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Summary. Every agent reports his willingness to pay for one unit of good. A mechanism
allocates goods and cost shares to some agents. We characterize the group strategyproof
(GSP ) mechanisms under two alternative continuity conditions interpreted as tie-breaking
rules. With the maximalist rule (MAX) an indifferent agent is always served. With the
minimalist rule (MIN) an indifferent agent does not get a unit of good.

GSP and MAX characterize the cross-monotonic mechanisms. These mechanisms are
appropriate whenever symmetry is required. On the other hand, GSP and MIN characterize
the sequential mechanisms. These mechanisms are appropriate whenever there is scarcity of
the good.

Our results are independent of an underlying cost function; they unify and strengthen
earlier results for particular classes of cost functions.
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1 Introduction

Units of a nontransferable, indivisible and homogeneous good (or service) are available at
some non-negative cost. Agents are interested to consume at most one unit of that good
and are characterized by their valuation for it (which we call their utility). We look for
mechanisms that elicit these utilities from the agents, allocate some goods to some agents
and charge some money only to the agents who are served.

These mechanisms have been widely explored in the cost-sharing literature (see below).
The canonical example is sharing the cost of providing some optional service to geographi-
cally dispersed agents (e.g. Internet), where the cost function is not necessarily symmetric.
Another example is auctions where the seller has multiple copies of a good.

When agents have private information about their utility, incentive compatibility of the
mechanism, here interpreted as strategyproofness (SP ), is an issue. The mechanisms that
satisfy SP are the “auction” type mechanisms. That is, every agent is offered to buy a unit
of good at a price that depends exclusively on the reports of the other agents.

A familiar strengthening of SP is group strategyproofness (GSP ). This property rules
out coordinated misreports of any group of agents. GSP is particularly interesting in set-
tings where the designer of the mechanism has little information about the types of agents
participating in the economy, for instance when the designer is dealing with agents in a large
network like the internet. In these settings, it is usually the case that agents have the ability
to coordinate misreports, and hence increase their net-utility. GSP is a robust property that
rules out coordinated misreports under any possible information context. In particular, it
works whether the information on individual characteristics is private or not.

For a SP mechanism, whether or not the agents who are offered a price equal to their
valuation are served is of no consequence. Not so for GSP mechanisms. GSP is clearly
violated if such an agent can be “bossy,” i.e. affect the welfare of another agent without
altering his own.1 For instance, consider the mechanism that offers to the agents in {1, 2},
following the order 1 � 2, the first unit at price p and the second unit at price p′, p′ > p.
Assume agent’s 1 utility for a unit of good equals exactly p and agent’s 2 utility is strictly
bigger that p, then GSP requires agent 1 not to be served. Otherwise, agent 1 can help
agent 2 by reporting a utility below p. Whereby agent 2 is offered the cheaper price p.

This paper characterizes the GSP mechanisms under two continuity conditions, inter-
preted as tie-breaking rules. With the maximalist tie-breaking rule (MAX), an agent who
is indifferent between getting or not getting a unit of good will always get a unit of good.
With the minimalist rule (MIN), the indifferent agents never get a unit of good.

The mechanisms that satisfy GSP and MAX are the cross-monotonic mechanisms (The-
orem 1), where unlike in the above example the price offered to an agent weakly decreases as
more agents are served. Specifically, for any subset of agents S consider a vector of nonnega-
tive payments xS ∈ [0,∞]N that are zero for all agents not in S. A collection of payments is
cross-monotonic if the payments are weakly inclusion decreasing. Given a cross-monotonic

1In some contexts, GSP is equivalent to the combination of SP and non-bossiness: Papai[2000, 2001],
Ehlers et al.[2003], Svensson et al.[2002]. In our context, a similar equivalence holds by imposing two
alternative non-bossy conditions, see Mutuswami[2005].
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collection of payments, we construct the mechanism as follows. For a report of utilities al-
locate S∗ at cost xS∗ , where S∗ is the largest coalition of agents such that everyone in S∗ is
willing to pay xS∗ to get service –this coalition exists by cross-monotonicity of the payments.

The mechanisms that satisfy GSP and MIN are the sequential mechanisms (Theorem
2). Loosely speaking, consider any binary tree of size n such that to every node is attached
exactly one agent and any path from the root to a terminal node goes through all agents
exactly once. At every decision node we also attach a nonnegative price. Given this tree,
we construct the mechanism as follows. First we offer service to the root agent at the price
attached to his node. We proceed on the right branch from the root if service is purchased
and on the left branch if it is not. The key restriction on prices is that for any two nodes to
which the same agent is attached, the price on the rightist node is not smaller than that on
the leftist node.2

Surprisingly, the (welfarewise) intersection of sequential and cross-monotonic mechanisms
is almost empty. It contains only the fixed cost mechanisms (Corollary 1), offering to each
agent a price completely independent of the reports.

An important property of cross-monotonic mechanisms is to allow equal treatment of
equals, which no other GSP mechanism does (Proposition 1). On the negative side, when
there are only k units of good available, k < n, cross-monotonic mechanisms must exclude
n−k agents from the mechanism, that is they will never be served at any profile (see section
6.3). By contrast, not all sequential mechanisms exclude agents ex-ante. In fact, only the
priority mechanisms, where agents are offered sequentially a unit of good at a fixed price
until someone accepts the offer, meet GSP and allocate at most one unit of good at any
profile (Proposition 2).

We do not make an actual cost function part of the definition of a mechanism. That is,
we place no constraint on the total cost shares collected from the agents who are served.
Thus our characterization results of GSP mechanisms are entirely orthogonal to budget
balance and other feasibility requirements (such as bounds on the budget surplus or deficit).
Naturally, one of the first questions we ask about the class of mechanisms identified in
theorems 1 and 2 is when can they be chosen so as to cover exactly a given cost function. In
examples 3 and 10 we answer these questions under a weak symmetry assumption. In this
way, we recover most mechanisms identified in the earlier literature.

2 Related literature

There is some interesting literature in the design of GSP mechanisms for assignment prob-
lems of heterogeneous goods when money is not available (Ehlers[2002], Ehlers et al.[2003],
Papai [2000, 2001] and Svensson et al.[2002]). Unfortunately, this literature usually charac-
terizes mechanisms with poor equity properties (e.g. dictatorial mechanisms). By contrast,
the class of GSP mechanism when money is available is very rich (see below).

The design of GSP cost sharing mechanisms for heterogeneous goods was first discussed
by Moulin[1999] and Moulin and Shenker[2001]. When the cost function is submodular

2See definition 9 for precise conditions.
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(concave), cross-monotonic mechanisms are characterized by GSP , budget balance, volun-
tary participation, nonnegative transfers and strong consumer sovereignty.3 Roughgarden et
al.[2006a, 2006b], Pa’l et al.[2003] and Immorlica et al.[2005] consider cross-monotonic mech-
anisms when the cost function is not submodular. Roughgarden et al.[2006] uses submodular
cross-monotonic mechanisms to approximate budget balance when the actual cost function is
not submodular. Immorlica et al.[2005] shows that new cross-monotonic mechanisms emerge
when consumer sovereignty is relaxed.

The sequential mechanisms of our Theorem 2 are discussed by Moulin[1999] who imposes
budget balance for a supermodular (convex) cost function. Theorem 1 there asserts wrongly
that all GSP mechanisms meeting budget balance, voluntary participation, nonnegative
transfers and strong consumer sovereignty charge successively marginal cost following an
independent ordering of the agents. We correct this erroneous statement in example 9.

Roughgarden et al.[2007] uncovers a very clever class of weakly GSP mechanisms that are
neither cross-monotonic nor sequential (see also Devanur et al.[2005]). This class contains
sequential and cross-monotonic mechanisms, as well as hybrid mechanisms. They apply
these mechanisms to the vertex cover and Steiner tree cost sharing problems to improve the
efficiency of algorithms derived from cross-monotonic mechanisms. A closely related paper
is the companion paper Juarez[2007b] developing a model where indifferences are ruled out.
For instance, agents report an irrational number and payments are rational. It turns out
that the class of GSP mechanisms becomes very large. In particular, it contains mechanisms
very different to cross-monotonic and sequential mechanisms (and also those discussed by
Roughgarden et al.[2007]). Juarez[2007b] provides three equivalent characterizations of the
GSP mechanism in this economy, two of which are generalizations of the cross-monotonic
and sequential mechanisms discussed in this paper.

When a cost function is specified, an important question is to evaluate the trade-offs
between efficiency and budget balance. Moulin and Shenker[2001] discuss this issue for bud-
get balanced cross-monotonic mechanisms when the underlying cost function is submodular.
In particular, they find that the cross-monotonic Shapley value mechanism, where the pay-
ment of a coalition equals its stand alone cost, minimizes the worst absolute surplus loss.4

Juarez[2007a] analyzes similar trade-offs for supermodular cost functions. Contrary to the
submodular case, one can construct optimal sequential mechanisms that cuts the efficiency
loss by half with respect to the optimal budget balanced mechanism.

Finally a result by Goldberg et al.[2004] on fixed cost mechanisms is closely related to
our Corollary 1. It characterizes these mechanisms under a strengthening of GSP , where
agents can coalitionally manipulate by misreporting, transferring goods and money between
them.

3Strong consumer sovereignty says that every agent has reports such that he gets (or does not get) a unit
of good irrespective of other people reports.

4See also Juarez[2006] for a comparison of average cost and random priority using this measure.
Moulin[2007] uses a similar measure to compare the serial, incremental and average cost methods.
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3 The model

For a vector x, x ∈ RM , we denote by x[S] the projection of x over S ⊂ M. xS represents
the sum of the S−coordinates of x, xS =

∑
i∈S xi. When there is no confusion we denote the

projection x[S] simply as xS. Let 1M be the unitarian vector in RM , that is 1M = (1, 1, . . . , 1).
There is a finite number of agents N = {1, 2, . . . , n}. Every agent has a utility (willingness

to pay) for getting one unit of good. Let u, u ∈ RN
+ , the vector of those utilities. Therefore,

if agent i gets a unit paying xi, his net utility is ui − xi. If he does not get a unit his net
utility is zero.

Definition 1 A mechanism (S, ϕ) allocates to every vector of utilities u a coalition of agents
who get goods S(u) ⊆ N and the cost shares (payments) ϕ(u) ∈ RN .

Therefore, the net utility of agent i in the mechanism, denoted by NUi, is NUi(u) =
δi(S(u))(ui − ϕi(u)).5 Let NU(u) be the vector of such net utilities. Notice two different
mechanisms may be welfarewise equivalent, that is their net utilities at any profile be equal.

We restrict our attention to mechanisms that satisfy two familiar feasibility constraints.

• Nonnegative Transfers (NNT ): ϕ(u) ∈ RN
+ .

