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Summary. Units of good are produced at some non-negative cost. A mecha-
nism elicits the willingness to pay of the agents for getting one unit of the good,
allocates some goods to some agents, and covers the cost by charging those
agents.

We prove there is no mechanism that is simultaneously group strategyproof
and efficient, even if it can have a budget surplus. In spite of this negative
result, we compute second-best optimal mechanisms for increasing and decreas-
ing average cost functions using the worst absolute surplus loss measure. This
measure is particularly useful when the social planner who chooses the mecha-
nism has no information about the types of agents who are participating in the
economy.

When the cost function has decreasing average cost, the average cost mech-
anism is optimal even among the mechanisms allowing for a budget surplus. On
the other hand, when the cost function has increasing average cost, an optimal
mechanism generates a budget surplus and charges all agents (that are being
served) equally. It reduces the efficiency loss by up to a half with respect to the
optimal budget-balanced mechanism.

1 Introduction

Units of a nontransferable, indivisible and homogeneous good (or service) are
available at some non-negative cost. Agents are interested in consuming at
most one unit of that good and are characterized by their private valuation
for it (which we call their utility). A mechanism elicits these utilities from the
agents, allocates some goods to some agents, and covers the cost by charging
the agents who are served.

These traditional mechanisms find several applications depending on the
shape of the cost function. The most discussed problem in the literature is the
case of decreasing marginal cost, also referred as economies to scale or natural
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monopolies. Applications include the production of cars, pharmaceutical goods,
software, railways, telecommunications, electricity, water and mail delivery. The
canonical example in network economics is the network facility location problem
with a single facility, where there is an homogeneous connection cost of the
agents to the facility and a fixed cost of opening the facility.

On the other hand, increasing marginal cost finds applications in the ex-
ploitation of natural resources (e.g. oil, natural gas or fisheries). Another inter-
esting application is the scheduling of jobs, where the disutility of the agents is
the waiting time until being served (see Cres and Moulin[2001] and Juarez[2006]
for discussions). The management of queues in networks, for instance the In-
ternet, is the canonical example.

One downside of the traditional analysis of this problem (and more generally
of mechanism design) is that it usually assumes the designer of the mechanism
knows the (probability distribution of the) type of agents that are participating
in the game, and based on this distribution the designer chooses the mechanism
to implement. For instance, traditional decision theory computes the optimal
decision based on the beliefs of the mechanism designer (e.g. Myerson [1981]).
However, there is little discussion in the literature on how to form these initial
beliefs, assuming the designer can form them at all.

We consider the problem of designing mechanisms in a setting in which the
designer does not have enough information about the (potential) participants to
be able to form a prior belief about the distribution of their possible types. For
instance, it may be that we are dealing with agents in a large network like the
Internet, where the variation of the agent types is huge; or that doing a market
survey would be costly and time consuming. For these problems, it is usually
the case that traditional (Bayesian) techniques do not work well. Therefore,
different mechanisms and techniques should be proposed.

This paper looks at two strong properties that are meaningful in the prior-
free cost sharing model: group strategyproofness and a worst-case measure.
On one hand, group strategyproofness (GSP) rules out coordinated misreports
under any possible information context. In particular this property is robust
because it works whether the information on individual characteristics is private
or not. That is, GSP works whether a small or large group of agents can
coordinate misreports.

On the other hand, we use the worst absolute surplus loss measure (wal),
that is the supremum of the difference between the efficient surplus and the
surplus of the mechanism, where the supremum is taken over all utility profiles.
This measure has been used recently in the literature as a second-best efficiency
measure in similar cost sharing models.1 This measure is prior-free because it
does not depend on the (potential) distribution of valuations.

Summary of the results

Efficiency of the mechanism requires that the surplus-maximizing set of
1See Moulin and Shenker[2001] and Juarez[2007] for applications of the wal-measure. See

Moulin[2005] for an application of the best relative gain, a similar worst-case measure.
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agents is being served at every utility profile. Proposition 1 shows that there is
no mechanism that is efficient and GSP, even if it can have a budget surplus.
This impossibility holds except in the trivial case of an additive cost function
(see below).2 In spite of this negative result, we compute second-best optimal
GSP mechanisms for two orthogonal classes of cost functions using wal.

