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1. Introduction

The relative performance of open and sealed bid auctions is a central issue in auction

design. The choice between these auction formats arises frequently: in allocating natural

resources, in procurement, in sales of art, real estate and other assets. The seminal result in

auction theory, Vickrey’s (1961) Revenue Equivalence Theorem, states that under certains

conditions the two formats have essentially equivalent equilibrium outcomes. But in practice

the assumptions of competitive risk neutral bidders with independent identically distributed

values often seem too strong. Further theoretical work shows that auction choice becomes

relevant as these assumptions are relaxed. The comparison between open and sealed bidding

then depends on both the details of the market (e.g. bidder heterogeneity, entry costs,

collusion, correlation in bidder values, risk-aversion, transaction costs) and the designer’s

objective (e.g. revenue maximization or efficiency).

This wealth of theory cries out for empirical evidence, but it has arrived slowly. A

difficulty is that many real-world auction markets tend to operate under a given set of rules

rather than systematically experimenting with alternative designs. In this paper, we provide

some new evidence from sales of timber in the national forests. The U.S. Forest Service

timber program provides an excellent test case in market design as it uses both open and

sealed bidding, at times even randomizing the choice. The timber sale program is also

economically interesting in its own right. Timber logging and milling is a $100 billion a

year industry in the U.S.,1 and about 30% of timberland is publicly owned. During the time

period we study, the federal government sold about a billion dollars of timber a year.

We analyze data from open and sealed bid sales held during 1982 and 1990 in two

areas: the Idaho-Montana border and California. We document significant departures from

revenue equivalence in terms of bidder participation, allocation and prices. Conditional on

sale characteristics, sealed bid auctions induce more participation by small firms that lack

manufacturing capacity (“loggers”). In contrast, entry by larger firms with manufacturing

capability (“mills”) is roughly the same across auction formats. Sealed bid auctions also

are more likely to be won by loggers. Finally, we measure winning bids to be about 10%

higher in the sealed bid auctions in the Northern forests. In the California forests, the price

difference is small and statistically insignificant.

Motivated by these findings, we consider a model that incorporates several salient depar-

tures from the standard independent private value auction model (the revenue equivalence

1This number is from the U.S. Census and combines forestry and logging, sawmills, and pulp and paper-
board mills (NAICS categories 113, 3221 and 321113).
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benchmark). First, we allow bidders to have heterogeneous value distributions. Second, we

explicitly model participation by assuming it is costly to acquire information and bid in the

auction. Third, because of the large price differential in the Northern forests, we entertain

the possibility that mills behave cooperatively in the open auctions. Collusion has been

a long-standing concern in timber auctions and the prevailing view is that open auctions

are more prone to bidder cooperation because participants are face-to-face and can react

immediately to opponents’ behavior.

The theoretical effect of bidder heterogeneity is well-known from the work of Maskin and

Riley (2000). In an open auction, the bidder with the highest value always wins. But in a

sealed bid auction, relatively strong bidders have greater incentive to shade their bids below

their true valuations, so a weak bidder can win despite not having the highest valuation. The

resulting distortion tips sealed bid outcomes toward weaker bidders and provides them with

an extra entry incentive. Using our bidding data, we provide sharp evidence that mills are

systematically stronger bidders, so the basic predictions of the heteregenous bidding model

concerning allocation and entry go in the same direction as our empirical findings. The

theory is less clearcut on the relative prices in open and sealed auctions. As Maskin and Riley

observed, the comparison hinges on the model primitives: the bidders’ value distributions

and the cost of participation.

To assess whether the model can match our empirical findings about auction prices,

as well as our quantitative findings about allocation and entry, we estimate the structural

parameters of the model using data from the sealed bid auctions. We use a parametric version

of Guerre, Perrigne and Vuong (2000) to recover the distributions of bidder values from the

observed bids. We also recover estimates of entry costs by estimating the distribution of

logger entry and combining this with the post-entry profits implied by the estimated value

distributions. We show informally and using formal specification testing that the model

provides a good fit to the sealed bid data. The estimates indicate substantial differences

between mills and loggers, as well as fairly low entry costs and profit margins.

We then use the calibrated model to predict the outcomes of the open auctions in our

data under alternative behavioral assumptions. The predictions are out-of-sample in two

directions: we predict outcomes for different sales and for a different auction game than was

used in estimation. Nevertheless when we compare the model’s predictions to the actual

auction outcomes, we find that the model plausibly explains the observed differences in

participation and allocation across auction formats. Our baseline assumption of competitive

bidding also fits the auction prices in California quite well. The competitive benchmark has
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a harder time explaining the large price difference between open and sealed bidding that we

observe in the Northern forests. Instead the data appear consistent with a mild degree of

cooperative behavior by participating mills.

The calibrated model also permits a welfare assessment of the choice between open and

sealed bid auctions. We find that for a fixed set of participants, the model predicts relatively

small discrepancies in outcomes. Sealed bid auctions raise more revenue, and distort the

allocation away from efficiency and in favor of loggers, but the effects are small (less than

1%). The differences are somewhat larger when we account for equilibrium entry behavior:

sealed bidding increases revenue by roughly 2-5% relative to a competitive open auction due

to increased logger entry. Strikingly, even a mild degree of cooperative bidding by the mills

at open auctions – the behavioral assumption most consistent with the observed outcomes

in the Northern forests – results in much more substantial revenue differences (on the order

of 5-10%). This suggests that bidder competitiveness merits considerable attention in the

choice of auction format.

Our paper contributes generally to the economics of auction design, and to several more

focused literatures. In particular, a long-standing debate surrounds the format of federal

timber sales. Mead (1966) argued early on that open timber auctions generated less rev-

enue. In 1976, forests in the Pacific Northwest, which has historically used open auctions,

ran a number of sealed bid sales. Johnson (1979) and Hansen (1986) studied this episode

and reached conflicting conclusions. Johnson finds higher prices in the sealed bid auctions,

while Hansen argues that the differences are insignificant after accounting for sale charac-

teristics. As Hansen points out, however, the episode is not an ideal testing ground. The

choice of auction format was sensitive to lobbying, creating a potentially severe endogeneity

problem, and moreover, one might be skeptical of drawing conclusions from an unexpected

and transient episode. Subsequently, Schuster and Niccolucci (1993) and Stone and Rideout

(1997) looked, respectively, at sales in Idaho and Montana and in Colorado. Both papers find

higher revenue from sealed bid auctions. A nice feature of Schuster and Niccolucci’s paper

is that they exploit the often-random assignment of auction format in some of the Northern

forests. Our paper expands on this prior work by addressing a broader set of questions about

allocation and participation as well as prices, and in estimating a tightly-specified theoretical

model, but we have drawn on Schuster and Nicolucci’s work in constructing our sample.

Our work also relates to the empirical literature on bidder collusion. Researchers have

proposed several approaches to assess whether auction data are consistent with competitive

or collusive bidding (Porter and Zona 1993, 1999; Baldwin, Marshall, and Richard, 1997;
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Bajari, 1997; Pesendorfer, 2000; Bajari and Ye, 2003; Asker, 2008). These approaches

either require prior knowledge about the existence and structure of a cartel, or derive in-

sample specification tests of the competitive model and treat collusion as the alternative.

Our method differs in that we use behavior in one auction format as a benchmark from which

to evaluate the competitiveness of behavior under an alternative format.

Finally, our empirical approach to studying bidder participation shares features with

the industrial organization literature on entry and market structure (Bresnahan and Reiss,

1987; Berry, 1992). This literature uses entry decisions to draw inferences about profit

functions relative to a normalized distribution of entry costs, as a function of market-specific

covariates. In contrast, we first estimate post-entry profits from firms’ pricing decisions (i.e.

their bids), and use entry decisions only to recover the sunk costs of participation. This

approach allows us to fully recover the parameters of our model in dollar terms. Bajari and

Hortacsu (2003), Li (2005), Li and Zheng (2006), and Krasnokutskaya and Seim (2005) are

other recent auction studies that account for bidder participation.

2. The Theoretical Model

This section develops the theoretical model we use to frame our empirical analysis. Our

starting point is the heterogeneous private values auction model of Maskin and Riley (2000),

which we slightly extend to incorporate participation decisions and possible collusion in open

auctions. We discuss some specific modeling choices at the end of the section.

A. The Model

We consider an auction for a single tract of timber. Prior to the sale, the seller announces

a reserve price r and the auction format: open ascending or first price sealed bid. There is a set

N of potential risk-neutral bidders. Each bidder must incur a cost K to gather information

and enter the auction. By paying K, bidder i learns his (private) value for the tract, vi, and

may bid in the auction. We refer to bidders who acquire information as participants, and

denote the set of participants by n.

We assume each bidder i’s value is an independent draw from a distribution Fi with

continuous density fi and support [v = r, vi]. Anticipating our empirical analysis, we allow

for two kinds of bidders. Bidders 1, ..., NL are Loggers and have value distribution FL,

while bidders NL + 1, ..., NL + NM are Mills and have value distribution FM . We assume

that FM stochastically dominates FL according to a hazard rate order, so that for all v,
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fM(v)/FM(v) ≥ fL(v)/FL(v). We sometimes refer to the mills as strong bidders and the

loggers as weak bidders.

We adopt a standard model of the bidding process. In an open auction, the price rises

from the reserve price and the auction terminates when all but one participating bidder

has dropped out. With sealed bidding, participating bidders independently submit bids;

the highest bidder wins and pays his bid. For both auctions, we assume that bidders make

independent decisions to acquire information, but learn the identities of other participants

before submitting their bids.

A strategy for bidder i consists of a bidding strategy and an entry strategy. A bidding

strategy bi(·;n) specifies i’s bid (or drop-out point in the case of an open auction) as a
function of his value and the set of participating bidders. An entry strategy pi specifies a

probability of entering the auction.

A type-symmetric entry equilibrium is a pair of bidding strategies bL(·;n), bM(·;n) and
entry strategies pL, pM with the property that: (i) loggers use the strategy bL, pL andmills the

strategy bM , pM ; (ii) each bidder’s bid strategy maximizes his profits conditional on entering;

and (iii) each bidder enters if and only if his expected profit from entry exceeds the entry

cost (and may enter probabilistically if the two are equal). To characterize type-symmetric

equilibria, we first consider the bidding game and then the entry game.

B. Equilibrium Bidding

We begin with the sealed bid auction. Suppose i is a participating bidder with value vi,

and the set of participants is n. Bidder i’s expected profit is

πsi (vi;n) = max
b≥r
(vi − b)

Y
j∈n\i

Gj(b;n), (1)

where Gj(b;n) = Fj(b
−1
j (b;n)) is the probability that j will bid less than b. The first order

condition for i’s bidding problem is

1

vi − bi
=
X
j∈n\i

gj(bi;n)

Gj(bi;n)
. (2)

The first order conditions, together with the boundary condition that bi(r;n) = r for all i,

uniquely characterize optimal bidding strategies for any set of participants n, and provide a

basis for estimating bidders’ value distributions (Guerre, Perrigne and Vuong, 2000).

Equilibrium bidding behavior exhibits several key features. First, bid strategies are type-
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symmetric. Second, mills submit higher bids: GM(b;n) ≤ GL(b;n) for all b. This is a testable

implication of the model. Third, mills shade their bids more than loggers: bM(v;n) ≤ bL(v;n)

for all v. This implies that a logger may win despite not having the highest value.

Now consider the open auction. In this case, all participants have a dominant strategy

of bidding up to their valuation, so bi(v;n) = v. Bidder i’s expected profit conditional on

entering and having value vi is

πoi (vi;n) = max
b≥r

(vi − E[ max{v−i, r}|vj ≤ b ∀j ∈ n\i])
Y
j∈n\i

Fj(b). (3)

Unlike the sealed bid auction, the open auction is efficient: the entrant with the highest value

wins the auction.