• Individual Rationality (Voluntary participation (V P )): ϕi(u) ≤ uiδi(S(u)).

Nonnegative transfers requires all cost shares to be positive or zero. This is a common
assumption when no transfers between agents are allowed and we do not want to subsidize
any of them.

On the other hand, individual rationality implies that all agents enter the mechanism
voluntarily. That is, the ex-post net utility of the agents is never smaller than their ex-ante
net utility. Because we are assuming nonnegative transfer, individual rationality implies the
agents with zero utility should pay nothing. However, they may get a unit for free. This is
a basic equity condition protecting individual rights.

We want to characterize the mechanisms that are group strategyproof. That is, any
misreport of a group of agents does not decrease their net utility and strictly increases the
net utility of some agent.

• Group strategyproof (GSP ): For all S ⊂ N, and all utility profiles u and u′ such
that u′

N\S = uN\S, it cannot be that NUi(u) ≤ (ui − ϕi(u
′))δi(S(u′)) for all i ∈ S and

strict inequality for at least one j ∈ S.

We define next our two systematic continuity conditions. Similar continuity conditions
have been used in other models, for instance Deb and Razzolini[1999]. These are tractability
conditions that allow us to get closed-form mechanisms. Nevertheless, these conditions can
be easily interpreted, see below.

5δ is the classic delta function, δi(T ) = 1 if i ∈ T , and 0 otherwise.
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• Upper continuity (Maximalist tie-breaking rule (MAX)): For any i, u−i ∈
RN\i

+ , and u1
i ≥ u2

i ≥ · · · → u∗
i such that i ∈ S(uk

i , u−i) for all k, then i ∈ S(u∗
i , u−i).

• Lower continuity (Minimalist tie-breaking rule (MIN)): For any i, u−i ∈ RN\i
+ ,

and u1
i ≤ u2

i ≤ · · · → u∗
i such that i 6∈ S(uk

i , u−i) for all k, then i 6∈ S(u∗
i , u−i).

In the space of strategyproof mechanisms, upper and lower continuity can be interpreted
as tie-breaking rules. Upper continuity (MAX) serves the agents who are indifferent between
getting or not getting a unit of good, whereas lower continuity (MIN) does not serve the
indifferent agents. To see this, consider a SP mechanism. Then, there exist arbitrary pricing
functions fi : RN\i

+ → [0,∞] for i = 1, . . . , n, such that at the utility profile u, agent i is
offered a unit of good at price fi(u−i). That is, if ui > fi(u−i) then i is served at price fi(u−i);
if ui < fi(u−i) then i is not served and pays nothing; and if ui = fi(u−i) then i may get a
unit of good at this price or may not get it. Under MAX, if ui = fi(u−i) then the agent
gets a unit of good at price fi(u−i). On the other hand, under MIN, if ui = fi(u−i) then i
does not get a unit of good and pays nothing.

Finally, our model is equivalent to the reduced model where agents have utility bounded
above by a positive value L. A price equal to ∞, fi(u−i) = ∞, is reinterpreted in the new
model as a price bigger than L. That is, agent i is offered a unit of good at a price above his
maximum utility.

4 Cross-monotonic mechanisms and MAX

Definition 2 A cross-monotonic set of cost shares (payments) assigns to every coalition
S ⊆ N a vector xS ∈ [0,∞]N such that xS

[N\S] = 0 and moreover

If S ⊆ T then xS
[S] ≥ xT

[S].

We denote by χN a cross-monotonic set of cost shares, χN = {xS | S ⊆ N}.
We interpret xS as the payment when the agents in S, and only them, are served. There-

fore, by NNT and V P it should be zero for the agents outside S.
The key feature is that payments should not increase as coalition increases. This implies

that for every utility profile u the set of feasible coalitions, F (u) = {S ∈ 2N | xS ≤ u}, has
a maximum element with respect to the inclusion ⊆. To see this, notice if S, T ∈ F (u) then
by cross-monotonicity S ∪ T ∈ F (u).

Definition 3 Given a cross-monotonic set of cost shares χN , we define a cross-monotonic
mechanism (S, ϕ) as follows. For every utility profile u, S(u) is the maximum feasible coali-
tion at u and ϕ(u) = xS(u).

Theorem 1 A mechanism satisfies GSP and MAX if and only if it is cross-monotonic.
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In an economy without indifferences, cross-monotonic mechanisms are also characterized
by GSP and monotonicity in size, that is if u ≤ ũ then S(u) ⊆ S(ũ). See Juarez[2007b] for
details.

Given a cross-monotonic set of cost shares χN , we can also implement the truthful out-
come of the cross-monotonic mechanism by playing the following demand game proposed by
Moulin[1999]. We offer agents in N units of good at price xN . If all of they accept it, then
everyone is served at prices xN . If only agents in S accept, then we remove agents in N \ S
from the game and offer agents in S units of good at price xS. Continue similarly until all
of the agents in a coalition accepted or every agent in N was removed from the game.

Example 1 (Geometric description of cross-monotonic mechanisms for n = 1, 2) The
one agent mechanisms can be described by a constant x, x ∈ [0,∞]. The agent gets a unit
and pays x if his utility is bigger than or equal to x. He does not get a unit and pays nothing
otherwise.

Figure 1: Generic form of 2-agent cross-monotonic mechanisms.

The two agent mechanisms should be generated by a cross-monotonic set of cost shares.
Thus 0 ≤ x

{1,2}
1 ≤ x1

1 and 0 ≤ x
{1,2}
2 ≤ x2

2 (see figure 1).
By MAX, the level set of {1, 2} is closed. The borders between the level sets of {1} and

∅, and {2} and ∅, should belong to the {1} and {2} respectively.

As is well know from previous literature, if the actual cost of the service C is submodular
with respect to coalitions, we can choose a cross-monotonic mechanism to cover this cost
exactly. For instance, we can choose the cross-monotonic set of cost shares χN where the
payments of the agents in S are given by the egalitarian solution xS

i = C(S)
|S| for all i ∈ S.

We can alternatively choose the payments of those agents given by the Shapley value or the
Dutta-Ray egalitarian solution (Dutta and Ray[1999]) on the stand alone cost function.

Definition 4 We say a mechanism satisfies strong consumer sovereignty (SCS) if every
agent i has utility profiles ūi and ũi such that for any profile of the other agents u−i, i 6∈
S(ūi, u−i) and i ∈ S(ũi, u−i).
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Moulin[1999] proved that, in the space of submodular cost functions, any mechanism that
is budget balanced, SCS and GSP should be implemented as a cross-monotonic mechanism
for a set of cross-monotonic and budget-balanced cost shares. The result we propose is more
general. We show that cross-monotonic mechanisms emerge simply from the combination
of GSP and MAX. However, as shown in example 3, this does not imply the cost sharing
function defined by C(S) =

∑
i∈S xS

i is submodular. Hence we capture Moulin’s mechanisms
and a few more.

Example 2 Immorlica et al.[2005] proposes an example where exactly one agent pays a pos-
itive amount when a coalition of agents is served. This example relaxes the SCS condition on
Moulin[1999] result (see above), therefore is not captured by Moulin’s mechanisms. However,
it is captured by our class of cross-monotonic mechanisms. For a submodular cost function,
order the agent arbitrary, say i1 � i2 � · · · � in. Offer the agents, following this order, a unit
of good at the cost of himself and the agents after him. The mechanism ends when someone
accepts the offer or when we have made an offer to every agent. That is, agent i1 will be
offer a unit at price C(i1, . . . , in). If he accepts, the mechanism ends there. If he rejects, we
offer agent i2 a unit of good at price C(i2, . . . , in), and so on. The cross-monotonic set of
cost shares that implements this mechanism is xS

i∗ = C(Di∗) and xS
j = 0 for all j 6= i∗, where

i∗ is the maximal element in S and D∗
i is the set of agents dominated by i∗ with � (including

him).

Definition 5 We say the mechanism (S, ϕ) meets the equal share property (ESP) if every
agent in the coalition that is getting service pays the same. That is, if ϕi(u) = ϕj(u) for all
i, j ∈ S(u).

Example 3 Consider any cost function C : 2N → R+ such that its average cost function
AC, AC(S) = C(S)

|S| , is not increasing as coalition increases.

xS
i = AC(S) if i ∈ S, xS

i = 0 if i 6∈ S, defines a cross-monotonic set of cost shares that
covers the cost exactly and meets the ESP .

It is easy to see that the monotonicity of AC does not imply the concavity of C. Hence,
there are ESP cross-monotonic set of cost shares whose associated cost function is not
concave.

Finally, notice that a ESP cross-monotonic set of cost shares covers exactly the cost of
C if and only if its average cost AC is not increasing.

In general, if the cross-monotonic set of cost shares χN does not meet the ESP , then
the cost function C exactly covered by χN may not be easy to describe. See Sprumont[1990]
and Norde et al.[2002] for characterizations of these cost functions in simple cases.

5 Sequential mechanisms and MIN

Definition 6 A sequential tree is a binary tree of length n such that:
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i. at every node there is exactly one agent in N and a price in [0,∞].

ii. Every path from the root to a terminal node contains all agents in N exactly once.

Definition 7 (Sequential mechanisms) Given a sequential tree we construct a sequential
mechanisms as follows:

We offer the agent in the root of the tree a unit of good at the price of his node. If his
utility is strictly bigger than the offered price, then we allocate him a unit at this price and
go right on the tree. If his utility is smaller than or equal to the offered price then we do not
allocate him a unit and go left on the tree. We continue similarly with the following agent
until we reach the end of the tree.

Figure 2: Sequential trees for three agents. (a) Agents follow order 1,2,3. (b) Agents 2 and
3 follow different orders depending on whether agent 1 is going right or left.

Example 4 In figure 2 we show the only two possible (up to renaming the agents) sequential
trees for the agents in N = {1, 2, 3}. Every node contains a number and a letter. The number
represent the agent in this node. The letter represent a prices in [0,∞].

Consider the sequential tree of figure 2(a) and the mechanism (S, ϕ) that it implements. If
the utility profile u is such that u1 > w, u2 > y and u3 ≤ d then the outcome is S(u) = {1, 2}
and ϕ(u) = (w, y, 0).

On the other hand, if ũ is such that ũ1 ≤ w, ũ2 > x and ũ3 ≤ b then S(ũ) = {2} and
ϕ(ũ) = (0, x, 0).

