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Abstract

We prove generic existence of recursive equilibrium for overlap-
ping generations economies with uncertainty. Generic here means in
a residual set of utilities and endowments. The result holds provided
there is sufficient intragenerational household heterogeneity.

1 Introduction

The overlapping-generations (OLG) model, introduced first by Samuelson
(1958), is one of the two major workhorses for macroeconomic and finan-
cial modeling of open-ended dynamic economies. Following developments in
the study of two-period economies, the OLG model has been subsequently
extended to cover stochastic economies with production and possibly incom-
plete financial markets. In such instances, the general notion of competitive
equilibrium à la Arrow-Debreu has proven to be not very useful for applied,
quantitative work, even in stationary Markovian environments. This is due,
among other things, to the large dimensionality of the allocation and price
sequences when histories of arbitrary length are allowed, which strains the
ability of approximating solutions with present-day computers. It also strains
the notion of rational expectations equilibrium because of the complexity of
the forecasts involved in some of these equilibria.
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An advance in the direction of simplifying computations was provided by
Duffie et al. (1994), who give a general theorem for the existence of station-
ary Markov equilibria for OLG economies, with associated ergodic measure.1

While these equilibria provide the analogue in stochastic economies of steady
states or low-order cycles in deterministic economies, they are still too com-
plicated to allow for computational work. Hence, the applied literature has
focused on a notion of simple time-homogeneous Markov equilibrium, also
known as recursive equilibrium.2

In a recursive equilibrium the state space is reduced to the exogenous
shocks and the initial distribution of wealth for the agents —asset portfolios
from the previous period, and capital and storage levels if production is
considered. A recursive equilibrium can be thought of as a time-homogeneous
Markov equilibrium that is based on a minimal state space.
However, no existence theorem is available for such recursive equilibria. In

fact, Kubler and Polemarchakis (2004) provide two examples of nonexistence
of recursive equilibrium in OLG exchange economies. The idea that recursive
equilibria may not exist is based on the observation that when there are
multiple temporary equilibria the continuation of an equilibrium may depend
on past economic variables other than the wealth distribution. That is, the
current wealth distribution may not be enough to summarize the information
contained in past equilibrium prices and marginal utilities.
While this phenomenon may occur, we prove that it is nongeneric –

under some qualifying condition. The argument follows three fundamental
observations.
The first is that it is always possible to find competitive equilibria which

are time-homogeneous Markov over a simple state space. This is the state
space made of the current exogenous state, current wealth distribution, and of
commodity prices and marginal utilities of income for all generations except
for the first and the last (‘newly born’ and ‘eldest’).
The second observation is that in such equilibria prices and multipliers

are typically a function of the current state and of the current wealth distri-
bution, provided that there is sufficient dispersion of individual characteris-
tics within each generation. We call these equilibria nonconfounding. The

1See e.g. also the earlier work by Spear (1985) and Spear and Srivastava (1986), and
by Cass et al. (1992) and Gottardi (1996).

2Examples by now abund; see, e.g., Rios Rull (1996), Constantinides, Donaldson and
Mehra (2002), Geanakoplos, Magill and Quinzii (2004), Storesletten, Telmer and Yaron
(2004a, 2004b).
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trick we use here is to abstract from the equilibrium equations and instead,
using stationarity, focus on the optimization problem of an arbitrary indi-
vidual born at any date-event. This trick allows one to bypass the infinite
dimensional nature of the equilibrium set, and the fact that with overlapping
generations there is an infinite number of individuals and an infinite number
of market clearing equations, rendering direct genericity analysis quite prob-
lematic. A simple Markov equilibrium fails to be nonconfounding essentially
when, at different prices for goods in a given state, an individual of a given
type spends the same amount of money, and this for all types of individuals.
However, typically this cannot be the case, as with enough heterogeneity in
preferences and endowments there is almost always going to be an individ-
ual who will spend differently at different prices, no matter what prices are
at all the remaining states. Since we need to check this for all admissible,
and not just equilibrium, prices, the degree of heterogeneity we use must
be large –it should be noted in passing that this is not at odds with the
notion of price-taking behavior which is assumed in competitive models such
as ours. The third and final step is to show that nonconfounding simple
time-homogeneous Markov equilibria are indeed recursive equilibria.3

The notion of genericity we will use will rely on utility perturbations,
and therefore will only be topological. In fact, due to the infinite dimension
of the equilibrium set, we will not be able to establish local uniqueness of
competitive equilibria, whether or not time-homogeneous. Without this pre-
requisite, the argument essentially showing some one-to-oneness property of
prices will have to be made without knowing whether such prices are or not
‘critical’. Therefore, we will resort to an argument reminiscent of Mas-Colell
and Nachbar (1991), and we will show the existence of recursive equilibria
for a residual or nonmeager subset of parameters, i.e., a set of stationary
utilities and endowments which is dense and is the countable intersection
of open and dense sets. This is a well-established notion of genericity for
dynamic systems.
Our class of OLG economies has multiple goods, generations and types

within each generation; it allows for complete or incomplete markets, short-

3In a previous paper (Citanna and Siconolfi 2006), we show that the examples con-
structed by Kubler and Polemarchakis (2004) are nonrobust in a stronger sense. In fact,
we can show existence of recursive equilibria for an open and dense class of exchange
economies where individuals live for two periods —‘young’ and ’old’ age—, restrictions ap-
ply to their preferences when young, but we allow for any degree of heterogeneity. Our
main idea there is to prove existence of recursive equilibria via short-memory equilibria.
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or long-lived assets, in zero or positive net supply, but no outside money,
as assets are real –namely, numéraire– and with nonzero payoffs. As it
stands our result does not provide a positive answer to existence of recursive
equilibrium in all economies that have already been used in applied work,
where often preferences are CRRA and at times there is no intragenerational
heterogeneity of individual characteristics. However, our result still suggests
that the notion of recursive equilibrium is computationally useful as well as
coherent as an exact concept, adding robustness to its interpretation and
quantitative use.4 The heterogeneity level we use in our theorem allows
for the state space dimension in the recursive equilibrium to be drastically
reduced. If we denote by G + 1 the number of periods an individual lives,
i.e., the number of generations present in an economy, this heterogeneity
is proportional to the dimension of a tree of length G + 1, and this is the
minimal length of a truncated economy. More importantly, the idea of the
generic existence of recursive equilibrium seems to promise useful in exploring
existence also in economies with less heterogeneity, provided more powerful
perturbation arguments can be constructed.

2 The model

We consider standard stochastic OLG economies where time and uncertainty
are represented by date-events, and a tree structure (eS,≺). Here eS is a set
and ≺ is a precedence relation: ≺ is irreflexive and transitive, and partially
orders the set S. If s, s0 are two elements of a chain in eS, with s0 ≺ s, and
there is no other s00 ∈ eS with s0 ≺ s00 ≺ s, s0 is the (unique) immediate
predecessor of s, also denoted s−. Let {s}+ ⊂ eS denote the set of immediate
successors of s. We assume that {s}+ 6= ∅ and #{s}+ <∞ for all s ∈ eS. Let
s0 be the root of the tree, i.e., the unique element of eS with no predecessor.
A notion of time is imposed as follows. We denote by t(s) = t the length

of the chain between s0 and s. Note that t(s0) = 0. The tree is then
partitioned into ‘dates’, or equivalence classes of length t, with t = 0, 1, ...
representing such dates. Time is discrete, the horizon is infinite, but at each
date t, St < ∞ events or states can be realized, and eS = ∪tSt is countable.
Each element of St is denoted by st. To each st, {st}+ ⊂ St+1. We also
define a history up to and including date t as an array of states, one for each