C. Equilibrium Entry

We now characterize equilibrium entry. Let πτL(nL, nM) and πτM(nL, nM) denote the

expected logger and mill profit in auction format τ ∈ {o, s} if the set of participants n
includes nL loggers and nM mills, and participants use equilibrium bid strategies. Then

bidder i’s ex ante expected profit from participating is

Πτ
i (p) =

X
n⊂N

πτi (nL, nM) Pr [nL, nM | i enters, opponents play p−i] , (4)

where p = (p1, ..., pM+L) is the profile of entry probabilities, and πτi equals π
τ
L or π

τ
M depend-

ing on whether i is a logger or mill. Entering is optimal if the expected profit Πτ
i (p) exceeds

the entry cost K.

A type-symmetric entry equilibrium (pL, pM) exists for both auction formats, but in

general it need not be unique. The following result is useful in this regard.

Proposition 1 Suppose that for all nL, nM , πsM(nL, nM + 1) > πsL(nL, nM). Then there is

a unique type-symmetric entry equilibrium for both auction formats. In equilibrium, either

pL = 0 or pM = 1.

The uniqueness condition requires that mills have a sufficient value advantage over loggers

to outweigh the effects of facing an additional bidder. As a matter of theory it is rather strong.

In our empirical work, however, we estimate bidder value distributions without making any

equilibrium assumptions about entry behavior, and then verify that the condition holds for

each sale tract in our data. Thus the calibrated version of our model always has a unique
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type-symmetric entry equilibrium. In our data, we observe logger entry in more than 85% of

sales and always more potential logger entrants than actual logger entrants, so the empirically

relevant equilibrium appears to be one in which each logger enters with probability between

zero and one.2

D. Comparing Auction Formats

We now compare the equilibrium outcomes of open and sealed bid auctions. A useful

benchmark to have in mind is the case where bidders are homogeneous, so FL = FM . In this

case, we have auction equivalence as follows: If bidders are homogenous, so FL = FM , the

sealed bid and open auction each have a unique symmetric entry equilibrium, in which the

highest valued entrant wins the auction. These equilibria have (i) the same expected entry,

(ii) the same allocation; and (iii) the same expected revenue.

This equivalence breaks down with heterogeneous bidders. Because mills shade their bids

more than loggers in the sealed bid equilibrium, a logger has a greater chance to win, and

hence has greater expected profits, than in an open auction where the allocation is efficient.

The argument is reversed for mills, leading to the following result.

Proposition 2 For any type-symmetric entry equilibrium of the sealed bid auction, there is

a type-symmetric entry equilibrium of the open auction in which: (i) loggers are less likely

to enter; (ii) mills are more likely to enter; (iii) it is less likely a logger will win.

The statement of the result is complicated by the possibility of multiple equilibria. Under the

uniqueness condition of Proposition 1, however, the prediction is unambigous: open bidding

leads to less logger entry, equivalent mill entry and a lower chance that a logger wins.3

There is no general theoretical comparison of expected revenue, even with fixed partici-

pation. This provides further motivation for the parameterized model we develop in Section

5. The model does imply that sealed bidding is less efficient. The sealed bid auction is inef-

ficient even conditional on participation, while the socially efficient type-symmetric outcome

is achieved as an equilibrium of the open auction (Athey, Levin and Seira, 2004).

E. Collusion in Open Auctions
2The condition in Proposition 1 also greatly restricts the set of non-type-symmetric equilibria as it

implies that in any equilibrium where any logger enters with positive probability, every mill must enter
with probability one. If for example, we were to restrict attention to pure strategy entry equilibrium, every
equilibrium would involve some number nM of entering mills and nL of entering loggers, where nL > 0 would
imply nM = NM .

3The idea that sealed bidding may increase entry by weaker bidders is emphasized by Klemperer (2004)
in the context of spectrum auctions.

7



As noted in the Introduction, we estimate that in some forests open auction prices are

substantially lower than sealed bid prices. This finding, and the fact that collusion in open

auctions has been a long-standing concern in Forest Service sales (Mead, 1966; U.S. Congress,

1976; Froeb and McAfee, 1988; Baldwin et al, 1997), suggests incorporating open auction

collusion into the model.

Collusive schemes can take many forms, so we assume for concreteness that participating

mills at an open auction cooperate perfectly. The participating mill with the highest value

bids his value, while the other mills register as participants but do not actively bid. Loggers

simply bid up to their value. We maintain the assumption that bidders make independent

participation decisions, so mills anticipate cooperating with other participating mills, but do

not coordinate entry.4

Fixing the set of participants, collusion clearly will lower prices and increase mill profits.

But it has no effect on who wins the auction or on logger profits, because only the high-

valued mill is relevant in this regard. Nevertheless, collusion gives mills a greater incentive

to participate, and this may crowd out logger participation.

Proposition 3 For any type-symmetric entry equilibrium of the open auction, there is a

type-symmetric collusive equilibrium in which: (i) Loggers are less likely to enter; (ii) Mills

are more likely to enter; (iii) It is less likely a logger will win. Thus, for any type-symmetric

entry equilibrium of the sealed bid auction, there is a type-symmetric collusive equilibrium of

the open auction where (i)-(iii) hold.

For the empirically relevant case in which there is a unique type-symmetric equilibrium

where mills enter with probability one and loggers randomize, collusion has no effect on

entry or allocation relative to the competitive open auction outcome. It simply lowers prices.

Therefore to the extent that the competitive model might explain observed departures from

revenue equivalence in terms of entry and allocation, the possibility of collusion provides

further flexibility in terms of explaining price differences across auction formats.

F. Discussion of Modeling Choices

Our model omits at least two forces of potential importance: common values and bidder

risk-aversion. In timber auctions, differences in bidder costs and contractual arrangements

4There are forms of collusion, such as bid rotation, that involve coordinated entry. We have looked for
evidence of this in our data by checking whether the entry of pairs of mills or loggers is negatively correlated
conditional on sale characteristics. There are a handful of pairs for which entry is significantly negatively
correlated, but for the vast majority of pairs negative correlation can be rejected.
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provide a source of private value differences. At the same time, bidders can obtain private

estimates of the quality and quantity of timber and may have differing beliefs about future

market conditions. This suggests a potential “common value” component as well (Athey

and Levin, 2001; Haile, Hong and Shum, 2003).5 It is also plausible that bidders at Forest

Service timber auctions exhibit a degree of risk-aversion. Indeed Athey and Levin (2001)

provide some indirect support for this based on the way observed bids are constructed (see

also Perrigne, 2003).

While a model that allows for common values and bidder risk-aversion might have addi-

tional realism, we decided to abstract away from them for two reasons. First, as we discuss

below, our empirical results indicate departures from revenue equivalence that are qualita-

tively different from those implied by common values or risk-aversion. Second, incorporating

either significantly complicates the analysis. Hence we opted to use a simpler model we felt

might still explain the data.

3. Timber Sales

We now describe the key institutional features of timber auctions, our data, and the

process through which the Forest Service decides when to use open or sealed bidding.

A. The Timber Sale Process

Our data consists of timber sales held between 1982 and 1990 in Kootenai and Idaho

Panhandle National Forests, neighboring forests on the Idaho/Montana border. These are

the two forests in the Forest Service’s Northern region with the largest timber sale programs.

They make a good test case for comparing auction formats because they use a mix of open and

sealed auctions and the tracts sold under the two formats appear to be relatively homogenous.

We discuss the way auction format is determined in more detail below. We also provide

evidence from sales held in California between 1982 and 1989. These forests also use both

open and sealed bidding, but the auction format varies more systematically with the size of

the sale, which makes controlling for tract differences more challenging.

In both regions, a sale begins with the Forest Service identifying a tract of timber to be

offered and organizing a “cruise” to estimate the merchantable timber. The sale is announced

5Athey and Levin (2001) show that in certain Forest Service auctions, bidders can profit from acquiring
commonly relevant information about timber volumes. They also show, however, that the potential rents
are competed away, suggesting that the equilibrium information asymmetry about volumes may not be
quantitatively large. Haile (2001) analyzes how resale markets can lead to common values even if the
underlying environment is one of private values.
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publicly at least thirty days prior to the auction. The announcement includes the form of the

auction, estimates of available timber and logging costs, tract characteristics and a reserve

price. The reserve price is computed according to a formula that uses the cruise estimates

of timber value and costs, and adds a fixed margin for profit and risk. In some cases, the

Forest Service restricts entry to firms with less than 500, or less than 25, employees. We do

not consider these small business sales.

Before the auction, the bidders have the opportunity to cruise the tract and prepare bids.

For sealed bid sales, the Forest Service records the identity of each bidder and their bid. For

open auctions, firms must submit a qualifying bid prior to the sale. Typically these bids are

set to equal the reserve price. The Forest Service records the identity of each qualifying firm,

as well as the highest bid each qualifier offers during the auction. A useful consequence is

that we observe all open auction bidders, even those who do not bid actively, which allows

a comparison of entry patterns across auctions.

Once the auction is completed, the winner has a set amount of time — typically one to

four years in our sample – to harvest the timber. Some of the sales in our sample are “scale

sales” meaning the winner pays for the timber only after it is removed from the tract. The

fact that payments are based on harvested timber, but bids are computed based on quantity

estimates means there can be a gap between the winning bid and the ultimate revenue.

Athey and Levin (2001) study the incentive this creates for strategic bidder behavior. For

the scale sales in our sample, we have limited harvest data, so we use the bid price as a

proxy for revenue. The remaining sales are “lump-sum” sales. In these sales the winner of

the auction pays the bid price directly.

B. Data Description

For each sale in our sample, we know the identity and bid of each participating bidder, as

well as detailed sale characteristics from the Forest Service sale announcement. The bidders

in these auctions range from large vertically integrated forest products conglomerates to

individually-owned logging companies. To study participation and allocation in a way that

respects this variation, we classify bidders into two groups: “mills” that have manufacturing

capacity and “loggers” that do not. One can imagine other possible ways to try to capture

the diversity of bidders. In practice, however, other natural groupings, such as by number

of employees or by number of auctions entered, turn out to be quite similar.

Our theoretical model assumes that mills tend to have higher willingness to pay than

loggers. An implication is that mills should submit higher bids and win disproportionately.

To check this, we regress the per-unit bids (in logs) from the sealed bid auctions on a
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dummy for whether the bidder is a mill and auction fixed effects. For the Northern forests,

we estimate a mill dummy coefficient of 0.248, meaning mill bids are 25% higher on average,

with a t-statistic of roughly 8. An entering mill is also more likely to win than an entering

logger (28% versus 21%). The pattern in California is similar though the magnitudes are

smaller. Controlling for auction fixed effects, mill bids are just over 12% higher on average.

Mills are also more likely to win conditional on participating in an auction.

The model of entry requires that we have a measure of potential bidders for each sale.

As we discuss below, so long as loggers enter with positive probability (the relevant case

for our data), our calibrated model implies that in any equilibrium all mills must enter.

Therefore under the assumption that firms use equilibrium entry strategies, we can infer

that the number of potential mill entrants for a given sale is just the number of actual mill

entrants. To construct a measure of potential logger entrants for a given sale, we count the

number of distinct logging companies that entered an auction in the same geographic area

in the prior year.6 We also do a similar count for mills and use it as a control in our baseline

regressions, where we do not impose any assumption of equilibrium behavior.

Table 1 presents summary statistics of sale characteristics and auction outcomes. Focus-

ing on the full sample, there are some obvious differences between the open and sealed bid

auctions. In the Northern forests, the average sale price per unit of timber (in 1982 dollars

per thousand board feet of timber or $/mbf) is roughly $62 in the sealed auctions and $69

in the open auctions. The number of entering logging companies is also somewhat higher

in sealed auctions (3.2 versus 2.5), while the number of entering mills is slightly lower (1.2

versus 1.5). Contracts sold by sealed auction are more likely to be won by a logging company

than tracts sold by open auction.