Sequential mechanisms are not group strategyproof. For instance, consider the mecha-
nism generated by the sequential tree of figure 2(a). If y < x, then when the true utility
profile is such that u1 = w and u2 > y, agent 1 can help agent 2 by reporting a utility bigger
than w, whereby agent 2 is offered a unit at a cheaper price. However, these mechanisms are
weakly group strategyproof, that is if a coalition of agents successfully misreports, then at
least one agent in this coalition is indifferent. Definition 9 gives the exact conditions under
which sequential mechanisms are GSP.
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Given a sequential tree, consider any path in the tree and a non terminal node ζ in this
path. We say ζ is leftist (rightist) on this path if the edge in the path that follows ζ is a left
(right) edge. For instance, the path [1w, 2y, 3c] in figure 2(a) contains one rightist node and
one leftist node. 1w is rightist and 2y is leftist.

One useful path is from a node to the root of the tree. We denote by P0(ζ) this path
starting at node ζ. For instance, in figure 2(a), P0(3c) = [1w, 2y, 3c], P0(3d) = [1w, 2y, 3d]
and P0(2x) = [1w, 2x].

Notice the intersection of two paths to the root of the tree is also path to the root of the
tree. We use u to denote it. For instance, in figure 2(a), P0(3c) u P0(3d) = [1w, 2y]. Notice
this intersection may also lead to the degenerated path that contains only the root of the
tree, for instance P0(2x) u P0(2y) = [1w].

Definition 8 Let ζ and ζ ′ two nodes in a sequential tree. We say the node ζ is on the left
of ζ ′ if the terminal node of P0(ζ) u P0(ζ

′) is leftist on P0(ζ) and rightist on P0(ζ
′).

For instance, in figure 2(a), P0(3c) = [1w, 2y, 3c], P0(3d) = [1w, 2y, 3d]. Since 2y is leftist
in [1w, 2y, 3c] and rightist in [1w, 2y, 3d], then 3c is on the left of 3d.

Finally, if T is a path and i is an agent in this path, i ∈ T, then we denote by xT
i the

price of agent i in T.

Definition 9 (Feasible sequential tree) Consider a sequential tree and any two nodes ζ
and ζ ′ with a common agent k such that ζ is on the left of ζ ′. Also, assume every rightist
node in P0(ζ) or P0(ζ

′) has finite price. Let L the maximal sub-path of P0(ζ) that does not
intersect P0(ζ

′), that is L = P0(ζ)\(P0(ζ)uP0(ζ
′)). Similarly, let R = P0(ζ

′)\(P0(ζ)uP0(ζ
′)).

We say that a sequential tree is feasible if for any two nodes ζ and ζ ′ as above, whenever
the prices of agent k are such that xL

k > xR
k , there exist nodes ζ̃ ∈ L and ζ̄ ∈ R that contain

the same agent i and:

(a) ζ̃ is leftist in L and ζ̄ is rightist in R and xL
i < xR

i , or

(b) ζ̃ is rightist in L and ζ̄ is leftist in R and xL
i ≥ xR

i .

We say a sequential mechanism is feasible if it is implemented by a feasible sequential
tree.

Notice a sufficient condition to guarantee a feasible sequential tree is that for any two
nodes with the same agent, the price on the leftist node is not bigger than the price on the
rightist node. This condition is necessary when there are at most three agents (see examples
5, 6 and 7). Example 8 shows this is not true when there are more than three agents.

Theorem 2 A mechanism is GSP and MIN if and only if it is a feasible sequential mech-
anism.
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Consider a feasible sequential mechanism and assume agent i∗ is in the root of its feasible
sequential tree. Consider the leftist (rightist) sequential mechanism for N \ i∗ agents, gener-
ated by the feasible sequential subtree where agent i∗ is leftist (rightist). Then, the outcome
of this leftist mechanism should Pareto dominate the outcome of the rightist mechanism at
any profile of N \ i∗ agents. That is, for any profile of uN\i∗ agents, any agent in N \ i∗ should
be better off without agent i∗ than with agent i∗. To see this, assume at this profile agent
j ∈ N \ i∗ is strictly better off with the rightist mechanism. Then, when the utility of agent
i∗ equals his offered price, ui∗ = x∗

i , by MIN we should allocate with leftist mechanism and
i∗ is not served. Thus agent i∗ can help agent j∗. He can increase his utility profile, he will
be served at a price equal to his valuation and agent j∗ will be better off.

Example 5 (Geometric description of feasible sequential mechanisms for n = 1, 2)
The one agent mechanisms are easy to describe. Given x1 ∈ [0,∞], agent 1 gets a unit of
good at price x1 if and only if u1 > x1.

A two agents mechanism such that 2 has priority over 1, is shown in figure 3. Agent 2
gets a unit of good at price x2 if and only if u2 > x2. If 2 gets a unit of good, then agent 1
gets a unit of good at price d1 if u1 > d1. On the other hand, if agent 2 did not get a unit of
good, then agent 1 gets a unit of good at price d2 if u1 > d2. By feasibility of the tree d2 ≤ d1.

Figure 3: Generic form of 2-agent feasible sequential mechanisms.

Example 6 Assume there are three agents. Figure 2 shows sequential trees for three agents.
Every node contains an agent from {1, 2, 3} and a nonnegative price.

On figure 2(a), a feasible sequential tree (assuming finite prices) implies: x ≤ y, a ≤ b ≤ d
and a ≤ c ≤ d. Also, if x < y then b ≤ c.

To see this, consider nodes 2x and 2y. Since they are consecutive nodes, their paths to
the root of the tree only differ in 2x and 2y respectively. Then, conditions (a) and (b) cannot
be satisfied. Hence x ≤ y.

Similarly, a ≤ b and c ≤ d are satisfied by comparing nodes 3a and 3b, and 3c and 3d
respectively.

On the other hand, by comparing nodes 3a and 3c, conditions (a) and (b) are not satisfied
because 2x and 2y are both leftist. Hence a ≤ c. Similarly b ≤ d.
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Now consider the nodes 3b and 3c. If x < y, then condition (a) is not satisfied because
2y is not rightist. Condition (b) is not satisfied because x < y. Therefore it cannot be that
b > c. Hence x < y and a ≤ b ≤ c ≤ d.

Finally, assume x = y. From the argument given above, a ≤ b ≤ d and a ≤ c ≤ d.
If b ≤ c then for every two nodes with the same agent, the price on the leftist node is

smaller than the price on the rightist node.
On the other hand, if b > c then because agents 1 and 2 have priority, we can exchange

their order on the tree. This will look like figure 4. With this order, for every two nodes with
the same agent, the price on the leftist node is smaller than the price on the rightist node.

Figure 4: Three agents sequential tree such that the positions of agents 1 and 2 can be
switched without affecting the final outcome.

Example 7 Now consider the figure 2(b). Then feasibility of the tree (assuming finite prices)
requires that a ≤ b ≤ y and x ≤ c ≤ d. That is for every two nodes with the same agent, the
price on the leftist node is smaller than the price on the rightist node.

To see this, by comparing nodes 3a and 3b, and 2c and 2d, we get (similarly to example
above) that a ≤ b and c ≤ d respectively.

Now we compare nodes 3b and 3y. Then there is no common agent in their path to the
root, thus conditions (a) and (b) cannot be satisfied. Hence b ≤ y. That is, a ≤ b ≤ y.

Similarly, by comparing nodes 2x and 2c, x ≤ c. Hence x ≤ c ≤ d.

Example 8 Consider the mechanism generated by the sequential tree of figure 5 (agents are
in the rectangles). For every two nodes with the same agent, the price on the leftist node is
not bigger than the price on the rightist node, except for nodes (4 10) and (4 9). At these
nodes, their paths to the root contain the common agent 2. This agent meets condition (b).
Therefore this tree is feasible.

However, the price on the leftist node (4 10) is bigger than that on the rightist node (4
9).

Since agents 1 and 2 have priority, we can also exchange their positions and leave agent
agent 2 in the root. If this is the case, node (3 8) is on the left of (3 7).
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Figure 5: Four agents feasible sequential tree such that for every two nodes with the same
agent, the price of the rightist node may not be smaller than the price of the leftist node.

Sequential mechanisms are related to the incremental cost mechanisms of Moulin[1999].
That is, consider a supermodular (convex) cost function and a tree as above. Start with the
agent i1 in the root and offer him a unit of good at price C(i1). If he buys, continue with
the agent i2 on the right of the tree and offer him a unit of good at price C(i1, i2)−C(i1). If
i1 did not buy, then offer the agent on the left of the tree, k2, a unit of good at price C(k2).
Proceed similarly with the following agents until you reach the end of the tree.

Theorem 1 in Moulin[1999] suggests that incremental cost mechanisms are GSP mecha-
nisms when the cost function is supermodular. However, this is not true, as shown on next
example.

Example 9 Consider the supermodular cost function:

C(i) = 1, C(1, 2) = 3, C(1, 3) = 5, C(2, 3) = 6, C(1, 2, 3) = 15.

By choosing the ordering 1 � 2 � 3, the cost shares are as follows:
x{1,2,3} = (1, 2, 12), x{1,2} = (1, 2, 0), x{1,3} = (1, 0, 4), x{2,3} = (0, 1, 5), x{i} = 1i.
When the utility profile is u = (1, 1.5, 4.5) there are two options depending on whether

1 decides to get or not get a unit. If agent 1 gets a unit, then 2 does not get a unit and
3 gets a unit. Thus {1, 3} is served and the cost shares are (1, 0, 4). If agent 1 does not
get a unit, then 3 does not get a unit. Thus {2} is served and the cost shares are (0, 1, 0).
Given that 1 is indifferent between getting and not getting a unit, he may help 2 or 3. Thus
the mechanism cannot be GSP . The reason is clear by our analysis. The leftist mechanism
without agent 1 does not Pareto dominate the rightist mechanism at the utility profile u.

What is important from Moulin[1999] is that incremental cost mechanism may not be
fully GSP , but they are GSP except when agents are indifferent between getting and not
getting a unit of good. Thus the mistake is very tiny.

Whenever the supermodular cost function and the ordering of the agents give a sequential
mechanism that is feasible, it must be captured by a sequential mechanism discussed above.
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On the other hand, given a feasible sequential mechanism, the associated budget balance
cost function —the cost of S defined as the sum of the payments on coalition S— may not
be supermodular (see example below). So these mechanisms capture even more mechanism
that those generated by the incremental cost mechanisms.

Example 10 (Feasible sequential mechanisms that meet ESP ) Consider an arbitrary
order of the agents, assume without loss of generality that 1 � 2 � · · · � n, and arbitrary
prices a1 ≥ a2 ≥ · · · ≥ an ≥ 0. Given this order and prices, construct the cost function as
follows:

C(S) =| S | max
k∈S

ak. (1)

For this cost function, there is a feasible sequential mechanism that covers its cost exactly
and meets ESP. To see this, construct a sequential tree following linearly the order � . The
price of a node ζ is ak, where k is the rightist agent in P0(ζ) with the lowest index.

