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Abstract. When infinite-lived agents trade long-lived assets secured by durable goods, equilib-

rium exists without any additional debt constraints or uniform impatience conditions on agents’

characteristics. Also, regardless of whether assets’ net supply is positive or zero, price bubbles

are absent when physical endowments are uniformly bounded away from zero. Otherwise, bub-

bles may occur, even for assets in persistently positive net supply and for deflators yielding finite

present values of aggregate wealth.
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1. Introduction

Sequential economies with infinite-lived assets have been studied for quite a long time in finance

and in macroeconomics. The pioneering models were of two kinds: the overlapping generations

models by Samuelson (1958) and Gale (1973) and the infinite-lived agents model by Bewley (1980).

The latter inspired a general equilibrium literature that focused on two subtle issues: existence

of equilibrium and occurrence of asset price bubbles (see, for instance, Magill and Quinzii (1996),

Hernandez and Santos (1996), and Santos and Woodford (1997)).

The previous literature addressed the case of default-free unsecured assets. Generic existence of

equilibrium was established under debt-constraints (Magill and Quinzii (1996) and Hernandez and

Santos (1996)). For nicely behaved deflators yielding finite present values of wealth, speculation

in assets in positive net supply was ruled out when markets were complete or when agents were

uniformly impatient, but bubbles with real effects might occur in the case of assets in zero net

supply (see Santos and Woodford (1997) and Magill and Quinzii (1996)).

When default is allowed but short-sales are secured by durable goods, the optimization problem

of infinite lived agents gains a very nice structure that allows us to approach existence of equilibrium

and speculation in a new way. In fact, the returns from past actions (namely from the joint operation

of collateralizing and short-selling) are always non-negative and, therefore, as in positive dynamic

programming, Euler and transversality conditions are not just necessary but also sufficient for

individual optimality. Moreover, endowments are no longer required to be bounded away from zero,

due to the durability of previous endowments.
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From the sufficiency of the optimality conditions we establish existence of equilibrium, without

imposing debt constraints or uniform impatience requirements. It also gives us an easy way to

construct examples of equilibrium: we just need to check Euler, transversality and market clearing

conditions. That is, as in the case of short-lived assets (see Araujo, Páscoa and Torres-Mart́ınez

(2002) or Kubler and Schmedders (2003)), collateral avoids Ponzi schemes. Note that, these schemes

were not the only possible reason for non-existence of equilibrium with long-lived assets. In fact,

in economies with default-free long-lived assets, where those debt requirements were imposed, equi-

librium still failed to exist and only generic existence was guaranteed (see Hernandez and Santos

(1996) or Magill and Quinzii (1996)). Two difficulties came up: (i) there were no endogenous upper

bounds on short-sales, as the rank of returns matrices became dependent on asset prices; and (ii)

finite asset prices might be incompatible with non-arbitrage conditions, as the return matrices of

zero-net supply assets could be unbounded along the event-tree (see Hernandez and Santos (1996,

Example 3.9)). Collateral avoids also these two additional difficulties, since the scarcity of physical

goods assures that collateralized short-sales are bounded (overcoming (i)) and, by non-arbitrage

(see below), bounded collateral coefficients end up bounding asset prices (overcoming (ii)).

From the necessity of the optimality conditions we establish the properties that commodity and

asset prices should satisfy and find out that asset prices are always bounded by the collateral

cost. We use this result and focus on deflators that are compatible with the optimality conditions

(and, therefore, known to yield finite present values of wealth). First, we show that mortgages,

whose collateral does not have margin calls, are free of price bubbles unless the durable good

serving as collateral (or being part of the real payments) has a price bubble itself. Secondly, for

more general collateral requirements, speculation is ruled out if endowments are uniformly bounded

away from zero, irrespective of whether the net supply of the asset is positive or zero. However,

having dispensed with uniform impatience, for equilibrium purposes, endowments do not need to

be uniformly bounded away from zero and, therefore, it becomes possible to construct examples of

incomplete markets equilibrium with a positive price for an asset yielding no dividends, even when

present values of wealth are finite. In these examples, collateral constraints are not binding and,

therefore, the positive price is not due to a positive fundamental value consisting of shadow prices,

but is rather due to a bubble. It is the diversity of individual deflators that allows for the positive

net supply of the asset changes hands in such a way that the asset has a limiting positive price even

if no one holds limiting long positions (as required by the transversality conditions).

Also, when individuals’ inter-temporal marginal rates of substitution coincide, we prove that

assets in persistently positive net supply are free of price bubbles. However, as a consequence of

collateral seizure, the asset net supply is endogenous in our model and we may have bubbles if the

net supply is asymptotically zero as a result of collateral seizure.

Finally, note that uniform impatience had played a crucial role in default-free economies when

it came to show that debt constraints turned out to be equivalent to imposing the transversality

requirements that the optimal plan should verify. That is, under uniform impatience, the chosen

default-free plan was optimal among the debt-constrained or transversality-constrained plans that

satisfied the budget constraints. In our model, the chosen plan is optimal among all bugdet feasible
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plans and we can do without uniform impatience, which is far from being a trivial assumption.

Even for separable utility functions and endowments that are uniformly bounded away from zero,

the assumption may fail if inter-temporal discounting is not stationary.

The rest of the paper is organized as follows. The next two sections present the model. In Section

4 we discuss a crucial property of the default model: a consumption and portfolio plan is individually

optimal if and only if it satisfies Euler inequalities and a transversality condition on its cost. The

necessity part is used to characterize asset prices. The sufficiency part, which is the novel result,

is used to establish existence of equilibrium without uniform impatience requirements (in Section

5). Our asset pricing characterization (which is analogous to the non-arbitrage valuation studied by

Araujo, Fajardo and Páscoa (2005)) is the basis for the definitions of fundamental values and for

the results on absence of price bubbles (in Section 6). We close the paper with examples (Section

7) of asset price bubbles.

2. Infinite Horizon Collateralized Asset Markets

Uncertainty. We consider a discrete time economy with infinite horizon. A date is an element

t ∈ {0, 1, . . .}. There is no uncertainty at t = 0 and given a history of realization of the states of

nature for the first t dates, with t ≥ 1, st = (s0, . . . , st−1), there is a finite set S(st) of states of

nature that may occur at date t.

A vector ξ = (t, st, s), where t ≥ 1 and s ∈ S(st), is called a node of the economy. There is only

one node at t = 0, that is denoted by ξ0. Given ξ = (t, st, s) and µ = (t′, st′ , s
′), we say that µ is a

successor of ξ, and write µ ≥ ξ, if both t′ ≥ t and (st′ , s
′) = (st, s, . . . ). We write µ > ξ to say that

µ ≥ ξ but µ 6= ξ. The set of nodes, called the event-tree, is denoted by D.

Let t(ξ) be the date associated with a node ξ ∈ D. Let ξ+ := {µ ∈ D : (µ ≥ ξ)∧ (t(µ) = t(ξ)+1)}.
The (unique) predecessor of ξ, with t(ξ) ≥ 1, is denoted by ξ− and D(ξ) = {µ ∈ D : µ ≥ ξ} is the

subtree with root ξ. The family of nodes with date T in D(ξ) is denoted by DT (ξ). Finally, given

T ≥ 1, let DT (ξ) :=
⋃T

k=t(ξ) Dk(ξ), DT := DT (ξ0) and DT := DT (ξ0).

Physical markets. At each node there is a finite ordered set of commodities, L, which can be traded

and may suffer transformations at the immediate successors nodes. We allow for goods that are

perishable or perfectly durable and also for transformation of some commodities into others.

More formally, for any η ∈ D, there is a matrix with non-negative entries Yη = (Yη(l, l′))(l,l′)∈L×L

such that, if one unit of good l ∈ L is consumed at a node ξ, then at each µ ∈ ξ+ remain Yµ(l, l)

units of l and we obtain Yµ(l′, l) units of each commodity l′ 6= l. For convenience of notations, given

a history of nodes {ξ1, . . . , ξn}, with ξj+1 ∈ ξ+
j , we define Yξ1, ξn

as equal to Yξn
Yξn−1 · · ·Yξ2 , when

n > 1; and equal to the identity matrix when n = 1.

Spot markets for commodity trade are available at each node. Denote by pξ = (pξ,l : l ∈ L) ∈ RL
+

the row vector of spot prices at ξ ∈ D and by p = (pξ : ξ ∈ D) the process of commodity prices.



4 ALOISIO ARAUJO, MÁRIO R. PÁSCOA, AND JUAN PABLO TORRES-MARTÍNEZ

Financial markets. There is a finite ordered set J of different types of infinite-lived securities. Assets

may suffer default but are protected by physical collateral requirements.1 Assets of a given type

have the same promises of real deliveries and the same collateral requirements. Thus, in the absence

of default, assets of the same type can be treated as being the same security. However, when an asset

issued at ξ defaults at a successor node µ > ξ, it converts into the respective garnishable collateral .

For this reason, we suppose that, at every node, an asset of each type j ∈ J can be issued. In this

way, we assure that agents can constitute, at any node, new long or short positions on assets of any

type. For the sake of simplicity, whenever there is no possible confusion, we will refer to an asset of

type j simply as asset j.

The net supply of j ∈ J at t = 0 is ej ≥ 0. At any ξ > ξ0, real promises are given by a bundle

A(ξ, j) ∈ RL
+. Let (Cξ,j ; ξ ∈ D) ∈ RL×D

+ be the plan of asset’ j unitary collateral requirements.

We denote by qξ = (qξ,j , j ∈ J) ∈ RJ
+ the row vector of asset prices at ξ ∈ D, and by q = (qξ, ξ ∈

D) a plan of asset prices in the event-tree.

Note that, holders of asset endowments are not required to constitute collateral when selling these

endowments. However, when assets are short-sold, borrowers have to constitute collateral. Now,

when purchasing an unit of an asset it is not possible to distinguish whether this unit was short-sold

or is part of someone’s endowment. Thus, the price and the return from this purchase will be the

same in both cases.2

In case of default, the depreciated collateral will be seized. Also, others goods delivered by the

collateral bundle may also be garnishable. That is, we assume that, in case of default on asset

j at node ξ > ξ0, markets seize the garnishable collateral , which is given by a bundle Ĉξ,j that

satisfies, Yξ(l, l)Cξ−,j,l ≤ Ĉξ,j,l ≤ Yξ(l, ·)Cξ−,j , ∀l ∈ L. Note that, if Yξ is a diagonal matrix (as

in Araujo, Páscoa and Torres-Mart́ınez (2002)), then Ĉξ,j coincides with YξCξ−,j . However, when

collateral is durable but delivers also perishable commodities at the next nodes, those deliveries

might also be or not be seized in case of default. Hence, borrowers will pay and lenders expect to

receive the minimum between the value of the garnishable collateral and the market value of the

original debt. Thus, the (unitary) nominal payment made by asset j at node ξ > ξ0 is given by

Dξ,j(p, q) := min{pξA(ξ, j) + qξ,j , pξĈξ,j}. To shorten notations, let Dξ(p, q) := (Dξ,j(p, q), j ∈ J).

Finally, we want to show two simple and important examples of collateral requirements processes

contemplated by our framework. First, if for any ξ ∈ D, Cξ,j = C ∈ RL
+, then, as collateral guaran-

tees may depreciate along the event-tree, borrowers may need to buy additional physical resources

in order to maintain their original short-positions. In some sense, it is similar to the well known

market practice of margin calls. Secondly, the case of mortgage loans, where Cξ,j ≤ YξCξ−,j , for

any ξ > ξ0. In this case, short-positions can be maintained without need to update the amount of

physical guarantees.