4See Kubler and Schmedders (2005).
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date τ ≤ t, and is denoted by st = (s0, s1, ..., st) ∈ S0× ...× St, the set of all
such histories; we also write st = (st−1, st). A proper history st leading to a
date-event st is the (finite) sequence of date-events, with sτ−1 = sτ− for all
τ = 1, .., t. From now on, when we refer to date event as histories, we always
mean proper histories.
We are going to consider trees which are generated by a (finite) set S,

i.e., where {s}+ = S for all s ∈ eS; for all t > 0, st = (s0, s1, ..., st) where
sτ ∈ S, all τ ≤ t. That is, an underlying first—order Markov stochastic
process generates the tree, with time—invariant transition π(st+1|st), all t.
We assume that π(st+1|st) > 0 for all st, st+1 ∈ S × S (full support of the
transition).
At each st, there are C ≥ 1 physical commodities, and the demographic

structure is that of an overlapping generations economy. At each st, H ≥ 1
individuals are born living G + 1 ≥ 2 periods, or generations, indexed by
a = 0, ..., G, from the youngest (a = 0) to the oldest (a = G) age. The
economy starts off at s0 with H individuals of each generation. This simple
demographic structure can be generalized to any exogenous stochastic process
which is a time-homogenous finite Markov chain.
The commodity space is the space of sequences (R(G+1)C++ )S, (G + 1)C—

dimensional vectors. The utility of the young agent h born at st is Uh,st :

RC( G
a=0 S

t+a)
++ → R, which is time-separable and of the von Neumann - Mor-
genstern type:

Uh,st(xh0(st), .., xhG(st+G), ...) = Est{
GX
a=0

uha(xha(st+a))}

where if st+a is the current state for history st+a, and st+a = (st+a−1, st+a) for
all st+a ∈ {st+a−1}+. In addition, each utility uha : RC

++ → R for a = 0, ..., G
is smooth, differentially strictly increasing, and strictly concave. The utility
uha for a > 0 already includes a discount factor. Agent h, st is also endowed
with physical goods at all ages, i.e., eha(st+a), all a. We assume that utilities
and endowments are stationary, in that eha(st+a) = eha(s), with s ∈ S, and
eha : S → RC

+ , for all a. That is, the economy has a first-order Markovian
structure.5

5For simplicity, and to strengthen our results, here we omit the possible state—
dependence of utilities. In that case, stationarity would imply that uha(xha(st+a), st+a) =
uha(xha(st+a), s).
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We also assume that eha1 (s) > 0 for all s, all a, all h, and that
P

h,a e
ha
c (s) >

0 for c > 1, all s. Finally, we assume that uha satisfies the boundary condition
limn→∞ xha1,n = 0, then limn→∞ ||D1u

ha(xhan )||−1xha0n D1u
ha(xhan ) = 0. These

conditions simply state that good c = 1 is necessary to individuals of all
ages, and that total resources in the economy are positive.
At each st, there are spot markets for the exchange of physical commodi-

ties. The price vector of the C commodities at st is p(st) ∈ RC
++. Commodity

c = 1 is dubbed the numéraire commodity.
There are also J ≤ S one-period securities in zero net supply, paying

in units of the numéraire commodity. Their prices are q(st) ∈ RJ . Their
payoffs at st are given by an S × J-dimensional matrix Y (st) = Y for all st,
with column rank J —hence, there is no outside money. There is one asset,
say asset j = 1, which has positive payoffs, y1s > 0 for all s ∈ S, and Y is
in general position. Agents hold mha(st) ∈ RJ units of these assets when
a < G, without loss of generality. We will discuss extensions to long-lived
assets and positive net supply further below.
Economies will be triples (e, π, u) of endowments, transition probabilities

and utilities satisfying our assumptions. Endowments and probabilities lie
in open subsets of Euclidean spaces. Utilities uha are points in the space of
C∞(RC

++,R) functions with the topology of C2—uniform convergence. Namely,
they belong to the Gδ subset of such space consisting of functions satisfying
our maintained assumptions. Then, we let Ω be the space of such endow-
ments, probabilities and utilities, endowed with the product topology.
For each st ∈ eS, we let Ξ(st) ⊂ Ξ be the set of endogenous variables at st,

i.e., of admissible vectors ξ(st) = (x(st),m(st), p(st), q(st)). The sequence ξ =³
ξ(st), st ∈ eS´ ∈ ×st∈SΞ(s

t) represents a vector—valued stochastic process of
consumption, asset holdings and prices for commodities and assets —adapted
to eS. Given a tree eS and a history st ∈ eS, we let eSst be the subtree starting at
st, i.e., the set of sτ with τ ≥ t and sτ = (st, st+1, ..., sτ). If ξ ∈ ×st∈SΞ(s

t), for

any st ∈ eS, ξst = ³ξ(sτ), sτ ∈ eSst´ ∈ ×sτ∈Sst
Ξ(sτ ) is the process in the sub-

tree starting at st, and we let ξ+(s
t) = (xha(st)a<G,m

ha(st)a<G, q(s
t), ξst+1)

be the continuation of the process at st.

2.1 Competitive equilibrium

Letting mh(−1)(st) ≡ 0, mhG(st) ≡ 0 for all h, st, a competitive equilibrium is
a stochastic process ξ such that:
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(H) agents optimize given prices, i.e., for each h, st,

maxxha(st+a)Ga=0,mha(st+a)Ga=0
Uh,st(xh0(st), .., xhG(st+G), ...)

s.t. p(st+a)[xha(st+a)− eha(st+a)] + q(st+a)mha(st+a) =
p1(s

t+a)yst+am
h(a−1)(st+a−1), for all st+a = (st+a−1, st+a), all a,

and at s0, for a > 0 agents of age a optimize given prices and initial portfolios,

maxxha(sa−a)Ga=a,mha(sa−a)G−1a=a
Uh,s0(xha(s0), .., xhG(sG−a), ...)

s.t. p(sa−a)[xha(sa−a)− eha(sa−a)] + q(sa−a)mha(sa−a) =
p1(s

a−a)ysa−am
h(a−1)(sa−a−1), for all sa−a = (sa−a−1, sa−a), all a ≥ a,

with mh(a−1)(s0−) = mh(a−1)(s0−) given;
(M) markets clear, or

P
h,a[x

ha(st) − eha(st)] = 0 and
P

h,am
ha(st) = 0,

all st ∈ eS.
Notice that, by time and state separability of the agents’ utility functions,

we do not need to write separately the optimization problem of agents of age
a > 0 for histories st 6= s0, as they are implied by their maximization when
young. A competitive equilibrium exists for these economies using a stan-
dard truncation argument (see Balasko and Shell (1980)), and combining it
with the argument for existence of equilibrium in a two-period economy with
incomplete markets and numéraire assets (Geanakoplos and Polemarchakis
(1986) if assets are short-lived; if they were long-lived, existence can be es-
tablished for truncated economies by using bounds on asset sales, with an
argument à la Radner (1972). Let E(ω) be the set of competitive equilibria
of an economy ω ∈ Ω.
As we explained in the Introduction, the focus of this paper will be on a

special kind of competitive equilibrium, also known as recursive equilibrium,
to which we now turn.

3 Recursive equilibrium

LetW be a subset of RHG, with element w = (..., wha, ...)h∈H,a>0. This is the
space of initial financial wealth levels.
A recursive equilibrium6 is the state space S ×W together with time—

invariant price functions p(s, w), q(s, w), allocation functionsmha(s, w), xha(s, w)

6See, e.g., Rios Rull (1996).
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for all a, and transitions Ta(s, w, s0, w0) = 0, for s, s0 ∈ S and w,w0 ∈ W, all
a < G such that:
(H’) for each h, each (s, w) ∈ S ×W , individuals of age a ≥ 0 optimize

given the price functions and (Ta)G>a≥a, i.e.,

xha(sa, wa)
G
a=a,m

ha(sa, wa)
G−1
a=a ∈

argmaxxha(sa,wa)∈RC+,mha(sa,wa)∈RJ U
h(xha(sa, wa), ..., x

hG(sG, wG), ...)

s.t. p(sa, wa)[x
ha(sa, wa)− ehy(sa)] + q(sa, wa)m

ha(sa, wa) =
p1(sa, wa)ysam

h(a−1)(sa−1, wa−1), all a ≥ a

for all (sa, wa)
G
a=a s.t. Ta(sa, wa, sa+1, wa+1) = 0, for a < G, (sa, wa) =

(s, w), and with mh(−1)(s, w) ≡ 0, mhG(s, w) ≡ 0 all (s, w) ∈ S ×W ;
(M’) markets clear, or

P
h,a[x

ha(s, w)−eha(s)] = 0 and
P

h,am
ha(s, w) = 0

for all (s, w) ∈ S ×W ;
(R) the transitions Ta are consistent with optimization (H’) and with

nature’s moves, that is, given (sa, wa) ∈ S×W, then Ta(sa, wa, sa+1, wa+1) = 0
implies
- sa+1 ∈ {sa}+;
- wh(a+1)

a+1 = (w)
h(a+1)
sa+1 = ysa+1m

ha(sa, wa) all a < G.
Note that in this definition the equilibrium process starts from a point in

W. In particular, a recursive equilibrium is a competitive equilibrium only if
the initial distribution of asset portfolios, m(s0−), multiplied by ys0 , is inW .
Consumption plans for any age a only depend on the current state s, w;

any more variability in consumption is not going to be optimal for the agent,
given the equilibrium price functions and transition, separability and strict
concavity of the utility function. This is why feasible plans are already re-
stricted to functions xha(s, w).