A classic mechanism in this economy is the average cost mechanism (AC).
It is the mechanism in which all agents ex-ante pay the same price. That is,
every agent simultaneously decides to buy or not buy a unit of good. If k agents
decide to buy, they all pay the average cost of producing k units.

If the cost function has decreasing marginal cost,3 then the average cost
mechanism achieves the smallest worst absolute surplus loss (henceforth wal-
optimum) among the GSP mechanisms that treat equal agents equally (Propo-
sition 2). This result is reminiscent of Theorem 1 in Moulin and Shenker[2001].
They proved that the Shapley value mechanism, a more general mechanism de-
fined for non-symmetric submodular cost functions, is wal-optimum among the
GSP and budget-balanced mechanisms. When the cost function is symmetric,
our result goes further by proving the optimality of this mechanism among a big-
ger class of cost functions even when the mechanisms are not budget-balanced.

On the other hand, if the cost function has increasing marginal cost, we
propose the sequential average cost mechanism (SAC). Under SAC, the agents
“sequentially” pay the same price. That is, given an arbitrary order of the
agents, say in, in−1, . . . , i1, first it computes the agent ik̃ in the smallest posi-
tion whose utility is bigger than the average cost of producing k̃ units (if there
is no such agent then none is served). Then every agent in {ik̃, . . . , i1} is of-
fered a unit of good at this price. The SAC mechanism is wal-optimal among
the GSP mechanisms (Proposition 3). Moreover, when the cost function has
increasing marginal cost, SAC is not budget-balanced but it reduces the worst
absolute surplus loss by up to a half with respect to the optimal budget-balanced
mechanism (Proposition 4).

Related Literature

This work, specifically the worst-case measure used above is related to the
large and growing literature in computer science of the worst-case scenario. In
particular, the recent literature of the price of anarchy, introduced to mea-
sure the effects of selfish routing in a congested network (Koutsoupias and
Papadimitriou [1999], Roughgarden and Tardos [2002], Roughgarden [2003]).
More specifically, it relates with the rich applications of these measures to net-
work economic problems (e.g. Johari and Tsilikis [2004], Johari et al. [2005],
Roughgarden et al.[2006, 2007]), assignments of goods or bads (Moulin[2007]),

2This result contrasts with the classic imposibility to meet simultaneously strategyproof-
ness, budget-balance and efficiency (Vickrey[1961], Clarke[1971] and Groves[1973]) because it
persists even by allowing a budget surplus on the mechanism. Notice the VCG mechanisms
are strategyproof and efficient but do not balance the budget.

3In fact, we prove it for the more general class of cost functions with decreasing average
cost.
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and cost-sharing (Moulin[2006], Juarez[2006, 2007a]).
The design of GSP cost-sharing mechanisms was first discussed by Moulin

[1999]. The paper characterizes cross-monotonic mechanisms by GSP , budget-
balance, voluntary participation, nonnegative transfers and strong consumer
sovereignty. Juarez[2007] also characterizes cross-monotonic mechanisms by
GSP and a weak continuity condition. On the other hand, Moulin and Shenker
[2001] evaluate the trade-offs between efficiency and budget-balance. The Shap-
ley value cross-monotonic mechanism (the analog to the AC mechanism for
non-symmetric cost functions) is characterized there by GSP , budget-balance,
voluntary participation, nonnegative transfers and strong consumer sovereignty.
Roughgarden et al.[2008a] shows that this mechanism is also optimal among the
class of strategyproof and ‘weakly-monotonic’ mechanisms using the worst ‘rel-
ative’ gain measure.

Roughgarden et al.[2006a, 2006b], Pa’l et al.[2003] and Immorlica et al.[2005]
consider cross-monotonic mechanisms when the cost function is not submodu-
lar. Roughgarden et al.[2006] uses submodular cross-monotonic mechanisms
to approximate budget-balance when the actual cost function is not submodu-
lar. Immorlica et al.[2005] shows that new cross-monotonic mechanisms emerge
when consumer sovereignty is relaxed.