1We could have allowed for price dependent collateral requirements and for financial collateral as long as we ruled

out self-collateralization (the possibility that an asset ends of securing itself though a chain of other assets). For more

details see Araujo, Páscoa and Torres-Mart́ınez (2005)
2In other words, a holder of an asset endowment holds units of the tradeable asset subject to default and not of

the underlying primitive asset free of default with promises (A(ξ, j); ξ > ξ0), which is not tradable.
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Households. There is a finite set, H, of infinite-lived agents that consume commodities and trade

assets along the event-tree. Each agent h ∈ H has financial endowments eh = (eh
j )j∈J ∈ RJ

+ at

t = 0, which satisfy ej =
∑

h∈H eh
j . Physical endowment processes are given by wh = (wh

ξ ; ξ ∈ D) ∈
RD×L

+ . At each ξ ∈ D, any agent h can choose a plan zh
ξ = (xh

ξ , θh
ξ , ϕh

ξ ) ≥ 0, where xh
ξ := (xh

ξ,l ; l ∈ L)

is the autonomous consumption bundle (that is, her consumption in excess of required physical

collateral) and (θh
ξ , ϕh

ξ ) =
(
( θh

ξ,j , ϕh
ξ,j ) ; j ∈ J

)
denotes, respectively, her long- and short-positions

at ξ. Agent h consumption at a node ξ is given by x̂h
ξ = xh

ξ +
∑

j∈J Cξ,j ϕh
ξ,j .

Given prices (p, q), the objective of consumer h is to maximize her utility function Uh : RD×L
+ →

R+ ∪ {+∞} over the plans x̂h, by choosing a plan zh = (xh, θh, ϕh) ∈ E := RD×L
+ ×RD×J

+ ×RD×J
+

which satisfies the following budget constraints,3

(1) gh
ξ0

(zh
ξ0

, zh
ξ−0

; p, q) := pξ0(x̂
h
ξ0
− wh

ξ0
) + qξ0

(
θh

ξ0
− ϕh

ξ0
− eh

)
≤ 0,

and for all ξ > ξ0,

(2) gh
ξ (zh

ξ , zh
ξ− ; p, q) := pξ(x̂h

ξ − wh
ξ − Yξx̂

h
ξ−) + qξ

(
θh

ξ − ϕh
ξ

)
−Dξ(p, q)

(
θh

ξ− − ϕh
ξ−

)
≤ 0,

where zh
ξ−0

:= (xh
ξ−0

, θh
ξ−0

, ϕh
ξ−0

) = 0. The budget set of agent h at prices (p, q), denoted by Bh(p, q),

is the collection of plans (x, θ, ϕ) ∈ E such that inequalities (1) and (2) hold. Moreover, without

loss of generality, we restrict the price set to P := {(pξ, qξ)ξ∈D : (pξ, qξ) ∈ ∆L+J−1
+ , ∀ξ ∈ D}, where

∆n−1
+ denotes the (n− 1)-dimensional simplex in Rn

+.

Market clearing. Real returns from asset endowments have to be taken into account in the market

clearing conditions. When an asset does not default, the real returns from asset endowments coincide

with the promised real returns. In this first case, the asset will remain with the same positive net

supply that it had at the preceding node. However, in the case of default, real returns generated

by assets’ endowments will be determined by garnishable collateral coefficients. In this second case,

the asset can be traded again, as long as the collateral requirements are again satisfied, but the

positive net financial supply disappears. In fact, the previous positive net supply has been entirely

converted into a supply of garnished collateral.

In the borderline case, when borrowers are indifferent between surrendering the garnishable collat-

eral and honoring the promise, in value terms it does not matter whether the collateral is garnished

or the promise is payed, but, for the purposes of market clearing, this choice becomes relevant. This

choice will determine also whether the asset’s net supply will decrease or not.

Given (p, q) ∈ P, we introduce, at each ξ 6= ξ0, delivery rates λξ,j ∈ [0, 1], which are equal to

one when the promise is lower than the value of the garnishable collateral, equal to zero when the

opposite strict inequality holds, but may take a value between zero and one in case of equality.4

3Note that, the non-negativity condition on the autonomous consumption represents the physical collateral con-

straint . In fact, the later requires x̂h
ξ ≥

∑
j∈J Cξ,j ϕh

ξ,j , which is equivalent to xh
ξ ≥ 0.

4Since the promise and the garnishable collateral coefficients are impersonal, the delivery rates may vary across

agents but there is no rationale for such differences. Hence, we can concentrate our attention on outcomes where, in

the case of indifference between paying the promise and surrendering the garnishable collateral, all agents choose the

same combination of these two, that is, the same delivery rates.
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Using the delivery rates λξ = (λξ,j)j∈J , the effective nominal return of an asset j in positive

net supply, Dξ,j(p, q), can be seen as the value of a real component plus the value of a financial

position, Dξ,j(p, q) = pξ

(
λξ,j A(ξ, j) + (1− λξ,j) Ĉξ,j

)
+ qξ λξ,j , where the real component is either

the promised physical delivery or the garnishable collateral or a combination of the two.

Definition 1. An equilibrium for our economy is given by prices (p, q) ∈ P, individual plans(
(xh, θh, ϕh)

)
h∈H

∈ EH and delivery rates λ ∈ [0, 1](D\{ξ0})×J , such that

A. For each h ∈ H, (xh, θh, ϕh) ∈ Argmax {Uh(x̂), (x, θ, ϕ) ∈ Bh(p, q)}.
B. At each node ξ 6= ξ0, Dξ,j(p, q) = λξ,j(pξA(ξ, j) + qξ,j) + (1− λξ,j)pξĈξ,j , ∀j ∈ J.

C. Asset markets are cleared. That is, for each j ∈ J ,∑
h∈H

(
θh

ξ0,j − ϕh
ξ0,j

)
= ej ;

∑
h∈H

(
θh

ξ,j − ϕh
ξ,j

)
= λξ,j

∑
h∈H

(
θh

ξ−,j − ϕh
ξ−,j

)
, ∀ξ 6= ξ0.

D. Physical markets are cleared. ∑
h∈H

x̂h
ξ0

=
∑
h∈H

wh
ξ0

;

and, at each ξ 6= ξ0,∑
h∈H

x̂h
ξ =

∑
h∈H

(
wh

ξ + Yξx̂
h
ξ−

)
+
∑
j∈J

(
λξ,jA(ξ, j) + (1− λξ,j)Ĉξ,j

)∑
h∈H

(
θh

ξ−,j − ϕh
ξ−,j

)
.

3. Assumptions on Agents’ Characteristics

As commodities can be durable goods, the traditional assumption that individual endowments of

commodities are interior points can be replaced by the weaker assumption that requires only indi-

vidual accumulated resources to be interior points. Moreover, to assure the existence of equilibrium,

we do not need to impose any uniform lower bound in the aggregate cumulated resources. Thus we

allow for durable commodities whose aggregate resources converge to zero.

Assumption A. For each (h, ξ) ∈ H × D, given the history of realization of states of nature up

to node ξ, Fξ := {ξ0, . . . , ξ
−, ξ}, we have that Wh

ξ :=
∑

µ∈Fξ
Yµ, ξ wh

µ � 0. Moreover, for each

(ξ, j) ∈ D × J , Cξ,j 6= 0.

The aggregated resources up to a node ξ need to take into account the streams of real resources

generated by the financial endowments. Thus, an upper bound for the bundle of aggregate physical

resources up to a node ξ is given by Wξ :=
∑

h∈H Wh
ξ +

∑
µ∈Fξ

Yµ, ξ

∑
j∈J bj

µej , where bj
ξ0

= 0 and

bj
ξ = (bj

ξ,l)l∈L, with bj
ξ,l = max

{
Ĉξ,j,l; A(ξ, j)l

}
, for each ξ > ξ0.

Assumption B. The utility function of each h ∈ H is separable in time and in states of nature,

in the sense that Uh(x̂) :=
∑

ξ∈D uh
ξ (x̂(ξ)), where functions uh

ξ : RL
+ → R+ are strictly concave,

continuous, and strictly increasing. Also,
∑

ξ∈D uh
ξ (Wξ) < +∞.
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Under hypotheses above, uniform impatience conditions imposed by Hernandez and Santos (1996,

Assumption C.3), Magill and Quinzzi (1996, Assumptions B2 and B4) and Santos and Woodford

(1997, Assumption A.2) do not necessarily hold.5 For example, given any u : RL
+ → R+ strictly

concave, continuous, and strictly increasing, consider the function U(x̂) :=
∑

ξ∈D βt(ξ)ρ(ξ)u(x̂(ξ)),

where (βt)t≥0 ∈ RN
++, ρ(ξ0) = 1 and, for each ξ ∈ D, ρ(ξ) =

∑
µ∈ξ+ ρ(µ). Then, when physical

resources are uniformly bounded along the event-tree and
∑

t≥0 βt is finite, Assumption B holds.

If in addition individual endowments are uniformly bounded away from zero, Assumption A is

satisfied. However, in this context, the function U may fail to satisfy uniform impatience condition

when inter-temporal discount factors are not stationary. Santos and Woodford (1997, example 4.5)

gave an example that illustrates this possibility.

4. Individual Optimality

In this section we present necessary and sufficient conditions for individual optimality. As in

positive dynamic programming theory, we will show that the default structure gives inter-temporal

Lagrangian functions a sign property under which Euler inequalities jointly with a transversality

condition are not just necessary but also sufficient to guarantee the optimality of a consumption-

portfolio plan.

Let Z := RL × RJ × RJ . Given prices (p, q) ∈ P, it follows from the arguments of the previous

section that the objective of the agent h is to find a plan (zh
ξ )ξ∈D ∈ ZD in order to solve

Ph
(p,q)

max
∑

ξ∈D

vh
ξ (zξ)

s.t.

{
gh

ξ

(
zξ, zξ− ; p, q

)
≤ 0, ∀ξ ∈ D,

zξ = (xξ, θξ, ϕξ) ≥ 0, ∀ξ ∈ D, zξ−0
= 0.

where vh
ξ : Z → R ∪ {−∞} is defined at any zξ = (xξ, θξ, ϕξ) ∈ Z by

vh
ξ (zξ) =

 uh
ξ

(
xξ +

∑
j∈J Cξ,j ϕξ,j

)
ifxξ +

∑
j∈J Cξ,j ϕξ,j ≥ 0

−∞ in other case.

For each real number γ ≥ 0, let Lh
ξ (·, γ; p, q) : Z× Z → R be the Lagrangian function associated

to consumer problem at node ξ, which is defined by

(3) Lh
ξ (zξ, zξ− , γ; p, q) = vh

ξ (zξ)− γ gh
ξ (zξ, zξ− ; p, q).

Since under Assumption B the function Lh
ξ (·, γ; p, q) is concave, we can consider its super-differential

set at any point (zξ, zξ−) ∈ Z × Z, ∂Lh
ξ (zξ, zξ− , γ; p, q), which is defined as the set of vectors

5For instance, using the notation of Assumption B, in a context where aggregated physical endowments were

exogenously fixed and given by the plan (Wξ)ξ∈D, Hernandez and Santos (1996) imposed the following assumption

of uniform impatience: There exists σ ×K ∈ [0, 1)× R++ such that, for any plan of consumption (x̂ξ)ξ∈D for which

x̂ξ ≤ Wξ, ∀ξ ∈ D, we have that

uh
ξ (x̂ξ + KWξ) +

∑
µ>ξ

uh
µ(σ x̂µ) >

∑
µ≥ξ

uh
µ(x̂µ), ∀h ∈ H.
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(L′ξ,1,L′ξ,2) ∈ Z× Z such that, for all pair (z′ξ, z
′
ξ−) ∈ Z× Z,

(4) Lh
ξ (z′ξ, z

′
ξ− , γ; p, q)− Lh

ξ (zξ, zξ− , γ; p, q) ≤ (L′ξ,1,L′ξ,2) ·
(
(z′ξ, z

′
ξ−)− (zξ, zξ−)

)
.

Essentially, the above vectors L′ξ,1 and L′ξ,2 are partial super-gradients with respect to the current

and past decision variables, respectively.