3.1 Generic existence of recursive equilibrium

Wewant to show the existence of these equilibria in a large class of economies.
In order to accomplish this, the basic idea is to show that the initial wealth
distribution in each period is typically a sufficient statistic of the memory of
the economic system at least at some competitive equilibrium.
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3.1.1 Existence of simple time-homogeneous Markov equilibria

We are going to first show that there are always competitive equilibria which
are time-homogenous andMarkov on the state space given by p, (λha)h∈H,0<a<G,
w, s, that is, the current exogenous state, current wealth distribution, current
Lagrange multipliers for all individuals of all generations except for the eldest
and the youngest, and current commodity prices. Denote by EM(ω) ⊂ E(ω)
the set of these Markov equilibria.

Lemma 1 For all ω ∈ Ω, EM(ω) 6= ∅.

Proof. We are going to construct one such equilibrium for each ω. Start
from a ξ ∈ E(ω) and take two date-events st, st0. Assume that the vectors
ξ(st) and ξ(st0) are such that

p(st) = p(st0),
λha(st) = λha(st0) for all h, all 0 < a < G,
wha(st) = ystm

h(a−1)(st−1) = ys0tm
h(a−1)(st−10) = wha(st0) for all h, all

a > 0,
and st = s0t = s.
We show that we can replace the variables in ξ+(s

t0) with the corre-
sponding variables in ξ+(s

t) without altering the equilibrium, i.e., without
falsifying any of the competitive equilibrium equations. This is obvious for
ξ(sτ) with either τ > t0 and sτ /∈ eSst0, or τ ≤ t0 and sτ £ st0, since we
have not touched these variables, or the equations where they appear. It is
also obvious for ξ(sτ) with τ > t0 and sτ ∈ eSst0, since ξ+(st) was an equi-
librium to start with. As for sτ with τ ≤ t0 and for sτ ≤ st

0
, the only

equations where variables in ξ+(s
t0) appear are: the budget constraints at

(st0)− = st−10, where mh(a−1)(st−10) is, for a > 0, all h; the no arbitrage con-
ditions also at st−10, where λha(st−10, s) appears; the first-order conditions to
problem (H), the budget constraints and the no arbitrage equations at st0, for
all h, all a. By assumption, λha(st0) = λha(st) for all h, all 0 < a < G. Since
ysw

h(G−1)(st−1) = ysm
h(G−1)(st−10) for all h, and since p(st) = p(st0), the opti-

mization problem for individuals of age a = G at st and st0 is the same. Given
strict concavity of uhG, it has a unique solution given commodity prices and
initial wealth,

¡
xhG(st0), λhG(st0)

¢
=
¡
xhG(st), λhG(st)

¢
and all no arbitrage

equations at st−10 are still satisfied after the substitution. Wealth equality at
successor state st0 is the only constraint that mh(a−1)(st−10) must satisfy for
all h, all a < G, but this has been assumed to hold. Finally, FOCs, budget
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constraints and no arbitrage equations can simply be substituted without
altering anything else in the equilibrium.
Next, we construct the process ξ̂ ∈ ×st∈SΞ(s

t) from ξ recursively as fol-
lows. Use the natural order sum,

P
t St, on eS. Let st(n) be the node reached

at step n ≥ 1 of the construction algorithm. Let ξ̂n−1 ∈ ×st∈SΞ(s
t) be given,

with ξ̂0 = ξ. For any array (p, (λha)h∈H,0<a<G, w, s) possible in ξ̂n−1, let

Sn−1(p, (λ
ha)h∈H,0<a<G, w, s) =

{st ∈ eS|p(st) = p, λha(st) = λha, h ∈ H, 0 < a < G, w(st) = w, st = s}

be the corresponding equivalence class. Since under the order sum eS is
well-ordered, minSn−1(p, (λ

ha)h∈H,0<a<G, w, s) = s
p,(λha)h∈H,0<a<G,w,s
n−1 is well

defined, and s
p,(λha)h∈H,0<a<G,w,s
n−1 ≤ st(n). Define ξ̂n by assigning to s

t(n) the

continuation ξ̂n,+(s
t(n)) = ξ̂n−1,+(s

p,(λha)h∈H,0<a<G,w,s
n−1 ), and letting ξ̂(st(n)) be

the st(n)-th element in the vector ξ̂n+(s
t(n)), and then go on to step n+ 1.

Note that each node st is eventually assigned a value ξ̂(st) in at most n
many steps, with st = st(n). Moreover, ξ̂ is uniquely determined at each
node by s, w, (λha)h∈H,0<a<G and p: for each st, with st = s and ξ̂(st) such

that p̂(st) = p, λ̂
ha
(st) = λha, all h ∈ H, 0 < a < G, w(st) = w, there is a

unique continuation ξ̂+(s
t) = ξ̂(p, (λha)h∈H,0<a<G, w, s). Since the process on

S is Markov, so is the one on (p, (λha)h∈H,0<a<G, w, s). Since ξ ∈ E(ω), then
also ξ̂ ∈ E(ω), i.e., ξ̂ ∈ EM(ω) and we are done.¥
Let λ(s) = (λha(s))h∈H,0<a<G be the collection of marginal utilities of the

numéraire commodity for all individuals h ∈ H and cohorts a, a = 1, ..., G−1.
Equilibria in EM(ω) do not have multiplicity problems in any continuation.
In particular, we have excluded situations where even if p(st), λ(st), w(st)
and st are given at an arbitrary st, multiple equilibrium asset prices q(st)
and commodity price expectations p(st+1) are possible along the tree eS. Note
that we do not know whether such selection process gives rise to continuous,
or even measurable, transitions, but neither property will be used in our
argument or is required in the definition of recursive equilibrium.
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3.1.2 Nonconfounding simple time-homogeneous Markov equilib-
ria

For the Markov equilibria in EM(ω), a Markov state is defined by a cur-
rent realization of s ∈ S, by commodity prices p(s), by multipliers λ(s), and
by the initial wealth distribution w(s). We want to show that the Markov
equilibria which we constructed above, typically and under some qualify-
ing condition on intragenerational heterogeneity, have the following injec-
tion property: if at s, two Markov states are given, (p(s), λ(s), w(s); s) and³
p̂(s), λ̂(s), ŵ(s); s

´
with w(s) = ŵ(s), then (p, λ(s)) = (p̂(s), λ̂(s)). We call

Markov equilibria that satisfy this property nonconfounding, and denote the
set of nonconfounding Markov equilibria ENC

M (ω).
The qualifying condition on intragenerational heterogeneity used below

is

A1 H > 2[(C − 1)
PG

a=0 S
a + J

PG−1
a=0 S

a].

We aim at proving the following proposition.

Proposition 2 Under A1, EM(ω) = ENC
M (ω) in a residual subset Ω∗ of Ω.