Very little has been said in the literature on mechanisms that generate cost
functions that are not submodular. Sequential mechanisms similar to SAC are
discussed by Moulin[1999] who imposes budget-balance for a supermodular cost
function, and by Juarez[2007] who characterizes sequential mechanism by GSP
and a weak continuity condition. However, there is no result in the literature
concerning the efficiency of sequential mechanisms and cost functions with in-
creasing marginal cost like the one discussed here.

2 The model

For a vector x, x ∈ RN , we denote by xS the sum of the S-coordinates of
x, xS =

∑
i∈S xi. Let δi : 2N → {0, 1} the classic indicator function, that is

δi(T ) = 1 if i ∈ T , and 0 otherwise.
A problem consists of a marginal cost function c1, c2, . . . , cn, where ci is the

marginal cost of producing good i. C(i) = c1 + · · · + ci is the total cost of
producing the first i units. The cost function C is submodular (supermodular)
whenever c1 ≥ c2 ≥ · · · ≥ cn (c1 ≤ c2 ≤ · · · ≤ cn). The average cost function is
ac(k) = C(k)

k . Clearly, if the cost function is submodular (supermodular) then
the average cost function is decreasing (increasing), but the converse is not true.

There are a finite number of agents N = {1, 2, . . . , n}. Every agent has a
utility (willingness to pay) for getting one unit of good. Let u, u ∈ RN+ , the
vector of those utilities. Therefore, if agent i gets a unit paying by xi, his net
utility is ui − xi. If he does not get a unit, his net utility is zero.

Definition 1 A mechanism ξ = (S, ϕ) is a pair of functions S : RN+ → 2N and
ϕ : RN+ → RN+ such that for each utility profile u :
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i. ϕ(u)N ≥ C(|S(u)|)

ii. ϕi(u) = 0 if i 6∈ S(u)

iii. ui ≥ ϕi(u) if i ∈ S(u).

A mechanism assigns to every report of utilities, units of good to some agents
and cost shares to those agents. Condition i states that the mechanism covers
the cost of providing service. Condition ii requires that the agents who are not
served should pay nothing. Condition iii requires individual rationality, that is
ex-post utility is not smaller than ex-ante utility.

The net-utility of agent i in the mechanism ξ = (S, ϕ), denoted by NUξi , is
NUξi (u) = δi(S(u))(ui − ϕi(u)). Let NUξ(u) the vector of such net utilities.

Definition 2 (Group strategyproofness) We say the mechanisms ξ = (S, ϕ)
is group strategyproof if for all T ⊆ N and all utility profiles u and u′ such that
u′N\T = uN\T , it cannot be that NUξi (u) ≤ (ui − ϕi(u′))δi(S(u′)) for all i ∈ T
and strict for at least one agent.

Group strategyproofness (GSP) rules out coordinated misreports of any
group of agents. That is, if a group of agents misreport, and the net-utility
of an agent in the group strictly increases, then the net-utility of another agent
in the group should strictly decrease.

3 GSP and Efficiency

The surplus of the mechanism ξ at a utility profile u is the sum of the net
utilities of all agents σξ(u) =

∑
i∈N NU

ξ
i (u). The efficient surplus at u is

eff(u) = maxS⊆N u(S)− C(S). A mechanism is efficient if it serves the group
of agents that generates eff(u) at any utility profile u.4

We say the cost function is not additive if C(S∪T ) 6= C(S)+C(T ) for some
S, T such that S ∩ T = ∅. Notice that non-additivity implies that the marginal
cost function is not constant.

Proposition 1 If the cost function is not additive, there is no GSP mechanism
that is efficient.

If the cost function is additive, then the fixed cost mechanism where agent i
is offered a unit of good at price C(i) independent of the valuations of the other
agents is efficient and GSP.