In figure 6 we illustrate this feasible sequential mechanism for five agents. The agents
in every coalition that contains agent 1 pay a1. The agents in every coalition that contains
agent 2 but not 1 pay a2. The agents in every coalition that contains agent 3 but neither 1
or 2 pay a3, etc.

Figure 6: Five agents feasible sequential mechanism that meets ESP .

Clearly, this mechanism meets ESP . This tree is feasible because for every two nodes
with the same agent, the price on the leftist node is not smaller than the price on the rightist
node. Thus the mechanism is a feasible sequential mechanisms that covers the cost C exactly.

It is also clear that any feasible sequential mechanism that meets ESP should be of this
form. Hence, the class of cost functions whose cost is covered exactly by an ESP feasible
sequential mechanism are those described above.

Notice these cost functions may not be supermodular. We can easily find prices that meet
the next inequality:
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C(1, 3) + C(2, 3) = 2a1 + 2a2 > 3a1 + a3 = C(1, 2, 3) + C(3).

Finally, this class of cost function is smaller than the class of cost functions presented
in example 3. There, any cost function with non-increasing average cost is achievable by a
ESP and cross-monotonic mechanism. On the other hand, the class of cost function given
by equation 1 have non-decreasing average cost. Moreover, the average cost is constant for
coalitions that contain agent 1; or for coalitions that do not contain 1 but contain 2, etc.

6 Comparison between cross-monotonic and sequential

mechanisms

6.1 The intersection of cross-monotonic and sequential mecha-
nisms

Although the intersection of MAX and MIN is empty by definition, there is a small class
of mechanisms that are welfare equivalent to both a sequential and a cross-monotonic mech-
anism.

Definition 10 Given x1, . . . , xn ∈ [0,∞], the corresponding fixed cost mechanism offers to
agent i a unit of good at price xi. Indifferences are broken arbitrarily. That is, for the utility
profile u, agent i is guaranteed a unit at price xi if ui > xi. Agent i does not get a unit if
ui < xi. At ui = xi he may or may not get a unit.

Corollary 1 A mechanism is welfare equivalent to a cross-monotonic and a feasible sequen-
tial mechanism if and only if it is a fixed cost mechanism.

This result shows that the behavior of indifferences have a big impact on the class of
GSP mechanism. But one can argue that indifferences are rare event, so that a better
model is one where the domain of utilities and the class of mechanisms preclude indifferences.
On such domain, the class of GSP mechanisms will contain many more mechanisms than
the sequential and cross-monotonic mechanisms. Juarez[2007b] analyzes such domain and
characterizes the corresponding GSP mechanisms.

6.2 Equal treatment of equal agents

Definition 11 We say a mechanism satisfies equal treatment of equals (ETE) if for any u
such that ui = uj, i ∈ S(u) then j ∈ S(u) and ϕi(u) = ϕj(u).

Proposition 1 A mechanism meets GSP and ETE if and only if it is welfare equivalent
to a cross-monotonic mechanism that meets ESP .
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This proposition not only talks in favor of cross-monotonic mechanisms as GSP mech-
anisms meeting the basic equity requirement of ETE. It also shows the incompatibility
of GSP and fairness for any other mechanism that is not welfare equivalent to a cross-
monotonic. In particular, it rules out sequential mechanisms and also those GSP mecha-
nisms discussed by Juarez[2007b] and Roughgarden[2007].

6.3 Limited number of goods

When a social planner or seller has (can produce) less than n units of good, it is impossible to
meet simultaneously ETE and GSP .6 This is easy to check by looking at the utility profiles
of the form (x, . . . , x), x > 0. By ETE, S(x, . . . , x) = ∅ for all x. Hence, by proposition 1
above and taking into account that the smallest cost share in a cross-monotonic mechanism
is achieved when serving N, the mechanism should not allocate any unit at all.

Moreover, when there is scarcity of the good, cross-monotonic mechanisms exclude ex-
ante some agents from the mechanism. That is, if only k units of good are available, k < n,
then any cross-monotonic mechanism is such that n− k agents are not served at any profile.
To see this, notice coalition N never gets service, therefore the cost shares of N should have
at least one coordinate equal to ∞. Thus the agent i with such coordinate never participates
in the game because his smallest payment is achieved when serving N . We remove this
agent from the game and proceed similarly with the remaining coalition N \ i, until we have
removed at least n− k agents.

On the other hand, there are many sequential mechanisms that do not ex-ante exclude
any agent. If k ≥ 2, some easy combination of sequential and cross-monotonic mechanisms
can be constructed.

Definition 12 Given an arbitrary order of the agents i1, . . . , in and arbitrary prices (some
of them may be infinity) x1, x2, . . . , xn, we define a priority mechanism as follows: Start with
agent i1 and offer him a unit of good at price x1. If he buys the mechanism stops there. If he
does not buy, then continue with agent i2 and offer him a unit of good at price x2. Continue
similarly until some agent buy or we offered a unit to all agents.

Notice priority mechanisms are feasible sequential mechanisms for the feasible sequential
tree such that agents are ordered linearly following the order i1, . . . , in; only the most leftist
branch of the tree has prices equal to (x1, x2, . . . , xn) and any other node has a price equal
to ∞.

Proposition 2 Suppose a mechanism is GSP and allocates at most one unit of good at any
profile, then the mechanism is welfare equivalent to a priority mechanism.

Notice this proposition is independent of the tie-breaking rule. In particular, it shows
that when there is only one unit of good, feasible sequential mechanisms are the only GSP
mechanisms that do not exclude ex-ante any agent.

6Except by the trivial mechanism that does not serve anyone at any profile.
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7 Conclusions

This paper characterizes the GSP mechanisms under two alternative continuity conditions.
On one hand, cross-monotonic mechanisms are characterized by GSP and MAX. These
mechanisms are very useful when symmetry is required. However, they are very inefficient
when there is scarcity of the good.

On the other hand, sequential mechanisms are characterized by GSP and MIN . These
mechanisms are appropriate when there is scarcity of the good, for instance when there is
only one unit of good available. Unfortunately, deterministic sequential mechanisms fail
standard equity conditions like symmetry.

Group strategyproof mechanisms without any of the two alternative continuity conditions
can be easily constructed, for instance some priority compositions of sequential an cross
monotonic mechanism are GSP (see Juarez[2007b] or Roughgarden[2007]). However, the
full characterization of GSP mechanisms in this economy is an open question.

Finally, GSP mechanisms without V P and NNT can be easily constructed by making
the following transformation. Fix a GSP mechanism (S, ϕ) meeting V P and NNT , and a
vector v ∈ RN . Let (S̃, ϕ̃) be a mechanism defined as (S̃(u), ϕ̃(u)) = (S(u), ϕ(u) + v) for all
u ∈ RN

+ .

Clearly (S̃, ϕ̃) meets GSP . If v >> 0 then (S̃, ϕ̃) meets NNT but does not meet V P .
On the other hand, if v << 0 then (S̃, ϕ̃) meets V P but does not meet NNT . If v contains
negative and positive coordinates simultaneously, then the mechanism is neither V P nor
NNT .
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Proofs

Proof of Theorem 2.

Feasible sequential mechanisms meet MIN and GSP .

Feasible sequential mechanisms trivially meet MIN.
We prove by contradiction these mechanisms meet GSP . Assume coalition S̃ profitably

misreports ũS̃ at the true profile u. Let k ∈ S̃ be an agent who strictly increases his net
utility by misreporting. Let ζ and ζ ′ be the nodes that contain agent k in the paths that
generate S(u) and S(ũS̃, u−S̃) respectively.

First notice ζ is on the left of ζ ′. To see this, let i∗ be the agent in the terminal node
of P0(ζ) u P0(ζ

′). Then, in order to move from P0(ζ) to P0(ζ
′), agent i∗ misreports. If i∗ is

rightist in P0(ζ) then by MIN his net utility is positive, so he will never agree to move to
P0(ζ

′) because he is not served there.
Let L and R be as in definition 9. Since agent k strictly increases his net utility, then

xL
k > xR

k . Assume condition (a) of feasibility is satisfied. That is, there exist nodes ζ̃ and ζ̄

that contain the same agent i such that ζ̃ is leftist in L, ζ̄ is rightist in R and xL
i < xR

i . Since

ζ̃ is leftist in L then ui ≤ xL
i < xR

i . Thus, for the path P0(ζ
′) to realize, i ∈ S̃ and ũi > xR

i .
Hence the net utility of agent i is negative when he misreports because ui < xR

i . This is a
contradiction.

On the other hand, assume condition (b) of feasibility is satisfied. That is, there exist

nodes ζ̃ and ζ̄ that contain the same agent i such that ζ̃ is rightist in L, ζ̄ is leftist in R and
xL

i ≥ xR
i . Given that ζ̃ is rightist in L, ui > xL

i ≥ xR
i . Thus, for the path P0(ζ

′) to realize,

i ∈ S̃ and ũi ≤ xR
i . Hence, the net utility of agent i strictly decreases from ui − xL

i to zero
when he misreports. This is a contradiction.

Any GSP and MIN mechanism is a feasible sequential mechanism.

Let (S, ϕ) a mechanism that meets GSP and MIN . Steps 1, 2 and 3 are three preliminary
properties of (S, ϕ). Steps 4 and 5 prove (S, ϕ) is a sequential mechanism. Step 6 proves it
is a feasible sequential mechanism.

Step 1. If S(u) = S∗ and ϕ(u) = ϕ∗, then for all ũ such that ũ[S∗] >> ϕ[S∗] and
ũ[N\S∗] ≤ u[N\S∗], S(ũ) = S∗ and ϕ(ũ) = ϕ∗.

Proof.
First notice that by MIN, an agent gets positive net utility if and only if he is served.
Let i ∈ S∗. Then S(ũi, u−i) = S∗ and ϕ(ũi, u−i) = ϕ∗. To see this, if i 6∈ S(ũi, u−i)

or ϕi(ũi, u−i) > ϕ∗
i , then agent i misreports ui when the true profile is (ũi, u−i), which

contradicts SP. On the other hand, if i ∈ S(ũi, u−i) and ϕi(ũi, u−i) < ϕ∗
i , then agent i

misreports ũi when the true profile is u, which also contradicts SP. Therefore, i ∈ S(ũi, u−i)
and ϕi(ũi, u−i) = ϕ∗

i .
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Let j, j 6= i. If NUj(ũi, u−i) > NUj(u), then agent i helps j by misreporting ũi when the
true profile is u. This contradicts GSP. The case NUj(ũi, u−i) < NUj(u) is analogous. Thus
NUj(ũi, u−i) = NUj(u) for all j 6= i. Therefore, by MIN S(ũi, u−i) = S∗ and ϕ(ũi, u−i) = ϕ∗.

