
i) +

X
j2Nni

v̂j(q(t�i; t
0
i); t�i; ti)

Let

q�(t�i; ti) 2 argmax
c2C

24X
j2Nni

v̂j(c; t�i; ti)

35
and let

q�(t�i; t
0
i) 2 argmax

c2C

24X
j2Nni

v̂j(c; t�i; t
0
i)

35 :
Then

max
q2C

24X
j2Nni

v̂j(q; t�i; t
0
i)

35�max
q2C

24X
j2Nni

v̂j(q; t�i; ti)

35
=

24X
j2Nni

v̂j(q
�(t�i; t

0
i); t�i; t

0
i)

35�
24X
j2Nni

v̂j(q
�(t�i; ti); t�i; ti)

35
=

24X
j2Nni

v̂j(q
�(t�i; t

0
i); t�i; t

0
i)�

X
j2Nni

v̂j(q
�(t�i; ti); t�i; t

0
i)

35
+

24X
j2Nni

v̂j(q
�(t�i; ti); t�i; t

0
i)�

X
j2Nni

v̂j(q
�(t�i; ti); t�i; ti)

35
�
X
j2Nni

v̂j(q
�(t�i; ti); t�i; t

0
i)�

X
j2Nni

v̂j(q
�(t�i; ti); t�i; ti)
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Therefore,

(v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + xi(t�i; t0i))
�
X
j2Nni

v̂j(q
�(t�i; ti); t�i; t

0
i)�

X
j2Nni

v̂j(q
�(t�i; ti); t�i; ti)

�
X
j2Nni

v̂j(q(t�i; t
0
i); t�i; t

0
i) +

X
j2Nni

v̂j(q(t�i; t
0
i); t�i; ti)

� �2M(n� 1)jjP�(�jt�i; ti)� P�(�jt�i; t0i)jj

9.2. Proof of Theorem A:

We prove part (ii) �rst. Choose " > 0: Let

M = max
�
max
i
max
ti
max
q2C

vi(q; �; ti)

and let K be the cardinality of T . Choose � so that

0 < � <
"

4M(n+ 1)
p
K
:

Suppose that P 2 ��
��T satis�es

max
i
�Pi � �min

i
�Pi :

De�ne �̂P = maxi �Pi and �
P = mini �

P
i . Therefore �̂

P � ��P : Since
Now we de�ne an augmented GCGV mechanism. For each t 2 T; de�ne

zi(t�i; ti) = "
PT�i(t�ijti)
jjPT�i(�jti)jj2

:

Since 0 � PT�i (t�ijti)
jjPT�i (�jti)jj2

� 1; it follows that

0 � zi(t�i; ti) � "

for all i, t�i and ti:
The augmented CGV mechanism fq; �qi + zigi2N is clearly ex post e¢ cient.

Individual rationality follows from the observations that

v̂i(q(t); t) + �
q
i (t) � 0
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and
zi(t) � 0:

Claim 1: Let K = jT j. ThenX
(t�i;ti)2T �

(zi(t�ijti)� zi(t�ijt0i))P (t�ijti) �
"

2
p
K
�Pi

Proof of Claim 1:X
(t�i;ti)2T �

(zi(t�ijti)� zi(t�ijt0i))P (t�ijti) =
X

(t�i;ti)2T �
(zi(t�ijti)� zi(t�ijt0i))P (t�ijti)

=
X

(t�i;ti)2T �
"

�
PT�i(t�ijti)
jjPT�i(�jti)jj2

�
PT�i(t�ijt0i)
jjPT�i(�jt0i)jj2

�
P (t�ijti)

=
"jjPT�i(�jti)jj2

2

 PT�i(�jti)
jjPT�i(�jti)jj2

�
PT�i(�jt0i)

jjPT�i(�jt0i)jj2

2
� "

2
p
K
�Pi

This completes the proof of Claim 1.