4The usual definition of efficient mechanism requires that the efficient mechanism gives the
efficient surplus at any utility profile. Our definition is more general, since we only require for
the surplus maximizer set of agents to be served.
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4 Optimal Mechanisms

Given that efficiency and GSP are not compatible for non-trivial cost functions,
we find second-best optimal mechanisms that are GSP. These mechanisms have
the smallest surplus loss relative to the efficient allocation. Two measures have
been used recently to make this comparison. The first measure is the worst
relative gain (Moulin[2005]), that is the infimum of the ratio of the surplus of
the mechanism and the efficient surplus, where the infimum is taken over all
utility profiles. With this measure, any mechanism that is group strategyproof
has zero worst relative gain. Hence the measure is not informative.5

Definition 3 Given the agents in N and the cost function C, the worst absolute
surplus loss of ξ is:

wal(N,C, ξ) = supu∈RN
+
eff(u)− σξ(u)

This measure is informative, that is it is finite for any mechanisms that
allocates units to the agents with high utility independent of the profile of the
other agents.6

4.1 Decreasing average cost

Definition 4 (Average cost mechanism) Given a cost function C with de-
creasing average cost, the equilibrium of the average cost mechanism (AC) is
computed as the Nash equilibrium of the game where every agent decides to buy
or not buy a unit of good. If s agents decided to buy, each of them gets a unit
of good at a price equal to ac(s) = C(s)

s .

The average cost mechanism is clearly budget-balanced for the cost C. In
particular, it is a feasible mechanism for C. Notice that multiplicity of AC-
equilibria is possible; however, all equilibria are welfare equivalent.

Given that the cost function is symmetric, a normative requirement on the
mechanisms is to treat equal agents equally (ETE). That is, for any utility
profile u and any two agents i and j that report the same valuation for the
good ui, uj such that ui = uj , then either they are simultaneously served at
the same price (i, j ∈ S(u) and ϕi(u) = ϕj(u)) or they are simultaneously not
served i, j 6∈ S(u).

Proposition 2 If the cost function has decreasing average cost, then the AC
mechanism:

5To see this, consider a GSP mechanism and assume the cost function has increasing aver-
age cost (this is proved similarly for submodular case, and other non-additive cost functions).
By GSP, there is a finite payment for coalition N, denote it by xN . Let the utility profile
be the vector u = xN + ε · 1N , for some ε > 0. At this profile, the surplus is nε. Notice the
efficient surplus is positive at this profile because xi > C(i) for some i. Hence as ε goes to
zero, the surplus of the mechanism goes to zero, but the surplus of the efficient mechanism
remains bounded below by a positive number. Hence the worst relative gain is zero.

6This property is called consumer sovereignty and was introduced by Moulin[1999]. The
proof of this claim can be found in Lemma 1 of Juarez[2006].
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i. Pareto dominates any other GSP mechanism that treats equal agents equally,

ii. is wal-optimum among the GSP and ETE mechanisms,

iii. has a loss equal to wal(n,C,AC) = ac(1) + ac(2) + · · ·+ ac(n)− C(n)

Part i singles out AC as the only efficient choice among the feasible GSP
mechanisms that treat equal agents equally. When the cost function is sub-
modular, Moulin and Shenker[2001] proved a proposition similar to part ii but
imposing an additional budget-balanced restriction to the mechanisms. This
proposition shows the same result holds even when we allow a budget-surplus.

Notice part ii guarantees that AC has a strictly smaller worst absolute
surplus loss with respect to any other GSP and ETE mechanism, therefore
is not implied by part i.

4.2 Increasing average cost

If the cost function has increasing average cost, then a multiplicity of AC-
equilibria that are not welfare equivalent is possible (see below). Moreover, AC
is not even strategyproof. In particular, it is not GSP. To see this, consider the
profile u = (ac(2) − ε, ac(2) − ε, 0, 0, . . . , 0) for 0 < ε < c2−c1

2 . At equilibrium,
only one agent can be served; without loss of generality we assume SAC(u) =
{1} and ϕAC1 (u) = c1. Consider ũ = (ac(2) − ε, ac(2) + ε, 0, 0, . . . , 0). The AC
equilibrium serves only one agent at price c1. Clearly S(ũ) 6= {2}, otherwise
agent 2 profits by misreporting ũ2 = ac(2) + ε when the true profile is u. Thus
S(ũ) = {1}. Hence agent 1 profits by misreporting ac(2)−ε when the true profile
is (ac(2) + ε, ac(2) + ε, 0, 0, . . . , 0).

Definition 5 (Sequential average-cost mechanism) Given cost function C
with increasing average cost, and an arbitrary order of the agents in, in−1, . . . , i1,
the equilibrium of the sequential average-cost mechanism (SAC) is computed as
follows. Let k∗ the largest index such that uik∗ > ac(k∗). Then every agent il
such that l ≤ k∗ and uil > ac(k∗) gets a unit of good at price ac(k∗).