These numbers are broadly consistent with the model presented above. At the same time,

the table indicates that the tracts sold by open auction are not identical to those sold by

sealed bid. While the per-unit reserve price of the timber is similar across format, the open

auction tracts tend to be larger. Sale differences, particularly in terms of size are even more

pronounced in California. This suggests that we need to understand how the sale format is

decided and control for tract characteristics to isolate the effects of auction format.

C. Choice of Sale Method
6This measure probably suffers from a degree of measurement error. Firms may go in and out of business

or become more or less active in Forest Service auctions over time without our knowledge. Moreover, the
Forest Service data records bidder names with a variety of spellings and abbreviations. Despite carefully
checking each name and cross-referencing with industry reference books, we may not have obtained perfectly
accurate counts. Note that for the large Northern forests, we use forest-district as the relevant geographic
area; for Califoria we use forest.
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The U.S. Forest Service has historically used both open and sealed bid auctions to sell

timber from the national forests. The policy in place at the time of our data arose from a

debate that followed passage of federal legislation in 1976. At that time, Congress proposed

the use of sealed bidding. The implementation of the law, however, allowed individual forest

managers to use open auctions if they could justify the choice. As a result, sale method has

varied geographically. In the Pacific Northwest, for instance, open auctions predominate.

We focus on areas that have used a more balanced mix of open and sealed bidding.

One reason for focusing on the two Northern forests is that Schuster and Niccolucci (1993)

report that the choice of sale format was explicitly randomized for a subset of these sales.

In one forest district the format apparently was determined by picking colored marbles out

of a bag. Unfortunately, we do not know precisely how the randomization procedure varied

across forest districts and over time. We have replicated our analysis using the subsample

that Schuster and Niccolucci (1993) identify as randomized, and get similar results to what

we report below, though our estimates lose precision due to the smaller sample size.7

To better understand the determinants of sale method in our sample, we consider a logit

regression where the dependent variable is a dummy equal to 1 if the auction is sealed bid

and equal to 0 if the sale is an open auction. We include a large set of observable tract

characteristics, including the reserve price and the Forest Service estimates of the volume of

timber, its eventual selling value, and the costs of logging, manufacturing and road-building.

We also include the density of timber on the tract, the contract length, whether the sale

is a salvage sale, and a Herfindal index of the concentration of species on the tract. To

capture market conditions, we include the number of U.S. housing starts in the previous

month, the U.S. Census count of the number of logging firms and sawmills in the county of

the sale, and our measure of potential bidders. In addition, we include dummy variables for

the year of the sale, the quarter of the sale, the area in which the sale took place (forest

district in the Northern region and forest in California), and if major species were present.

We are particularly sensitive to the importance of sale size, so rather than simply assuming

a linear or quadratic effect, we specify its effect as a step function with 10 steps that roughly

correspond to deciles in the data.

7Relative to Schuster and Nicolluci, we use more districts and years within the two largest Northern
Region forests (they focus on 1987-1990). In including these additional years, our motivation is that the set
of tracts sold by open and sealed bidding appear to vary mainly with size, time and location, precisely the
characteristics we need to control for in any case with the randomized sales. Schuster and Nicolluci, however,
include some sales from other forests. We focus on the two largest forests because timber markets in Idaho
and Montana are quite local due to the geography, while tract characteristics also vary with geography as
well, making it difficult to effectively control for heterogeneity in forests with fewer sales.
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The results are reported in Table 2. As expected, sale size is a significant correlate of

auction method, particularly in California. Even after controlling for time and geographic

location, smaller sales tend to be sealed bid, while larger sales tend to be open auctions.

Moreover, different forests and forest districts use somewhat different sale methods on aver-

age.

Because sale method varies with observable sale characteristics, we want to control for

these characteristics in comparing the outcomes of the open and sealed bid auctions. A

concern is that, even controlling for tract characteristics flexibly, some open sales in our

data may look very “unlike” any sealed bid sales and conversely some sealed sales may look

unlike any open sales. This will be reflected in having some sales for which the predicted

probability of being sealed according to our logit regression, i.e. the propensity score, will

be close to zero or one. This occurs for many of the open auctions in California, mainly

because in that region very large sales are almost certain not to be sealed bid.

In order to compare relatively similar tracts in our empirical analysis, we drop sales that

have a propensity score below 0.075 or above 0.925. This results in dropping 154 open

auctions and 8 sealed auctions in the Northern Forests. It has a much more dramatic effect

in California, where we retain only one-third of the sales. The result, however, is that the

selected sample has much smaller differences in sale characteristics across sale format.

4. Comparing Auctions: Evidence

In this section, we investigate the consequences of auction choice for bidder participation,

revenue and allocation. Our empirical approach is fairly straightforward; we describe it now

before turning to the specific questions.

A. Empirical Approach

For a given outcome Y (such as the number of entering mills or loggers, or the auction

price per unit), suppose that

Y = f(SEALED,X,N, ε), (5)

where SEALED is a dummy equal to one if the auction is sealed and zero if the auction

is open, X is a vector of observed sale characteristics, N represents measures of potential

competition, and ε is unobservable. We are interested in the average effect of auction format,

denoted τY = EX,N,ε[f(1, X,N, ε)− f(0, X,N, ε)].
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The crucial identifying assumption auction format is independent of the unobserved com-

ponent ε conditional on covariates. This clearly holds for sales where auction method was

randomly designated, although it is important thatX included the administrative unit doing

the randomization, given that assignment probabilities differed by forest district. It holds

for the other sales if the choice of format is based on information from the Forest Service

appraisal, or follows some rule based on covariates in our data.8

We consider three alternative estimates of the “average treatment effects” τY . The first

is an ordinary least squares regression:

Y = α · SEALED +Xβ +Nγ + ε, (6)

which is easily interpretable but doesn’t allow the effect of sealed bidding to vary across

tracts. The second specification allows for this variation by interacting SEALED with

the individual covariates. We then compute and report an average effect for the sample.

The third approach is a matching estimator that matches every sealed bid auction with the

M “closest” open auctions and vice versa. Closeness is measured by distance between the

estimated propensity scores of the auctions in the sample.9 The average effect of auction

format is calculated by comparing the outcome of each sale t, Yt, with the average outcome

the matched sales Ŷt:

τ̂Y =
1

T

X
t:sealed

(Yt − Ŷt) +
1

T

X
t:open

(Ŷt − Yt).

Here T is the number of sales. We implement this estimator, setting M = 4, and compute

robust standard errors following Abadie and Imbens (2006). The three alternative approaches

yield very similar empirical results, providing assurance that our findings are not driven by

8If the forest manager uses a deterministic rule, for instance using open auction whenever the volume
of timber exceeds a threshold (which seems a possible description of some areas in California), then in
principle auction format will not vary conditional on X. In practice, if our specification of X does not
exactly match the rule, we will estimate Pr(SEALED|X) to be intermediate for sales close to the cut-off.
So long as unobserved sale chacteristics are independent of the assignment conditional on X, we will still be
identified in a manner analogous to a “regression discontinuity” approach, whereby discontinuous changes
in the outcomes in response to changes in x close to the threshold will be attributed to auction format.

9We also experimented with using larger numbers of sale characteristics in constructing matches, and
with adjusting for bias as suggested by Abadie and Imbens. To do this we define the distance between sales
with covariates x and z as ||x − z||W , where ||x||W = (x0Wx)1/2 and W is a diagonal matrix consisting of
the inverses of the variances of the covariates x. There is some sensitivity to the exact choice of matching
covariates and use of bias correction, and alternative matching strategies arguably suggest larger effects of
sealed bidding than our reported estimates. We report the propensity score match estimates as they are
conservative and in line with the regression estimates.
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a particular specification or functional form assumption.

B. Evidence from the Northern and California Forests

We report our empirical results on the effect of auction choice in Table 3. Each column

displays the estimated effect of sealed bidding on a sale outcome conditional on sale charac-

teristics, with the relevant outcomes being logger entry, mill entry, bidder composition and

sale revenue.

We find that sealed bidding has a strongly positive effect on logger entry in both the

Northern and California forests. In particular, we estimate that sealed bid auctions attract

around 10% more logger entrants in both the Northern and California forests. This translates

into roughly 2-3 additional entrants for every 10 sales. All six point estimates are statistically

significant; the estimates are somewhat more precise in the Northern forests where the

sample is larger. In contrast, sale format appears to have little effect on entry by mills.

All specifications for the Northern forests, and the regression specifications for California

yield small and statistically insignificant effects. The one exception is the matching estimate

for California, which suggests lower mill participation in the sealed bid auctions.10

The consequence of increased logger participation and unchanged or decreased mill par-

ticipation is that the composition of bidders in sealed bid auctions is shifted toward loggers.

We estimate that the fraction of participants who are loggers 5-6% higher in sealed bid

auctions in both the Northern and California forests. The composition effect suggests that

sealed bid auctions will be more likely to be won by loggers. Our findings are consistent

with this as well. We estimate a 3-4% greater chance that a logger will win if the auction is

sealed bid. These last point estimates are not highly precise, particularly in California, so

we cannot rule out a fairly small effect of auction format on allocation.

The final columns of Table 3 report our estimates of the effect of auction format on

the sale price per unit volume. Here our findings differ dramatically across the two areas.

In California, we find little difference in sale price between the two auction formats. Our

estimates indicate slightly higher revenue in the sealed bid auctions, but the finding is not

statistically significant and reverses after controlling for the number of entering loggers and

mills. In the Northern forests, however, we find that sealed bid prices are around 10% higher

than open auction prices after controlling for sale characteristics. Our point estimates are

highly significant. To get a sense of the magnitude of this effect in dollar terms, note that the

10Although we will not develop the point, we note that reduced mill participation in sealed bid auctions
would be consistent with a version of the theoretical model where entry costs are heterogeneous (Athey,
Levin and Seira, 2004).
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average winning bid (in 1982 dollars rather than 1982 dollars per unit volume) is just over

$134, 000. So a 10% difference in the winning bid price translates into a $13, 000 difference

in Forest Service revenue per sale, or about $14 million for the whole sample.

A natural question is whether the revenue difference is due to sealed bid auctions at-

tracting more bidders. The final column reports estimates of the sale price that include

the number of entering loggers and mills as covariates. Even controlling for the number of

entrants, sale method appears to matter. In the regression estimates, sealed bid auctions

generate roughly 6% (s.e. 3%) more revenue. The matching estimate is a bit higher at 9%.

The table does not report the revenue decomposition, but the estimates suggest that an ad-

ditional mill is associated with about a 19% increase in the winning bid, while an additional

logger is associated with about a 12% increase in the winning bid.11

C. Explaining the Departures from Revenue Equivalence

At a qualitative level, the theoretical model developed earlier is consistent with all of

the empirical findings just reported: greater logger participation in sealed bid auctions,

a negligible change in mill participation, a higher probability in sealed bid sales that a

logging company will win, and either a small difference in prices across auction formats or

substantially higher prices in the sealed bid sales. Moreover, the key assumptions generating

these departures from revenue equivalence: that bidders are heterogeneous, that mills are

stronger bidders than logging companies and that entry should be treated as endogenous,

also seem consistent with the data.

What we cannot say at this point, however, is whether a reasonable parametrization of

the model can match our quantitative findings. Moreover, recall that the theory predicts

qualitatively the same differences between open and sealed bidding regardless of whether the

mills are able to collude in open auctions, a primary concern that has historically motivated

the use of sealed bidding in Forest Service timber auctions. Without a more quantitative

approach to the model, we cannot distinguish between its competitive and collusive versions.

With this motivation, we turn in the next section to estimating the model’s parameters and

comparing the quantitative predictions of the theories to the data.