To this end, we consider the demand functions of individuals of age a = 0
at some pair of states (s01, s02), with eventually s01 = s02, for two sets of
commodity prices p(sak), s

a
k ∈ Sa, k = 1, 2, and a = 0, ..., G, and of asset

prices q(sak), s
a
k ∈ Sa, k = 1, 2, and a = 0, ..., G − 1, where s0k = s0k for

k = 1, 2. We do not need to keep track of the asset prices q(sGk ), s
G
k ∈ SG,

k = 1, 2, since in the absence of arbitrage the old generation G does not trade
on the asset market.
Without loss of generality normalize commodity prices by setting

p1(s
a
k) = 1, for all s

a
k ∈ Sa, k = 1, 2,

To have a compact notation, let (p, q) denote the entire collection of prices

over the two finite trees. Thus, p ∈ R2(C−1)
G
a=0 S

a

++ and q ∈ R2J G−1
a=0 Sa. Let

N(s01,s02) be the set of parameters ω and variables

z = (
¡
xha(sak), λ

ha(sak),m
ha(sak

¢
)h,sak,a,k, p, q)

which satisfy the equations
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Duha(xha(sak))− λha(sak)p(s
a
k) = 0, (1, h; sak)

−λha(sak)q(sak) +
P

s π(s|sa)λha(sak, s)ys = 0, a < G (2, h; sak)
p(sak)[x

ha(sak)− eha(sak)] + q(sak)m
ha(sak) =

ysm
h(a−1)(sa−1k ), for all sak = (s

a−1
k , s), all a ≥ 0 (3, h; sak)

with q(sGk ) = mhG(sGk ) ≡ 0, for all sGk ∈ SG, andmh(−1)(s−1k ) = 0, for k = 1, 2
and P

h x
ha(sak) ≤M(ω), (i; k)
xha(sak) ≥ 0 (ii; k)

(IN)

Here M(ω) > 0 is a real, with M(ω) = 2maxs
P

ha e
ha(s). Note that this

system has 2[(C − 1)
PG

a=0 S
a + J

PG−1
a=0 S

a] too many unknowns: p(sak), for
sak ∈ Sa, a = 0, ..., G, k = 1, 2, and q(sak), for s

a
k ∈ Sa, a = 0, ..., G − 1,

k = 1, 2.7

Let sa1 and s
a
2 be two arbitrary histories of length a > 0, with s

a
k = (s

a−1
k , s)

for some s, and all a > 0. For k = 1, 2, define

p̂(sak) =

½
p(sak) if a = G

(λha(sak))h∈H otherwise.

We are interested in the subset N(s01,s02)(s
a
1, s

a
2, s) of N(s01,s02) consisting of

the solutions to equations (1− 3), inequalities (IN), and the H equations

ys(m
h(a−1)(sa−11 )−mh(a−1)(sa−12 )) = 0 (4, h)

for all h, with

k(p̂(sa1)− p̂(sa2)k 6= 0 (NC)

System (1 − 4) has now H − 2[(C − 1)
PG

a=0 S
a + J

PG−1
a=0 S

a] too many
equations, a positive number under A1.
Clearly any ξ ∈ EM(ω) ‘goes through’ system (1 − 3) and (IN), i.e., ξ

intersects some N(s01,s02). Moreover, if ξ ∈ EM(ω) but ξ /∈ ENC
M (ω), then

(4) must also hold when (NC) holds for some pair of histories (sa1, s
a
2) with

current state s, or ξ intersects also N(s01,s02)(s
a
1, s

a
2, s). We are then go-

ing to show that in a residual set of parameters Ω(s01,s02)(s
a
1, s

a
2, s) the set

7For G > 1; when G = 1, no asset prices are unmatched, and the term J
PG−1

a=1 Sa

drops.
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N(s01,s02)(s
a
1, s

a
2, s) is empty. Repeating this across all finitely many pairs of

initial states (s01, s02), histories (sa1, s
a
2) and states s, we obtain a residual set

Ω∗ = ∩(s01,s02) ∩G−1a=0 ∩(sa−11 ,sa−12 ,s)Ω(s01,s02)(s
a
1, s

a
2, s)

where if (p(s), λ(s), w(s); s) and
³
p̂(s), λ̂(s), ŵ(s); s

´
are given and (p(s), λ(s))

6=
³
p̂(s), λ̂(s)

´
, then w 6= ŵ, i.e., EM(ω) = ENC

M (ω) if ω ∈ Ω∗, under A1,
proving Proposition 2.
To show thatN(s01,s02)(s

a
1, s

a
2, s) is empty in a residual setΩ(s01,s02)(s

a
1, s

a
2, s),

we are going to restrict attention to sets Nn
(s01,s02)

(sa1, s
a
2, s) where (1− 4) and

(IN) hold, and moreover z satisfies

kp̂(sa1)− p̂(sa2)k ≥ 1/n, (NC.n)

for some positive integer n. Since N(s01,s02)(s
a
1, s

a
2, s) ⊂ ∪nNn

(s01,s02)
(sa1, s

a
2, s),

emptiness of Nn
(s01,s02)

(sa1, s
a
2, s) for all n will imply that N(s01,s02)(s

a
1, s

a
2, s) is

empty.
We are then left to showing the following proposition.

Proposition 3 Given any (s01, s02), (sa1, s
a
2), s and n, there is an open and

dense set Ωn
(s01,s02)

(sa1, s
a
2, s) ⊂ Ω such that Nn

(s10,s20)
(sa1, s

a
2, s) is empty.

Setting
Ω(s01,s02)(s

a
1, s

a
2, s) = ∩nΩn

(s01,s02)(s
a
1, s

a
2, s)

will deliver the desired conclusion. For suppose not, and there is a z ∈
N(s01,s02)(s

a
1, s

a
2, s). Then there is an n̂ > 0 such that (NC.n̂) holds true

and (4) is satisfied. But this implies N n̂
(s01,s02)

(sa1, s
a
2, s) 6= ∅, a contradic-

tion. Hence, in a residual set of economies, if ξ ∈ EM(ω) and (p(s), λ(s)) 6=³
p̂(s), λ̂(s))

´
, then kw(s)− ŵ(s)k 6= 0, as desired. The remainder of the

section is devoted to proving Proposition 3.

Proof of Proposition 3 We are going to prove Proposition 3 in two sep-
arate parts.

13



Openness The set of endogenous variables and parametersNn
(s01,s02)

(sa1,

sa2, s) is closed in N(s01,s02), since it is the preimage of continuous functions
and weak inequalities. If the projection of endogenous variables and para-
meters satisfying (1 − 3), and (IN), that is, Pr : N(s01,s02) → Ω, is proper,
Ω\Ωn

(s01,s02)
(sa1, s

a
2, s), the set of parameters Pr(N

n
(s01,s02)

(sa1, s
a
2, s)) is closed.

Clearly, its complement Ωn
(s01,s02)

(sa1, s
a
2, s) is an open set of parameters where

either (4) does not hold or
°°(p(sa1), λha(sa1))h∈H)− (p(sa2), λha(sa2))h∈H)°° <

1/n, i.e., where Nn
(s01,s02)

(sa1, s
a
2, s) is empty.

Lemma 4 The projection Pr is proper.

Proof. Consider a sequence {ωm}+∞m=1 ⊂ Ω, with ωm → ω ∈ Ω, and
any associated sequence {zm}+∞m=1 ⊂ Ns,s. First, notice that M(ωm) →
M(ω) < +∞. Using (IN.i; k − ii; k), for all h, a and sak there is a subse-
quence xham (s

a
k)→ xhaa (s

a
k) such that M(ω) ≥ xhaa (s

a
k) ≥ 0. Since uha satisfies

the boundary condition, xha(sak)À 0. Using convergence of xham (s
a
k), the price

normalization, Duha À 0 and equations (1, h; sak), we have that λ
ha
m (s

a
k) →

λha(sak)À 0. Then, again the same equations imply that pm(sak)→ p(sak)À
0. Equations (2, h; sak) now imply that (q, q̂)m → (q, q̂), and using equations
(3, h; sak) and no redundancy, we obtain that m

ha
m (s

a
k)→ mha(sak) as well.¥

Density We now use transversality, i.e., Sard’s and the preimage theo-
rems, to show that the set of economies where Nn

(s01,s02)
(sa1, s

a
2, s) is empty is

dense. Indeed, we are going to show that the set Nn
(s01,s02)

(sa1, s
a
2, s) is a nega-

tive dimensional manifold for a dense subset of parameters Ωn
(s01,s02)

(sa1, s
a
2, s);

put it differently, for a dense subset Ωn
(s01,s02)

(sa1, s
a
2, s), either (4) does not hold

or
°°(p(sa1, s), λha(sa1, s))h∈H)− (p(sa2, s), λha(sa2, s))h∈H)°° < 1/n.
First observe that inequalities (IN.ii; k) hold strictly when z ∈ Nn

(s01,s02)
(sa1,

sa2, s). This follows from equations (1, h; s
a
k), k = 1, 2, and the boundary con-

dition on uha. Let F (z, ω) = 0 represent system (1− 4). It is enough to
show that F (z, ω) = 0 has, typically, no solution in Ω, disregarding the in-
equalities

°°(p(sa1), λha(sa1))h∈H)− (p(sa2), λha(sa2))h∈H)°° ≥ 1/n and (IN.i; k)
–i.e., assuming that they do not bind– since this will be a fortiori true
if the inequalities are satisfied (note that if they are satisfied with equality,
we are adding equations and so potentially reducing the dimensionality of
Nn
(s01,s02)

(sa1, s
a
2, s) relative to F

−1(0)).
Hereafter, we work out the less cumbersome case of economies withG = 1.