Definition 2. Given (p, q) ∈ P, (γh
ξ )ξ∈D ∈ RD

++ is a plan of Kuhn-Tucker multipliers associated

with (zh
ξ )ξ∈D ∈ ZD if there is (L′ξ,1,L′ξ,2)ξ∈D ∈

∏
ξ∈D ∂Lh

ξ (zh
ξ , zh

ξ− , γh
ξ ; p, q) such that, for any ξ ∈ D,

γh
ξ gh

ξ (zh
ξ , zh

ξ− ; p, q) = 0 and the following transversality and Euler conditions hold,

(TC) lim
T→+∞

∑
µ∈DT (ξ0)

L′µ,1 zh
µ = 0.

(EE) L′ξ,1 +
∑

µ∈ξ+

L′µ,2 ≤ 0,

L′ξ,1 +
∑

µ∈ξ+

L′µ,2

 zh
ξ = 0, ∀ξ ∈ D.

Proposition 1. Suppose that Assumptions A and B hold. Given (p, q) ∈ P, take a plan (zh
ξ )ξ∈D =

(xh
ξ , θh

ξ , ϕh
ξ )ξ∈D ∈ Bh(p, q).

(i) If (zh
ξ )ξ∈D gives a finite optimum to Ph

(p,q), then there is a plan of Kuhn-Tucker multipliers

associated with (zh
ξ )ξ∈D.

(ii) Reciprocally, the plan (zh
ξ )ξ∈D solves Ph

(p,q) when there are Kuhn-Tucker multipliers associ-

ated with it. Also, if x̂h
ξ ≤ Wξ, for each ξ ∈ D, then the optimum value is finite.

(iii) Given Kuhn-Tucker multipliers , (γh
ξ )ξ∈D, associated with (zh

ξ )ξ∈D,
∑

ξ∈D γh
ξ pξw

h
ξ < ∞.

The proof that existence of Kuhn-Tucker multipliers implies individual optimality depends cru-

cially on the following sign property of Lagrangian functions, which holds at any ξ ∈ D: Given

prices (p, q) ∈ P and a plan (zξ)ξ∈D ∈ ZD,

∀γ ∈ R++ ∀ξ > ξ0 : (L′ξ,1,L′ξ,2) ∈ ∂Lh
ξ (zξ, zξ− , γ; p, q) =⇒ L′ξ,2 ≥ 0.

This property is very specific to our model. In fact, as for each j ∈ J effective returns Dξ,j(p, q)

are not greater than the respective garnishable collateral values, the joint returns from actions taken

at immediately preceding nodes are non-negative (for more details, see Appendix A).

Condition (TC) is not a constraint that is imposed together with the budget restrictions (as was

the case in Hernandez and Santos (1996) or Magill and Quinzii (1996)), it is rather a property that

optimal plans should satisfy. Moreover, as the deflated value of endowments is summable (item (iii)

of Proposition 1) condition (TC) can be rewritten as requiring that, as time tends to infinity, the

deflated cost of the autonomous consumption goes to zero,

lim
T→+∞

∑
ξ∈DT (ξ0)

γh
ξ pξ xh

ξ = 0;(TCx)
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jointly with the cost of the joint operation of constituting collateral and short-selling,

lim
T→+∞

∑
ξ∈DT (ξ0)

γh
ξ

pξ

∑
j∈J

Cξ,jϕ
h
ξ,j − qξϕ

h
ξ

 = 0;(TCϕ)

and the cost of asset purchases,

lim
T→+∞

∑
ξ∈DT (ξ0)

γh
ξ qξ θh

ξ = 0,(TCθ)

where zh
ξ = (xh

ξ , θh
ξ , ϕh

ξ ) (see Appendix A).

We end this section with a characterization of commodity and asset prices.

Corollary 1. (Asset pricing conditions) Suppose that Assumptions A and B hold. Fix

prices (p, q) ∈ P such that, for some h ∈ H, Ph
(p,q) has a finite optimum. Then, there exist, for any

ξ ∈ D, strictly positive deflators γξ and non-pecuniary returns αξ = (αξ,l)l∈L ∈ RL
++ such that, for

each (l, j) ∈ L× J ,

γξpξ,l ≥
∑

µ∈ξ+

γµpµYµ(·, l) + αξ,l;(5)

γξqξ,j ≥
∑

µ∈ξ+

γµDµ,j(p, q);(6)

γξ(pξCξ,j − qξ,j) ≥
∑

µ∈ξ+

γµ (pµYµCξ,j −Dµ,j(p, q)) + αξCξ,j .(7)

Moreover, for any (ξ, j) ∈ D × J , conditions (6) or (7) are strict inequalities only when inequality

(5) is strict for some l ∈ L for which Cξ,j,l > 0.

This result is a direct consequence of the existence of Kuhn-Tucker multipliers associated with

agent h optimal problem. Indeed, as we prove in Appendix A, conditions (5)-(7) are essentially

equal to the Euler conditions. Clearly, there may exist deflators (γξ)ξ∈D satisfying (5)-(7) that

are not compatible with the transversality condition (TC) and, therefore, do not coincide with a

plan of Kuhn-Tucker multipliers. In fact, that broader set of deflators satisfying (5), (6) and (7),

can be obtained by a non-arbitrage argument, as in the two dates model by Araujo, Fajardo and

Páscoa (2005). However, if we pick agent h Kuhn-Tucker multipliers, it follows that non-linearities

on asset prices can only arise as a consequence of binding collateral constraints (or, in other words,

binding sign constraints on the autonomous consumption, determining positive shadow prices that

are responsible for the strict inequality in (5)).

Under monotonicity of preferences, inequalities (6) and (7) are financial non-arbitrage conditions.

Thus, by analogy to Magill and Quinzzi (1996) or Santos and Woodford (1997), for some readers

it might seem natural to use these two conditions only to analyze the existence of rational asset

pricing bubbles. However, since in our model assets are real and commodities may be infinitely

durable, we need to understand the asymptotic behavior of commodity prices. To do this, we must

also consider inequality (5). Note that in this condition the non-pecuniary returns, (αξ,l)l∈L, are not

vague concepts and can actually be related to marginal utility gains of some agent (by Proposition
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1 (i)).

Definition 3. A plan Γ := (γξ)ξ∈D ∈ RD
++ is a process of valuation coefficients at prices (p, q) ∈ P

if there is, for each ξ ∈ D, a vector (αξ,l)l∈L ∈ RL
++ such that inequalities (5)-(7) hold.

Thus, any plan of Kuhn-Tucker multipliers of an agent h, denoted by Γh = (γh
ξ )ξ∈D, is a process

of valuation coefficients.

For convenience of future notations, given any process Γ of valuation coefficients, for each ξ ∈ D,

let η(Γ, ξ) = (ηx(Γ, ξ, l); ηθ(Γ, ξ, j); ηϕ(Γ, ξ, j))(l,j)∈L×J be the vector defined by

ηx(Γ, ξ, l) = γξpξ,l −
∑

µ∈ξ+

γµpµYµ(·, l)− αξ,l;

ηθ(Γ, ξ, j) = γξqξ,j −
∑

µ∈ξ+

γµDµ,j(p, q);

ηϕ(Γ, ξ, j) = γξ(pξCξ,j − qξ,j)−
∑

µ∈ξ+

γµ (pµYµCξ,j −Dµ,j(p, q))− αξCξ,j .

Note that, when Γ = Γh, for some agent h ∈ H, η(Γh, ξ) is the vector of shadow prices associated

with the collateral constraints and the sign constraints on long and short positions, respectively.

Finally, it is important to remark that equation (7) and Assumption B imply that, at each ξ ∈ D,

(8) pξCξ,j > qξ,j , ∀j ∈ J.

Thus, the collateral cost must exceed the asset price. This condition will be crucial in relating the

occurrence of asset price bubbles to the asymptotic behavior of commodity prices.

5. Equilibrium Existence

As we point out earlier, when assets live more than one period and agents are infinite lived,

three difficulties came up in the literature on equilibrium in default-free economies that made the

authors assert only the generic existence of equilibrium and for debt-constrained (or transversality

constrained) portfolio plans (as in Hernandez and Santos (1996) or Magill and Quinzii (1996)).6

First, when assets live several periods, the rank of the returns matrix will depend on asset prices

and, therefore, unless short-sales are bounded, equilibrium existed, in the default-free model, only for

a generic set of economies. Second, Ponzi schemes could occur, if debt or transversality restrictions

were not imposed. Third, as Hernandez and Santos (1996) pointed out, when asset return matrices

are not bounded along the event-tree, equilibria might not exist when infinite-lived real assets are

in zero net supply.7

However, when assets are collateralized, these difficulties are avoided.

6Hernandez and Santos (1996) were also able to show the existence of equilibrium in the special case where the

asset structure consists of a single infinite lived real asset in positive net supply.
7In fact, the asset price can be shown to be the series of discounted real returns and would be unbounded, unless

marginal rates of substitution tend to zero quickly enough (which would be the case if the asset’s net supply were

positive, inducing unbounded additional resources).
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Theorem 1. Under Assumptions A and B there exists an equilibrium.

Note that, even in the case of single period assets (see Geanakoplos and Zame (2002)), collateral

circumvented the problems associated to the price-dependence of the rank of the return matrices. In

fact, collateral is scarce in equilibrium and, therefore, we will have a natural (endogenous) short-sales

constraint. Moreover, collateral rules out Ponzi schemes, as it did in the case of single-period assets

(see Araujo, Páscoa and Torres-Mart́ınez (2002)). Finally, the existence of collateral guarantees

dispenses with any uniform bounds on assets’ promised returns, as the asset price is bounded by

the discounted value of the depreciated collateral at the next date, plus perhaps some shadow price

of the collateral constraint.

6. Speculative Bubbles in Prices

As in Magill and Quinzii (1996) and Santos and Woodford (1997), speculation is defined as a

deviation of the equilibrium price from the fundamental value of the asset, which is the deflated

value of future payments and services that the asset yields. We define fundamental values as a

function of the chosen vector of valuation coefficients.

To simplify our analysis, we suppose that, if a commodity consumed at ξ is transforming itself

into other goods at the immediate successors nodes of ξ, then these goods are one-period perishable.

Assumption C. Given (µ, l) ∈ (D \ {ξ0})×L, if there is l′ 6= l such that Yµ(l′, l) 6= 0, then at µ the

commodity l′ is one-period perishable, in the sense that Yη(·, l′) = 0, ∀η ∈ µ+.

Essentially, this restriction guarantees that fundamental values of commodities may be easily de-

fined in terms of future payments and rental services. Otherwise, the value of payments generated

by a good may include speculative terms, induced by the transformation of the good into a durable

commodity that has a price bubble.

Speculation in durable goods. The fundamental value at ξ ∈ D of any commodity l ∈ L takes into

account both the rental services that will be generated in D(ξ) jointly with the payments that will

be delivered when l is transformed into another goods.

More formally, given prices (p, q) ∈ P and a process of valuation coefficients Γ, the rental services

that a units of commodity l generate at a node µ ∈ D(ξ) are given by
(
pµ,l −

∑
ν∈µ+

γν

γµ
pνYν(·, l)

)
a.

On the other hand, the payments that an agent that holds b units of commodity l at µ− receives at

node µ > ξ are given by
∑

l′ 6=l pµ,l′Yµ(l′, l) b.

As commodities only deliver perishable goods (see Assumption C), one unit of good l ∈ L at

ξ ∈ D is transforming into al(ξ, µ) units of the same commodity at a node µ ∈ D(ξ), where

al(ξ, µ) =

{ ∏
ξ<η≤µ Yη(l, l) ifµ > ξ,

1 otherwise.
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Therefore, under Assumption C and for a process of valuation coefficients Γ, the fundamental value

of commodity l at node ξ is defined by

Fl(ξ, p, q,Γ) =
∑

µ∈D(ξ)

γµ

γξ

pµ,l −
∑

ν∈µ+

γν

γµ
pνYν(·, l)

 al(ξ, µ) +
∑
µ>ξ

γµ

γξ

∑
l′ 6=l

pµ,l′Yµ(l′, l)al(ξ, µ−).