Claim 2:X
(t�i;ti)2T �

[(v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + xi(t�i; t0i))]P (t�ijti) � �5M�̂P

Proof of Claim 2: De�ne

Ai(t
0
i; ti) = ft�i 2 T�ij (t�i; ti) 2 T �; (t�i; t0i) 2 T �; jjP�(�jt�i; ti)�P�(�jt�it0i)jj > �̂Pg

and

Bi(t
0
i; ti) = ft�i 2 T�ij (t�i; ti) 2 T �; (t�i; t0i) 2 T �; jjP�(�jt�i; ti)�P�(�jt�it0i)jj � �̂Pg

and
Ci(t

0
i; ti) = ft�i 2 T�ij (t�i; ti) 2 T �; (t�it0i) =2 T �g

Since �Pi � �̂P ; we conclude that

Probf~t�i 2 Ai(t0i; ti)j~ti = tig � �Pi � �̂P :

27



In addition,

0 � v̂i(q(t�i; ti); t�i; ti) + �qi (t�i; ti) � v̂i(q(t�i; ti); t�i; ti) �M

for all i; ti and t�i: Therefore,

jv̂i(q(t�i; t0i); t�i; ti) + �
q
i (t�i; t

0
i)j = jv̂i(q(t�i; t0i); t�i; ti)� v̂i(q(t�i; t0i); t�i; t0i)
+ v̂i(q(t�i; t

0
i); t�i; t

0
i) + �

q
i (t�i; t

0
i)j

� jv̂i(q(t�i; t0i); t�i; ti)� v̂i(q(t�i; t0i); t�i; t0i)j
+ jv̂i(q(t�i; t0i); t�i; t0i) + �

q
i (t�i; t

0
i)j

� 3M

for all i; ti; t0i and t�i: Applying the de�nitions, it follows thatX
t�i2Ai(t0i;ti)

[(v̂i(q(t�i; ti); t�i; ti) + �
q
i (t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + �

q
i (t�i; t

0
i))]P (t�ijti)

� �3M
X

t�i2Ai(t0i;ti)

P (t�ijti)

� �3M�̂P :

X
t�i2Bi(t0i;ti)

[(v̂i(q(t�i; ti); t�i; ti) + �
q
i (t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + �

q
i (t�i; t

0
i))]P (t�ijti)

� �2M(n� 1)
X

t�i2Bi(t0i;ti)

jjP�(�jt�i; ti)� P�(�jt�it0i)jjP (t�ijti)

� �2M(n� 1)�̂P :

and X
t�i2Ci(t0i;ti)

[(v̂i(q(t�i; ti); t�i; ti) + �
q
i (t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + �

q
i (t�i; t

0
i))]P (t�ijti)

=
X

t�i2Ci(t0i;ti)

[(v̂i(q(t�i; ti); t�i; ti) + �
q
i (t�i; ti))� (v̂i(c0; t�i; ti) + 0)]P (t�ijti)

=
X

t�i2Ci(t0i;ti)

(v̂i(q(t�i; ti); t�i; ti) + �
q
i (t�i; ti))P (t�ijti)

� 0:
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Combining these observations completes the proof of the claim 2.

Applying Claims 1 and 2, it follows that

X
(t�i;ti)2T �

(v̂i(q(t�i; ti); t�i; ti) + �i(t�i; ti) + zi(t�i; ti))P (t�ijti)

�
X

(t�i;ti)2T �
(v̂i(q(t�i; t

0
i); t�i; ti) + �i(t�i; t

0
i) + zi(t�i; t

0
i))P (t�ijti)

=
X

(t�i;ti)2T �
[(v̂i(q(t�i; ti); t�i; ti) + �

q
i (t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + �

q
i (t�i; t

0
i))]P (t�ijti)

+
X

:(t�i;ti)2T �
(zi(t�i; ti)� zi(t�i; t0i))P (t�ijti)

� "

2
p
K
�Pi � 2(n+ 1)M�̂P

� 0:
and the proof of part (ii) is complete.
Part (i) follows from the computations in part (ii). We have shown that, for any

positive number �, there exists an augmented GCGV mechanism fq; �qi + zigi2N
satisfyingX
(t�i;ti)2T �

[(v̂i(q(t�i; ti); t�i; ti) + �
q
i (t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + �

q
i (t�i; t

0
i))]P (t�ijti)

� �

2
p
K
�Pi � 5M�̂P

for each i and each ti; t0i: If �
P
i > 0 for each i, then � can be chosen large enough

so that incentive compatibility is satis�ed. This completes the proof of part (i).