The argument for economies with G > 1 is left to the Appendix.
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When G = 1, whether or not markets are complete, the argument must
only show that equation (4, h) cannot hold when (NC.n) holds for the pair¡
sG∗1 , sG∗2

¢
. SinceG = 1, this is just the statement that kp(s01, s∗)− p(s02, s

∗)k
≥ 1/n for some s∗, the critical state. The set Nn

(s01,s02)
(sa1, s

a
2, s) is just

Nn
(s01,s02)

(s∗), and Ωn
(s01,s02)

(sa1, s
a
2, s) is just Ω

n
(s01,s02)

(s∗).

Lemma 5 Nn
(s01,s02)

(s∗) is empty on a dense subset Ωn
(s01,s02)

(s∗).

Proof. Since p(s01, s∗) 6= p(s02, s
∗), there exists a perturbation of eh1(s∗)

such that p(s01, s∗)∆eh1(s∗) = 1, while p(s02, s∗)∆eh1(s∗) = 0.
Pick any h. Consider the system F h(·) = (fh1 , fh2 ,W h) = 0, for fhk repre-

senting the left-hand side of equations (1, h; sak)− (3, h; sak) for a pair (h, k),
andW h(·) = 0 is (4, h), i.e., ys∗(mh(s01)−mh(s02)). By regularity of demand,
Dxha(sa2),m

h(s02),λ
ha(sa2)

fh2 is invertible. Since∆eh does not affect the solution to
the programming problem for k = 2, the problem boils down to showing that
Dxha(sa1),m

h(s01),λ
ha(sa1),∆eh(f

h
1 ,W

h) has full rank. Using standard notation, let

R =

∙
−q(s01)

Y

¸
, and Ψ =

⎡⎢⎢⎢⎣
p(s01) 0 0
0 p(s01, 1)

. . . 0
0 0 p(s01, S)

⎤⎥⎥⎥⎦
be the (S+1)×C(S+1)-dimensional matrix of commodity prices. For the pro-
gramming problem at k = 1, simplify the notation by letting (xh, λh,mh) =
(
¡
xha(sa1), λ

h(sa1)
¢
a=0,1

,mh(s01)). The sequential budget constraint can then
be rewritten as

Ψ(xh − eh) = Rmh

and the no arbitrage conditions as

RTΠλh = 0,

with Π an (S + 1) × (S + 1) diagonal matrix with elements: 1, if sa1 = s01,
and π(s|s01) if sa1 = (s01, s). Then,

Dxh,λh,mh,eh(f
h
1 ,W

h) =

⎡⎢⎢⎣
H1 −ΨT 0 0
−Ψ
0
0

0
RTΠ
0

R
0
ys

α
0
0

⎤⎥⎥⎦
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where H1 is the block-diagonal Hessian matrix (symmetric and negative def-
inite), with sa block given by D2uha(xha(sa1)) = H(sa1), and α is a column
vector of dimension (S+1)× 1, with α(sa) = p(sa1) if s

a
1 = (s01, s

∗), and zero
otherwise.
It suffices to show that for some (∆xh,∆λh,∆mh,∆eh) the following sys-

tem of equations has a solution:

H1∆xh −ΨT∆λh = 0,

−Ψ∆xh +R∆mh + α∆eh = 0,

RTΠ∆λh = 0,

ys∗∆mh = 1.

First get rid of Ψ∆xh, by setting

Ψ∆xh = Q∆λh,

where Q = ΨH−1
1 ΨT is a diagonal matrix of dimension (S + 1) × (S + 1)

with elements equal to p(sa1)H
−1(sa1)p(s

a
1)

T . Since H(sa1) is negative definite,
Q(sa1) ≡ p(sa1)H

−1(sa1)p(s
a
1)

T < 0.
Then, substituting the last equation into the second of the system we get:

∆λh = Q−1[R∆mh + α∆eh].

Hence, by exploiting the fact that RTΠ∆λh = 0, we get

0 = RTΠ∆λh = RTΠQ−1[R∆mh − a∆eh]

Since R has full column rank the matrix RTΠQ−1R is negative definite. For
suppose ς ∈ RJ and consider ςT (RTΠQ−1R)ς = (Rς)TΠQ−1(Rς). If ς 6= 0,
then Rς 6= 0, and since ΠQ−1 is negative definite, ςT (RTΠQ−1R)ς < 0, as
we wanted to show. Therefore, RTΠQ−1R is invertible. Hence

∆mh = (RTΠQ−1R)−1RTΠQ−1α∆eh.

However, by the definition of α, ΠQ−1α = (0, ..., ( π(s
∗|s01)

Q(s01,s∗)
)p(s01, s

∗), 0, ...0)
and as a consequence

RTΠQ−1α = (0, ..., yTs∗
π(s∗|s01)
Q(s01, s∗)

p(s01, s
∗), 0, ...0)
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Thus, the equation ys∗∆mh = 1 becomes

1 = ys∗∆mh = ys∗(R
TΠQ−1R)−1yTs∗(

π(s∗|s01)
Q(s01, s∗)

)p(s01, s
∗)∆eh1(s∗)

Since (RTΠQ−1R) is negative definite, ys∗(RTΠQ−1R)−1(ys∗)
T < 0. How-

ever, ( π(s
∗|s01)

Q(s01,s∗)
) < 0, and hence ys∗∆m = 1 if

p(s01, s
∗)∆eh1(s∗) =

1

ys∗(RTΠQ−1R)−1yTs∗(
π(s∗|s01)
Q(s01,s∗)

)
.

This ends the proof.¥

3.1.3 Main result

We are now ready to state and prove our main result.

Theorem 6 Under A1, recursive equilibria exist on the residual set Ω∗ ⊂ Ω.

Proof. Let ω ∈ Ω∗ be given as above. By construction, there is a ξ ∈
E(ω) which also has the property ξ ∈ ENC

M (ω). Let w = (..., wha, ...)h∈H,a>0,
and W = {w ∈ RHG | wha = ysτ+1m

h(a−1)(sτ ) for some sτ ∈ eS, sτ+1 ∈ S}.
Then, for all st ∈ eS the vectors ξ(st) can be expressed as ξ(st) = ξ(st, w(s

t)),
i.e., they are the image of a function ξ : S×W → Ξ. For suppose not. First,
it must be that w = w(sτ) also for some sτ 6= st, otherwise the existence
of such function is trivial. Second, suppose there exist ξ1, ξ2 ∈ ξ(s, w) with
ξ1 6= ξ2 (ξ(s, w) is not a singleton). Then, ξ1 = ξ(st) and ξ2 = ξ(sτ ), with
ξ(st) 6= ξ(sτ ). By construction of ξ ∈ EM(ω), for all st,

ξ(st) =
³¡
xha(st), λha(st),mha(st)

¢
h∈H,a≤G , p(st), q(st)

´
= ξ̂(p, λ, w, s)

for p = p(st), λ =
¡
λha
¢
(st)h∈H,0<a<G, w = w(st) and s = st, and where ξ̂(.)

is the function from Lemma 1. So if ξ1, ξ2 ∈ ξ(s, w), it must be that

(p1, λ1) = (p(st),
¡
λha
¢
(st)h∈H,0<a<G) 6= (p(sτ),

¡
λha
¢
(sτ)h∈H,0<a<G) = (p

2, λ2)

while w1 = w(st) = w(sτ) = w2, a contradiction to ξ ∈ ENC
M (ω).
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The final step to time-invariance is accomplished by establishing the fol-
lowing law of motion on S ×W : given any (s, w) ∈ S ×W , let (s0, w0) be
given by:
(1) s0 ∈ {s}+;
(2) wh(a+1)0 = (w)

h(a+1)
s0 = ys0m

ha(s, w) all a < G.
Clearly, since ξ(st) satisfies conditions (H) , (M) of a competitive equi-

librium, then ξ(s, w) also does, i.e., it satisfies (H 0) , (M 0) in the definition
of recursive equilibrium. Now, transitions Ta, all a, can be constructed by
applying (1) and (2) repeatedly, and conditions (R) are easily established, so
that the state space S×W , the functions ξ(s, w) and the transitions (Ta)a≥0
form a recursive equilibrium for the economy ω, proving our assertion.¥
Note that our construction delivers recursive equilibria which are com-

petitive equilibria, since initial conditions can always be included in W . Of
course, we can say nothing about the uniqueness of such equilibria. Also, we
do not know whether the function ξ(s, w) is continuous or even measurable
on S ×W .