By applying the previous argument to each agent in S∗, we have that S(ũS∗ , u−S∗) = S∗

and ϕ(ũS∗ , u−S∗) = ϕ∗.
Let j 6∈ S∗. Then S(ũS∗∪j, u−S∗∪j) = S∗ and ϕ(ũS∗∪j, u−S∗∪j) = ϕ∗. First notice that

j 6∈ S(ũS∗∪j, u−S∗∪j), otherwise by voluntary participation

ϕj(ũS∗∪j, u−S∗∪j) < ũj ≤ uj.

Thus agent j misreports ũj when true profile is (ũS∗ , u−S∗). This contradicts SP .
On the other hand, if NUk(ũS∗∪j, u−(S∗∪j)) < NUk(ũS∗ , u−S∗) for some k 6= j, then agent

j helps k by reporting ũj when true profile is (ũS∗ , u−S∗), this contradicts GSP . Similarly,
by GSP NUk(ũS∗∪j, u−(S∗∪j)) > NUk(ũS∗ , u−S∗) cannot occur. Thus NUk(ũS∗∪j, u−(S∗∪j)) =
NUk(ũS∗ , u−S∗) for all k 6= j. Hence, by MIN S(ũS∗∪j, u−(S∗∪j)) = S∗ and ϕ(ũS∗∪j, u−S∗∪j) =
ϕ∗.

By repeatedly using the previous argument to every agent in N \ S∗, we have that
S(ũ) = S∗ and ϕ(ũ) = ϕ∗.

Step 2. If S(u) = S(ũ) then ϕ(u) = ϕ(ũ).
Proof.
Let S∗ = S(u) = S(ũ), v̄[S] = max(ũ[S], u[S]) and v̄[N\S] = min(ũ[N\S], u[N\S]) (where max

and min are taken coordinate by coordinate).
By step 1, comparing v̄ and u, S(v̄) = S∗ and ϕ(v̄) = ϕ(u). Similarly, comparing v̄ and

ũ, ϕ(v̄) = ϕ(ũ).

By step 2, there exist at most one vector of payments for every coalition. Let xS∗ be the
payment of coalition S∗ when S∗ is served at some profile.

Step 3. Let u be such that S(u) = S∗ and ϕ(u) = ϕ∗. Then for every i ∈ S∗ and
u∗

i ≤ ϕ∗
i , S∗\i ⊆ S(u∗

i , u−i) and ϕS∗\i(u
∗
i , u−i) ≤ ϕ∗

S∗\i.
Proof.
First notice that for every j ∈ S∗ \ i∗, j ∈ S(ϕ∗

i , u−i) and ϕj(ϕ
∗
i , u−i) ≤ ϕ∗

j . Indeed, by
MIN the net utility of agent j at u is positive. If j 6∈ S(ϕ∗

i , u−i) or ϕj(ϕ
∗
i , u−i) > ϕ∗

j then
agent i can help j by misreporting ui when the true profile is (ϕ∗

i , u−i) : By MIN, agent i is
not being served at the profile (ϕ∗

i , u−i), thus he is indifferent between misreporting ui and
getting a unit at price ϕ∗

i , or truly reporting ϕ∗
i and not getting a unit, whereby agent j is

better of at u. This contradicts GSP .
Finally, since i 6∈ S(ϕ∗

i , u−i) and by step 1, S(u∗
i , u−i) = S(ϕ∗

i , u−i) and ϕ(u∗
i , u−i) =

ϕ(ϕ∗
i , u−i) for all u∗

i ≤ ϕ∗
i .

Step 3.1 If S(u) = S∗, then for any T, T ⊂ S∗, there exist ũ such that S(ũ) = T and
xT

[T ] ≤ xS∗

[T ].
Proof.
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Let ū = (uS∗ , 0−S∗). By step 1, S(ū) = S∗ and ϕ(ū) = xS∗ . Let i ∈ S∗. By MIN
i 6∈ S(xS∗

i , ū−i). By step 3, S∗ \ i ⊂ S(xS∗
i , ū−i). Since the utilities of agents outside S∗ are

zero, then by MIN S∗ \ i = S(xS∗
i , ū−i). Thus by step 3, x

S\i∗
[S\i∗] ≤ xS

[S\i∗]. Finally, to check

the claim we repeatedly apply the above argument to every agent in S∗ \ T.

Step 4. Assume there is u∗ such that S(u∗) = N. Then, there is an agent to whom is
offered a unit of good at a price that is independent of the utilities of the other agents (we
say this agent has priority).

We prove this by induction in the size of N.
If N = {1} then the GSP and MIN mechanisms are clearly fixed cost mechanisms.

That is, there is a fixed price x, x ∈ [0,∞] such that if u1 > x then 1 is served at price x. If
u1 ≤ x then he is not served.

For the induction hypothesis, assume that for any GSP and MIN mechanism for n− 1
agents there is an agent who has priority. Let (S, ϕ) be a mechanism for the agents in
N = {1, . . . , n}.

For every j, consider the utility profiles where agent j has zero utility, that is

U j = {u ∈ RN
+ | uj = 0}.

By MIN, agent j is not being served at any profile of U j. Thus, the restriction of (S, ϕ)
to U j defines a MIN and GSP mechanism for the agents in N \ j. Let ρj = {xS | j 6∈ S} be
the set of payments in this mechanism. Notice because N is being served, then by step 3.1
every coalition S ⊂ N is being served. In particular ρj contains a payment for every group
of agents that does not contain agent j. Also, notice that by step 2 if xT ∈ ρj and x̃T ∈ ρk

then xT = x̃T .
Finally by step 3.1 payments are nondecreasing as coalition increases. That is, if S ⊂ T

then xS
S ≤ xT

S .
By the induction hypothesis, on ρ1 there is an agent i1 who has priority. The monotonicity

of the payments implies x
N\1
i1

= xi1
i1
. Similarly, there is an agent who has priority on ρi1 . Call

this agent i2, thus x
N\i1
i2

= xi2
i2
. We continue this procedure until we reach a cycle. Without

loss of generality, we assume the cycle is i1, i2, . . . , ik. This means ij+1 has priority on ρij for
j = 1, . . . , k − 1, and i1 has priority on ρik .

Case 1. The cycle has size less than n, that is k < n.

Let v̄[N\{i1,i2,...,ik}] be such that v̄[N\{i1,i2,...,ik}] >> xN
[N\{i1,i2,...,ik}].

Consider the profiles

U = {u ∈ RN
+ | u[N\{i1,i2,...,ik}] = v̄[N\{i1,i2,...,ik}]}.

Notice that for every u ∈ U, N\{i1, i2, . . . , ik} ⊂ S(u). Indeed, consider (ũ{i1,i2,...,ik}, u−{i1,i2,...,ik})
such that ũ{i1,i2,...,ik} >> xN

[i1,i2,...,ik]. By step 1, S(ũ{i1,i2,...,ik}, u−{i1,i2,...,ik}) = N. By steps 1 and

3, N\{i1} ⊆ S(ui1 , ũ{i2,...,ik}, u−{i1,i2,...,ik}). Similarly, N\{i1, i2} ⊆ S(ui1,i2 , ũ{i3,...,ik}, u−{i1,i2,...,ik}).
Continuing this way, N \ {i1, i2, . . . , ik} ⊆ S(u{i1,i2,...,ik}, u−{i1,i2,...,ik}).
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By step 3.1, for every coalition T such that N \ {i1, i2, . . . , ik} ⊂ T, there is ũ ∈ U such
that S(ũ) = T. This is clear because coalition N is being served at some profile of U, so we
can reduce (one agent at a time) the utility of the agents not in T to zero.

Clearly, the mechanism restricted to U defines a GSP mechanism for the agents in
{i1, i2, . . . , ik}. By the induction hypothesis, there is an agent who has priority, say i1. Thus,

x
N\{i2,...,ik}
i1

= xN
i1

. On the other hand, because i1 has priority on ρik , xi1
i1

= x
N\{i2,...,ik}
i1

.

Therefore, xN
i1

= xi1
i1
. Hence by the monotonicity of the payments xT

i1
= xS

i1
for all S, T ⊆ N

such that i1 ∈ S, T.
Finally, we prove agent i1 has priority. Assume there is u such that ui1 > xi1

i1
but i1 6∈

S(u). Consider the profile (ui1 , ũ−i1) where ũ−i1 >> max(xN
−i1

, u−i1) and max is taken coordi-
nate by coordinate. By step 1, S(ui1 , ũ−i1) = N. By step 1 and 3, N\{i2} ⊆ S(ui1 , ui2 , ũ−i1,i2).
Similarly, by steps 1 and 3, N \ {i2, i3} ⊆ S(ui1 , ui2 , ui3 , ũ−i1,i2,i3). Continuing this way,
{i1} ⊆ S(u). This is a contradiction.

Case 2. The cycle has size n, that is k = n.

Without loss of generality, assume agent 2 has priority over N \ 1, agent 3 has priority
over N \ 2, . . . , etc. Thus,

x2
2 = x

N\1
2 , . . . x3

3 = x
N\2
3 , . . . x1

1 = x
N\n
1 . (2)

Also, assume to get a contradiction, that there is no agent who has priority. That is,

x
N\1
2 < xN

2 , x
N\2
3 < xN

3 , . . . , x
N\n
1 < xN

1 .

Let u∗ be such that S(u∗) = N. By MIN , u∗ >> xN .
By step 3, 2 ∈ S(xN

1 , u∗
−1) and 2 pays x2

2, x2
2 < xN

2 , because he has priority on ρ1. Also by
step 3, 2 ∈ S(xN

1,3, u
∗
−1,3) and 2 pays not more than x2

2. Continuing similarly, 2 ∈ S(xN
−2, u

∗
2)

and 2 pays not more than x2
2. By step 1, 2 ∈ S(xN) because u∗

2 > xN
2 > x2

2.
Finally, since everything is symmetric, S(xN) = N. This contradicts MIN.

Step 5. Assume there is no u such that S(u) = N. If the mechanism is not trivial
(S(u) 6= ∅ for some u), there is an agent who has finite priority. That is, there is an agent i∗

and a payment x∗, 0 ≤ x∗ < ∞, such that i∗ ∈ S(u) for all u such that ui∗ > x∗.

First notice there is a group of agents S∗ who has priority. That is, for all ũ such that
ũ[S∗] ≥ xS∗

[S∗], S(ũ) = S∗. To see this, consider ũ such that ũ >> xT for all possible payments

xT , xT = ϕ(v) for some v (we know by step 2 that there is at most one vector of payments
for every coalition, thus it is feasible to choose such ũ). Let S∗ be such that S(ũ) = S∗.
Notice that, for any i, i 6∈ S∗, S(ũ−i, v̄i) = S∗ for all v̄i. Indeed, if v̄i ≤ ũi then by step
1 i 6∈ S(ũ−i, v̄i). On the other hand, if v̄i > ũi, then i 6∈ S(ũ−i, v̄i). This is easy to see by
contradiction, assume i ∈ S(ũ−i, v̄i), then by the choice of ũ, ϕi(ũ−i, v̄i) < ũi < v̄i. Therefore,
by step 1, i ∈ S(ũ), which is a contradiction.
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Hence, S(ũ−i, v̄i) = S∗ for all v̄i. Thus, by changing the utilities of the agents in N \ S∗

one at a time, S(ũS∗ , u−S∗) = S∗. Hence by step 1, S(ūS∗ , u−S∗) = S∗ for all ūS∗ ≥ xS∗

[S∗] and
all u−S∗ .