9.3. Proof of Lemma C

Let P (�j�) denote the conditional measure on A and we assume that P (�j�) 6=
P (�j�̂). Let tr = (tr1; ::; trr) so that Pr obf~tr = trj~� = �)g = P (tr1j�) � � �P (trrj�): For
each � 2 A; let f(tr; �) = #fi � rjtri = �g and de�ne f(tr) = (f(tr; �))�2A:
For each �; let

�(�) := max
�̂ 6=�

Y
�2A

"
P (�j�̂)
P (�j�)

#P (�j�)
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Using the same argument found in Gul and Postlewaite (see their equation 9) we
deduce that �(�) < 1 . It is easy to show (simply compute the logarithm) that
there exists a � > 0 such that

Y
�2A

"
P�(�j�̂)
P�(�j�)

# f(tr j�)
r

�P (�j�)

� 1p
�(�)

whenever �̂ 6= � and jjf(t
r)
r
� P (�j�)jj < �: Letting R = max� �(�); we conclude

that jjf(t
r)
r
� P (�j�)jj < � implies that

P�(�̂jtr)
P�(�jtr)

=

24Y
�2A

"
P�(�j�̂)
P�(�j�)

#P (�j�)Y
�2A

"
P�(�j�̂)
P�(�j�)

# f(tr j�)
r

�P (�j�)
35r � "�(�) 1p

�(�)

#r
� Rr=2

whenever �̂ 6= �. This in turn implies that

jj�� � P�(�jtr)jj � 2(m� 1)Rr=2

where �� is the Dirac measure with ��(�) = 1 and j�j = m. To complete the
argument, choose ti; t0i 2 A and note that for all r su¢ ciently large,

Pr obfjjP�(�j~tr�i; ti)� P�(�j~tr�i; t0i)jj > 4(m� 1)Rr=2j~� = �g
� Pr obf9� 2 A : jj�� � P�(�j~tr�i; �)jj > 2(m� 1)Rr=2j~� = �g

� Pr obf9� 2 A : jj
f(~tr�i; �)

r
� P�(�j�)jj � �j~� = �g

� Pr obfjjf(
~tr)

r
� P�(�j�)jj � �=2j~� = �g

� 2 exp(�r�
2

2
)

where the last inequality is due to Hoe¤ding (JASA, 1963). Hence, for all r
su¢ ciently large,

�Pi � maxf4(m� 1)Rr=2;
2 exp(�r�

2

2
)

�
g

where
� := min

�2A
P (�):
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9.4. Proof of Theorem C

For each t 2 T; de�ne

zi(t�i; ti) =
"

r

PTi+1(ti+1jti)
jjPTi+1(�jti)jj2

if i = 1; ::; r � 1

=
"

r

PT1(t1jtr)
jjPT1(�jtr)jj2

if i = r

Since
0 � zi(t�i; ti) �

"

r

for all i, t�i and ti so individual rationality of the augmented mechanism follows
from the observations that

v̂i(q(t); t) + xi(t) � 0

and
zi(t) � 0:

Claim 1: Let K = jT 2j. ThenX
(t�i;ti)2T �

(zi(t�ijti)� zi(t�ijt0i))P (t�ijti) �
"

2
p
K
�Pi

Proof of Claim 1:X
(t�i;ti)2T r

(zi(t�ijti)� zi(t�ijt0i))P r(t�ijti) =
X

(t�i;ti)2T r
(zi(t�ijti)� zi(t�ijt0i))P r(t�ijti)