Clearly SAC is feasible for the cost function C. Contrary to AC, SAC is
not budget-balanced. For instance if u is such that uin > ac(n) and uil < ac(n)
for l < n, then only agent in is served at price ac(n), and ac(n) > c1. However,
proposition 4 below shows that even though SAC is not budget-balanced, it has
the same worst absolute surplus loss as the AC mechanism.

The SAC mechanism does not treat equal agents equally. However, it meets
the equal share property (ESP), which states that all agents that get service pay
the same. That is, if S(u) = S∗ then ϕi(u) = ϕj(u) for all i, j ∈ S∗. In the class
of GSP mechanisms, ESP is weaker than ETE (see Juarez[2007]).

Proposition 3 If the cost function has increasing marginal cost, then the SAC
mechanism:

i. is wal−optimal over all GSP mechanisms,
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ii. Pareto dominates any other GSP, ESP and wal−optimal mechanism,

iii. wal(n,C, SAC) = maxk k[ ck+1+···+cn

n ]− (n− k)[ c1+···+ck

n ].

4.2.1 Welfare comparison between budget-balanced and budget-surplus
mechanisms

The incremental marginal cost mechanism (INC) sequentially offers the agents
a unit of good at a price equal to marginal cost. That is, for an arbitrary order
of the agents, say 1, . . . , n we offer agent 1 a unit of good at price c1. Agent 2 is
offered a unit of good at price c2 if 1 accepts, or at price c1 if 1 did not accept.
And similarly for the following agents. Only the incremental mechanisms are
GSP , budget-balanced and consumer-sovereign when the marginal cost function
is increasing (see Moulin[1999]).

Proposition 4 i. The incremental marginal cost mechanism has a loss equal
to:

wal(n,C, INC) = (c[ n+1
2 ] + · · ·+ cn)− (c1 + · · ·+ c[ n−1

2 ]).

ii. 1 ≤ wal(n,C,INC)
wal(n,C,SAC) ≤ 2 for all n and all C.

iii. If marginal cost is linear, ci = a · i, then wal(n,C,INC)
wal(n,C,SAC) = 2 for all n.

In particular, part iii shows that the loss of a GSP and budget-balanced
mechanism can be cut by up to half by allowing a budget surplus.

When the marginal cost is increasing, it is not difficult to see that the worst
absolute surplus loss of AC equals exactly wal(n,C, SAC) (see lemma 2 in
Juarez[2006] for details). Hence by implementing SAC we gain GSP and only
lose budget-balance.
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5 Appendix: Proofs

Proof of Proposition 1.
We prove a stronger result. There is no mechanism that simultaneously

meets GSP and serves the efficient set of agents.

Step 1. Assume N = {1, 2} and C(12) < C(1) + C(2).
Consider the profiles u = (C(12) − C(2) + 2ε, C(2) − ε) and ũ = (C(1) −

ε, C(12)−C(1) + 2ε). For small ε, 1 and 2 are not feasible at u because C(12)−
C(2) + 2ε < C(1) and C(2)− ε < C(2). Thus by efficiency S(u) = 12. Similarly,
S(ũ) = 12. Let x = ϕ(u) and y = ϕ(ũ). Notice x 6= y, to see this x1 ≤
C(12)−C(2) + 2ε by voluntary participation of agent 1 at u and y1 ≥ C(1)−2ε
by VP and feasibility at ũ. For small ε C(12) − C(2) + 2ε < C(1) − 2ε, hence
x1 < y1.

Finally, by efficiency S(C(1)− ε, C(2)− ε) = 12. By SP, ϕ1(C(1)− ε, C(2)−
ε) = x1. On the other hand, by GSP ϕ2(C(1) − ε, C(2) − ε) = x2. Indeed, if
ϕ2(C(1)−ε, C(2)−ε) < x2 then agent 1 helps 2 by misreporting C(1)−ε when the
true profile is u. On the other hand, if ϕ2(C(1)−ε, C(2)−ε) > x2, then 1 helps 2
by misreporting u1 when the true profile is (C(1)−ε, C(2)−ε). This contradicts
GSP. Hence ϕ(C(1)− ε, C(2)− ε) = x. Similarly, ϕ(C(1)− ε, C(2)− ε) = y. This
is a contradiction because x 6= y.