We now prove step 5 by induction. For n = 1, if S(u) 6= 1 for all u then clearly the
mechanism is trivial (S(u) = ∅ for all u). So the claim is true.

For the induction hypothesis, assume the claim is true for any mechanism of n−1 agents.
We prove it for any mechanism of n agents.

Let S∗ be defined as above and j 6∈ S∗. Consider the restriction of the mechanism to
U j = {u ∈ RN

+ | uj = 0}. Then this restriction is a GSP and MIN mechanism for the
agents in N \ j. By induction and step 4, there is an agent i∗ who has (finite) priority for
the agents N \ j. Clearly i∗ ∈ S∗, otherwise his payment is dependent on the agents in S∗.

We now prove by contradiction that for any profile u−i∗ , i∗ has priority. Assume there is
u such that fi∗(u−i∗) 6= xS∗

i∗ , where fi∗(u−i∗) is the price of a unit of good that the mechanism
makes to agent i∗ when the utilities of the other agents are u−i∗ (recall this function exists
because the mechanism meets SP , V P and NNT ). Let ui∗ = ũi∗ , a utility bigger than all
possible payments for agent i∗, in particular ui∗ > xS∗

i∗ . First notice that j ∈ S(u), otherwise,
by step 1 S(u) = S(0, u−j) and ϕ(u) = ϕ(0, u−j). Thus i∗ is served at u at a price equal to
xS∗

i∗ , which contradictions our assumptions. Hence j ∈ S(u). By step 3, fi∗(u−i∗) > xS∗
i∗ .

Let k ∈ S∗ \ i∗ and ūk > max(uk, x
S∗

k ), then fi∗(ūk, u−k,i∗) ≥ xS∗
i∗ . Indeed, if k ∈ S(u),

then by step 1 S(ūk, u−k) = S(u) and fi∗(ūk, u−k,i∗) = fi∗(uk, u−k,i∗) > xS∗
i∗ . On the other

hand, if k 6∈ S(u) and k 6∈ S(ūk, u−k), then by step 1 S(ūk, u−k) = S(u) and fi∗(ūk, u−k,i∗) =
fi∗(uk, u−k,i∗) > xS∗

i∗ . Finally, if k 6∈ S(u) and k ∈ S(ūk, u−k), then by step 3 fi∗(ūk, u−i∗,k) ≥
fi∗(uk, u−i∗,k) > xS∗

i∗ .
By repeatedly using the above argument to every agent in S∗ \ i∗ we conclude that

fi∗(u−S∗ , ūS∗\i∗) > xS∗
i∗ for some (ui∗ , ūS∗\i∗) ≥ xS∗

[S∗]. This contradicts the priority of coalition
S∗.

Steps 4 and 5 showed that for any GSP and MIN mechanism there exists an agent whose
payment is independent of the other agent’s utilities. By induction, this clearly implies the
mechanism is sequential.

Step 6. The mechanism is implemented by a feasible sequential tree.
Proof.
Given a sequential mechanism (definition 7) that meets GSP and MIN , we show by

contradiction that this mechanism is feasible (as in definition 9).
Assume the sequential tree that implements this mechanism is not feasible. Let ζ and ζ ′

be two achievable7 nodes that contain the same agent k such that xL
k > xR

k , and for every
two nodes ζ̃ ∈ L and ζ̄ ∈ R that contains the same agent i, one of the next conditions hold:

1. ζ̃ is leftist in L, ζ̄ is rightist in R and xL
i ≥ xR

i .

2. ζ̃ is rightist in L and ζ̄ is leftist in R and xL
i < xR

i .

7That is, all rightist agents in their paths to the root of the tree have finite prices
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3. ζ̃ and ζ̄ are leftist in L and R.

4. ζ̃ and ζ̄ are rightist in L and R.

Let i∗ be the agent in the terminal node of P0(ζ) u P0(ζ
′). Fix a utility profile u such

that:

a. ui∗ equal the price of his node.

b. uk such that xL
k > uk > xR

k

c. ui = xR
i if condition 1 holds.

d. ui =
xL

i +xR
i

2
if condition 2 holds.

e. ui = 0 if condition 3 holds.

f . ui such that ui > max(xL
i , xR

i ) if condition 4 holds.

g. If j is unique rightist agent in (P0(ζ)tP0(ζ
′))\ (LuR) then uj is bigger than the price

of its node.

h. If j is unique leftist agent in (P0(ζ) t P0(ζ
′)) \ (L uR) then uj = 0.

i. Any other agent has zero utility.

First notice the profile u realizes the path P0(ζ).
If an agent is leftist in P0(ζ) then either his utility equals to zero, or condition 1 is

satisfied, or he is i∗. If his utility equals to zero, by MIN he is not served. If condition 1 is
satisfied then ui = xR

i ≤ xL
i so he is not served. If he is i∗, then his utility equal the price of

his node, so he is not served.
On the other hand, if an agent is rightist in P0(ζ) then his utility is bigger than the price

of his node. To see this, if condition 2 is satisfied then by part d he is served. If condition 4
is satisfied, then by part f he is served. The remaining rightist agents are served by part g.

Let T be the common agents who meet condition 1 and S = T ∪ {i∗, k}. We now check
that when the true profile is u, coalition S can profitably misreport. First notice all agents
in S are not being served at u, so they get zero net utility.

Let ũS be such that:

• ũi > ui if i ∈ T ∪ {i∗}.

• ũk = uk
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Then at the profile (ũS, u−S) the path P0(ζ
′) realizes. Indeed, an agent j whose node is

in (P0(ζ)tP0(ζ
′)) \ (LuR) is obviously served if rightist and not served of leftist. If i meets

condition 2, then ui =
xR

i +xL
i

2
< xR

i , so he is not served. If i meets condition 3, then by e
his utility equals zero, thus he is not served. If i meets condition 4, then by f his utility is
bigger than xR

i , thus he is served. Also, i∗ is rightist and he is served at a price equal to his
true valuation ui, thus his net utility is zero. If i ∈ T , that is i ∈ L u R is rightist in R,
then he is being served at a price equal to his valuation because ũi > ui = xR

i , thus his net
utility is zero. Finally, agent k is being served at a price xR

k , uk > xR
k . Hence his net utility

increases by misreporting.

Proof of Theorem 1.

Cross-monotonic mechanisms meet MAX and GSP .

Cross-monotonic mechanisms clearly meet MAX.
We prove by contradiction that these mechanisms meet GSP . Consider the cross-

monotonic mechanism generated by the cross monotonic set of cost shares {xS | S ⊆ N}.
Consider the offer function fi(u−i), the price agent i should pay to get a unit of good

when the utilities of the remaining agents are u−i. That is, fi(u−i) = xS∗
i where S∗ is the

maximal feasible coalition at (∞, u−i). By cross-monotonicity of the cost shares and the
definition of fi, the offer function does not increase when u−i increases. That is, if v−i ≥ u−i

then fi(v−i) ≤ fi(u−i).
Furthermore, the set of offer functions f1, . . . , fn generate precisely the mechanism (S, ϕ).

That is, S(u) = S∗ if and only if ui ≥ fi(u−i) for all i ∈ S∗ and uj < fj(u−j) for all j 6∈ S∗.
Indeed, to prove the only if part, assume S(u) = S∗. Let i ∈ S∗, since S∗ is the maximal
feasible coalition at u, then by cross monotonicity S∗ is the maximal feasible coalition at
(∞, u−i), thus fi(u−i) = xS∗

i ≤ ui. Let j 6∈ S∗ and T the maximal feasible coalition at
(∞, u−j). To get a contradiction, assume that uj ≥ xT

j = fj(u−j). Then T is feasible at u,
thus T ⊆ S∗. Furthermore, since j ∈ T, then j ∈ S∗, which is a contradiction. We now prove
the if part. Let T be the maximal feasible coalition at (∞, u−i) and assume ui ≥ fi(u−i) =
xT

i . Then i ∈ T and T is feasible at u. Thus T ⊆ S(u), hence i ∈ S(u). On the other

hand, let T̃ be the maximal feasible coalition at (∞, u−j) and assume uj < fj(u−j) = xT̃
j .

To get a contradiction, assume that j ∈ S(u). Then by monotonicity, S(u) ⊆ T̃ . Thus

uj ≥ x
S(u)
j ≥ xT̃

j , which contradicts our initial assumptions.

Assume coalition S̃ profitably misreports ũS̃ when the true profile is u. Let v̄S̃ = max(uS̃, ũS̃),
where max is taken coordinate by coordinate. Because the offer function does not increase,
coalition S̃ also profits from misreporting v̄S̃ when the true profile is u.

By monotonicity of the offer function, S(u) ⊆ S(v̄S̃, u−S̃). Since coalition S̃ profits from
misreporting, then S(u) ( S(v̄S̃, u−S̃). Since S(v̄S̃, u−S̃) is not feasible at u, then there is an

agent i such that ui < x
S(v̄

S̃
,u−S̃

)

i . Clearly i 6∈ S̃ would contradict voluntary participation.

Thus i ∈ S̃, hence i is worse off by misreporting, which is a contradiction.
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Any mechanism that is MAX and GSP is cross-monotonic.

Let (S, ϕ) be a mechanism that meets these properties. Recall that fi(u−i) is the price
agent i should pay to get a unit of good when the utilities of the remaining agents are u−i.
Also, NUi(u) denotes the net utility of agent i at the profile u.

The proof of this part is divided in four steps. Steps 1 and 2 are very similar to step 1
and 2 in the proof of Theorem 2. However, step 1 involves more details because MAX does
not imply that an agent is served if and only if his net utility is positive.

Step 0.[Monotonicity] fj(ũi, u−ij) ≤ fj(ui, u−ij) for all ũi > ui.
Proof.
We prove this by contradiction. Suppose fj(ũi, u−ij) > fj(ui, u−ij). Let v̄j be such that

fj(ũi, u−ij) > v̄j > fj(ui, u−ij).

Case 1. fi(v̄j, u−ij) > ũi.
By SP , agent i is not served at the profiles (ũi, v̄j, u−ij) and (ui, v̄j, u−ij) because fi(v̄j, u−ij) >

ũi > ui. Hence when the true utility profile is (ũi, v̄j, u−ij), agent i can help j by misreporting
ui. This contradicts GSP .