=
X

(t�i;ti)2T r

"

r

�
PTi+1(ti+1jti)
jjPTi+1(�jti)jj2

�
PTi+1(ti+1jt0i)
jjPTi+1(�jti)jj2

�
P (t�ijti)

=
X

(ti+1;ti)2T r

"

r

�
PTi+1(ti+1jti)
jjPTi+1(�jti)jj2

�
PTi+1(ti+1jt0i)
jjPTi+1(�jti)jj2

�
P (ti+1jti)

� "

2r
p
K
�P

2

i

This completes the proof of Claim 1.
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Claim 2:X
(t�i;ti)2T r

[(v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + xi(t�i; t0i))]P r(t�ijti) � �5M�P
r

Proof of Claim 2: De�ne

Ai(t
0
i; ti) = ft�i 2 T r�ij jjP r�(�jt�i; ti)� P r�(�jt�it0i)jj > �̂P

rg

and
Bi(t

0
i; ti) = ft�i 2 T r�ij jjP r�(�jt�i; ti)� P r�(�jt�it0i)jj � �̂P

rg:
We conclude that

Probf~t�i 2 Ai(t0i; ti)j~ti = tig � �P
r

:

In addition,

0 � v̂ri (q(t�i; ti); t�i; ti) + xi(t�i; ti) � v̂ri (q(t�i; ti); t�i; ti) �M

for all i; ti and t�i: Therefore,

jv̂ri (q(t�i; t0i); t�i; ti) + xi(t�i; t0i)j = jv̂ri (q(t�i; t0i); t�i; ti)� v̂ri (q(t�i; t0i); t�i; t0i)
+ v̂ri (q(t�i; t

0
i); t�i; t

0
i) + xi(t�i; t

0
i)j

� jv̂ri (q(t�i; t0i); t�i; ti)� v̂ri (q(t�i; t0i); t�i; t0i)j
+ jv̂ri (q(t�i; t0i); t�i; t0i) + xi(t�i; t0i)j
� 3M

for all i; ti; t0i and t�i: Applying the de�nitions, it follows thatX
t�i2Ai(t0i;ti)

[(v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + xi(t�i; t0i))]P r(t�ijti)

� �3M
X

t�i2Ai(t0i;ti)

P r(t�ijti)

� �3M�̂P :

X
t�i2Bi(t0i;ti)

[(v̂i(q(t�i; ti); t�i; ti) + xi(t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + xi(t�i; t0i))]P r(t�ijti)

� �2MKr
X

t�i2Bi(t0i;ti)

jjP r�(�jt�i; ti)� P r�(�jt�it0i)jjP r(t�ijti)

� �2MKr�P
r

:
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Combining these observations completes the proof of the claim 2.

Applying Claims 1 and 2, it follows that for su¢ ciently large r,

X
(t�i;ti)2T r

(v̂i(q(t�i; ti); t�i; ti) + �i(t�i; ti) + zi(t�i; ti))P
r(t�ijti)

�
X

(t�i;ti)2T r
(v̂i(q(t�i; t

0
i); t�i; ti) + �i(t�i; t

0
i) + zi(t�i; t

0
i))P

r(t�ijti)

=
X

(t�i;ti)2T r
[(v̂i(q(t�i; ti); t�i; ti) + �

q
i (t�i; ti))� (v̂i(q(t�i; t0i); t�i; ti) + �

q
i (t�i; t

0
i))]P

r(t�ijti)

+
X

:(t�i;ti)2T r
(zi(t�i; ti)� zi(t�i; t0i))P r(t�ijti)

� "

2r
p
K
�P

2

i � 3M�P r � 2MKr�P
r

=
1

r

�
"

2
p
K
�P

2

i � 3Mr�P r � 2M
�
Kr

rL

��
rL+1�P

r��
� 0:

and the proof is complete.
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