Before doing this, however, we pause to consider whether there might be alternative

11A natural concern in interpreting this revenue decomposition arises if there are sale characteristics that
are observed by the bidders prior to making their entry decision but not accounted for in our data. In
this event, the number of entrants is endogenous in this regression. To explore this, we experimented with
using our measures of potential competition as an instrument for the number of entering bidders. We found,
however, that our estimated coefficients were highly sensitive to the particular choice of potential competition
measures, none of which are ideal.
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explanations for our empirical findings that are distinct from the forces captured in our

theoretical model. One possibility is that our estimates do not reflect the systematic effects

of auction format at all, but rather a confounding correlation between auction choice and

unobserved aspects of the sale that also affect the outcome. This is certainly a concern.

Even in the Northern forests, where many sale assignments were random, we may not have

perfectly controlled for sale differences. And as we have noted the differences are greater

in California. We have attempted to mitigate this by making use of the very rich data on

sale characteristics in the Forest Service sale reports, augmented by further data on market

conditions.

Could it be the case that some omitted variable is generating our findings? Several of the

most obvious stories have problems themselves. For instance, one possibility is that forest

managers like to sell more valuable tracts by sealed bid, a bias that would help to explain

the entry and revenue differences we find. This story is hard to square, however, with the

fact that larger sales, which are by definition more valuable on a total value basis, are more

often sold by open auction. A second possibility is that forest managers use sealed bid sales

when they expect more bidder interest, especially on the part of logging companies. This

would help to explain the entry results, but contradicts both perceptions within the industry

and the Forest Service’s own guidelines. Industry lore suggests a scenario where the mills

prefer oral auctions (as predicted by our theory), and where forest managers defer to the

mill’s preferences. And the Forest Service instructs managers to use sealed bidding if they

expect a sale not to be competitive (Forest Service Handbook 2409.18, Chapter 57.1).

Another possibility is that our finding do reflect systematic departures from auction equiv-

alence, but not for the reasons captured in our model. For instance, our model abstracted

from two potentially relevant aspects of timber auctions: common values and bidder risk-

aversion. Could either of these explain our empirical findings? While our results certainly do

not rule out their presence, neither seem likely to be the primary source of the departures we

observe from revenue equivalence. Theoretical models with common or affiliated values (and

without the other elements of our model, namely bidder heterogeneity and collusion), imply

lower prices in sealed auctions rather than higher as we observe in the data. Bidder risk-

aversion potentially could explain the observed prices, But at least in the cases considered

by Matthews (1987), risk aversion would lead to lower participation in sealed bid auctions

contrary to our findings. So to the extent that either common values or bidder risk-aversion

would help to explain the data, they would have to be part of a more complicated story.

5. Structural Estimation and Testing
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In this section we bring the model and the data together to assess the relationship be-

tween our empirical findings and the theory we proposed to account for them. We investigate

three related issues. First, we ask whether a calibrated version of our model, with parame-

ters estimated from the data, can quantitatively match the departures we observe from

revenue equivalence. Second, we ask whether the model can provide a measure of bidder

competitiveness in the open auctions. Finally, we estimate the welfare consequences of mov-

ing exclusively to open or sealed bidding, under the assumption that our estimated model

accurately describes the sale environment.

The key elements of our approach are as follows. We use entry and bidding data from the

sealed bid auctions to estimate the parameters of our theoretical model – the value distrib-

utions of loggers and mills, and the costs of entry – as functions of the tract characteristics.

To do this, we assume competitive behavior in the sealed bid auctions as outlined above.

We allow for both observed and unobserved heterogeneity in the underlying values of the

tracts. We then use the calibrated model to predict the equilibrium outcome of each sale in

our sample and compare the predictions to the actual outcomes. For tracts sold by sealed

bidding, this provides a measure of how well our model fits the data. For tracts sold by open

auction, the predictions are out-of-sample because the open auction tracts were not used to

estimate the parameters of the model and because the open auction is a different game than

the sealed bid auction around which estimation is based.12 Comparing the predictions to

outcomes allows us to assess whether the model accurately accounts for the observed differ-

ences across auction formats. It also provides a way to evaluate the competitiveness of open

auctions. Finally, we develop a welfare comparison of open and sealed bidding.

A. Structural Estimation

Our first step is to use the sealed bid data to estimate the parameters of the theoretical

model as a function of tract characteristics. To estimate the value distributions of mills and

loggers, we build on the approach pioneered by Guerre, Perrigne and Vuong (2000). They

suggest fitting a distribution to the observed sealed bids, then using the first-order condition

for optimal bidding to recover the bidders’ value distributions. Given the value distributions,

we can estimate entry costs using observed entry behavior.

A notable feature of our data is that bids within a given sealed bid auction are highly

correlated conditional on observed sale characteristics. We therefore follow Krasnokutskaya
12In principle one might try to use the data from the open auctions to help estimation the model. Athey

and Haile (2002), however, show that when values are correlated as in our model of unobserved heterogeneity,
underlying value distributions cannot be identified from open auction bids. Haile and Tamer (2003) point
out additional concerns with drawing inferences from losing bids in open auctions.
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(2004) in allowing for unobserved heteregeneity in sale characteristics. An extension along

these lines appears crucial as, in line with Krasnokutskaya’s work on highway procurement,

we estimate implausibly high bid margins when we fail to account for within-auction bid

correlation.13

Formally, let X denote the set of sale characteristics known both to the econometrician

and the bidders. Let u denote an auction characteristic known to participating bidders

but not observed in our data. Let N = (NL, NM) represent the number of potential mill

and logger entrants. And let n = (nL, nM) denote the numbers of participating mills and

loggers. We assume that bidders initially have the information in the sale announcement

and knowledge of the set of potential bidders; that is, they know (X,N). They then decide

whether to incur the entry cost, K(X,N), and participate in the auction. If they participate,

they learn the set of participating bidders n, the sale characteristic u and their private value.

We write bidder value distributions as FL(·|X, u,N) and FM(·|X,u,N), and assume that

values are independent conditional on (X,u,N).

Given these assumptions, we can write the equilibrium bid distributions asGL(·|X,u,N, n)

and GM(·|X, u,N, n). We assume that if there is a single bidder he optimally bids the reserve

price, but otherwise we treat the reserve price as non-binding.14 More generally, we assume

the data we observe is generated by a type-symmetric entry equilibrium. As we discuss be-

low, there is a unique such equilibrium consistent with the estimated value distributions and

observed entry probabilities. In this equilibrium, mills enter with certainty and each logger

enters with some probability between zero and one depending on sale characteristics. This

means that we can infer the number of potential mill entrants NM as equal to the number of

participating mills nM . For each sale, we use our count of active logging companies described

earlier as our measure of potential logging entrants, NL . Finally, we maintain the standard

assumption that auctions in our sample are independent of one another.

Estimating the Bid Distributions

Conditional on the observable sale characteristics (X,N) and set of participants n, the

13An alternative way to rationalize correlation in bids is with an affiliated private values model, but at
least in the baseline symmetric model affiliation implies that prices will be higher in open auctions, contrary
to our data. As an institutional matter, we also believe it plausible that bidders commonly observe certain
features of a tract that make it more or less valuable.
14See Haile (2001) for a discussion of why Forest Service reserve prices are typically non-binding. A slight

drawback to this assumption is that our fitted bid distributions will assign positive (though typically small)
probability to bids below the reserve price. We did experiment with modeling bidder values (and hence bids)
as being distributed above the reserve price, but found that this model fit the data poorly, possibly because
the mechanical formula used to determine the reserve price may not track changes in bidder values over time
or across auctions well.
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joint distribution of bids in a given auction is a combination of three distributions: the bid

distributions GL(·|X,u,N, n) and GM(·|X,u,N, n) and the distribution of the unobserved

auction heterogeneity u, which is responsible for any correlation of the bids. We adopt a

parametric approach to estimate these three distributions.

Our particular model specifies Weibull bid distributions with Gamma distributed auction

heterogeneity. Thus we assume that for k = L,M :

Gk (b|X,u,N, n) = 1− exp
Ã
−u ·

µ
b

λk(X,N, n)

¶ρk(n)
!
. (7)

Here λk(·) is the scale, and ρk(·) the shape, of the Weibull distribution, parametrized as
lnλk(X,N, n) = XβX + NβN + nβn,k + β0,k and ln ρk(n) = nγn,k + γ0,k.

15 ,16 We assume

u has a Gamma distribution with unit mean and variance θ, and is independent of X, N,

and n. We estimate these parameters of the model, (β, γ, θ), by maximum likelihood; the

likelihood function is written out in the Appendix. The estimates are reported in Table 4.

Several points about the estimated bid distributions deserve mention. First, recall that

the basic assumption of the theory was that mill values stochastically dominate logger values,

and an implication was that mill bids should dominate logger bids. Our empirical specifica-

tion does not impose this. Nonetheless, we find that mill bids do dominate those of loggers.

On average, mill bids are roughly 25% higher than logger bids in the Northern forests and

15% higher in California. Also consistent with the theoretical model, we find that bids

are increasing in the number of competitors (a property that can potentially be violated if

bidder values are affiliated or have a common value component). Finally, we estimate for

both geographical regions that u has significant variance, confirming that our modeling of

unobserved heterogeneity across auctions is warranted.

Importantly, the Gamma-Weibull functional form appears to provide a good fit to the

observed distribution of logger and mill bids, the within-auction bid correlation, and the

observed sealed bid prices. Our model has the useful property bidder i’s bid in auction t

15The specification we adopt is more parsimonious than in our earlier regressions. Our results do not
seem sensitive to including additional covariates; nevertheless, we opted for parsimony because of the need
to make out-of-sample predictions where over-fitting could in principle be a problem.
16Specifying how the number of participants should affect the bid distribution is a challenge in two-stage

structural estimation of auction models, because there is no easy way to incorporate the theoretical restriction
that the value distributions be independent of the number of bidders. Theory does predict that mill behavior
could be quite different if there is only a single mill, which motivates us to include a single mill effect in
the mill bid distribution. Theory also predicts that the effect of an additional bidder on a given bidder’s
behavior should be limited as the number of bidders grows. For this reason, use min{nL, n} and min{nM , n}
in place of nL, nM in our estimates, where n = 5.
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can be expressed as bit = exp(XtβX + NtβN) · εit(n). Defining the sealed bid residuals as
ε̂it = bit/ exp(Xtβ̂X+Ntβ̂N), we investigate how closely these residuals match the distribution

of the εit’s predicted by our fitted model. In the Northern forests, the overall mean of the

bid residuals is 2.16; the standard deviation is 1.18; the between-auction standard deviation

is 0.94 and the within-auction standard deviation is 0.75. By way of comparison, the fitted

model predicts a mean of 2.12, and respective standard deviations of 1.21, 0.97 and 0.70.

We obtain a similarly close fit in the California forests, where the respective numbers from

the data are 25.9, 12.6, 9.7 and 8.5 compared to our model’s prediction of 25.6, 13.6, 10.8

and 8.1. To provide a visual picture, Figure 1 plots the distribution of sealed bid residuals

in our sample (i.e. the distribution of the ε̂its, where) next to the distribution predicted by

our fitted model.

Despite this informal confirmation of model fit, one might still wonder whether our para-

metric modeling is unduly restrictive.17 To address the issue more formally, we implement

a natural specification test due to Andrews (1997). Andrews’ Conditional Kolmogorov Test

tests the null hypothesis that conditional on a set of exogenous covariates, a set of endoge-

nous variables is generated by a particular parametric distribution. In our case the exogenous

covariates are the sale characteristics (X,N), the endogenous variables are the bids, and the

parametric model is the Gamma-Weibull mixture model. Andrews’ test is based on a boot-

strap procedure in which one uses the estimated model to repeatedly draw samples of the

endogenous variables and compares these simulated datasets to the observed data. We im-

plement the test and find that we cannot reject the null hypothesis that our parametric

specification is correct, even at very high confidence levels (20% in both the Northern forests

and California). These findings provide additional support for our modeling approach.