Step 2. Assume N = {1, 2} and C(12) > C(1) + C(2).
By feasibility S(C(1)+ε, C(2)+ε) 6= 12, assume w.l.g. that S(C(1)+ε, C(2)+

ε) = 1. By efficiency, S(C(1) + ε, C(2) + 2ε) = 2 and ϕ2(C(1) + ε, C(2) + 2ε) =
C(2).

Also by efficiency S(0, C(2) + 2ε) = 2 and by GSP ϕ2(C(1) + ε, C(2) + 2ε) =
ϕ2(0, C(2) + 2ε) (if one is smaller then agent 1 can help 2). Since S(0, C(2) +
2ε) = 2 for all ε > 0 then by SP and feasibility ϕ2(0, C(2) + 2ε) = C(2). Thus
ϕ2(C(1) + ε, C(2) + 2ε) = C(2). Hence by SP, 2 ∈ S(C(1) + ε, C(2) + ε). This
is a contradiction.

Step 3. Assume n > 2.
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Because the cost function is not additive, there are i, j ∈ N, S ⊂ N \ {i, j}
such that

C(S ∪ i) + C(S ∪ j) 6= C(S ∪ i, j) + C(S). (1)

Let ū a utility profile such that ūs > C(N) for all s ∈ S and uk = 0 if
k 6∈ S ∪{i, j}. By efficiency, the agents in S should be served and any agent not
in S ∪ {i, j} should not be served. Agents i and j may or may not be served.

Consider the set of utility profiles U = {u | u[N\i,j] = ū[N\i,j]}.
Thus S ⊆ S(u) ⊆ S ∪ {i, j} for all u ∈ U.
Restricting the mechanism to U , it defines a GSP mechanism for agents i

and j. By equation 1, the cost function is not additive, hence by steps 1 and 2
the mechanism is not efficient at U .

Proof of Proposition 2.

Part i.

By Juarez[2007] any GSP and ETE mechanism is cross-monotonic and meet
the ESP.

Let (S, ϕ) be a GSP and ETE mechanism. By Juarez[2007] proposition 1,
(S, ϕ) is cross-monotonic and the set of payments meet the equal share property.

Consider a utility profile u and assume S(u) = S∗. By feasibility ui ≥
ϕi(u) ≥ ac(S∗) for all i ∈ S∗.

Hence at the average cost equilibrium, S∗ ⊆ SAC(u). Since the average cost
is decreasing, then ϕACi (u) ≤ ϕi(u) for all i ∈ S∗.

Part ii.

Consider a mechanism ξ = (S, ϕ) as in part i above.
Because ξ is Pareto dominated by AC then wal(n,C,AC) ≤ wal(n,C, ξ).

We now prove the strict inequality.
If ξ is not welfare equivalent to AC, then there is a utility profile u such that

ϕi(u) > AC(S∗) for some i ∈ S∗, S∗ = S(u).
Let i ∈ S∗, ε > 0, and consider the utility profile ũ(ε) such that ũ−S∗(ε) =

(ac(|S∗|+ 1)− ε, . . . , ac(n)− ε), and ũS∗(ε) = (ac(1)− ε, ac(2)− ε, . . . , ac(|S∗| −
1)− ε, ac(|S∗|) + δ) where δ = ϕi(u)−AC(S∗)

2 > 0.
First notice S(ũ(ε)) = ∅. To see this, clearly S(ũ(ε)) 6= N because the

payment of all agent should be at least ac(n), so this is not feasible for the agent
with utility ac(n)− ε. By cross-monotonicity, this agent is not served. Similarly,
the agent with utility equal to ac(|S∗| − 1) − ε is not served. Continuing this
way, S(ũ(ε)) ∩ (N \ S∗) = ∅.

Also notice S∗ is not feasible at ũ(ε) because ac(|S∗|) + δ < ϕi(u). Hence
this agent is not served. Continuing this way, S(ũ(ε)) = ∅.