Furthermore, for each T > t(ξ),

pξ,l =
∑

µ∈DT (ξ)

γµ

γξ

pµ,l −
∑

ν∈µ+

γν

γµ
pνYν(·, l)

 al(ξ, µ) +
∑

µ∈DT (ξ)\{ξ}

γµ

γξ

∑
l′ 6=l

pµ,l′Yµ(l′, l)al(ξ, µ−)

+
∑

µ∈DT+1(ξ)

γµ

γξ
pµYµ(·, l)al(ξ, µ−).

Since, independently of T , the last term on the right hand side of the equation above is non-

negative, it follows that, for any choice of Γ the fundamental value of commodity l is well defined

and less than or equal to the unitary price. Also, taking the limit as T goes to infinity, we conclude

that, pξ,l = Fl(ξ, p, q,Γ) + limT→+∞
∑

µ∈DT (ξ)
γµ

γξ
pµYµ(·, l)al(ξ, µ−).

Definition 3. Given a process Γ of valuation coefficients, we say that the price of commodity l ∈ L

has a Γ-bubble at node ξ when pξ,l > Fl(ξ, p, q,Γ).

Characterization of bubbles on commodity prices.

There is a Γ-bubble on commodity l ∈ L price at node ξ ∈ D if and only if

lim
T→+∞

∑
µ∈DT (ξ)

γµ

γξ
pµYµ(·, l)al(ξ, µ−) > 0.

A commodity l has finite durability at a node ξ if there exists N > 0 such that al(ξ, µ) = 0 for

all µ ∈ D(ξ) \DN (ξ). It follows from the characterization above that, under Assumption C, com-

modities with finite durability at ξ are free of bubbles.8 For commodities with infinite durability,

sufficient conditions for the absence of bubbles are given by the next result.

Theorem 2. Given equilibrium prices (p, q) ∈ P, suppose that Assumptions A, B and C hold. A

sufficient condition for commodities to be free of Γ-bubbles in D(ξ) is that,

(9) ∃h ∈ H,
∑

µ∈D(ξ)

γµ

γξ
pµ Wh

µ < +∞.

Given h ∈ H, commodities are free of Γh-bubbles in D(ξ) if any of the following conditions hold,

(i) At any node, agent h receives at least a fraction k ∈ (0, 1) of aggregated endowments. That

is, κ Wh
µ ≤ wh

µ for all µ ∈ D(ξ).

(ii) Cumulated depreciation factors Yξ,µ are uniformly bounded by above in D(ξ) and new en-

dowments, (wh
µ)µ∈D(ξ), are uniformly bounded away from zero in D(ξ).

8When Assumption C is not satisfied, even commodities with finite durability may have bubbles, as may transform

into other goods with infinite durability whose prices have bubbles.
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(iii) Individuals’ inter-temporal marginal rates of substitution coincide along the event-tree, i.e.,

given h′ ∈ H there is π > 0 such that, (πγh
ξ )ξ∈D is a plan of Kuhn-Tucker multipliers for h′.

Proof. Fix η ≥ ξ and l ∈ L. Assume that condition (9) holds. It follows by Assumption A that,

for each T > t(η), ∑
µ∈DT (η)

γµ

γη
pµYµ(·, l)al(η, µ−) ≤ 1

Wh
η,l

∑
µ∈DT (η)

γµ

γη
pµWh

µ .

Taking the limit as T goes to infinity, we conclude that pη,l is free of Γ-bubbles.

Given h ∈ H, if (i) holds, it follows from item (iii) of Proposition 1 that condition (9) is satisfied,

that concludes the proof. Also, if (ii) is satisfied, item (iii) of Proposition 1 assure that bubbles are

ruled out. Finally, suppose that equilibrium individual marginal rates of substitution coincide along

the event-tree. Then, transversality conditions (TCx), (TCϕ) and (TCθ) hold, for all agents under

a same deflator. Adding up these three conditions across all agents, we get condition (9) above. �

Condition (iii) in the above theorem requires the processes of individuals’ Kuhn-Tucker multi-

pliers to be collinear. It is well known that in unrestricted financial markets, this condition is a

characteristic property of complete markets and, therefore, equivalent to the property that the rank

of the matrix of returns of non-redundant assets should be equal to the number of immediate succes-

sor nodes. However, in the presence of binding financial constraints this equivalence may no longer

hold. Giménez (2003) made this point in the context of short-sales constraints and gave examples

of equilibrium where the above returns matrix had full rank but the presence of a shadow price for

these constraints led to multiplicity of multipliers for each agent and non-collinear multipliers across

agents. The markets illustrated in those examples were referred by Giménez (2003) as technically

incomplete, along the lines of an earlier discussion done by Santos and Woodford (1992, 1996). In

our context, the collateral constraint might be binding as well and if the respective shadow price

were non-zero, the uniqueness of the Kuhn-Tucker multipliers process would no longer be guaranteed

by a full-rank property of the returns matrix. Hence, our condition (iii) requires more than just

that full-rank property, it requires completeness in the stricter sense proposed by Giménez (2003)

for asset-constrained economies.

Asset Pricing Bubbles. The fundamental value of an asset is the present value of its future yields and

services. Future yields are the perishable goods directly or indirectly delivered by the asset. Real

payments of perishable commodities are the yields directly delivered. Indirect delivered yields are

the perishable commodities obtained by the transformations of real payments into other goods, or by

the transformation of these goods into others and so on. Future services include the shadow prices

of the financial constraints and the rental values of the delivered durable goods. These goods are

received as an original promise or as a collateral garnishment, and are unambiguously anticipated

except in the borderline case, when the value of the promise equals the garnishable collateral value.

Thus, the fundamental value will depend not just on the process of valuation coefficients but also

on the believed delivery rates for the borderline nodes.
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Also, there is no reason to pick the equilibrium delivery rates instead of any other rates that may

treat differently the deliveries only in the borderline case. That is, for purposes of valuation, antic-

ipating that agents pay the promise or anticipating that they surrender the garnishable collateral

(or a convex combination of the two) are equally perfectly acceptable when agents are indifferent

between these two actions. Recall that each agent does not care about this choice and does not

know what are the other agents’ choices.

Given equilibrium prices (p, q) we define fundamental values in terms of any believed delivery

rates compatible with individual rationality, that is, any process τ = (τξ,j) ∈ [0, 1](D\{ξ0})×J , such

that,

τξ,j =

{
1 if pξA(ξ, j) + qξ,j < pξĈξ,j ,

0 if pξA(ξ, j) + qξ,j > pξĈξ,j .

Under delivery rates τ , the physical bundle that one unit of asset j negotiated at node ξ delivers

at µ ∈ ξ+, namely PDµ,j(τ), consists of the part of the promises Aµ,j that are effectively delivered

and also of the physical deliveries made by the garnished collateral. More precisely, PDµ,j(τ) =

τµ,jAµ,j + (1− τµ,j)Ĉξ,j .

Thus, we have that, Dµ,j(p, q) = pµPDµ,j(τ) + τµ,j qµ,j . Using inequality (6) we obtain that,

qξ,j =
∑

µ∈ξ+

γµ

γξ
(pµPDµ,j(τ) + τµ,jqµ,j) +

ηθ(Γ, ξ, j)

γξ

=
∑
µ> ξ

 ∏
ξ<η<µ

τη,j

 (
γµ

γξ
pµPDµ,j(τ) +

ηθ(Γ, µ−, j)

γξ

)
+ lim

T→+∞

∑
µ∈DT (ξ)

γµ

γξ
qµ,j

∏
ξ<η≤µ

τη,j .

Under (Γ, τ), the fundamental value of an asset j ∈ J at a node ξ, Fj(ξ, p, q,Γ, τ), is defined by

(10) Fj(ξ, p, q,Γ, τ) =
∑
µ> ξ

 ∏
ξ<η<µ

τη,j

 [
γµ

γξ

∑
l∈L

Fl(µ, p, q,Γ)PDµ,j(τ)l +
ηθ(µ−, j)

γξ

]
.

It follows that, independently of (Γ, τ), the fundamental value at ξ is always well defined and less

than or equal to the unitary asset price, qξ,j .

Definition 4. Given equilibrium prices (p, q) ∈ P, we say that the price of asset j ∈ J has a

(Γ, τ)-bubble at a node ξ when qξ,j > Fj(ξ, p, q,Γ, τ).

By definition, a bubble on asset j may be a consequence of a bubble in a commodity—used as

collateral or that is part of the real promises— or may be generated by asymptotically positive asset

prices. As assets are backed by physical collateral, the non-arbitrage condition given by equation

(8) allows us to find a relationship between the asymptotic value of asset prices and the asymptotic

value of collateral bundles. For this reason, and differently from what happens in models without

default, the existence of bubbles in financial markets is strongly related to the existence of specula-

tion in physical markets.
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Theorem 3. Given equilibrium prices (p, q) ∈ P, suppose that Assumptions A, B and C hold. The

price of asset j ∈ J is free of (Γ, τ)-bubbles in D(ξ) if the following conditions hold,

∃h ∈ H :
∑

µ∈D(ξ)

γµ

γξ
pµ Wh

µ < +∞, and lim
T→+∞

∑
µ∈DT (ξ)

γµ

γξ
qµ,j = 0.

Given h ∈ H, asset j’s price is free of (Γh, τ)-bubbles in D(ξ) if any of the following conditions

hold,

(i) Commodities are free of Γ-bubbles in D(ξ) and asset j is a mortgage loan in D(ξ), i.e.,

Cµ,j ≤ Yξ,µCξ,j, for any (µ, l) ∈ (D(ξ) \ {ξ})× L.

(ii) Collateral requirements (Cµ,j)µ∈D(ξ) are uniformly bounded, cumulated depreciation factors

Yξ,µ are uniformly bounded by above in D(ξ) and (wh
µ)µ∈D(ξ) is uniformly bounded away

from zero in D(ξ).

(iii) Net supply of asset j is persistently positive and there are Kuhn-Tucker multipliers for the

other agents in H which are collinear with Γh.

Proof. Under the conditions of item (i), asset j has a (Γ, τ)-bubble at a node η ≥ ξ only if

limT→+∞
∑

µ∈DT (η)
γµ

γη
qµ,j > 0. This is incompatible with the absence of commodity bubbles in

D(ξ). In fact, using the non-arbitrage condition (8), Assumption C together with the particular

collateral structure of the mortgage imply that qµ,j ≤ pµCµ,j ≤
∑

l∈L pµ,lYµ(·, l)al(µ−, ξ)Cξ,j,l.

Assume that the hypotheses of item (ii) holds. It follows from Theorem 2 that commodities

are free of bubbles in D(ξ). Since (wh
µ)µ≥ξ is uniformly bounded away from zero, it follows from

item (iii) in Proposition 1 that, for any η ∈ D(ξ),
∑

η∈D
γµ

γh
η
‖pµ‖Σ < +∞. Thus, independently of

τ , assets are free of (Γh, τ)−bubbles due that collateral requirements are uniformly bounded and

condition (8) holds.

Under the conditions of item (iii), let ej
µ be the aggregate net supply of an asset j at node

µ ≥ ξ. It follows from (TCθ), using the financial feasibility condition that, for each η ≥ ξ,

limT→+∞
∑

µ∈DT (η)

γh
µ

γh
η

∑
j∈J qµ,j ej

µ = 0. Therefore, as (ej
µ)µ≥η is bounded away from zero in

D(η), we have that limT→+∞
∑

µ∈DT (η)

γh
µ

γh
η

qµ,j = 0. Also, commodities do not have bubbles in

D(η) (see item (iii) of Theorem 2). Therefore, asset j is free of bubbles at η ∈ D(ξ). �

It follows from item (i) above that, a bubble in a mortgage loan is always a consequence of a

bubble in a commodity that is used as collateral or is part of the real promises. On the other

hand, when commodities neither appreciate nor transform into other goods along the event-tree,

it follows from item (ii) that, under bounded unitary collateral requirements, well behaved initial

endowments assure the absence of price bubbles. In fact, assets will not have a positive price at

infinity if the sequence of deflated asset prices is summable, but as this sequence is dominated by the

sequence of deflated collateral costs (by non-arbitrage), we just need to have collateral coefficients

to be uniformly bounded and deflated commodity prices to be summable (which follows by what is

assumed on endowments and depreciation matrices).
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In a straightforward extension of our model, we could have allowed for finite-lived assets and

show that price bubbles would occur if the commodities serving as collateral are priced at infinity.