Estimating the Value Distributions

We now turn to recovering the bidders’ value distributions. Under the assumption that

the observed bids are consistent with equilibrium behavior, each bid must be optimal against

the opponents’ bid distributions. That is, a bidder’s value vi is related to his observed bid

17For instance, Krasnokutskaya (2004) estimates a semi-parametric model with unobserved heterogeneity
assuming that the unobserved component of the bid separates multiplicatively into an auction effect and an
idiosyncratic component. In our setting, an important practical problem with semi-parametric estimation is
that one would want to estimate the model separately for each vector of participants (nL, nM ) and we simply
don’t have the data to do this. Papers that use a parametric strategy include Jofre-Bonet and Pesendorfer
(2003) and Krasnokutskaya and Seim (2006). The latter follow our lead in using a parametric model with
unobserved heterogeneity.
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bi through his first-order condition for optimal bidding:

vi = φi(bi;X, u,N, n) = bi +
1P

j∈n\i
gj(bi|X,u,N,n)

Gj(bi|X,u,N,n)

. (8)

It is straightforward to construct an estimate of φi given our estimates of GL and GM . If

all sale characteristics (X,u,N, n) were observed, we would then be able to infer the bidder

value corresponding to each observed bid, and thus recover the value distributions (as in

Guerre, Perrigne and Vuong, 2000). As u is unobserved, however, we need to modify the

approach. As observed by Krasnokutskaya (2004), we can still recover the distributions

FL(·|X,u,N) and FM(·|X,u,N) for any value of u from the relationship:18

Fk(v|X,u,N) = Gk(φ
−1
k (v;X,u,N, n)|X, u,N, n).

Figure 2 plots the density functions for logger and mill values for an auction with average

covariates, and u = 1, as well as the equilibrium bid functions assuming two mills and two

loggers participate in the auction. To compute the equilibrium bid functions, we combine the

fitted bid distributions GL(·|X, u,N, n) andGM(·|X,u,N, n), assumingX = X, N = N , u =

1 and n = (2, 2) with the first-order condition to find bk(v|X, u,N, n) = φ−1k (v|X,u,N, n).

As the Figure indicates, the distribution of mill values is substantially shifted rightward

from the distribution of logger values. Moreover, the estimated mill bid function is below

the logger bid function. Thus mills bid less than loggers for any given value, matching a key

prediction of the theoretical model.

It is also possible, by averaging across values of u, to estimate the typical markups built

into the sealed bids in our data. We estimate that in the Northern forests, the median profit

margin across all bids is 9.5%. The corresponding number for California is 10.0%. These

margins, which are similar when we look separately at mills and loggers, suggest that the

sealed bidding is quite competitive.

Finally, we can use the estimated value distributions to investigate whether the equilib-

rium uniqueness condition in Proposition 1 holds for our calibrated model. Our parametric

model has the property that the effect of observed sale characteristics (X,N) is multiplica-

tively separable. This property that extends from the bids to the bidder values and hence

the bidder profits. So we can compute expected equilibrium profits for loggers and mills for

18A small subtlety here is that our theoretical model implies that the equilibrium bid distribution will have
a finite upper bound. The Weibull distribution does not. For this reason, we truncate the very upper tail
of the estimated distributions GL(·) and GM (·) and work with the truncated distributions. The motivation
for this and details of the implementation are described in the Appendix.
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just a single set of sale characteristics (X,N) and simply re-scale to account for changes in

these characteristics.

To compute expected equilibrium profits, we repeatedly simulate the outcomes of sealed

bid auctions and average bidder profits over the simulations. In a given simulation, we

draw a value for the unobserved auction characteristic u, then sample for each bidder from

the estimated distributions GL, GM and infer the bidder values that correspond to these

draws. This leaves us with bidder values and equilibrium bids so we can identify the auction

winner and the realized bidder profits. We simulate 5000 auctions for each plausible level

of logger and mill participation (up to eight mills and twenty-five loggers) to compute the

expected logger and mill profits, πsL(X,N, n) and πsM(X,N, n). These estimates have the

property that for all nL, nM , πsM(X,N, nL, nM+1) > πsL(X,N, nL, nM) for every tract in our

sample. Therefore Proposition 1 implies the calibrated model has a unique type-symmetric

equilibrium for every sale tract irrespective of the fixed cost of entry.

Estimating Entry Costs

The remaining parameter of the model is the entry cost, which we recover using the

equilibrium conditions for optimal entry behavior. As just explained, our estimated value

distributions imply a unique type-symmetric entry equilibrium with the property that if

there is logger entry with positive probability, all mills must enter with probability one. We

observe loggers entering 85% of sales in the Northern region and 88% in California, so for

these sales we can infer that the number of potential mill entrants equals the number of

observed mill entrants, i.e. NM = nM . For the sales with zero logger entrants, we also make

this same inference.19

As described above, we construct a measure of potential logger entry NL for each sale

by counting the number of loggers entering sales in the same area over the prior year. This

number strictly exceeds the number of observed logger entrants in virtually all the sales

(99% in the Northern region and 95% in California), indicating that the equilibrium needed

to rationalize the data is one in which loggers enter with probability strictly between zero

and one. In such an equilibrium, loggers must be just indifferent between entering and not

entering. Letting Πτ
L(X,N) denote the equilibrium profit a logger expects from entering as

a function of observed sale characteristics (X,N) and the sale method τ ∈ {o, s}, we have:
19It is possible that in some of these sales, the relevant equilibrium is one in which the loggers entered

with probability zero and perhaps not all mills entered. We assume this is not the case, and and perform a
specification test, explained below, to test the assumption.
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Πτ
L(X,N) =

X
n⊂N

πτL(X,N, n) Pr [n|X,N, i ∈ n, τ ] = K(X,N). (9)

Here Pr[n|X,N, i ∈ n, τ ] is the probability that n = (nL, nM) bidders enter given that i

enters.

Our estimated value distributions already provide an estimate of πτL(X,N, n). We use

the sealed bid data to construct an estimate of bidder’s beliefs about opponent entry. In

equilibrium, nM = NM , while loggers independently randomize their entry with identical

probability ps(X,N). The distribution of logger entry is therefore binomial, as is the distri-

bution of opponent entry. In particular,

Pr[nL|X,N, i ∈ n, s] = ps(X,N)nL−1 (1− ps(X,N))NL−nL .

For estimation, we specify a parametric model:

ps(X,N) =
exp (XαX +NαN)

1 + exp (XαX +NαN)
.

We estimate the parameter vector α by maximum likelihood using the observed logger entry

into sealed bid auctions. These estimates are reported in Table 4.20

Putting the estimated equilibrium profit function πsL(X,N, n) together with the estimated

probability of logger entry ps(X,N), we use (9) to compute the predicted logger profits

from a sealed bid auction, Πs
L(X,N), as a function of the characteristics (X,N). Then,

treating each tract in our sample as an (X,N) pair, we impute for each tract an entry

cost K(X,N) = Πs
L(X,N). We estimate a median entry cost of $2870 (s.e. $325) for the

Northern forests and $5056 (s.e. $673) for the California forests. As the costs of surveying

a tract can run to several thousand dollars, this seems reasonably consistent with our prior

beliefs about the costs of acquiring information.21 ,22

20With these estimates in hand, we can check if our assumption of that the probability of logger entry was
strictly positive even for the few tracts where we observe zero logger entry. If this were so, we should expect
the data to contain significantly more auctions with zero logger entry than is predicted by the binomial
model. They do not.
21As a point of comparison, we estimate that across tracts in our sample the median expected mill profit

from a sealed bid auction is roughly $45,000 gross of entry costs.
22Our analysis assumes a type-symmetric entry equilibrium. A similar analysis is possible under the

assumption that potential entrants play a pure strategy entry equilibrium. In this case, the strong asymmetry
between mills and loggers ensures a unique number of mill and logger entrants for any entry cost, and we can
use revealed preference to obtain bounds on the fixed entry cost. Proceeding in this fashion, we obtain fairly
tight bounds on entry cost for each tract that are similar to the estimates we obtain under the assumption
of type-symmetric equilibrium.
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B. Comparing Predicted and Actual Outcomes

Having estimated the parameters of the theoretical model as functions of observable

sale characteristics, we now ask how closely the model’s equilibrium predictions match the

observed outcomes in our data. In the case of sealed bid sales, this exercise provides a

measure of how well we have fit the entry and bidding data. In the case of open auctions,

it allows us to ask whether the calibrated model can explain the open auction outcomes,

and in particular, whether assuming some degree of cooperative behavior provides a more

accurate fit to the data. Finally, by looking at both kinds of sales, we can assess whether

the model is able to explain not just the qualitative but the quantitative departures from

revenue equivalence documented earlier.

To generate sealed bidding predictions, our estimated model of logger entry gives the

equilibrium distribution of loggers who will participate in a sealed bid auction as a function

of tract characteristics. The number of mill entrants is known and not stochastic. We use

our estimates of GL, GM and the distribution of unobserved heterogeneity to predict bidding

behavior conditional on participation. Finally we combine the entry and bidding predictions

to predict outcomes conditional only on tract characteristics.

To generate open auction predictions, we observe that conditional on participation, each

entrant will bid his value and the auction price will equal the second highest value. Al-

ternatively, if mills collude, all but the highest value mill drop out immediately, and the

remaining bidders behave competitively. These observations allow us to calculate expected

prices and profits for a given tract and any given set of participants under the assumption

of either competitive and collusive behavior. In practice we do this by simulation. Each

simulation involves drawing a value of u, then drawing a value for each participant from

either FL(·|X, u,N, n) or FM(·|X, u,N, n), and finally calculating the auction price, profits

and surplus.

This procedure gives predicted open auction outcomes for each tract conditional on any

hypothetical set of participants. To predict open auction entry, we assume a type-symmetric

equilibrium. For each tract we treat mill entry as known and equal to the set of potential

mill entrants. We calculate the unique logger entry probability that leaves each logger

just indifferent between entering and not entering. This yields the unique equilibrium in

logger entry strategies that we combine with our equilibrium bidding predictions to generate

predicted outcomes as a function of observed tract characteristics. As was discussed in

Section 3, logger entry and auction allocation are the same regardless of whether mill behavior

is competive or collusive; the only difference in outcomes is the predicted auction price.
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Table 5 reports the average outcomes in our data and the average outcomes predicted

by the parameterized model. We generate standard errors for the predicted outcomes using

a parametric bootstrap in which we re-sample from the asymptotic distribution of the bid

and entry distribution parameters reported in Table 4 and then repeat the procedure of

calculating expected auction outcomes for each bootstrap repetition.

For the Northern forests, the model closely predicts the average auction prices, the average

sale revenue and the fraction of sales that loggers win. For instance, the average sale price in

the data is $69.4, while the model predicts an average price of $70.4, and $69.9 conditional

on the set of participating bidders. The model also predicts the average sealed bids of

loggers and mills with reasonable accuracy. The results for the California forests are similarly

encouraging. The model closely matches the average logger and mill bids and the fraction

of sales won by loggers. Perhaps the biggest discrepancy between the model and the data

is that we somewhat overpredict the average sale price and revenue in California relative to

the observed outcomes. The average sale price in the data is $80.4, while the model predicts

$84.4, or $83.8 if we condition on the participating bidders.

As the model’s parameters are estimated from the sealed bid data, the tight match

between predicted and actual outcomes just amplifies our earlier point that the model fits

well. The next step, however, provides a demanding test of the theory. We now use the model

to predict the outcomes of the open auctions and compare these predictions to the data. Here

we are asking the model to make predictions that are “out-of-sample” in two senses: we are

predicting sale outcomes for tracts not used to estimate the model’s parameters, and we

are predicting the outcomes of a different auction game than was observed in estimating the

model’s parameters. These predictions and actual outcomes are reported in the second panel

of Table 5.