Hence wal(N,C, ξ) ≥ eff(ũ(ε)). Clearly, eff(ũ(ε)) = ac(1) + · · ·+ ac(n) +
δ − (n− 1)ε− C(n) because ac(i) ≥ ci for all i.

Hence as ε goes to zero, wal(N,C, ξ) ≥ ac(1) + · · · + ac(n) + δ − C(n). By
part iii below, wal(N,C, ξ) > ac(1) + · · ·+ ac(n)− C(n) = wal(N,C,AC).
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Part iii.

Consider the profile u(ε) = (ac(1) − ε, ac(2) − ε, . . . , ac(n) − ε) for ε > 0.
Clearly, SAC(u(ε)) = ∅. Thus wal(N,C,AC) ≥ eff(ũ(ε)). Clearly, eff(ũ(ε)) =
ac(1) + · · · + ac(n) − (n − 1)ε − C(n) because ac(i) ≥ ci for all i. Hence, as ε
goes to zero, wal(N,C,AC) ≥ ac(1) + · · ·+ ac(n)− C(n).

Consider a utility profile u such that S(u) = ∅. Up to reordering the vector,
assume u1 ≥ u2 ≥ · · · ≥ un. Then, clearly u ≤ (ac(1), ac(2), . . . , ac(n)). Since
the efficient surplus is increasing in the utility profile, then

eff(u)− σξ(u) ≤ ac(1) + · · ·+ ac(n)− C(n).

Next assume, S(u) = S∗ 6= ∅. Because the average cost is decreasing, then
ac(i) ≥ ci for all i, then the efficient surplus serve at least the agents in S∗. Thus
we can reduce the utility of the agents in S∗ up to ac(S∗) without affecting the
loss. That is:

eff(u)−σξ(u) = eff(ac(S∗)1S∗ , u−S∗)−σξ(ac(S∗)1S∗ , u−S∗) = eff(ac(S∗)1S∗ , u−S∗)

Up to renaming the agents, assume u−S∗ = (uS∗+1, uS∗+2, . . . , un), uS∗+1 ≥
uS∗+2 ≥ · · · ≥ un. Clearly, uS∗+1 < ac(S∗ + 1), uS∗+2 < ac(S∗ + 2), . . .
un < ac(n).

Hence eff(ac(S∗)1S∗ , u−S∗) ≤ eff(ac(1), ac(2), . . . , ac(n)) = ac(1) + · · · +
ac(n)− C(n).

Hence wal(n,C,AC) = ac(1) + · · ·+ ac(n)− C(n).

Proof of Proposition 3.

Step 1. wal(n,C, SAC) = max1≤k≤n k · ac(n)− (c1 + · · ·+ ck)

Let xSAC = (ac(n), . . . , ac(n)), and consider the fixed cost mechanism ξ
that offers to every agent a unit of good at price ac(n), independent of the other
agents report. I claim ξ has a worst absolute surplus loss equal to max1≤k≤n k ·
ac(n)− (c1 + · · ·+ ck).

Indeed, let u a utility profile. Assume u[S] >> xSAC[S] , u[T ] << xSAC[T ] and
u[N\(S∪T )] = xSAC[N\(S∪T )].

Let ε > 0 such that ε <| ui − xSACi | for all i ∈ S ∪ T. Let

uε = (xSAC[S] + ε1[S], x
SAC
[T ] − ε1[T ], u[N\(S∪T )])

where 1N = (1, . . . , 1).
Then, eff(uε) − σξ(uε) ≥ eff(u) − σξ(u). To see this, let i ∈ S, then

xSACi − ε < ui. Since i ∈ S(u), then by replacing ui by xSACi − ε the efficient
surplus decreases at most by ui − (xSACi − ε) while σξ(u) decreases exactly by
ui − (xSACi − ε). On the other hand, if i ∈ T, then xSACi − ε > ui. Thus by
replacing ui by xSACi − ε the efficient surplus increases at most by xSACi − ε−ui
while σξ(u) does not increase. The agents outside S∪T do not affect the surplus.
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Finally, by the same argument eff(uε) − σξ(uε) is not decreasing as ε ap-
proaches to zero. Clearly, limε→0 σ

ξ(uε) = 0 and limε→0 eff(uε) = maxS |S|ac(n)−
C(S).