Indeed, the price of a finitely-lived asset will have a bubble if the asset pays in durable goods whose

prices have bubbles or if the asset defaults and the surrendered physical collateral is subject to price

bubbles.

7. Examples of Bubbles

In our first example, the single asset is persistently in positive net supply, but it has a price bub-

ble under Kuhn-Tucker deflators, which yield finite present values of wealth. Essentially, differently

from the conditions in item (iii) of Theorem 3, individuals’ Kuhn-Tucker deflators are not collinear.

Example 1. Each ξ ∈ D has two successors: ξ+ = {ξu, ξd}. There are two commodities and

a single infinite-lived asset. The first commodity is a perishable good x1 and the second one is a

durable good x2, which is subject to a constant rate of depreciation κ ∈ (0, 1). Commodity prices

at node ξ are denoted by (pξ,1, pξ,2). The asset, money, pays no dividend and its short-sales have to

be collateralized with coefficients Cξ = (0, 2). Thus, at any node ξ, the asset’s effective payments

become min{qξ, 2κpξ,2}, where qξ denotes the price of money at ξ.

There are two agents h ∈ H = {1, 2}. Each h ∈ H has physical endowments (wh
ξ,1, wh

ξ,2)ξ∈D,

receives financial endowments eh ≥ 0 only at the first node, and has preferences represented by

the utility function Uh(x̂) =
∑

ξ∈D βt(ξ)ρh(ξ)
(
x̂ξ,1 +

√
x̂ξ,2

)
, where β ∈ (0, 1) and ρh(ξ) ∈ (0, 1)

satisfies ρ(ξ0) = 1, ρh(ξ) = ρh(ξd) + ρh(ξu), ∀ξ ∈ D.

The depreciation factor is such that κ < δ := β2 and, for any ξ ∈ D,

ρ1(ξu) =
1

2t(ξ)+1
ρ1(ξ), ρ2(ξu) =

(
1− 1

2t(ξ)+1

)
ρ2(ξ).

Let Ddu be the set of nodes attained after going down followed by up, that is, Ddu = {η ∈ D :

∃ξ, t(η) = t(ξ) + 2 ∧ η = (ξd)u } and let Dud be the set of nodes reached by going up and then

down, that is, Dud = {η ∈ D : ∃ξ, t(η) = t(ξ) + 2 ∧ η = (ξu)d }.
Agent h = 1 is the only one endowed with the asset, i.e. (e1, e2) = (e, 0). Physical endowments

at initial node are wh
ξ0,1 = wh

ξ0,2 = 1. Moreover, for each ξ 6= ξ0, define wh
ξ,2 = δt(ξ) − κδt(ξ)−1 and

wh
ξ,1 = 1 + dh

ξ , where

d1
ξ =

{
κ e

2(1−κ)β
−t(ξ) , if ξ ∈ Ddu;

0 , otherwise.
d2

ξ =

{
κ e

2(1−κ)β
−t(ξ) , if ξ ∈ {ξd

0} ∪Dud;

0 , otherwise.

Notice that the cumulated endowments of the durable good are tending to zero at the rate β2

and, therefore, given the specific form of the marginal utility, the scarcity of this commodity tends

to offset the discount factor and, in equilibrium, each agent should consume the own cumulated

endowment. But the shocks on endowments of the perishable good create an opportunity to use

money as a way to transfer wealth to states that are more valuable.

Since agents receive positive shocks in states that are assigned low probabilities, there is an

incentive to use these positive shocks to buy money and sell it later in states with higher probabilities.

Thus, we will look for an equilibrium where agent h = 1, the one that starts endowed with money,
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gets rid of it when going down (to which she attaches a higher conditional probability), but, if

afterwards she goes up, she will use the positive perishable endowment shock to buy back money

(and be back in a financial position analogous to the one she had at the original node). Clearly,

each agent should end up consuming the other agent’s positive shock.

Let (pξ,1, pξ,2, qξ)ξ∈D = (2(1 − κ) βt(ξ), 1, κ)ξ∈D. For these prices, default never occurs (as qξ <

2κpξ,2) and effective asset payments are given by qξ. Suppose that (x̂h
ξ,1, x̂h

ξ,2) = (1 + dh′

ξ , δt(ξ)),

where h 6= h′. Thus, it follows from budget constraints that, at each ξ, the portfolio of agent h must

satisfy zh
ξ = 2 1−κ

κ βt(ξ)(dh
ξ − dh′

ξ ) + zh
ξ− , where zh

ξ−0
:= eh.

Consumption allocations above jointly with the portfolios (z1
ξ0

, z1
ξu , z1

ξd) = (e, e, 0) and (z2
ξ )ξ∈D =

(e−z1
ξ )ξ∈D are budget feasible. As there are no short sales, collateral constraints are never binding.

Moreover, physical and financial market clearing hold.

Finally, if we choose, for each (h, ξ) ∈ H × D, γh
ξ = ρh(ξ) 1

2(1−κ) , the following Euler and

transversality conditions hold and they are sufficient for individual optimality (see Proposition 1),

γh
ξ pξ,x = u′ξ,x(1 + dh′

ξ , δt(ξ))

γh
ξ = κ

(
γh

ξu + γh
ξd

)
+ u′ξ,y(1 + dh′

ξ , δt(ξ))

γh
ξ qξ = γh

ξuqξu + γh
ξdqξd∑

η∈DT

γh
η

(
pη,x x̂h

η,1 + x̂h
η,2

)
+
∑

η∈DT

γh
η qηθh

η −→ 0, as T → +∞.

In equilibrium, money has an unambiguous bubble, since collateral constraints never bind (which

implies that shadow prices of financial constraints are zero) and, therefore, the fundamental value

of money is zero. Also, both agents perceive finite present values of aggregate wealth. Indeed,

aggregated endowments up to node ξ are Wξ = W 1
ξ + W 2

ξ = (2 +
∑

h dh
ξ , 2δt(ξ)) and, therefore,

given ξ ∈ D, for each h ∈ {1, 2},

∑
µ≥ξ

γh
µ

γh
ξ

pµ Wµ ≤
1

ρh(ξ)

 4
1− κ

1− β
+ 2

1
1− δ

+ κe
∑

µ∈Dud∪Ddu∪{ξd
0}

ρh(µ)

 ,

where ∑
µ∈Dud∪Ddu

ρh(µ) ≤
∑
t≥0

∑
µ∈Dt+2∩(Dud∪Ddu)

ρh(µ)

=
∑
t≥0

∑
µ∈Dt

(
1

2t+1

(
1− 1

2t+2

)
+

1
2t+2

(
1− 1

2t+1

))
ρh(µ) <

5
3
.

It is important to understand why the above bubble in the price of an asset in positive net supply

is compatible with the transversality conditions that are necessary for individual optimality. The

point is that agents do not agree in not lending at infinity under a same process of multipliers

(γh
ξ )ξ∈D. For instance, agent h = 1 is a lender at infinity when the future is discounted using agent

2’s Kuhn-Tucker multipliers,∑
η∈DT

γ2
ηqηθ1

η = κ e
∑

{η∈DT : η=(η−)u}

γ2
η =

κ e

2(1− κ)

(
1− 1

2T

)
−→T→+∞

κ e

2(1− κ)
. �
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Our second example illustrates the endogenous reduction (due to collateral seizure) in the net

supply of an asset. In this example, the asset is again money and it has also a positive price.

Example 2. Consider a deterministic economy with two infinite lived agents, h ∈ {1, 2}, one

durable good and one long lived asset, money. There are asset endowments, eh, only at the original

date. Physical endowments are given by wh
t . Let x̂h

t be the consumption choices of agent h. Agents

preferences are given by Uh(x̂0, x̂1, . . .) =
∑+∞

t=0 βt
√

x̂t, where β ∈ (0, 1). We take the commodity

as the numeraire. The physical collateral coefficient at date t is Ct = 1, and the commodity

depreciation rate is also constant, given by κ ∈ (0, 1). Now, let δ = β2 and take κ ∈ ( δ
2 , δ). Suppose

that individual endowments are given by,

wh
0 = 1 + (−1)h+1κ s0,

wh
t = δt − κδt−1 − κα(1− α)t−1(eh + (−1)h+1s0), ∀ t > 0,

where, for non-negativity of endowments, we require that

α ∈
(

δ − κ

κ
, 1
)

, δ > 1− α, s0 <
δ − κ

κα
−max

h
eh, eh <

δ − κ

κα
.

Take, for example, (β, δ, κ, α, s0, e
1, e2) =

(√
2

2 , 1
2 , 1

3 , 3
4 , 1

8 , 1
2 , 0

)
.

Denote agent h portfolio by zh
t . At each date t > 0, the asset’s effective nominal return is

Rt = min{qt, κ}. We can write Rt = (1 − λt) κ + λt qt, where the delivery rate satisfies λt = 1 if

κ > qt and λt = 0 if κ < qt.

The collateral constraint can be written as x̂h
t ≥ −zh

t and the budget constraints, for a non-

negative plan (x̂h
t )t≥0, are given by,

x̂h
0 + q0z

h
0 = wh

0 + q0e
h
0 ;

x̂h
t + qtz

h
t = wh

t + κx̂h
t−1 + Rtz

h
t−1, for t > 0.

Market clearing conditions are as defined in Section 2.

We look for an equilibrium without default (that is, where qt ≤ κ, for all t > 0) and with

non-binding collateral constraints. By Proposition 1, a budget feasible plan (x̂h
t , zh

t )t≥0 is optimal

for agent h if there exist non-negative multipliers γh
t such that, the following Euler equations and

transversality conditions hold,9 for each t ≥ 0,

γh
t qt = γh

t+1qt+1,(11)

γh
t = κγh

t+1 + βt
√

x̂h
t ,(12)

0 = lim
t→+∞

γh
t (x̂h

t + qtz
h
t ).(13)

An equilibrium. Let, for all t ≥ 0, γh
t = 1

2(1−κ) and qt = κ (hence Rt = κ). Individual optimal plans

are given by x̂h
t = δt and zh

t = (1 − α)t ((−1)h+1s0 + eh). Collateral constraints are not binding.

Note that the asset is in the borderline case for each t ≥ 1 and, if we take the delivery rate λt to be

9Notice that the Euler equations with respect to x̂h
t and zh

t , conditions (11) and (12), imply the Euler conditions

with respect to (xh
t , θh

t , ϕh
t ).
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equal to 1− α, then all market clearing conditions hold at each date.

Now, commodity prices do not have bubbles, since at each date t ≥ 0, limT→+∞
γh

T

γh
t
ptYt,T = 0.

Moreover, as collateral constraints are not binding, the respective shadow prices are zero and,

therefore, if agents believe that in the borderline case the asset pays the original promise, it follows

that the fundamental value of money at date t is zero and, as qt > 0, money has a bubble at each

date.

As argued in the previous section, the above belief about the deliveries may diverge from the

equilibrium delivery rates. When an agent evaluates whether there is speculation or not in an

asset, the agent is concerned with values and therefore it is perfectly reasonable to anticipate full

delivery in borderline situations. But other beliefs should also be allowed and the above monetary

equilibrium may be reinterpreted as a positive fundamental value (or even as a situation where

bubbles and positive fundamental values coexist).

In fact, under delivery beliefs (τt)t≥1 ∈ [0, 1]N, the fundamental value of money is given by,

F (t, p, q, Γ, τ) =
∑
t′>t

( ∏
t<s<t′

τs

)
(1− τt′)κ = κ

1− lim
T→+∞

∏
t<s≤T

τs

 ,

which implies that the asset has a bubble at date t, i.e. qt = κ > F (t, p, q, Γ, τ), if and only if∏
t<s≤T τs converges to a strictly positive limit as T goes to infinity.