Case 2. fi(v̄j, u−ij) ≤ ui.
By SP and MAX, agent i is served at the profiles (ũi, v̄j, u−ij) and (ui, v̄j, u−ij) because

fi(v̄j, u−ij) ≤ ui < ũi. Hence, similarly to case 1, when the true utility profile is (ũi, v̄j, u−ij),
agent i can help j by misreporting ui. This also contradicts GSP .

Case 3. ui < fi(v̄j, u−ij) ≤ ũi.
Let ûi = fi(v̄j, u−ij). By SP and MAX, agent i is being served at price ûi at the

profiles (ũi, v̄j, u−ij) and (ûi, v̄j, u−ij). Thus, by GSP fj(ûi, u−ij) ≥ v̄j. To see this, assume
fj(ûi, u−ij) < v̄j. Then, when the true profile is (ũi, v̄j, u−ij), agent i helps j by misreporting
ûi. This contradicts GSP .

Hence, at the true profile (ûi, v̄j, u−ij), agents i and j get zero net utility because
fj(ûi, u−ij) ≥ v̄j and ûi = fi(v̄j, u−ij). Thus agent i helps j by reporting ui : Agent i is
not served at the misreport because ui < fi(v̄j, u−ij), however agent j is better off because
v̄j > fj(ui, u−ij). This contradicts GSP.

Step 1. If S(u) = S∗ and ϕ(u) = ϕ∗ then for all ũ such that ũ[S∗] ≥ ϕ[S∗] and ũ[N\S∗] ≤
u[N\S∗], S(ũ) = S∗ and ϕ(ũ) = ϕ∗.

Proof.
We prove step 1 in steps 1.1 and 1.2.

Step 1.1. Let i ∈ S∗ and ũi ≥ fi(u−i) = ϕ∗
i . We will prove that S(ũi, u−i) = S∗ and

ϕ(ũi, u−i) = ϕ∗.
First, notice that by SP and MAX, i ∈ S(ũi, u−i) and ϕi(ũi, u−i) = ϕ∗

i .
Second, notice NUj(ũi, u−i) = NUj(u) for all j 6= i. To see this, if NUj(ũi, u−i) > NUj(u),

then when the true profile is u, agent i helps j by reporting ũi. This contradicts GSP.
Similarly, if NUj(ũi, u−i) < NUj(u) then agent i helps j by misreporting ũi when the true
utility profile is u.

25



Third, notice if j ∈ S∗ \ i and NUj(ũi, u−i) = NUj(u) > 0 then j ∈ S(ũi, u−i) and
ϕj(ũi, u−i) = ϕ∗

j .
Finally, to get a contradiction, assume S(ũi, u−i) 6= S∗. Then, there is an agent j such

that NUj(ũi, u−i) = NUj(u) = 0 and either (A.1.) j ∈ S∗ but j 6∈ S(ũi, u−i) or (A.2.) j 6∈ S∗

but j ∈ S(ũi, u−i). We show next that these situations cannot occur.

Case A.1. Assume NUj(ũi, u−i) = NUj(u) = 0, j ∈ S∗ but j 6∈ S(ũi, u−i).
Since j 6∈ S(ũi, u−i), by SP and MAX fj(ũi, u−ij) > uj = fj(u−j). Thus, by step 0,

ui > ũi ≥ ϕ∗
i .

Let v̄j be such that v̄j > uj. By step 0,

fi(v̄j, u−ij) ≤ fi(uj, u−ij) = ϕ∗
i ≤ ũi < ui.

Therefore, when the true profile is (ũi, v̄j, u−ij), agent i can help j by misreporting ui :
Agent i is served in both profiles at price fi(v̄j, u−ij), however agent j is offered a unit at
the cheaper price fj(u−j) when i misreports. This contradicts GSP .

Case A.2. Assume NUj(ũi, u−i) = NUj(u) = 0, j 6∈ S∗ but j ∈ S(ũi, u−i).
By SP and MAX, fj(ũi, u−ij) = uj > fj(u−j). So, we are in exactly in the previous case

but switching the role of ũi and ui. Thus, this case cannot occur.
By repeatedly using step 1.1 to every agent in S∗ we have that S(ũS∗ , u−S∗) = S∗ and

ϕ(ũS∗ , u−S∗) = ϕ∗.

Step 1.2. Let j 6∈ S∗ be such that ũj < uj. Then S(ũS∗∪j, u−S∗∪j) = S∗ and ϕ(ũS∗∪j, u−S∗∪j) =
ϕ∗.

Since ũj < uj < fj(ũS∗ , u−S∗∪j), then by SP j 6∈ S(ũj, ũS∗ , u−S∗∪j). Similarly to step 1.1,
by GSP NUk(ũS∗∪j, u−S∗∪j) = NUk(ũS∗ , u−S∗) for all k 6= j.

Assume S(ũS∗∪j, u−S∗∪j) 6= S∗. Clearly, if NUk(ũS∗∪j, u−S∗∪j) = NUk(ũS∗ , u−S∗) > 0 for
some k 6= j, then k ∈ S∗, k ∈ S(ũS∗∪j, u−S∗∪j) and ϕk(ũS∗∪j, u−S∗∪j) = ϕ∗

k.
Thus, there is k such that NUk(ũj, ũS∗ , u−S∗∪j) = NUk(ũS∗ , u−S∗) = 0 and either (B.1)

k ∈ S∗ but k 6∈ S(ũj, ũS∗ , u−S∗∪j); or (B.2) k 6∈ S∗ but k ∈ S(ũj, ũS∗ , u−S∗∪j). We show next
these cases cannot occur.

Case B.1. NUk(ũj, ũS∗ , u−S∗∪j) = NUk(ũS∗ , u−S∗) = 0, k ∈ S∗ and k 6∈ S(ũj, ũS∗ , u−S∗∪j).
By SP and MAX,

fk(ũj, ũS∗\k, u−S∗∪j) > ũk = fk(uj, ũS∗\k, u−S∗∪j). (3)

Let v̄k be such that v̄k > ũk. By monotonicity

fj(v̄k, ũS∗\k, u−S∗∪j) ≤ fj(ũk, ũS∗\k, u−S∗∪j).

First we assume that

fj(ũk, ũS∗\k, u−S∗∪j) ≥ fj(v̄k, ũS∗\k, u−S∗∪j) > uj > ũj.
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Then, when the true profile is (v̄k, ũj, ũS∗\k, u−S∗∪j), agent j can help agent k by misre-
porting uj : Agent j does not get a unit in either profile, however by equation 3 agent k gets
a unit at the cheaper price fk(uj, ũS∗\k, u−S∗∪j) when j misreports. This contradicts GSP.

On the other hand, we now assume

fj(v̄k, ũS∗\k, u−S∗∪j) ≤ uj < fj(ũk, ũS∗\k, u−S∗∪j). (4)

Let v̄j be such that v̄j > uj. By step 1,

fk(v̄j, ũS∗\k, u−S∗∪j) ≤ fk(uj, ũS∗\k, u−S∗∪j) = ũk < v̄k. (5)

Thus when true profile is (ũk, v̄j, ũS∗\k, u−S∗∪j), agent k helps j by misreporting v̄k : By
equation 5, agent k is served at a price fk(v̄j, ũS∗\k, u−S∗∪j) in either profile; however by
equation 4 agent j is served at the cheaper price fj(v̄k, ũS∗\k, u−S∗∪j) when k misreports.
This contradicts GSP.

Hence, if k ∈ S∗ then k ∈ S(ũS∗∪j, u−S∗∪j) and ϕk(ũS∗∪j, u−S∗∪j) = ϕk(ũS∗ , u−S∗).

Case B.2. NUk(ũj, ũS∗ , u−S∗∪j) = NUk(ũS∗ , u−S∗) = 0, k 6∈ S∗ and k ∈ S(ũj, ũS∗ , u−S∗∪j).
By SP and MAX,

fk(ũj, ũS∗ , u−S∗∪j,k) = uk < fk(uj, ũS∗ , u−S∗∪j,k).

However, this contradicts monotonicity because ũj < uj.
By repeating step 1.2 to every agent in N \ S∗, S(ũ) = S∗ and ϕ(ũ) = ϕ∗.

Step 2. If S(u) = S(ũ) then ϕ(u) = ϕ(ũ).
Proof.
Let S∗ = S(u) = S(ũ), v̄[S] = max(ũ[S], u[S]) and v̄[N\S] = min(ũ[N\S], u[N\S]) (where max

and min are taken coordinate by coordinate).
By step 1, comparing v̄ and u, S(v̄) = S∗ and ϕ(v̄) = ϕ(u). Similarly, comparing v̄ and

ũ, ϕ(v̄) = ϕ(ũ). Hence ϕ(u) = ϕ(ũ).

Step 3.
In this final step we prove the theorem by induction on the number of agents. The base

of induction is the case n = 1. The mechanisms are easy to construct. Given x ∈ [0,∞], if
u1 ≥ x then (S, ϕ)(u1) = (1, x). On the other hand, if u1 < x then (S, ϕ)(u1) = (∅, 0). These
mechanisms are clearly cross-monotonic.

For the induction hypothesis, assume that any GSP and MAX mechanism for k agents,
k < n, is cross-monotonic. We prove this for the n−agent case. Let (S, ϕ) be a GSP and
MAX mechanism defined for the agents N = {1, . . . , n}.
Case 1. Assume there is a utility profile u∗ such that S(u∗) = N.

Let xN = ϕ(u∗). By step 1, for all ũ ≥ xN , S(ũ) = N and ϕ(ũ) = xN .
For every agent j ∈ N, consider the set of utility profiles such that uj = 0, that is

U j = {u ∈ RN
+ | uj = 0}.
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By induction, there is a cross-monotonic mechanism (Sj, ϕj) for N \ j agents defined on

U j. Thus, Sj(v) = S(v, 0) ∩ (N \ j) and ϕj(v) = ϕ(v, 0)[N\j] for all v ∈ RN\j
+ . Let ρ̃j be the

cross-monotonic set of cost shares that defines this mechanisms.
Let S∗, S∗ ⊆ N \ j, be the maximal coalition that is served by (Sj, ϕj) under any utility

profile of N \ j agents (by cross-monotonicity this coalition exists).
For every T ⊆ N \ j consider the vector of cost shares yT as follows:
yT = xT if T ⊆ S∗ and xT ∈ ρ̃j.
yT

i = ∞ if i ∈ T \ S∗ and T 6⊆ S∗.
yT

i = xS∗
i if i ∈ S∗ ∩ T and T 6⊆ S∗; where xS∗ ∈ ρ̃j.