4 Appendix

Proof of Density when G > 1
We show the computations for the case of complete markets. We can

get rid of asset portfolios and look at the economy where individuals face a
unique budget constraint. Thus, individual h solves the standard program-
ming problem, for k = 1, 2

max
P

a

P
sak
π(sak)u

ha(xha(sak)) s.t.P
a

P
sak
π(sak)p(s

a
k)[x

ha(sak)− eha(sak)] = 0,

where eha(sak) = eha(sa), for sak = (s0k, ..., sa), and with some abuse of nota-
tion we write π(sak) short for π(s

a
k|s0k). The first order conditions associated

to this problem are

Duha(xha(sak))− λhkp(s
a
k) = 0, (1, h; sak)P

a

P
sak
π(sak)p(s

a
k)[x

ha(sak)− eha(sak)] = 0. (2, h; k)
(h,k)

First, equilibria in EM(ω) can equivalently be described by dropping any
reference to prices. Indeed, the minimum state space can be identified with
s ∈ S and

λha(sa−1, s), wha(sa), all h ∈ H and 0 < a ≤ G
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The argument is identical to the one for Lemma 1, so it is omitted. The
advantage of this formulation is that we treat a = G symmetrically, writing
condition (NC.n) then as

°°(λha(sa∗1 )h∈H)]− (λha(sa∗2 )h∈H)]°° ≥ 1/n, all a.
Second, since when markets are complete from the first order conditions (h, k)
we have λha(sak) = (p1(s

a∗
k )λ

h
k for all h, condition (NC.n) can be written as

the set of prices and multipliers such that°°(p1(sa∗1 )λh1)h∈H)− (p1(sa∗2 )λh2)h∈H)]°° ≥ 1/n. (NC.n)

Next, equation (4, h) must here be replaced by equality of net commodity
expenditures. Let

T (ŝa) = {sa0 : a0 > a and sa
0
= (ŝa, sa

0−a) for some sa
0−a ∈ Sa0−a}

be the set of histories of lenght a0 ≥ a that go through ŝa. Using the budget
constraints and the no arbitrage conditions of the original sequential budget
economy, taking into account again that λha(sa) = p1(s

a∗
1 )λ

h
1 for all h, (4, h)

becomes X
sa1∈T (sa

∗
1 )

π(sa1)

π(sa∗1 )p1(s
a∗
1 )

p(sa1)[x
ha(sa1)− eha(sa1)]

=
X

sa2∈T (sa
∗
2 )

π(sa2)

π(sa∗2 )p1(s
a∗
2 )

p(sa2)[x
ha(sa2)− eha(sa2)] (4,h)

with the usual convention that eha(sak) = eha(sa), for sak = (s0k, ..., sa).
Let F now denote the left-hand side of the system of equations (h, k),

k = 1, 2, and (4, h), h ∈ H. Hereafter we use the following convention: F
restricted to equations (1, h; sak) and (2, h; k) for one k is f

h
k ; restricted to

(4, h) is W h; and restricted to equations (h, k)k=1,2 is F h.
We show that for each given pairs of prices p(k), k = 1, 2, F is transversal

to zero. Since F (·;ω) = 0 separates into H disjoint and independent systems
(F h,W h)(·;ωh) = 0, we just need to prove that (F h,W h)(·;ωh) is transversal
to zero, i.e., the Jacobian matrix D(xh,λh,ωh)(F

h,W h) has full rank.
We start by covering a case where we use only endowment perturbations.

Let (π⊗p)(k) = (..., π(sak)p(sak), ...), and (π̂+⊗p̂)(k) = (...,
π(sak)

π(sa∗k )p1(s
a∗
k )

p(sak), ...),

where sa ∈ T (sa
∗
k ). Thus (π ⊗ p)(k) is the price vector as it appears in the

overall budget constraint, while (π+ ⊗ p)(k) is the price vector as it appears
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in (4, h). Again, H(sak) = D2uha(xha(sak)) is a negative definite, symmet-
ric C-dimensional matrix, and Hk is the block-diagonal matrix with blocks
H(sak), therefore itself a negative definite and symmetrix matrix. We let
Q(sak) ≡ p(sak)H

−1(sak)p(s
a
k)

T , and Qk ≡
P

a

P
sak∈Sa

π(sak)Q(s
a
k), k = 1, 2.

Lemma 7 If s01 6= s02 or p(s01) 6= p(s02), D(xh,λh,ωh)(F
h,W h) has full rank.

Proof. Since s01 6= s02 or p(s01) 6= p(s02), we can always choose ∆eh0 =¡
∆eh0(s0k)

¢
k=1,2

such that p(s02)∆eh0 = 0 and p(s01)∆eh0 = ∆w. Then,

D(xh,λh,eh)(F
h,W h) =

⎡⎢⎢⎢⎢⎣
H1 −p(1)T 0 0 0

−(π ⊗ p(1)) 0 1 0 0
0 0 0 H2 −p(2)T
0 0 0 −(π ⊗ p(2)) 0

(0, (π+ ⊗ p)(1)) 0 0 −(0, (π+ ⊗ p)(2)) 0

⎤⎥⎥⎥⎥⎦
SinceD(xhk ,λ

h
k)
fhk is invertible, it suffices to find vectors ((∆xha(sak),∆λhk)k=1,2,∆w),

such that

H(sak)∆xha(sak)− p(sak)
T∆λhk = 0,

(π ⊗ p)(1)∆xh1 −∆w = 0,

(π ⊗ p)(2)∆xh2 = 0,

(π+ ⊗ p)(1)∆x̂h1 − (π+ ⊗ p)(2)∆x̂h2 = 1,

where ∆x̂hk = (∆xha(sak))sak∈T (sa
∗
k )). Since D(xh2 ,λ

h
2 )
fh2 is invertible and (π ⊗

p)(2)∆eh = p(s02)∆eh0 = 0, we get (∆xha(sa2),∆λh2) = 0. Hence, we just
consider the equations with k = 1. Transform the first equations into

∆xha(sa1) = H−1(sa1)p(s
a
1)

T∆λh1

Premultiplying these by π(sa1)p(s
a
1) and summing them up we get

(π ⊗ p)(1)∆xh1 = ∆λh1
X
a

X
sa1∈Sa

π(sa1)[p(s
a
1)H

−1(sa1)p(s
a
1)

T ] = ∆w

The terms Q(sa1) are negative since H−1(sa1) is a negative definite matrix.
Letting Q∗ =

P
a

P
sa1∈Sa

π(sa1)Q(s
a
1), we have ∆λh1 = ∆w/Q∗. Hence,

(π+ ⊗ p)(1)∆x̂h(1) = ∆λh1
X

sa1∈T (sa
∗
1 )

π(sa1)

p1(sa∗1 )π(s
a∗
1 )

Q(sa1) = 1
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if and only if

∆w = Q∗/
X

sa1∈T (sa
∗
1 )

π(sa1)

p1(sa∗1 )π(s
a∗
1 )

Q(sa1)

proving the result.¥
Next, we need to consider cases where previous endowment perturbations

are useless, i.e., where s01 = s02 = s̄ and p(s01) = p(s02). We first show that
under some conditions on prices, multipliers and probabilities –beyond s01 =
s02 = s̄ and p(s01) = p(s02)–D(xh,λh,ωh)(F

h,W h) has full rank: it is condition
C1 below. We then show that C1 cannot be violated at (F h,W h)(·;ωh) = 0
in a dense set of the parameter space.
To this end, we need to introduce gradient perturbations as follows. For

each a, let

Xha = {xha : xha = xha(sak), for some s
a
k ∈ Sa

k and some k ∈ {1, 2}}

Xha is a finite set. Then, for xht ∈ Xha, pick a pair of open ballsBεt(x
h
t ), Bε̂t(x

h
t )

centered around xht and such that: 1)Bεt(x
h
t ) ⊂ Bε̂t(x

h
t (s

∗)); 2) ∩tclBε̂t(x
h
t ) =

∅. Also, pick smooth bump functions Φt such that Φt(x) = 1, for x ∈
ClBεt(x

h
t ) and Φk(x) = 0, for x 6∈ Bε̂t(x

h
t ). For given vectors (∆Duhat )