Strikingly, the model predicts a level of logger entry in open auctions that is very close

to the actual level. In the Northern forests, the model predicts an average of 2.67 loggers

entering in equilibrium versus 2.75 in reality. In California, the model predicts 1.90 compared

to 1.95 in reality. These results indicate that the fitted model can explain the entry differences

between open and sealed bid sales in our data that were one of the key departures from

revenue equivalence The model is somewhat less successful in matching the fraction of open

auctions won by loggers. In both regions, the model under-predicts how often loggers win.

In the Northern forests, for instance, the model predicts loggers will win 54.4% of the open

sales, or 56.0% conditional on realized participation, while in reality they win 59.0%. There

is a similar discrepancy in California.
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Turning to the open auction prices, recall the we observed practically no difference be-

tween open and sealed bid prices in California and a sizeable difference in the Northern

forests. This observation was part of our motivation for introducing the possibility of open

auction collusion into our model. Table 5 shows that for the California forests, the compet-

itive model predicts open auction prices close to the actual prices. The average sale price in

the California open auctions was $85.1. Our fitted model predicts an average price of $87.2

conditional on realized entry, and $86.7 when we predict entry as well as bidding. The model

therefore seems to replicate our empirical finding of little price differential due to the choice

of open or sealed bidding.

The situation is different for the Northern forests where we observed a large price differ-

ence between open and sealed auctions. The numbers in Table 5 indicate that observed open

auction prices are below the competitive prices predicted by the model, although well above

the fully collusive prediction. The competitive model predicts an average price of $67.8,

or $67.9 conditional on realized entry. The prediction falls to $44.2 under the assumption

that the mills fully collude. In fact, the average sale price across open auctions is $63.3 per

mbf. Accounting for sampling error, we reject both the competitive and collusive models at

conventional confidence levels. An assumption of mildly cooperative behavior on the part

of participating mills appears to provide a better match than either the competitive or fully

collusive extremes.

It is worth noting that this conclusion is not sensitive to our assumption that the sealed

bid auctions are competitive. If we assumed a degree of collusion in the sealed bid auctions,

we would infer a higher distribution of bidder values from the data. This would reinforce

the finding that open auctions appear less than perfectly competitive. A possibility is that

there is collusion at a small fraction of the sales. We should note, however, that when we

looked at the open auctions for which the predicted price is substantially above the actual

price, we did not find any obvious pattern.

As statistical detection of collusion is known to be a difficult problem (e.g. Bajari and

Ye, 2003), it is interesting to consider more refined predictions of the collusive model. One

such prediction concerns the relationship between prices and the number of participating

mills. For sales with zero or one mill, the competitive and collusive model yield identical

predictions. Any effect of mill collusion should appear only in sales with more than two mills.

To explore this, we divide the sales in the Northern region into three groups: those with

zero participating mills, one participating mill, and two or more participating mills. Table 6

then reports the observed and predicted competitive prices for open and sealed sales falling
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into these categories. The striking result is that the competitive model predicts prices quite

accurately for sales with zero or one mill, but observed open auction prices fall well shy of

predicted competitive prices when there are two or more mills. This finding indicates that

the price shortfall in Table 5 is driven entirely by sales with multiple mills, consistent with

the bidder collusion theory.

C. Quantifying the Trade-offs in Auction Design

So far we have tried to assess if our theoretical model could explain the systematic

departures from revenue equivalence we observe in the data. We now take as given that we

have accurately estimated bidders’ values and entry costs, and we investigate the welfare

consequences of using either open or sealed bidding on an exclusive basis. From an a priori

standpoint, our theoretical results suggest that neither format will dominate. The open

auction conveys an efficiency benefit in both entry and allocation, but the increase in social

surplus may come at the cost of lost revenue and an allocation that favors stronger bidders.

For this reason, it seems natural to try to quantify the trade-offs faced in choosing between

the two formats.

To conduct a welfare comparison, we use our estimates of the primitives to compute

the predicted outcome of both an open auction and a sealed bid auction for each tract in

our sample. For each tract, and each auction format, we compute the expected entry, the

expected price and revenue, the probability that a logger will win, and the expected surplus

(the value of the winning bidder net of entry costs sunk by all the bidders). For the open

auction format, we consider two alternative specifications of mill behavior: a benchmark

specification where mills behave competitively, and perhaps a more realistic specification

where they cooperate 18% of the time (18% being the number that rationalizes the observed

open auction prices in the Northern region).

Our comparisons are reported in Table 7, which reports expected auction outcomes taking

participation as fixed and solving for the complete entry equilibria under sealed and open

bidding. The top panel shows the results for the Northern forests, and the bottom panel for

California.

A first point that stands out is that if participation is assumed to be independent of the

auction format, the differences in equilibrium outcomes between open and sealed bidding

– assuming bidder behavior is competitive in both cases– are small, despite substantial

asymmetries among bidder types. Sealed bidding would generate more revenue, but the

revenue gain is only $320 per sale in the Northern region and $546 in California. Sealed

bidding also increases the probability that sales are won by loggers, but the average increase
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in probability is less than 1%. Finally, the efficiency benefit to using an open auction format

is also quite small, less than $100 per sale in both regions.

These differences increase somewhat when we account for the fact that bidder participa-

tion will vary systematically with auction format. According to the model, sealed bid and

open auctions will attract the same number of mills, but sealed bid auctions will attract

between 3-4 more loggers for every 10 sales. One effect of this additional entry is to generate

a more substantial difference in the fraction of sales won by loggers –we predict that loggers

would win 2-4% more sales with sealed bidding. A second effect is to increase the revenue

advantage of sealed bidding to roughly $3000 for the average sale in the Northern region and

$14,000 in California. Our estimate of the social surplus differential remains relatively small

in the for the Northern region, and is quite noisy for California, to the extent that our point

estimate indicates higher social surplus from sealed bidding, despite the fact that we know

equilibrium sealed bidding to be less efficient.23

As a practical matter, however, the model suggests that these differences are dwarfed by

the potential effects of bidder collusion. In the Northern region, even if we take participation

as fixed, open bidding generates some $14,000 less per sale than competitive sealed bidding

if mills are able to engage in a mild amount of cooperative behavior. The difference is

over $17,000 once we account for participation effects. These numbers are even larger on

the California tracts. So to the extent that mild cooperation by mills at open auctions

is the behavioral assumption that receives the most support from our data in this region,

the revenue benefits of sealed bidding clearly seem to be the most quantitatively significant

welfare consequence of the choice of auction method.

6. Conclusion

This paper has examined the relative performance of open and sealed bid auctions, using

U.S. Forest Service timber sales as a test case in auction design. We show that sealed bid

23The reason it is even possible to generate a positive point estimate here is that in practice we estimate
separate value distributions for each possible configuration of entrants (nL, nM ) and these estimates are not
precisely the same. As noted earlier, this is an issue anytime one uses current two-stage auction estimation
methods. It becomes visible here because in modeling stochastic logger entry we need to take expectations
that average over possible numbers of logger entrants, where the weights on different realizations of nL vary
across auction formats. Note that we could take the approach of averaging our value distribution estimates to
create a pooled estimate, but this has its own nontrivial problems. Notably, for any given set of participants
a pooled value distribution estimate does not correspond through the first order condition to the estimated
bid distribution. Moreover, because averaging the value distribution estimates leads to a distribution that
is flatter than the individual estimates, the resulting sealed bid equilibrium does not match that well with
the observed data, which is a main reason why we pursued our current approach.
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auctions attract more small bidders, shift the allocation toward these bidders, and in some

forests generate higher revenue. We also show that an extension of the standard independent

private values auction that can explain these findings, both qualitatively and quantitatively,

and furthermore allows us to measure the degree of bidder competitiveness.

Our approach to structural estimation in this setting has two main features. First, mo-

tivated by a desire to match key features of the application, we incorporate several elements

(heterogeneous bidders, unobserved auction heterogeneity, and a model of bidder participa-

tion) that generally have received attention in isolation. Second, we exploit the variation in

auction format to assess the competitiveness of the open auction format. By relying only on

data from sealed bid auctions to estimate our primitives, we are able to make out-of-sample

predictions for open auctions that can be compared to actual outcomes.

Even though the role of asymmetries in determining optimal auction design have re-

ceived a fair amount of attention in the theoretical literature, our results show that with

fixed participation, the choice of auction format has little impact even with substantial

asymmetries among bidders. When participation is endogenous, we see that sealed bidding

favors the small or weak bidders in both entry and allocation, and differences across auction

formats are magnified. Finally, our results suggest that competitiveness may vary across

Forest Service regions, and that the implications of competitiveness for auction choice may

be quantitatively the most significant.
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Appendix I: Proofs of the Results

Proof of Proposition 1. Let i be a logger and j a mill. Given an entry profile p, let
P (l,m) denote the probability that of the bidders k 6= i, j, exactly l loggers and m mills
enter. Then

Πτ
i (p) =

X
nL,nM

{πτL(l + 1,m+ 1)pj + πτL (l + 1,m) (1− pj)}P (l,m) (10)

and
Πτ
j (p) =

X
l,m

{πτM(l + 1,m+ 1)pi + πτM (l,m+ 1) (1− pi)}P (l,m) (11)

From Li and Riley (1999), the bracketed term in (10) is no greater than πτL(l+1,m), while the
bracketed term in (11) is no less than πτM(l+1,m+1). So Π

τ
i (p) ≤

P
l,m πτL(l+1,m)P (l,m)

and Πτ
j (p) ≤

P
l,m πτM(l + 1,m + 1)P (l,m). Therefore the assumed condition implies that

Πs
j(p) > Πs

i (p) for any logger i and mill j and entry profile p. Moreover, Maskin and Riley’s
(2000) results imply that for any logger i and mill j and entry profile p, Πs

i (p) ≥ Πo
i (p) and

Πo
j(p) ≥ Πs

j(p), so in addition Πo
j(p) > Πo

i (p). It follows that in any entry equilibrium, if
some logger enters with positive probability, then every mill strictly prefers to enter and will
enter with probability one. The remaining argument is straightforward. Q.E.D.

Proof of Proposition 2. The proof makes use of two key facts arising from the analysis
of Maskin and Riley (2000) and Li and Riley (1999). First, for any entry strategies p,
Πs
i (p) ≥ Πo

i (p) for any logger i and Πs
j(K) ≤ Πo

j(p) for any mill j. Second, for either auction
format τ ∈ {o, s} and any bidder i, Πτ

i (p) is decreasing in p.
For a given vector of type-symmetric entry strategies p, let pL and pM denote the entry

probabilities of loggers and mills, and Πτ
L(pL, pM), Π

τ
M(pL, pM) their expected profits from en-

try. Fix an auction format τ . From above, if (pL, pM) and (p0L, p
0
M) are both type-symmetric

entry equilibria, and p0M > pM , then p0L < pL. So among type-symmetric entry equilibria,
there is one with the most mill entry and least logger entry. Finding this equilibrium is
straightforward. If Πτ

L(0, 1) < K, find the unique equilibrium with pL = 0 and pM ≥ 0. If
Πτ
L(0, 1) ≥ K, find the unique equilibrium with pL ≥ 0 and pM = 1.
Using the first fact above, it is straightforward to check that the type-symmetric open

auction entry equilibrium with the most mill entry and least logger entry will have more
mill entry and less logger entry than the type-symmetric sealed auction equilibrium with the
most mill entry and least logger entry. This proves the result. Q.E.D.