Hence,

wal(n,C, ξ) = max
S⊆N

|S|ac(n)− C(S) = max
k

k · ac(n)− C(k).

On the other hand, by choosing the utility profile u = (ac(n)+ε, . . . , ac(n)+ε)
and letting ε tend to zero, wal(n,C, SAC) ≥ maxk k · ac(n)− C(k).

Since SAC Pareto dominates ξ, then wal(n,C, SAC) = wal(n,C, ξ).

Step 2. wal(n,C, SAC) ≤ wal(n,C, ξ) for any feasible mechanism ξ.

Consider a mechanism ξ = (S, ϕ) with finite worst absolute surplus loss.
Then for every agent i, there is xi large such that i is served if ui > xi indepen-
dent of other agent’s reports (i.e. the mechanism meets consumer sovereignty).
Indeed, if this does not occur, then we can find a collection of utility profiles
u1, u2, . . . such that uki → ∞ and i 6∈ S(uk) for all k. Since i ∈ eff(uk) for all
k such that uki > C(N), then eff(uk)− σξ(uk)→∞ as k →∞.

Given this, consider a utility profile ũ such that ũi > xi for all i. Then,
S(ũ) = N. We can assume without loss of generality that all agents are getting
positive net utility.

Assume ϕ(ũ) = xN . Thus, ũi > xNi for all i ∈ N. Let ε > 0, by SP i ∈
S(xNi + ε, u−i) and ϕi(xNi + ε, u−i) = xNi .

On the other hand, by GSP j ∈ S(xNi + ε, u−i) and ϕj(xNi + ε, u−i) = xNj
for all j 6= i. To see this, if j 6∈ S(xNi + ε, u−i) or ϕj(xNi + ε, u−i) > xNj then
agent i helps j by misreporting ui when the true profile is (xNi + ε, u−i). On the
other hand, if ϕj(xNi + ε, u−i) < xNj then i helps j by misreporting xNi + ε when
the true profile is u.

Hence, by changing one agent at a time, S(xN+ε1N ) = N and ϕ(xN+ε1N ) =
xN .

Notice σξ(xN +ε1N ) = nε. On the other hand, eff(xN +ε1N ) = maxS xNS −
C(S)+ | S | ε. Thus,

limε→0eff(xN + ε1N )− σξ(xN + ε1N ) = max
S

xNS − C(S).

Hence, wal(n,C, ξ) ≥ maxS xNS − C(S).
Finally, since xNN ≥ C(N) then maxS xNS − C(S) ≥ maxS |S|ac(n)

n − C(S).
Along with step 1, this proves step 2.

Part iii.

This part follows immediately from step 1 in part i, and noticing:

max
1≤k≤n

k ·ac(n)−(c1 + · · ·+ck) = max
k

k[
ck+1 + · · ·+ cn

n
]−(n−k)[

c1 + · · ·+ ck
n

].
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Proof of Proposition 4

Part i.

Because the cost function is supermodular, the loss will be given at xN . At
this point, xN = (c1, . . . , cn). The surplus of the mechanism at u = xN + ε · 1N
is n · ε. Hence

wal(n,C, INC) = max
S

C(S)−C(| S |) = (c[ n+1
2 ] + · · ·+ cn)− (c1 + · · ·+ c[ n−1

2 ]).

Part ii.

1 ≤ wal(n,C,INC)
wal(n,C,SAC) is obvious by optimality of wal(n,C, SAC).

wal(n,C,INC)
wal(n,C,SAC) ≤ 2 follows immediately by choosing k = [n2 ] in the equation

of proposition 3, part iii.

Part iii.

For ci = i,

maxk k[ ck+1+···+cn

n ]−(n−k)[ c1+···+ck

n ] =
k(1/2 (n+1)2−1/2n−1/2 (k+1)2+1/2 k)

n −
(n−k)(1/2 (k+1)2−1/2 k−1/2)

n
This has a maximum at k = n

2 (Maple computations). By substituting, we
get that the loss equals n2

8 .

On the other hand, it is easy to check, from part i, that wal(n,C, INC) = n2

4 .
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