T
t=1 ∈

RTC , with norm ||(∆Duhat )
Xk
t=1|| arbitrarily close to zero, the perturbed utility

function

ûha
∗
(x) = uha

∗
(x) +

XhaX
t=1

Φt(x)(∆Duhat x)

is arbitrarily close to uha
∗
(x) in the C2 topology, and therefore it satisfies all

the maintained assumptions. This parametrization allows for independent
perturbations of the utility function on the disjoint sets Bε(x

h
t ). We identify

the partial derivatives of the map
¡
F h,W h

¢
with respect to uha with the par-

tial derivatives ofDbuha with respect to (∆Duhat )
T
t=1 taken at (∆Duhat )

T
t=1 = 0

(i.e., at Dbuha = Duha). Individual (h, a)’s utility gradient is then perturbed
independently around each point xht ∈ Xha.
We also introduce some further notation. Identify xhat ∈ Xha with a pair

(a, t). For each such pair, by the first order conditions λhk0p(s̄
a
k0) = λhkp(s̄

a
k),

for k 6= k0 if s̄ak, s̄
a
k0 ∈ {sak : xha(sak) = xhat }. Hence, let p(a, t) ≡ p(s̄ak)/αk, with

α1 = 1, and α2 =
λh1
λh2

> 0, and H(a, t) ≡ H(s̄ak) for all s̄
a
k ∈ {sak : xha(sak) =
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xhat }. Note that H−1(a, t) exists. Further, let

Mh
k (a, t) ≡

X
sak∈{ŝak|xha(ŝak)=xhat }

π(sak)

and c(a, t) ≡ p(a, t)H−1(a, t)∆Duhat . Finally, for a ≥ a∗ and xhat ∈ Xha, let
Sk+(t) = {sak ∈ T (sa

∗
k ) | xha = xha(sak)} and let

Πk(a, t) ≡
X

sak∈Sk+(t)

π(sak)

π(sa
∗
k )

.

The condition we will use to establish transversality is

C1 There exist scalars c(a, t), a ≤ G, t = 1, .., Xha such that

[
X
a,t

Mh
1 (a, t)c(a, t)]

X
sa1∈T (sa

∗
1 )

π(sa1)

p1(sa∗1 )π(s
a∗
1 )

Q(sa1)

Q1
−
X
a≥a∗,t

Π1(a, t)c(a, t)

p1(sa
∗
1 )

6= [
X
a,t

Mh
2 (a, t)c(a, t)]

X
sa2∈T (sa

∗
2 )

π(sa2)

p1(sa∗2 )π(s
a∗
2 )

Q(sa2)

Q2
−
X
a≥a∗,t

Π2(a, t)c(a, t)

p1(sa
∗
2 )

.

Lemma 8 Suppose that s01 = s02 = s̄ and p(s01) = p(s02). ThenD(xh,λh,ωh)(F
h,W h)

has full rank if and only if C1 holds.

Proof. We have D(xh,λh,ωh)(F
h,W h) =

⎡⎢⎢⎢⎢⎣
H1 −p(1)T DωhFh.1 0 0

−(π ⊗ p)(1) 0 0 0 0
0 0 DωhFh,2 H2 −p(2)T
0 0 0 −(π ⊗ p)(2) 0

(0, (π+ ⊗ p)(1)) 0 0 −(0, (π+ ⊗ p)(2)) 0

⎤⎥⎥⎥⎥⎦
Here DωhFh.k is matrix of dimension C(

PG
a=0 S

a)×C(
P

aX
ha), that is, the

number of rows is equal to the number of equations (1, k, sak), while the num-
ber of columns is equal to the number of independent perturbations, which
coincide with the number of distinct vectors xha(sak). The entries of column
ωh = xha of the matrix DωhFh.k are
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DxhaFh.k(x
ha(sak)) =

½
0 if (a, sak) : x

ha(sak) 6= xha,
IC otherwise.

As is well-known, D(xhk ,λ
h
k)
F h
k is invertible and, as it is obvious, D(xhk ,λ

h
k)
F h
k0 = 0

for k 6= k0. Hence, to show that D(xh,λh,ωh)(F
h,W h) has full row rank, it is

enough to prove that there exist vectors ∆xhk = (∆xhak (s
a
k))a,sak ,∆Duhat and

scalars ∆λhk such that

H(sak)∆xha(sak)− p(sak)
T∆λhk −∆Duhat = 0, for xha(sak) = xhat
(π ⊗ p)(k)∆xhk = 0

(π+ ⊗ p)(1)∆x̂h(1)− (π+ ⊗ p)(2)∆x̂h(2) = 1.

where ∆x̂k = (x
ha(sak))sa∈T (sa∗k )). Transform the first equations into

∆xha(sak) = H−1
k (s

a
k)[p(s

a
k)

T∆λhk −∆Duhat ] (1)

Premultiplying equations (1) by π(sak)p(s
a
k) and summing them up we get

0 = (π ⊗ p)(k)∆xhk = αk∆λhk
X
a,t

Mh
k (a, t)p(a, t)H

−1(a, t)pk(a, t)
T−

−αk

X
a,t

Mh
k (a, t)p(a, t)H

−1(a, t)∆Duhat ] = 0

By the negative definiteness of H−1 we have Qk < 0, for k = 1, 2. The last
equation implies

∆λhk =

P
a,tM

h
k (a, t)c(a, t)

Qk
. (2)

Then we get

(π+ ⊗ p)(1)∆x̂h(1) = ∆λh1
X

sa1∈T (sa
∗
1 )

π(sa1)

p1(sa∗1 )π(s
a∗
1 )

Q(sa1)−
X
a≥a∗,t

Π1(a, t)c(a, t)

p1(sa
∗
1 )

(π+ ⊗ p)(2)∆x̂h(2) = ∆λh2
X

sa2∈T (sa
∗
2 )

π(sa2)

p1(sa∗2 )π(s
a∗
2 )

Q(sa2)−
X
a≥a∗,t

Π2(a, t)c(a, t)

p1(sa
∗
2 )

.
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Hence, D(xh,λh,ωh)(F
h,W h) has full rank if and only if (π+ ⊗ p)(1)∆x̂h(1) 6=

(π+ ⊗ p)(2)∆x̂h(2) for some choice of scalars c(a, t), a ≤ G, t = 1, ..,Xha.
Exploiting (2), the rank of D(xh,λh,ωh)(F

h,W h) is then full if and only if C1
holds.¥
To show that C1 holds in a dense subset of parameters, we characterize

C1 in equivalent but more convenient terms.

Lemma 9 Let s0k be k-invariant. C1 does not hold if and only if p1(sa
∗
k )

and λhk are k-invariant.

Proof. Pick xha
t̂
∈ Xha such that xha

t̂
6= xha(ŝak) for all ŝ

a
k ∈ T (sa

∗
k ) –

there always exists such an xha
t̂
, for instance xh0. Then, C1 does not hold if

and only if

Mh
1 (ba,bt) X

sa1∈T (sa
∗
1 )

π(sa1)

p1(sa∗1 )π(s
a∗
1 )

Q(sa1)

Q1
=Mh

2 (ba,bt) X
sa2∈T (sa

∗
2 )

π(sa2)

p1(sa∗2 )π(s
a∗
2 )

Q(sa2)

Q2

In particular, the latter implies: a) since this can be done for â = 0,
xh0(s01) = xh0(s02), otherwise, 1 = Mh

1 (0, t̂) 6= Mh
2 (0,bt) = 0 for t̂ with

xh0
t̂
= xh0(s01), violating the absence of C1; hence, from the first order con-

dition, λh1 = λh2 ; b) since (#X
h0 = 1 and) Mh

k (0, 1) = 1,X
sa1∈T (sa

∗
1 )

π̂(sa1)

p1(sa1)

Q(sa1)

Q1
=

X
sa2∈T (sa

∗
2 )

π̂(sa2)

p1(sa2)

Q(sa2)

Q2
≡ Q;

c) finally, Mh
1 (a, t) =Mh

2 (a, t) for all (a, t) such that x
ha
t 6= xha(ŝak) for all

ŝak ∈ T (sa
∗
k ), k = 1, 2.