Proof of Proposition 3. Let Πc
i(p) denote the profits of bidder i from entering if mills

collude, and similarly for type-symmetric entry profiles define Πc
L(pL, pM) and Π

c
M(pL, pM) as

expected bidder profits. We have Πc
L(pL, pM) = Πo

L(pL, pM) and Πc
M(pL, pM) ≥ Πo

M(pL, pM).
Moreover, Πc

i(p) is decreasing in p for any bidder i. Therefore we can use precisely the
argument from the above proof to show that the type-symmetric collusive open auction
entry equilibrium with the most mill entry and least logger entry will have more mill entry
and less logger entry than the corresponding type-symmetric competitive open auction entry
equilibrium. Q.E.D.
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Appendix II: Omitted Details of the Structural Model.

A. The Likelihood Function

A useful property of Gamma-Weibull models is that the unobserved heterogeneity can
be integrated out analytically. This leads to the following log-likelihood for auction t:

lnLt = (nLt + nMt) ln θ + lnΓ

µ
1

θ
+ nLt + nMt

¶
− lnΓ

µ
1

θ

¶
+

nLt+nMtX
i=1

ln

Ã
pitλit

µ
bit
λit

¶pit−1
!
+

µ
1

θ
+ nLt + nMt

¶
ln

Ã
1 + θ

nLt+nMtX
i=1

µ
bit
λit

¶pit
!
.

Here θ is the Gamma variance, b1t, ..., b(nLt+nMt)t are the observed bids in auction t, and
λit, pit are the Weibull parameters for bidder i in auction t. As defined in the text, these
are functions of (Xt, Nt, nt), the unknown parameter vectors β and γ, and bidder i’s type –
logger or mill.

B. Truncating the Bid Distributions

Our independent private values model predicts that the equilibrium bid distributions
will have finite support. If, for example, there are two bidders of the same type, b = E[v].
Therefore, modeling the bid distribution as Weibull implicitly imposes an infinite mean on
bidder values. We view this problem as largely technical because it results from a very small
fraction of large bids being rationalized with implausibly high values. Our solution therefore
is to truncate the estimated bid distributions.24

To identify maximum bids at which to truncate, we exploit two facts. First, truncating the
bid distribution does not affect the reverse hazard rate gk/GK, and hence leaves the estimated
inverse bid function φ(·), defined in (8), unchanged for bid values below the truncation.
Second, the estimated bid function φ−1(·) becomes very flat for high bidder values. This
means that if we use our prior knowledge of timber auctions to specify a plausible maximum
value and use the estimated bid function to locate the implied maximum bid, our resulting
truncation point will be relatively insensitive to the precise maximum value we specify.
To make this operational, we observe that values in our model take the form: vit =

exp(XtβX + NtβN) · ξit. Let X = EXt[Xt] and N = ENt [Nt]. We assume that for the
“stronger” bidder type in a given auction (i.e. mills if any are present, otherwise loggers)
exp(XβX+NβN)]·ξit ≤ 500, so that for the average tract in our sample, the highest possible
value is $500 per mbf. This assumption implies an upper bound on the value distribution
vt(Xt, ut, Nt):

v(Xt, ut, Nt) = 500 ·
exp(XtβX +NtβN)

exp(XtβX +N tβN)
.

24An alternative would be to specify directly a bid distribution with finite support, but this has serious
pitfalls as well because it requires estimating the maximum bid conditional on observed and unobserved
covariates. This is a hard problem, and moreover the mean of bidder values will be in close correspondence
with the (arguably poor) estimate.
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For an auction with a set nt of participants, the bid resulting from this maximum value,
b(Xt, ut, Nt, nt), satisfies:

φM(b(Xt, ut, Nt, nt);Xt, ut, Nt, nt) = vk(Xt, ut, Nt).

We calculate b(·) numerically for each (Xt, ut, Nt, nt) and truncate the bid distribution. If
both mills and loggers participate, this truncation also impose an upper bound on logger
values, one that may be below v(·). In practice, we end up truncating only a very small
fraction of the bid distribution. In the auction plotted in Figure 2, for instance, less than
1% of mill bids and 0.001% of logger bids are truncated.
A slight concern with our procedure is that the truncation is imposed after we estimate

the bid distribution. One way to view what we do is as the first step of an iterative process
where we repeatedly estimate the bid distributions, calculate b(X,u,N, n), and then re-
estimate the bid distributions imposing the new truncation. Because our one-step procedure
leads us to truncate such a small fraction of bids, we believe that iterating the procedure
would lead to extremely similar estimates.
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Full Sample Selected Full Sample
N 886 732 347 339

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Auction Outcomes
Winning Bid ($/mbf) 61.82 43.84 63.27 44.91 69.45 46.64 69.42 46.63
Entrants 4.07 2.41 4.13 2.44 4.37 2.81 4.40 2.83
  # Loggers Entering 2.53 2.43 2.75 2.46 3.18 2.57 3.23 2.57
  # Mills Entering 1.53 1.70 1.38 1.68 1.19 1.74 1.17 1.74
  Fraction Loggers Entering 0.59 0.40 0.64 0.39 0.75 0.34 0.76 0.33
Logger Wins Auction 0.54 0.50 0.59 0.49 0.67 0.47 0.68 0.47

Appraisal Variables
Volume of timber (hundred mbf) 32.00 43.06 23.02 34.30 16.70 30.01 14.65 25.50
Reserve Price ($/mbf) 24.70 24.66 25.68 25.46 26.65 24.30 26.64 24.44
Selling Value ($/mbf) 252.60 131.88 253.04 130.67 259.44 125.05 259.35 125.33
Road Construction ($/mbf) 5.86 9.57 4.36 8.69 2.94 7.61 2.71 7.44
No Road Construction 0.59 0.49 0.68 0.47 0.78 0.42 0.79 0.41
Logging Costs ($/mbf) 79.87 64.40 78.61 64.49 79.86 63.42 79.60 63.61
Manufacturing Costs ($/mbf) 108.82 85.81 107.53 86.09 112.75 87.03 112.65 87.38

Sale Characteristics
Contract Length (months) 23.02 17.93 22.19 16.35 16.78 14.72 15.94 13.38
Species Herfindal 0.61 0.28 0.61 0.28 0.59 0.27 0.59 0.27
Density of Timber (mbf/acres) 7.83 7.01 7.85 7.20 8.91 8.21 8.97 8.26
Salvage Sale 0.37 0.48 0.37 0.48 0.40 0.49 0.41 0.49
Scale Sale 0.41 0.49 0.38 0.49 0.37 0.48 0.36 0.48
Quarter of Sale 2.43 0.99 2.45 0.99 2.47 0.98 2.47 0.98
Year of Sale 86.32 2.41 86.32 2.45 85.95 2.61 85.94 2.61
Housing Starts 1557.53 255.73 1572.33 235.52 1542.04 274.69 1540.41 275.81

Potential Competition
Logging companies in county 44.41 20.88 43.17 21.32 41.48 22.00 41.73 22.10
Sawmills in County 8.67 4.32 8.45 4.35 7.67 4.26 7.56 4.15
Active Loggers (active in District 
in prior 12 months) 20.14 9.71 19.91 9.71 19.24 8.90 19.47 8.86
Active Manufacturers (active in 
District  in prior 12 months) 5.20 2.14 5.25 2.20 5.77 2.47 5.79 2.48

Selected

Table 1A: Summary Statistics for Northern Sales

Open Auctions Sealed Auctions



Open Auctions Sealed Auctions
Full Sample Selected Full Sample

N 1290 325 774 382

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Auction Outcomes
Winning Bid ($/mbf) 91.23 143.40 85.10 102.93 79.25 61.90 80.39 63.20
Entrants 4.08 2.35 3.72 2.24 3.74 2.57 4.27 2.76
  # Loggers Entering 1.33 1.58 1.95 1.89 2.81 2.22 3.01 2.35
  # Mills Entering 2.75 1.90 1.77 1.77 0.94 1.41 1.26 1.57
  Fraction Loggers Entering 0.32 0.33 0.55 0.39 0.78 0.31 0.73 0.31
Logger Wins Auction 0.26 0.44 0.50 0.50 0.74 0.44 0.67 0.47

Appraisal Variables
Volume of timber (hundred mbf) 67.26 50.41 23.77 24.14 9.22 17.68 11.24 12.45
Reserve Price ($/mbf) 36.79 36.72 37.31 49.64 36.07 32.48 33.26 32.28
Selling Value ($/mbf) 270.83 99.48 233.41 143.15 246.92 251.63 239.72 119.74
Road Construction ($/mbf) 9.67 12.58 4.39 9.76 1.09 4.31 1.58 5.23
No Road Construction 0.32 0.46 0.64 0.48 0.90 0.29 0.87 0.34
Logging Costs ($/mbf) 108.28 44.78 88.42 58.59 86.56 56.74 97.73 58.49
Manufacturing Costs ($/mbf) 122.74 42.85 100.02 61.11 99.62 62.89 104.93 60.28

Sale Characteristics
Contract Length (months) 27.54 14.57 16.23 10.34 10.24 7.46 11.97 6.78
Species Herfindal 0.56 0.23 0.59 0.25 0.60 0.24 0.61 0.25
Density of Timber (mbf/acres) 11.54 14.75 11.93 16.94 18.38 220.16 11.37 15.83
Salvage Sale 0.13 0.34 0.24 0.43 0.36 0.48 0.25 0.43
Scale Sale 0.90 0.30 0.75 0.44 0.66 0.47 0.75 0.43
Quarter of Sale 2.37 1.02 2.58 1.00 2.71 0.89 2.62 0.96
Year of Sale 85.26 2.12 85.58 2.29 85.61 2.29 85.07 2.15
Housing Starts 1593.72 254.02 1564.30 235.05 1559.08 247.12 1578.31 264.04

Potential Competition
Logging companies in county 21.76 18.30 20.75 18.66 20.00 17.39 21.09 19.00
Sawmills in County 6.28 6.05 5.77 5.08 6.00 6.13 6.70 7.45
Active Loggers (active in Forest 
in prior 12 months) 10.32 7.08 10.11 6.86 10.48 5.98 11.29 6.62
Active Manufacturers (active in 
Forest  in prior 12 months) 5.99 3.34 5.42 3.54 5.26 2.76 5.48 2.85

Selected

Table 1B: Summary Statistics for California Sales



Table 2: Choice of Sale Method
Dependent Variable: Dummy if auction is sealed bid (Logit regression)

 (1)  (2)
 Northern California

coefficient s.e. coefficient s.e.