Let ρ̄j be the set of these cost shares.
Clearly, if S∗ = N \ j, then ρ̄j = ρ̃j. If S∗ 6= N \ j, this may not be true, however it

generates the same cross-monotonic mechanism (Sj, ϕj) (see below).
First, we show that ρ̄j is a cross-monotonic set of cost shares. Indeed, consider L ⊂ M

and k ∈ L. If k 6∈ S∗ then yM
k = yL

k = ∞. Now assume k ∈ S∗. If L ⊂ M ⊆ S∗ then
yM

k = xM
k ≤ xL

k = yL
k where xM , xL ∈ ρ̃j. If M 6⊆ S∗ then yM

k = xS∗

k ≤ yL
k .

Next, we show that ρ̄j generates the mechanism (Sj, ϕj). Indeed, let v be a utility profile
for N \ j agents. Then Sj(v) ⊆ S∗ by definition of S∗. Clearly, yT ∈ ρ̄j is not feasible at v for
any T 6⊆ S∗ because yT

k = ∞ for k ∈ T \S∗. Moreover, ρ̄j coincides with ρ̃j for any subset in
2S∗ , and Sj(v) is the maximal feasible coalition in ρ̃j for the utility profile v. Hence, Sj(v)
is the maximal feasible coalition in ρ̄j for the utility profile v.

Let ρj be the embedding of ρ̄j into U j by adding a j−th coordinate equal to zero.
We define the cost share of coalition T, T ( N as

x̃T = max
{xT∈ρj |j∈N\T}

xT ,

where max is taken coordinate by coordinate. The cost share of coalition N is simply xN .
Let ρ∗ be the set that contains these cost shares.

We first check that if S(u) = S̄ 6= N for some u, then ϕ(u) = x̃S̄. Indeed, by step 1 for any
j ∈ N \ S̄, ϕ(u) = ϕ(0, u−j) = xS̄ where xS̄ ∈ ρj. Thus for any i, j ∈ N \ S̄, xS̄ = ϕ(u) = yS̄

where xS̄ ∈ ρj and yS̄ ∈ ρi. Furthermore, x̃S̄ = xS̄ where xS̄ ∈ ρj. Hence ϕ(u) = x̃S̄.
We now show ρ∗ is a cross-monotonic set of cost shares. Let S ⊂ T ( N and k ∈ S. First

notice that xS
k ≥ xT

k holds for any i ∈ N \ T, xS, xT ∈ ρi by cross-monotonicity on ρi. By
taking max on both sides of the inequality and maximizing over all agent in N \ T, x̃S

k ≥ x̃T
k

for all k ∈ S.
We now check that xN

i ≤ x̃
N\j
i for all j ∈ N, i ∈ N \ j and x̃

N\j
i ∈ ρ∗. Let S∗ be

the maximal coalition that is served at (Sj, ϕj) under any u−j. By the choice of ρ̄j, if i ∈
N \ (j ∪ S∗), then x̃

N\j
i = ∞ > xN

i . On the other hand, if i ∈ S∗, then x̃
N\j
i = x̃S∗

i . To prove
the above claim by contradiction, assume there is i ∈ S∗ such that x̃S∗

i < xN
i . Let u ∈ U j such

that ϕ(u) = x̃S∗ , and ũ = (xN
i , max(xN

−i, u−i)). Since ũ ≥ xN , then S(ũ) = N holds by step
1. Thus xN

i = fi(ũ−i). On the other hand, by step 0, xN
i = fi(ũ−i) ≤ fi(u−i) = ϕi(u) = x̃S∗

i .
This is a contradiction.

In particular, cross-monotonicity implies that agent i cannot be served if his utility is
smaller than xN

i . Hence, the mechanism (S, ϕ) satisfies:
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• If u ≥ xN then S(u) = N and ϕ(u) = xN .

• If for some i, ui < xN
i then i 6∈ S(u). Thus, by step 1 (S, ϕ)(u) = (S, ϕ)(0, u−i) =

(Si(u[N\i]), x̃
Si(u[N\i])).

Finally, we check (S, ϕ) is the cross-monotonic mechanism generated by ρ∗. If u ≥ xN ,
then S(u) = N and obviously N is the maximal feasible coalition in ρ∗. Assume u is such
that ui < xN

i for some agent i. Let S∗ = S(u). By cross-monotonicity, no coalition that
contains agent i is feasible for u. On the other hand, since (Si, ϕi) is cross-monotonic, then
S∗ = Si(u[N\i]) is the maximal feasible coalition in ρi and payments are xS∗ ∈ ρi. Hence S∗

is the maximal feasible coalition in ρ∗ because xS∗ = x̃S∗ ∈ ρ∗, and yT ≥ xT for all xT ∈ ρi

and yT ∈ ρ∗.

Case 2. Assume there is no u∗ such that S(u∗) = N.
We will show there is j ∈ N such that j 6∈ S(ũ) for all ũ. We prove this by contradiction.

Assume for any j there is uj such that j ∈ S(uj). Let v̄ = max(u1, . . . , un) where max is
taken coordinate by coordinate. By step 0, at v̄ every agent j is offered a unit of good at
price not bigger than uj

j, thus j ∈ S(v̄) for all j ∈ N. This is a contradiction.
Since there is an agent who is not serviced at any profile, say agent j∗, then by step 1

(S, ϕ)(u) = (S, ϕ)(u−j∗ , 0) for all u. Hence by induction the mechanism is cross-monotonic.

Proof of Corollary 1.

If the mechanism meets GSP and MIN (MAX), then for every agent i his payment
does not decrease (increase) when coalition increases.

Therefore, in order to have a common point at every coalition, it must be that xN
i = xi

i

for all i. Hence, the cost share of agent i is fixed.

Proof of Proposition 1.

By ETE, S(x · 1N) serve N or ∅.
First notice that S(x ·1N) = ∅ for all x > 0 implies the mechanism is welfare equivalent to

the trivial mechanism where no agent is served at any profile. To see this, assume NUk(u) > 0
for some agent k at some utility profile u. Let umax = max(u1, . . . , un)·1N . Then, S(umax) = ∅.
Thus, when the true profile is umax, agents in N help k by misreporting u : Agent k is strictly
better off because he is getting a unit at a price below uk, while any other agent j may or
may not get a unit at a price less or equal to uj. This contradicts GSP.

On the other hand, assume S(x · 1N) = N for some x > 0 and ϕi(x · 1N) = ϕ∗ for all
i. Notice we can assume w.l.g. that x > ϕ∗. Indeed, assume x = ϕ∗. Consider x̃ such that
x̃ > x. By GSP and ESP, S(x̃ · 1N) = N and ϕi(x̃ · 1N) = ϕ∗. Indeed, if ϕi(x̃ · 1N) < ϕ∗ then
agents in N misreport x̃ · 1N when the true profile is x · 1N , this contradicts GSP. Similarly,
if ϕi(x̃ · 1N) > ϕ∗ then agents in N misreport x · 1N when the true profile is x̃ · 1N , this also
contradicts GSP.
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By GSP , for all u >> ϕ∗ · 1N , S(u) = N and ϕi(u) = ϕ∗ for all i. To see this, let
v = x · 1N . By SP , 1 ∈ S(v−1, u1) and ϕ1(v−1, u1) = ϕ∗. Thus, by GSP , S(v−1, u1) = N
and ϕi(v−1, u1) = ϕ∗ for all i. Changing the profiles one agent at a time S(u) = N and
ϕi(u) = ϕ∗ for all i.

We now prove the proposition by induction in the number of agents. This is obvious
when there is only one agent. Assume this is true for any number of agents less than n. We
prove it for n agents.

Consider U j the set of utility profiles where agent j has utility zero. By induction,
the restriction of the mechanism to U j is welfare equivalent to a ESP cross-monotonic
mechanism of N \ j agents. Let xS be the payment of coalition S on U j and xN = ϕ∗ · 1N .
First notice xS

i ≥ ϕ∗ for all S ⊆ N \ j.

To see this, by cross-monotonicity we just need to check that x
N\j
i ≥ ϕ∗. Assume x

N\j
i <

ϕ∗.
Let ε > 0 be such that ϕ∗−ε > x

N\j
i and u = (xN +ε1N). Then S(u) = N and ϕ(u) = xN .

By SP, i 6∈ S(ϕ∗ − ε, u−j). Thus by GSP S(ϕ∗ − ε, u−j) = N \ j and ϕ(ϕ∗ − ε, u−j) = xN\j.

Since uk > x
N\j
k for all k ∈ N\j, then by GSP S((ϕ∗−ε)·1N) = N\j and ϕ((ϕ∗−ε)·1N) =

xN\j. This contradicts ETE. Hence xS
i ≥ ϕ∗ for all j ∈ N, S ⊆ N \ j.

Thus the mechanism is clear. If u ≥ xN then the mechanism is welfare equivalent to
S(u) = N and ϕ(u) = xN . If ui < xN then i 6∈ S(u). Hence by GSP the mechanism is
welfare equivalent to S(u) = S(0, u−i) and ϕ(u) = ϕ(0, u−i). Since the restriction to U i is
welfare equivalent to a cross-monotonic mechanism with cost-shares not smaller than xN ,
then S(u) is the biggest feasible coalition —notice this argument is very similar to the one
given at the end of step 3 (case 1) on the proof of theorem 1, page 41.

Proof of Proposition 2.

First notice if agent i is not served at any profile, then by GSP NUk(u) = NUk(ũi, u−i)
for all k 6= i, u and ũi. Thus we can remove this agent from the mechanism without any
welfare consequence.

We prove the proposition by contradiction. Assume without loss of generality that every
agent in N is served in at least one profile and that there is no agent who has priority. Then
for every agent i there exist profiles ui and ũi such that i ∈ S(ui), i 6∈ S(ũi), ui

i, ũ
i
i > x̄i

where x̄i = ϕi(u
i).

Let v̄ >> maxk∈N(uk, ũk) where max is taken coordinate by coordinate over all utility
profiles uk, ũk.

By GSP , S(v̄) 6= ∅, otherwise coalition N misreport u1 when true profile is v̄. Assume
S(v̄) = i∗. By GSP , ϕi∗(v̄) = x̄i, otherwise coalition N misreport u1 when true profile is v̄
or vice-versa.

By SP , k 6∈ S(ũi∗

k , v̄−k) for all k 6= i∗. Thus by GSP, S(ũi∗

k , v̄−k) = i∗ and ϕi∗(ũ
i∗

k , v̄−k) =
x̄i∗ . Changing the profiles one agent at a time, S(ũi∗

−i∗ , v̄i∗) = i∗ and ϕi∗(ũ
i∗
−i∗ , v̄i∗) = x̄i∗ .

Since ũi∗ > x̄i∗ then by strategyproof S(ũi∗) = i∗. This is a contradiction.
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