If xha(sa∗1 ) = xha(sa
∗
2 ), since λ

h
1 = λh2 , obviously p1(s

a∗
1 ) = p1(s

a∗
2 ).

If xha(sa∗1 ) 6= xha(sa
∗
2 ), denote by (a

∗, k) the elements in Xha∗ associated
with xha

∗
(sa

∗
k ). Then, Condition C1 does not hold if and only if

[Mh
1 (a

∗, 1)−Mh
2 (a

∗, 1)]Q =
1

p1(sa
∗
1 )

(3)

[Mh
1 (a

∗, 2)−Mh
2 (a

∗, 2)]Q =
1

p1(sa
∗
2 )

(4)
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However, since s01 = s02, for any given a,
P

sak∈Sa
π(sak) is k-invariant and,

hence,
P

tM
h
k (a, t) is k-invariant. Thus, (c) implies thatX

t

Mh
1 (a

∗, t)−
X
t

Mh
2 (a

∗, t) =Mh
1 (a

∗, 1)+Mh
1 (a

∗, 2)−Mh
2 (a

∗, 1)−Mh
2 (a

∗, 2) = 0

Together with equations (3) and (4), this implies that p1(sa
∗
1 ) = p1(s

a∗
2 ).¥

Next, let

P a = {p̂ ∈ RC
+ : p(s

a
k) = p̂, for some sak, some k}.

For each p̂t ∈ P a, let

Mp
k (a, t) ≡

X
ŝak∈{sak:p(sak)=p̂t}

π(sak).

The following lemma collects some useful observations. Let rh(k) = (π ⊗
p)(k)eh.

Lemma 10 Let s0k be k-invariant. i) For each h, Mp
k (a, t) = Mh

k (a, t); ii)
if Mp

k (a, t) = Mp(a, t) for all (a, t), then λhk is strictly decreasing in rh(k);
iii) if rh(k) is k-invariant for all h, F (·) = 0 cannot have a solution.

Proof. i) This is an immediate consequence of the state invariance and
strict concavity of uha.
ii) LetMp

k (a, t) =Mp(a, t), for all (a, t). From i), (..., xhak (a, t), ...) is an op-
timal solution to the programming problems, for k = 1, 2,

max
P

a,tM
p(a, t)uha(xhat ) s.t.P

a,tM
p(a, t)p(a, t)xhak (a, t) = rh(k).

(5)

To prove the strict monotonicity claims we take the derivatives of the various
items with respect to rh(k). In order to do that we consider the first order
conditions associated to the programming problem (5), whose left-hand side
we denote by f̂hk . Then we have

Dxhk ,λ
h
k ,r(k)

f̂hk =

⎡⎣ Hk −p(k)T 0
(Mp ⊗ p) 0 −1

0 0 DωhFh,2

⎤⎦
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Computations virtually identical to the one already performed yield, using
the same notation,

dλhk
drh(k)

=
1

Qk
< 0.

iii) Just observe that if rh(k) is k-invariant for all h, then λhk is k-invariant
for all h, and inequalities (NC.n) are violated, a contradiction.¥
Thus, for the rank of D(xh,λh,ωh)(F

h,W h) to collapse, or C1 not to hold,
it must be that

λh1 = λh2 . (6)

We are going to show that (6) cannot be verified in a dense set of parameters.
Then, by Lemma 9 C1 must hold in the same dense set, and by Lemma 8
rank of D(xh,λh,ωh)(F

h,W h) will be full, as desired. To show that (6) does
not hold, we show that the system of equations (1, h), (2, h), for all h, and
(4, h) for h 6∈ H1, but λ

h
1 = λh2 , for h ∈ H1, does not have a solution, where

H1 is the set of individuals such that λ
h
1 = λh2 . We denote this system by

F̂H1. Note that by Lemma 9 inequality (NC.n) now becomes°°°¡λh1¢h/∈H1
−
¡
λh2
¢
h/∈H1

°°° ≥ 1

n
. (NC-H1.n)

Lemma 11 D(xh,λh,ωh)F̂
h
H1
has full rank.

Proof. We divide the proof in two possible cases:
1) Mp

k (a, t) is k-invariant for all (a, t);
2) Mp

1 (a, t) 6=Mp
2 (a, t) for some (a, t).

Case 1. For h /∈ H1, since λ
h
1 6= λh2 and F̂ h

H1
= (F h,W h), C1 holds and

DF̂ h
H1
is surjective. Since Mp

k is k-invariant, while λhk is not, by Lemma
10.ii rh(1) 6= rh(2) for h 6∈ H1. Without loss of generality, let 1 6∈ H1. By
Lemma 10.ii and since Mp

k is k-invariant, r
h(1) = rh(2) for h ∈ H1. Pick

an arbitrary h ∈ H1 and consider perturbation ∆eh = µe1, for some µ > 0.
Then, ∆rh(1) = (π⊗ p)(1)µe1 = µr1(1). For h ∈ H1, the Jacobian of F̂ h

H1
is:

D(xh,λh,ωh)F̂
h
H1
=

⎡⎢⎢⎢⎢⎣
H1 −p(1)T 0 0 0

−(π ⊗ p)(1) 0 µr1(1) 0 0
0 0 H2 −p(2)T
0 0 µr1(2) −(π ⊗ p)(2) 0
0 1 0 0 1

⎤⎥⎥⎥⎥⎦
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By the usual argument, we need to show that for some (∆xh,∆λh,∆eh) the
following system of equations has a solution:

Hk(s
a
k)∆xha(sak)− p(sak)

T∆λhk = 0,

(π ⊗ p)(k)∆xhk = r1(k)µ

∆λh1 −∆λh2 = 1.

By Lemma 10.i, since Mp
k is k-invariant, M

h
k is k-invariant for h ∈ H1, and

hence Q1 = Q2 = Q. Then, the usual computations show that ∆λhk =
r1(k)
Q

µ
and hence

∆λh1 −∆λh2 =
r1(1)− r1(2)

Q
µ.

Then, r1(1) 6= r1(2) implies the conclusion.
Case 2. Let h ∈ H1. Perturb the utility function uha around xhat and uh0

around xh0 = xh0(s01) = xh0(s02) as already illustrated. The Jacobian of F̂ h
H1

is:

D(xh,λh,ωh)F̂
h
H1
=

⎡⎢⎢⎢⎢⎣
H1 −p(1)T −DuhaF̂

h
H1,1

0 0
(π ⊗ p)(1) 0 0 0 0

0 0 −DuhaF̂
h
H1,2

H2 −p(2)T
0 0 0 (π ⊗ p)(2) 0
0 1 0 0 1

⎤⎥⎥⎥⎥⎦
where DuhaF̂

h
H1,k

is a matrix of dimension C(
PG

a=0 S
a)× C, with entries:

DuhaF̂
h
k = DuhaF

h
k (x

ha(sak)) =

½
0 if a > 1, and sak is such that x

ha(sak) 6= xhat
IC otherwise.

By the usual argument, we need to show that for some (∆xh,∆λh,∆Duh)
the following system of equations has a solution:

Hk(s
a0
k )∆xha(sa

0
k )− p(sa

0
k )

T∆λhk = ∆Duha(a, t), if xha(sa
0
k ) = xhat ;

Hk(s
a0
k )∆xha(sa

0
k )− p(sa

0
k )

T∆λhk = 0, if xha(sa
0
k ) 6= xhat ;

Hk(s̄)∆xh0 − p(s̄)T∆λhk = ∆Duh0(0, 1),

(π ⊗ p)(k)∆xhk = 0,

∆λh1 −∆λh2 = 1.
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The by-now usual computations show that

∆λhk =
Mh

k (a, t)p(a, t)H
−1
k (a, t)∆Duha(a, t) + p(0, 1)H−1

k (0, 1)∆Duh0(0, 1)

Qk
.

By assumption, H−1
k (a, t) is k-invariant, while M

h
k (a, t) is not. Thus, there

exists ∆Duh such that ∆λh2 = 0, while ∆λh1 > 0. ¥
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