Appraisal Controls
Ln(Reserve Price) -0.063 (0.115) -0.157 (0.145)
Ln(Selling Value) 0.085 (0.110) -0.129 (0.111)
Ln(Logging Costs) 0.060 (0.468) -1.159 (0.491)
Ln(Manufacturing Costs) 0.230 (0.717) 0.343 (0.158)
Ln(Road Costs) -0.176 (0.086) -0.129 (0.100)

Other Sale Characteristics
ln(Contract Length/volume) -0.756 (4.726) -6.943 (6.317)
Species Herfindal -0.211 (0.434) -0.590 (0.427)
Density of Timber (hmbf/acres) -1.185 (1.061) 0.042 (0.107)
Salvage Sale (Dummy) 0.112 (0.176) 0.099 (0.242)
Scale Sale (Dummy) 0.328 (0.198) -0.729 (0.269)
ln(Monthly US House Starts) -1.168 (1.038) -4.216 (1.226)

Volume Controls (Dummy Variables):
Volume: 1.5-3 hundred mbf -0.115 (0.339) -1.685 (0.600)
Volume: 3-5 -0.327 (0.360) -2.262 (0.631)
Volume: 5-8 -0.411 (0.382) -2.728 (0.657)
Volume: 8-12 -0.744 (0.410) -3.458 (0.688)
Volume: 12-20 -0.847 (0.405) -3.832 (0.700)
Volume: 20-40 -1.477 (0.461) -7.045 (0.762)
Volume: 40-65 -1.758 (0.517) -8.085 (0.802)
Volume: 65-90 -1.378 (0.550) -8.796 (0.877)
Volume: 90+ -2.479 (0.583) -9.833 (0.930)

Potential Competition
ln(Loggers in County) -0.089 (0.277) 0.972 (0.214)
ln(Sawmills in County) 0.254 (0.358) -1.048 (0.279)
ln(Active Loggers) 0.212 (0.177) 0.189 (0.111)
ln(Active Manufacturers) -0.082 (0.120) 0.164 (0.095)

Additional Controls (Dummy Variables)
Chi-Squared Statistics (p-value in parenthesis)
Years 35.96 (0.005) 68.01 (0.000)
Quarters 4.71 (0.195) 4.48 (0.214)
Species 14.67 (0.401) 12.59 (0.127)
Location 114.77 (0.000) 139.96 (0.000)
 N=1233 N=2064

LR chi2 (68) 283.24 LR chi2 (55) 1801.07
P-value 0.000 P-value 0.000
Pseudo-R2 0.19 Pseudo-R2 0.66



(1) (2) (3) (4) (5) (6)
ln(Logger Entry) ln(Mill Entry) Loggers/Entrants Logger Wins ln(Price) ln(Price)1

Regression with No Interactions Between Sealed and Covariates 2

0.089 -0.014 0.056 0.039 0.094 0.055
(0.036) (0.030) (0.016) (0.026) (0.038) (0.032)

Regression with Interactions Between Sealed and All Covariates

0.097 -0.010 0.058 0.038 0.099 0.060
(0.036) (0.031) (0.016) (0.027) (0.039) (0.033)

0.100 0.018 0.052 0.034 0.118 0.091
(0.048) (0.053) (0.029) (0.039) (0.064) (0.055)

Regression with No Interactions Between Sealed and Covariates 2

0.101 -0.026 0.058 0.036 0.027 -0.026
(0.045) (0.038) (0.020) (0.036) (0.051) (0.040)

Regression with Interactions Between Sealed and All Covariates

0.099 -0.022 0.056 0.035 0.026 -0.037
(0.044) (0.038) (0.020) (0.035) (0.050) (0.039)

0.106 -0.123 0.097 0.107 -0.038 0.005
(0.062) (0.067) (0.034) (0.051) (0.127) (0.087)

Notes: Robust standard errors in parentheses, matching standard errors computed following Abadie and Imbens (2006) 

Sealed Bid Effect on Sample

Dependent Variable:

Matching Estimate 3

Table 3: Effect of Auction Method on Sale Outcomes

Panel A: Northern Sales (N= 1071 Sales)

Sealed Bid Effect

Sealed Bid Effect on Sample

2. See Appendix Tables 1A and 2A for full set of controls and coefficients. 
3. Number of matches = 4 using the estimated propensity score.

1. Specification includes number of entering mills and loggers in addition to sale controls.

Matching Estimate 3

Sealed Bid Effect on Sample

Panel B: California Sales (N= 707 Sales)

Sealed Bid Effect

Sealed Bid Effect on Sample



Table 4: Bid and Entry Distributions for Sealed Auctions

 (1) (2)  (1) (2)
 Bid Distribution  Logger Entry  Bid Distribution  Logger Entry

coeff. s.e. coeff. s.e. coeff. s.e. coeff. s.e.

Ln(Reserve Price) 0.404 (0.034) -0.314 (0.057) 0.602 (0.037) -0.388 (0.061)
Ln(Selling Value) -0.037 (0.027) 0.025 (0.068) -0.021 (0.024) -0.037 (0.051)
Ln(Manufacturing Costs) 1.034 (0.180) 1.255 (0.318) 0.014 (0.032) 0.194 (0.065)
Ln(Logging Costs) -0.480 (0.164) -0.934 (0.234) -0.209 (0.109) -1.401 (0.206)
Ln(Road Costs) 0.001 (0.025) -0.148 (0.047) -0.013 (0.023) -0.175 (0.062)
Species Herfindal -0.124 (0.103) -0.301 (0.176) -0.200 (0.084) -0.445 (0.170)
Density of Timber (hmbf/acres) -0.009 (0.003) -0.006 (0.005) -0.003 (0.002) -0.001 (0.003)
Salvage Sale (Dummy) -0.005 (0.045) -0.011 (0.080) -0.019 (0.049) -0.417 (0.102)
Scale Sale (Dummy) -0.008 (0.053) -0.161 (0.090) 0.133 (0.056) 0.219 (0.104)
Ln(Volume) -0.063 (0.028) -0.284 (0.051) -0.041 (0.032) -0.307 (0.063)
No Mill Entrants (Dummy) -0.120 (0.068) -0.460 (0.117) -0.089 (0.059) -0.433 (0.120)
Min(Mill Entrants,5) 0.091 (0.022) -0.059 (0.045) 0.072 (0.020) -0.053 (0.047)
Active Loggers -0.041 (0.006) -0.050 (0.007)
Min(Logger Entrants,5) 0.034 (0.016) 0.074 (0.014)
Mill (Dummy) 0.284 (0.032) 0.160 (0.026)
Mill (Dummy) * (Mill Entrants=1) -0.109 (0.073) -0.128 (0.052)

Additional Controls

No Mill Entrants (Dummy) -0.081 (0.070) -0.202 (0.070)
Min(Mill Entrants,5) 0.015 (0.022) -0.009 (0.022)
Min(Logger Entrants,5) 0.016 (0.018) -0.005 (0.015)
Mill(Dummy) 0.074 (0.066) -0.031 (0.052)
Mill (Dummy) * (Mill Entrants=1) -0.386 (0.122) -0.076 (0.100)
Constant 1.134 (0.103) 1.329 (0.090)

Constant -0.502 (0.120) -0.416 (0.124)

N = 382

Note: Bid distribution estimated from sales with two or more bidders.

N=1421 N = 339 N=1565

Forest-District, Year, 
Species Dummies

ln(θ)ln(θ)

ln(p)ln(p)

Forest, Year, Species 
Dummies

Forest-District, Year, 
Species Dummies

Forest, Year, Species 
Dummies

α αln(λ) ln(λ)

Panel A: Northern Sales Panel B: California

(Weibull) (Binomial)(Weibull) (Binomial)



Table 5: Actual Outcomes vs. Outcomes Predicted by Model
 (1)  (2)  (3)
  Predicted  Predicted

N Actual

Avg. Bid 1492 59.6 58.2 (1.4) 57.4 (1.3)
Avg. Logger Bid 1096 50.8 48.7 (1.4) 47.4 (1.4)
Avg. Mill Bid 396 83.8 84.7 (2.7) 85.2 (2.7)
Avg. Sale Price ($/mbf) 339 69.4 69.9 (1.4) 70.4 (1.6)
Avg. Revenue ($000s) 339 111.4 108.1 (4) 109.9 (4.2)
% Sales won by Loggers 339 68.1 68.0 (0.90) 65.0 (0.01)
Avg. Logger Entry 339 3.23 3.23 (0.09)( )

Avg. Sale Price (Competition) 732 63.3 67.9 (1.8) 67.8 (2.1)
Avg. Sale Price (Collusion) 732 63.3 44.2 (1.3) 44.1 (2.2)
Avg. Revenue (Competition) 732 144.7 152.7 (6.8) 154.8 (7.9)
Avg. Revenue (Collusion) 732 144.7 61.0 (2) 64.7 (5.0)
% Sales won by Loggers 732 59.0 56.0 (0.01) 54.4 (0.02)
Avg. Logger Entry 732 2.75 2.67 (0.17)

Avg. Bid 1630 73.6 74.7 (2.3) 74.2 (2.3)
Avg. Logger Bid 1150 64.0 63.6 (2.1) 62.3 (2.4)
Avg. Mill Bid 480 96.5 101.2 (3.5) 102.8 (3.8)
Avg. Sale Price ($/mbf) 382 80.4 83.8 (2.1) 84.4 (2.4)
Avg. Revenue ($000s) 382 103.1 110.7 (3.8) 111.9 (4.0)
% Sales won by Loggers 382 66.8 66.4 (1.2) 62.6 (1.3)
Avg. Logger Entry 382 3.01 3.01 (0.07)

Avg. Sale Price (Competition) 325 85.1 87.2 (2.7) 86.7 (3.1)
Avg. Sale Price (Collusion) 325 85.1 46.1 (1.2) 51.0 (1.6)
Avg. Revenue (Competition) 325 227.0 244.7 (9.7) 242.4 (10.9)
Avg. Revenue (Collusion) 325 227.0 93.2 (2.6) 112.9 (5.6)
% Sales won by Loggers 325 50.5 48.2 (1.1) 43.6 (1.8)
Avg. Logger Entry 325 1.95 1.90 (0.13)

Open Auction Sales

Sealed Bid Sales

Open Auction Sales

(bidding only)

Panel B: California Sales

Panel A: Northern Sales

Sealed Bid Sales

(bidding + entry)



 (1)  (2)  (3)
  Predicted  Predicted

N Actual (bidding only) (bidding + entry)

Sealed Bid Sales 181 51.7 51.4 51.4
Open Auction Sales 321 49.8 50.5 47.1

Sealed Bid Sales 70 66.8 64.6 66.9
Open Auction Sales 150 50.0 52.2 59.5

Sealed Bid Sales 88 108.1 112.1 112.2
Open Auction Sales 261 87.5 98.5 98.0

Note: Average sale prices are for Northern region tracts.

Table 6: Actual versus Predicted Sale Prices by Mill Participation 

One Mill

Two or More Mills

Zero Mills



(1) (2)  (4)  
Sealed Open Open

(Comp.) (Part. Coll.)

Avg. Sale Price ($/mbf) 68.56 68.53 0.03 (0.04) 64.58 3.98 (0.24)
Avg. Sale Revenue ($000s) 138.33 138.64 -0.32 (0.06) 124.33 14.00 (1.22)
Avg. Sale Surplus ($000s) 176.99 177.06 -0.08 (0.02)
% Sales Won by Loggers 60.14 59.68 0.46 (0.162)

Avg. Sale Price ($/mbf) 69.68 68.19 1.49 (0.71) 64.11 5.57 (0.82)
Avg. Sale Revenue ($000s) 143.04 139.87 3.17 (2.24) 125.32 17.72 (2.74)
Avg. Sale Surplus ($000s) 156.53 156.84 -0.30 (2.70)
% Sales Won by Loggers 59.65 57.19 2.46 (0.00)
Logger Entry 3.10 2.76 0.34 (0.12)

Avg. Sale Price ($/mbf) 85.53 85.20 0.32 (0.07) 79.39 6.13 (0.39)
Avg. Sale Revenue ($000s) 172.64 172.10 0.55 (0.13) 154.43 18.21 (1.36)
Avg. Sale Surplus ($000s) 203.61 203.65 -0.04 (0.02)
% Sales Won by Loggers 58.21 57.81 0.40 (0.002)

Avg. Sale Price ($/mbf) 88.36 83.76 4.60 (2.26) 78.55 9.81 (2.21)
Avg. Sale Revenue ($000s) 182.38 168.20 14.18 (5.43) 152.83 29.55 (5.39)
Avg. Sale Surplus ($000s) 181.82 170.58 11.24 (6.86)
% Sales Won by Loggers 55.84 52.66 3.18 (0.01)
Logger Entry 2.72 2.35 0.37 (0.14)

Note : Each entry is an average prediction over all tracts in the sample. Bootstrap standard errors in parentheses.

Exogenous Entry

Endogenous Entry

Panel A: Northern Sales (N=1071)

Panel B: California Sales (N = 707)

Exogenous Entry

Endogenous Entry

(3)
Sealed - Open

Table 7: Welfare Effects of Sealed vs. Open Auctions

Difference Difference

(5)
Sealed - Open



 

 



 

 