If the limit above is strictly positive and less than one, the asset has a bubble and at the same

time the fundamental value is positive. If the delivery expectations are zero at some node (so that

the above limit is trivially zero), then the monetary equilibrium reduces to a positive fundamental

value induced by the fundamental value of the commodities that serve as collateral. In this case,

the price of money would consist of a positive fundamental value even though shadow prices of the

collateral constraints are zero. �

The examples above show that collateral allows for price bubbles in assets in positive net supply.

This class of assets is quite important, as it includes equity contracts and money. Our examples

focus precisely on the latter and in a context without any liquidity frictions. Hence, bubbles have

the intriguing feature of assigning a positive price to an asset having no dividends and also providing

no services.

Contrary to other approaches where the positive price of money is due to a positive fundamental

value that adds up the shadow prices of binding liquidity constraints (see Santos (2006)) or short-

sales constraints (see Gimenez (2007)), in our examples there are no binding collateral constraints

and the monetary equilibria are either (i) unambiguous money bubbles (Example 1) or (ii) bubbles

that can be reinterpreted as positive fundamental values due to collateral seizure (Example 2).
The latter occur under an endogenous reduction in assets’ net supply, as the collateral takes the

place of the promise, and are a new instance for the long standing view on the efficiency properties
resulting from a vanishing money supply (see Friedman (1969), Grandmont and Younés (1972, 1973)
or Woodford (1994), among others). The former are compatible with persistent money supply, but
can only occur in the case in which individuals’ marginal rates of substitution of wealth do not
coincide, by taking advantage of the diversity in agents’ personalized deflators.
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Appendix A

Following the notation of Section 4, given (p, q) ∈ P, let ∂vh
ξ (zξ) be the super-differential set of the

function vh
ξ at the point zξ. Note that, a vector (L′ξ,1,L′ξ,2) ∈ ∂Lh

ξ (zξ, zξ− , γ; p, q) if and only there ex-

ists v′ξ ∈ ∂vh
ξ (zξ) such that both L′ξ,1 = v′ξ − γ∇1 gh

ξ (p, q) and L′ξ,2 = −γ∇2 gh
ξ (p, q), where ∇1g

h
ξ (p, q) =

(pξ, qξ, pξCξ,j − qξ ) and ∇2g
h
ξ (p, q)) = −

(
pξYξ, Dξ(p, q), (pξYξCξ−,j −Dξ,j(p, q))j∈J

)
. Therefore, for any

(L′ξ,1,L′ξ,2) ∈ ∂Lh
ξ (zξ, zξ− , γ; p, q), we have L′ξ,2 ≥ 0.

Proof of Proposition 1. (i) For any T ∈ N, consider the truncated optimization problem,

P h,T
(p,q)

max
∑

ξ∈DT

vh
ξ (zξ)

s.t.

{
gh

ξ

(
zξ, zξ− ; p, q

)
≤ 0, ∀ξ ∈ DT ,

zξ = (xξ, θξ, ϕξ) ≥ 0, ∀ξ ∈ DT , z
ξ−0

= 0.

Note that, there exists a solution for P h,T
(p,q) if and only if there is a solution for,

P̃ h,T
(p,q)

max
∑

ξ∈DT

vh
ξ (zξ)

s.t.


gh

ξ

(
zξ, zξ− ; p, q

)
≤ 0, ∀ξ ∈ DT ,

zξ = (xξ, θξ, ϕξ) ≥ 0, ∀ξ ∈ DT , z
ξ−0

= 0,

θξ,j = 0, ∀(ξ, j) ∈ DT−1 × J such that qξ,j = 0.

Indeed, it follows from the existence of an optimal plan for the consumer problem, giving finite utility, that

if qξ,j = 0, for some (ξ, j) ∈ D× J , then Dµ,j(p, q) = 0 for each µ ∈ ξ+. Thus, long positions on assets with

zero prices do not induce any gains. On the other hand, by Assumption B, commodity prices need to be

strictly positive, because we have a finite optimum of individual problem. Also, for any pair (ξ, j) ∈ D× J ,

pξCξ,j−qξ,j > 0, because otherwise individuals may increase their utilities by increasing their loans (detailed

arguments, for the case of short-lived assets, are in Araujo, Páscoa and Torres-Mart́ınez (2002, Proposition

1)). Thus, the set of admissible strategies in P̃ h,T
(p,q) is compact and, therefore, by the continuity of the utility

function we conclude that there is a solution for P̃ h,T
(p,q).

Therefore, for any T ∈ N, the problem P h,T
(p,q) has a solution, (zh,T

ξ )ξ∈DT = (xh,T
ξ , θh,T

ξ , ϕh,T
ξ )ξ∈D. It is

immediate that
∑

ξ∈DT vh
ξ (xh,T

ξ +
∑

j∈J Cξ,jϕ
h,T
ξ,j ) ≤ Uh((xh

ξ +
∑

j∈J Cξ,jϕ
h
ξ,j)ξ∈D). Thus, there are non-

negative multipliers (γh,T
ξ )ξ∈DT such that, for each nonnegative plan (zξ)ξ∈DT ∈ ZDT

, the following saddle

point property is satisfied (see Rockafellar (1997), Theorem 28.3),

(A.2)
∑

ξ∈DT

Lh
ξ (zξ, zξ− , γh,T

ξ ; p, q) ≤ Uh((xh
ξ +

∑
j∈J

Cξ,jϕ
h
ξ,j)ξ∈D),

with γh,T
ξ gh

ξ (zh,T
ξ , zh,T

ξ−
; p, q) = 0.

Claim A1. For each ξ ∈ D, the sequence (γh,T
ξ )T≥t(ξ) is bounded.

Proof. Given D̃ ⊂ D, consider the function χD̃ : D → {0, 1} defined by χD̃(ξ) = 1 if and only if ξ ∈ D̃.

Given t ≤ T and evaluating inequality (A.2) in z = (zµ)µ∈DT , where zµ = (W h
µ , 0, 0)χDt−1(µ), we obtain∑

µ∈Dt
γh,T

µ pµW h
µ ≤ Uh(x̂h). Also, Assumptions A and B imply that, for any µ ∈ D, both minl∈L W h

µ,l

and ||pµ||Σ are strictly positive. Thus, the result follows. �
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Claim A2. For each 0 < t ≤ T ,

(A.3) 0 ≤ −
∑

ξ∈Dt

γh,T
ξ ∇2g

h
ξ (p, q) zh

ξ− ≤
∑

ξ∈D\Dt−1

vh
ξ (zh

ξ ),

Proof. Given t ≤ T , if we evaluate (A.2) in z = (zξ)ξ∈DT , with zξ = zh
ξ χDt−1(ξ), by budget feasibility of

allocation (zh
ξ )ξ∈D, we have

−
∑

ξ∈Dt

γh,T
ξ ∇2g

h
ξ (p, q) · zh

ξ− +
∑

ξ∈DT \Dt−1

γh,T
ξ pξw

h
ξ ≤

∑
ξ∈D\Dt−1

vh
ξ (zh

ξ )

which implies,

−
∑

ξ∈Dt

γh,T
ξ ∇2g

h
ξ (p, q) · zh

ξ− ≤
∑

ξ∈D\Dt−1

vh
ξ (zh

ξ ).

This concludes the proof, as the left hand side term in the inequality above is non-negative. �

Claim A3. For each ξ ∈ DT \DT and for any plan y ≥ 0, we have

(A.4) vh
ξ (y)− vh

ξ (zh
ξ ) ≤

γh,T
ξ ∇1g

h
ξ (p, q) +

∑
µ∈ξ+

γh,T
µ ∇2g

h
µ(p, q)

 (y − zh
ξ ) +

∑
η∈D\DT

vh
η (zh

η ).

Proof. It follows from (A.2) that, given ξ ∈ DT \DT , for each y ≥ 0, we can choose a plan z = (zµ)µ∈DT

with zµ = zh
µ(1− χ{ξ}(µ)) + y χ{ξ}(µ), in order to guarantee that,

(A.5) vh
ξ (y)− γh,T

ξ gh
ξ (y, zh

ξ− ; p, q)−
∑

µ∈ξ+

γh,T
µ gh

µ(zh
µ, y; p, q) ≤ vh

ξ (zh
ξ ) +

∑
η∈D\DT

vh
η (zh

η ).

Now, as the function gh
ξ (·; p, q) is affine and the plan (zh

ξ )ξ∈D ∈ Bh(p, q), we have that,

gh
ξ (y, zh

ξ− ; p, q) = ∇1g
h
ξ (p, q)y − pξw

h
ξ +∇2g

h
ξ (p, q)zh

ξ− ≤ ∇1g
h
ξ (p, q)y −∇1g

h
ξ (p, q)zh

ξ ,

and, for each node µ ∈ ξ+,

gh
µ(zh

µ, y; p, q) = ∇1g
h
µ(p, q)zh

µ − pµwh
µ +∇2g

h
µ(p, q)y ≤ −∇2g

h
µ(p, q)zh

ξ +∇2g
h
µ(p, q)y.

Substituting the right hand side of inequalities above in equation (A.5) we conclude the proof. �

As the event-tree is countable, Tychonoff Theorem and Claim A1 assure the existence of a common

subsequence (Tk)k∈N ⊂ N and non-negative multipliers (γh
ξ )ξ∈D such that, for each ξ ∈ D, γ

h,Tk
ξ →k→+∞ γh

ξ ,

and

γh
ξ gh

ξ (p, q, zh
ξ , zh

ξ−) = 0 ;(A.6)

lim
t→+∞

∑
ξ∈Dt

γh
ξ∇2g

h
ξ (p, q)zh

ξ− = 0 ,(A.7)

where (A.6) follows from the strictly monotonicity of uh
ξ , and equation (A.7) is a consequence of Claim A2

(taking first, the limit as T goes to infinity in (A.3) and, afterwards, the limit in t). Moreover, taking the

limit as T goes to infinity in (A.4) we obtain that,

(A.8) vh
ξ (y)− vh

ξ (zh
ξ ) ≤

γh
ξ∇1g

h
ξ (p, q) +

∑
µ∈ξ+

γh
µ∇2g

h
µ(p, q)

 (y − zh
ξ ), ∀y ≥ 0.

Therefore, γh
ξ∇1g

h
ξ (p, q) +

∑
µ∈ξ+ γh

µ∇2g
h
µ(p, q) ∈ ∂+vh

ξ (zh
ξ ), where

(A.9) ∂+vh
ξ (z) := {v′ξ ∈ Z : vh

ξ (y)− vh
ξ (z) ≤ v′ξ · (y − z), ∀y ≥ 0}.
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That is, ∂+vh
ξ (·) is the super-differential of the function vh

ξ (·) + δ(·, RL
+), where δ(z, RL

+) = 0, when z ≥ 0

and δ(z, RL
+) = −∞, in other case. Notice that, for each z ≥ 0, κ ∈ ∂δ(z) ⇔ 0 ≤ k(y − z), ∀y ≥ 0. Thus,

by Theorem 23.8 in Rockafellar (1997), for all z ≥ 0, if v′ξ ∈ ∂+vh
ξ (z) then there exists ṽ′ξ ∈ ∂vh

ξ (z) such

that both v′ξ ≥ ṽ′ξ and (v′ξ − ṽ′ξ) · z = 0. Thus, it follows from (A.8) that there exists, for each ξ ∈ D, a

super-gradient ṽ′ξ ∈ ∂vh
ξ (zh

ξ ) such that,

γh
ξ∇1g

h
ξ (p, q) +

∑
µ∈ξ+

γh
µ∇2g

h
µ(p, q) ≥ ṽ′ξ,

γh
ξ∇1g

h
ξ (p, q) +

∑
µ∈ξ+

γh
µ∇2g

h
µ(p, q)

 zh
ξ = ṽ′ξz

h
ξ .

By definition,
(
ṽ′ξ − γh

ξ∇1g
h
ξ (p, q), −γh

ξ∇2g
h
ξ (p, q)

)
∈ ∂Lh

ξ (zh
ξ , zh

ξ− , γh
ξ ; p, q). Therefore, there exists, for each

ξ ∈ D, a vector (L′ξ,1, L′ξ,2) ∈ Lh
ξ (zh

ξ , zh
ξ− , γh

ξ ; p, q) satisfying Euler conditions. Furthermore, the transver-

sality condition is a direct consequence of equation (A.7) jointly with Euler conditions. Indeed,∑
ξ∈Dt−1

L′ξ,1z
h
ξ = −

∑
ξ∈Dt

L′ξ,2z
h
ξ− =

∑
ξ∈Dt

γh
ξ∇2g

h
ξ (p, q)zh

ξ− →t→+∞ 0.

On the other hand, it follows from Euler equations, using the sign property of the Lagrangian, that

ṽ′ξ − γh
ξ∇1g

h
ξ (p, q) ≤ 0. As utility functions uh

ξ are strictly increasing in the first argument, we know that ṽ′ξ

has a strictly positive first coordinate. Thus, we have that γh
ξ pξ,1 > 0, which implies that the multipliers

γh
ξ are strictly positive, for each ξ ∈ D.

Therefore, there is a plan of Kuhn-Tucker multipliers associated with (zh
ξ )ξ∈D.

(ii) It follows from (EE) that, for each T ≥ 0,

(A.10)
∑

ξ∈DT

Lh
ξ (zξ, zξ− , γh

ξ ; p, q)−
∑

ξ∈DT

Lh
ξ (zh

ξ , zh
ξ− , γh

ξ ; p, q) ≤
∑

ξ∈DT

L′ξ,1(zξ − zh
ξ ).

Since, at any node ξ ∈ D we have that γh
ξ gξ(z

h
ξ , zh

ξ− ; p, q) = 0, each (zξ)ξ∈D ∈ Bh(p, q) must satisfy∑
ξ∈DT

uh
ξ (x̂ξ)−

∑
ξ∈DT

uh
ξ (x̂h

ξ ) ≤
∑

ξ∈DT

L′ξ,1(zξ − zh
ξ ).

Using the condition (TC) we have that Uh(x̂)− Uh(x̂h) ≤ lim supT→+∞
∑

ξ∈DT
L′ξ,1 zξ.

Also, Euler conditions imply that
∑

ξ∈DT
L′ξ,1zξ ≤ −

∑
µ∈DT+1

L′µ,2 zµ− ≤ 0, where the last inequality

follows from the sign property L′µ,2 ≥ 0, satisfied at each node of the event-tree. Thus, Uh(x̂) ≤ Uh(x̂h),

which guarantees that the allocation (zh
ξ )ξ∈D solves P h

(p,q). Moreover, when xh
ξ +

∑
j∈J Cξ,jϕ

h
ξ,j ≤ Wξ, for

each ξ ∈ D, Assumption B assures that the optimum value is finite.

(iii) As we pointed out in inequality (A.10), the existence of Kuhn-Tucker multipliers (γh
ξ )ξ∈D implies that,

for any T > 0,
∑

ξ∈DT Lh
ξ (0, 0, γh

ξ ; p, q) −
∑

ξ∈DT Lh
ξ (zh

ξ , zh
ξ− , γh

ξ ; p, q) ≤ −
∑

ξ∈DT
L′ξ,1 zh

ξ , and, therefore,∑
ξ∈DT γh

ξ pξw
h
ξ ≤ Uh(x̂h) −

∑
ξ∈DT

L′ξ,1 zh
ξ . Using the transversality condition (TC), we conclude that∑

ξ∈D γh
ξ pξw

h
ξ < +∞. �

Proof of Claims after Proposition 1. Budget feasibility and Assumption B implies that

− lim
T→+∞

∑
µ∈DT

γh
µ∇2g

h
µ(p, q) zh

µ− = lim
T→+∞

∑
µ∈DT

γh
µ∇1g

h
µ(p, q) zh

µ − lim
T→+∞

∑
µ∈DT

γh
µpµwh

µ.
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Therefore, as deflated endowments are summable, using Euler conditions we assure that our transversality

condition is equivalent to limT→+∞
∑

µ∈DT
γh

µ∇1g
h
µ(p, q) zh

µ = 0. �

Proof of Corollary 1. Since under prices (p, q) ∈ P agent h’s problem has a finite optimum, denote by

zh := (zh
ξ )ξ∈D the optimal plan of agent h at prices (p, q). It follows from Proposition 1-(i) that there is a

plan of Kuhn-Tucker multipliers associated with zh.

Thus, there are (L′ξ,1,L′ξ,2)ξ∈D ∈
∏

ξ∈D ∂Lh
ξ (zh

ξ , zh
ξ− , γh

ξ ; p, q) such that, for any ξ ∈ D, L′ξ,1+
∑

µ∈ξ+ L′µ,2 ≤
0. Using the characterization of (L′ξ,1,L′ξ,2)ξ∈D at the beginning of this Appendix and the fact that v′ξ ∈
∂vh

ξ (zh
ξ ) if and only if there is αξ ∈ ∂uh

ξ (x̂h
ξ ) such that v′ξ = (αξ, 0, (αξCξ,j)j∈J) , we obtain inequalities

(5)-(7), as the super gradients of uh
ξ are vectors with strictly positive entries.

On the other hand, fix (ξ, j) ∈ D × J . Using the notation introduced after Definition 3, inequalities

(5)-(7) imply that, ηϕ(Γ, ξ, j) =
∑

l∈L ηx(Γ, ξ, l)Cξ,j,l − ηθ(Γ, ξ, j). Therefore, if for each l ∈ L for which

Cξ,j,l 6= 0 inequality (5) holds as equality, then ηθ(Γ, ξ, j) = ηϕ(Γ, ξ, j) = 0, which implies that inequalities

(6) and (7) holds as equalities. �

Appendix B. Transversality conditions of Example 1.

Transversality condition in long positions,∑
η∈DT

γ1
ηqηθ1

η = κ e
1

2(1− κ)

∑
{η∈DT : η=(η−)u}

ρ1(η) = κ e
1

2(1− κ)

1

2T
−→ 0;

∑
η∈DT

γ2
ηqηθ2

η = κ e
1

2(1− κ)

∑
{η∈DT : η=(η−)d}

ρ2(η) = κ e
1

2(1− κ)

1

2T
−→ 0.

Tranversality condition in consumption,∑
η∈DT

γh
η pη,x x̂h

η,1 = βT
∑

η∈DT

ρh(η)(1 + dh′
η ) = βT +

κ e

2(1− κ)

∑
{η∈DT : dh′

η 6=0}

ρh(η)

≤ βT +
κ e

2(1− κ)

1

2T−1

(
1− 1

2T

) ∑
η∈DT−2

ρh(η) −→ 0;

∑
η∈DT

γh
η pη,yx̂h

η,2 = δT 1

2(1− κ)
−→ 0.

Appendix C. Proof of Theorem 1.

An equilibrium for the infinite horizon economy will be found as a limit of equilibria of truncated

economies, when the time horizon goes to infinity.

Equilibria in truncated economies. Define, for each T ∈ N, a truncated economy, ET , in which agents

are restricted to consume and trade assets in the event-tree DT . Thus, given prices (p, q) in PT := {(p, q) =

(pξ, qξ)ξ∈DT ∈ (RL
+ × RJ

+)DT

: ||pξ||Σ + ||qξ||Σ = 1, ∀ξ ∈ DT }, each agent h ∈ H has the objective to

choose, at each ξ ∈ DT , a vector zh,T
ξ = (xh,T

ξ , θh,T
ξ , ϕh,T

ξ ) ∈ Z in order to solve the (truncated) individual

problem P h,T
(p,q) defined at the beginning of proof of Proposition 1. Now, let Bh,T (p, q) be the truncated

budget set of agent h in ET . That is, the set of plans (zξ)ξ∈DT that satisfy the restrictions of problem P h,T
(p,q).

An equilibrium for ET is given by prices (pT , qT ) ∈ PT jointly with delivery rates λT
ξ = (λT

ξ,j), for each

ξ ∈ DT \ {ξ0}, and individual plans zh,T
ξ = (xh,T

ξ , θh,T
ξ , ϕh,T

ξ )ξ∈DT such that: (1) zh,T is an optimal solution

for P h,T

(pT ,qT )
; (2) physical and financial market clear node by node in DT , in the sense of Definition 1; and
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(3) for each ξ ∈ DT \ {ξ0}, delivery rates λT
ξ,j satisfy condition B of Definition 1.

Note that, market feasible allocations, that is, the non-negative allocations (xh
ξ , θh

ξ , ϕh
ξ )(h,ξ)∈H×DT that

satisfy market clearing conditions C and D of Definition 1, are bounded in DT .10 Therefore, departing from

ET we can define a compact economy ET (KT ) by restricting the space of plans of each h ∈ H to the convex

and compact set KT := {z = (x, θ, ϕ) ∈ RL×DT

+ ×RJ×DT

+ ×RJ×DT

+ : ||z||Σ ≤ 2ΥT }, which has in its interior

the vector ΥT that is defined as an upper bound for the feasible allocations in DT .

An equilibrium for E(KT ) is given by prices (pT , qT ) ∈ PT , delivery rates λT
ξ = (λT

ξ,j), for each node

ξ ∈ DT \ {ξ0}, and allocations (zh,T
ξ )ξ∈DT = (xh,T

ξ , θh,T
ξ , ϕh,T

ξ )ξ∈DT , compatible with conditions B, C and

D of Definition 1, such that, for each agent h, the plan (zh,T
ξ )ξ∈DT solves,

(P h,T

(pT ,qT )
(KT ))

max
∑

ξ∈DT

vh
ξ (zξ)

s.t. (zξ)ξ∈DT ∈ Bh,T (pT , qT ) ∩KT .

If we assure the existence of equilibrium for ET (KT ), the economy ET has also an equilibrium, given that

optimal allocation of ET (KT ) will be, by construction, interior points of set KT , budget sets are convex and

utility functions are concave under Assumption B.

Generalized Games. To prove the existence of equilibrium in ET (KT ) we introduce a game GT , where

each h ∈ H takes prices (p, q) ∈ PT as given and solves the compact truncated problem above. Moreover,

associated with each (ξ, j) ∈ (DT \ {ξ0})×J , there is one fictitious player that, given prices (p, q) ∈ PT , will

be choose a real number λξ,j ∈ [0, 1] in order to solve the problem,

(C.1) min
λ∈[0,1]

[
λ(pξA(ξ, j) + qξ,j) + (1− λ)pξĈξ,j

]
.

Finally, associated to each node in DT there is an auctioneer who, given plans (zh
ξ )(h,ξ)∈H×DT ∈

∏
h∈H KT

and delivery rates λξ,j ∈ [0, 1] has the objective to find prices (pξ, qξ) ∈ ∆L+J−1
+ in order to maximize the

function,

(C.2) pξ

∑
h∈H

(
xh

ξ +
∑
j∈J

Cξ,jϕ
h
ξ,j − wh

ξ − Yξx
h
ξ− − Yξ

∑
j∈J

Cξ−,jϕ
h
ξ−,j

)

+
∑
j∈J

qξ,j

∑
h∈H

(
θh

ξ,j − ϕh
ξ,j − λξ,j

(
θh

ξ−,j − ϕh
ξ−,j

))
−pξ

∑
(h,j)∈H×J

(
λξ,jA(ξ, j) + (1− λξ,j)Ĉξ,j

)(
θh

ξ−,j − ϕh
ξ−,j

)
,

where, zh
ξ = (xh

ξ , θh
ξ , ϕh

ξ ) and, for convenience of notations, for each (h, j) ∈ H×J we put (xh

ξ−0
, θh

ξ−0 ,j
, ϕh

ξ−0 ,j
) =

(0, eh
j , 0) and (Ĉξ0,j , Yξ0) = (0, 0), for all j ∈ J

A vector
[
(pT , qT ); (zh,T

ξ )h∈H ; λT
ξ

]
ξ∈DT

that solves simultaneously the problems above is called a (Cournot-

Nash) equilibrium of GT .

10Indeed, autonomous consumption allocations, (xh
ξ )(h,ξ)∈H×DT are bounded by above, node by node, by the

aggregated physical endowments. The short-sales (ϕh
ξ,j)(h,ξ)∈H×DT are bounded, at each ξ ∈ DT , by

∑
l∈L Wξ,l

divided by the positive number ‖Cξ,j‖Σ. Thus, long positions (θh
ξ,j)(h,ξ)∈H×DT are also bounded, because are less

than or equal to the aggregate short sales plus the initial positive net supply.
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Lemma C1. For each T ∈ N there is an equilibrium for GT .

Proof. The objective function of each participant in the game is continuous and quasi-concave in the own

strategy. For fictitious players and auctioneers, the correspondences of admissible strategies are continuous,

with non-empty, convex and compact values. Also, the budget restriction correspondence of each agent,

(p, q) � Bh,T (p, q) ∩ KT , has non-empty, convex and compact values. Therefore, in order to find an

equilibrium of the generalized game (as a fixed point of the set function given by the product of optimal

strategies correspondences), it is sufficient to prove that budget set correspondences are continuous.

The upper hemi-continuity follows from compact values and closed graph properties, that are a di-

rect consequence of continuity of functions gh
ξ . Thus, the main difficulty resides in showing the lower

hemi-continuity property. Now, as for each price (p, q) ∈ PT the set Bh,T (p, q) ∩ KT is convex and com-

pact, it is sufficient to assure that the (relative) interior correspondence (p, q) � int(Bh,T (p, q)) ∩ KT

has non-empty values. But this last property follows from Assumption A. In fact, cumulated endow-

ments are such that W h
ξ � 0, for each h ∈ H, and, therefore, given any plan of prices (p, q) ∈ PT ,

the plan (x̃h
ξ ; θ̃h

ξ ; ϕ̃h
ξ )ξ∈DT :=

(
W h

ξ

2t(ξ)+1 −
∑

j∈J Cξ,jε
h
ξ ; 0 ; εξ(1, 1, . . . , 1)

)
ξ∈DT

, where for each ξ ∈ DT ,

εh
ξ = min(l,µ)∈L×ξ+

{
W h

ξ,l

2t(ξ)+2(1+
∑

j∈J (Cξ,j)l)
;

W h
µ,l

2t(ξ)+2(1+
∑

j∈J Yµ(l,·)Cξ,j)

}
, is budget feasible and belongs to

the relative interior of the set Bh,T (p, q) ∩K. �

Lemma C2. For each T ∈ N there is an equilibrium for ET (KT ).

Proof. We know that there exists an equilibrium for GT , namely
[
(pT , qT ); (zh,T

ξ )h∈H ; λT
ξ

]
ξ∈DT

. By

definition, the payment rates λh,T
ξ,j satisfy condition B of Definition 1 and each agent h ∈ H solves problem

P h,T (KT ) by choosing the plan (zh,T
ξ )ξ∈DT . Thus, it is sufficient to verify, for each node ξ ∈ DT , the

validity of conditions C and D of Definition 1.

Now, it follows from players’ objective functions that, for each node ξ > ξ0, the effective payments

satisfy, Dξ,j(p
T , qT ) = λT

ξ,j(p
T
ξ A(ξ, j) + qT

ξ,j) + (1−λT
ξ,j)p

T
ξ Ĉξ,j . Therefore, as budget feasibility implies that∑

h∈H gh
ξ (zh,T

ξ , zh,T

ξ−
, pT , qT ) ≤ 0, the optimal value of auctioneers objective functions is less than or equal

to zero. This implies that conditions C and D of Definition 1 are satisfied as inequalities. That is, there

does not exist excess demand in physical and financial markets.

Thus, as the individual demands for commodities or assets are bounded by the aggregate supply of

resources, the optimal bundles that were chosen by the agents are interior points of KT . Therefore, mono-

tonicity of utility function implies that, for each ξ ∈ DT ,
∑

h∈H gh
ξ (zh,T

ξ , zh,T

ξ−
, pT , qT ) = 0. In other words,

Walras’ law holds.

The existence of an optimal solution for P h,T (KT ) in the interior of the set KT implies that pT
ξ � 0

and, therefore, condition C of Definition 1 holds, as a direct consequence of Walras’ law, strictly positive

commodity prices and the absence of excess demand in physical markets. By analogous arguments, condition

D of Definition 1 holds, at a node ξ ∈ DT , for those assets j ∈ J which have a strictly positive price qT
ξ,j > 0.

Given ξ ∈ DT , denote by J̃ξ ⊂ J the set of assets with zero price at ξ and let ∆(θT
ξ , θT

ξ−)ξ,j be the excess

demand of asset j at node ξ, associated with long positions (θT
ξ , θT

ξ−) = (θh,T
ξ , θh,T

ξ−
)h∈H (it follows from

previous arguments that ∆(θT
ξ , θT

ξ−)ξ,j ≤ 0). If j ∈ J̃ξ, then optimality of agents’ allocations assures that

the asset does not deliver any payment at the successor nodes µ ∈ ξ+ (if this nodes are in DT ). Therefore,

if we change the portfolio allocation (θh,T
ξ )h∈H to θ̃h,T

ξ = θh,T
ξ − 1

#H
∆(θT

ξ , θT
ξ−)ξ,j , we assure that, at node
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ξ, and for asset j, condition D holds. Moreover, the new allocation is budget feasible, optimal, and we do

not lose the market clearing condition in physical markets at node µ ∈ ξ+.

However, the total supply of asset j at nodes µ ∈ ξ+ can change. Therefore, in order to apply the trick

above, node by node, asset by asset, to obtain an optimal allocation that satisfies Condition D for each

asset, it is sufficient to prove that, after changing portfolios at a node ξ, the new excess demand, at nodes

µ ∈ ξ+, ∆(θT
µ , θ̃T

ξ )µ,j is still less than or equal to zero and that ∆(θT
µ , θ̃T

ξ )µ,j can be negative only for assets

in J̃µ.

Fix j ∈ J̃ξ. It follows by the definition of θ̃h,T
ξ that, at any µ ∈ ξ+, ∆(θT

µ , θ̃T
ξ )µ,j ≤ ∆(θT

µ , θT
ξ )µ,j . Now,

as at each µ ∈ ξ+, Dµ,j(p
T , qT ) = 0 then asset j defaults at nodes µ ∈ ξ+. Therefore, (λT

µ,j)µ∈ξ+ = 0 and

(∆(θT
µ , θ̃T

ξ )µ,j)µ∈ξ+ = (∆(θT
µ , θT

ξ , )µ,j)µ∈ξ+ , which concludes the proof. �

In the previous lemma we found an equilibrium for ET (KT ). It is not difficult to verify that this equilib-

rium constitutes also an equilibrium for ET .

Asymptotic equilibria. For each T ∈ N, fix an equilibrium
[
(pT , qT ); (zh,T

ξ )h∈H ; λT
ξ

]
ξ∈DT

of ET . We

know that there exist non-negative multipliers (γh,T
ξ )ξ∈DT such that, γh,T

ξ gh
ξ (zh,T

ξ , zh,T

ξ−
; p, q) = 0, and the

following saddle point property is satisfied, for each nonnegative plan (zξ)ξ∈DT (see Rockafellar (1997),

Section 28, Theorem 28.3),

(C.3)
∑

ξ∈DT

Lh
ξ (zξ, zξ− , γh,T

ξ ; pT , qT ) ≤
∑

ξ∈DT

vh
ξ (zh,T

ξ ).

As vh
ξ (zh,T

ξ ) ≤ uh
ξ (Wξ), analogously to Claim A1 in Appendix A, for each ξ ∈ D and for all T ≥ t(ξ),

(C.4) 0 ≤ γh,T
ξ <

Uh(W)

W h
ξ ||pT

ξ ||Σ
.

where W h
ξ = minl∈L W h

ξ,l > 0.

Lemma C3. For each ξ ∈ D, there is a strictly positive lower bound for (||pT
ξ ||Σ)T>t(ξ).

Proof. Given ξ ∈ D and T > t(ξ), optimality of zh,T in P h,T

(pT ,qT )
implies that pT

ξ Cξ,j ≥ qT
ξ,j , for each

j ∈ J . Thus, for each j ∈ J , there is mξ,j > 0 such that, qT
ξ,j ≤ mξ,j ||pT

ξ ||Σ. Adding in j, we obtain

that ||qT
ξ ||Σ ≤ ||pT

ξ ||Σ
∑

∈J mξ,j . Finally, as ||qT
ξ ||Σ = 1− ||pT

ξ ||Σ, at each node ξ ∈ D, independently of T ,

||pT
ξ ||Σ ≥ 1

1+
∑

∈J mξ,j
> 0. �

Therefore, the sequence
[
(pT

ξ , qT
ξ ); (zh,T

ξ , γh,T
ξ )h∈H ; λT

ξ

]
T>t(ξ)

is bounded. Applying Tychonoff Theo-

rem we find, as in the proof of Proposition 1, a subsequence (Tk)k∈N ⊂ N such that, for each ξ ∈ D,[
(p

Tk
ξ , q

Tk
ξ ); (z

h,Tk
ξ , γ

h,Tk
ξ )h∈H ; λ

Tk
ξ

]
Tk>t(ξ)

converges, as k goes to infinity, to an allocation
[
(pξ, qξ); (z

h
ξ , γh

ξ )h∈H ; λξ

]
.

Moreover, the limit allocations
[(

zh
ξ

)
ξ∈D

]
h∈H

are budget feasible at prices (p, q) ∈ P, and satisfy market

feasibility conditions at each node in the event-tree. Thus, in order to assure that
[
(pξ, qξ); (z

h
ξ , γh

ξ )h∈H ; λξ

]
ξ∈D

is an equilibrium we just need, by the results of Section 4, to verify that, for each agent h ∈ H, (zh
ξ , γh

ξ )ξ∈D

satisfies Euler and transversality conditions.

Lemma C4. For each t > 0 we have that,

(C.5) 0 ≤ −
∑

ξ∈Dt

γh
ξ∇2g

h
ξ (p, q) · zh

ξ− ≤
∑

ξ∈D\Dt−1

vh
ξ (zh

ξ ),



LONG-LIVED COLLATERALIZED ASSETS AND BUBBLES 27

Moreover, for each ξ ∈ D and for all plan y ≥ 0, we have that

(C.6) vh
ξ (y)− vh

ξ (zh
ξ ) ≤

γh
ξ∇1g

h
ξ (p, q) +

∑
µ∈ξ+

γh
µ∇2g

h
µ(p, q)

 · (y − zh
ξ ).

Proof. The proof is analogous to those made in Claims A2 and A3 (Appendix A), changing prices (p, q)

by (pT , qT ), and taking the limit as T goes to infinity. �

Thus, since
∑

ξ∈D\Dt−1 vh
ξ (zh

ξ ) ≤
∑

ξ∈D\Dt−1 uh
ξ (Wξ), we have limt→+∞

∑
ξ∈Dt

γh
ξ∇2g

h
ξ (p, q)zh

ξ− = 0.

Moreover,
(
γh

ξ∇1g
h
ξ (p, q) +

∑
µ∈ξ+ γh

µ∇2g
h
µ(p, q)

)
∈ ∂+vh(zh

ξ ). By the same arguments made in the proof

of Proposition 1-(i) (see Appendix A) we conclude that Euler equations and transversality conditions hold.

Therefore, it follows from Proposition 1-(ii) that the allocation (zh
ξ )ξ∈D is optimal for agent h ∈ H, which

concludes the proof of the Theorem 1.
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