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E¢ cient Prediction of Excess Returns

Abstract: It is well known that augmenting a standard linear regression model with

variables that are correlated with the error term but uncorrelated with the original re-

gressors will increase asymptotic e¢ ciency of the original coe¢ cients. We argue that

in the context of predicting excess returns, valid augmenting variables exist and are

likely to yield substantial gains in estimation e¢ ciency and, hence, predictive accu-

racy. The proposed augmenting variables are ex post measures of an unforecastable

component of excess returns: ex post errors from macroeconomic survey forecasts,

the surprise components of asset price movements around macroeconomic news an-

nouncements, or even the weather. These �surprises� cannot be used directly in

forecasting� they are not observed at the time that the forecast is made� but can

nonetheless improve forecasting accuracy by reducing parameter estimation uncer-

tainty. We derive formal results about the bene�ts and limits of this approach and

apply it to standard examples of forecasting excess bond and equity returns. We

�nd substantial improvements in out-of-sample forecast accuracy for standard excess

bond return regressions; gains for forecasting excess stock returns are much smaller.

KEYWORDS: Excess returns, e¢ ciency, predictive regression, term premiums, seem-

ingly unrelated regression.

JEL Classi�cations: C22, C53, E17, E43.



1. Introduction

Many empirical papers in �nance explore the predictability of excess returns

using a simple regression-based approach: estimate a regression for future excess

returns based on current predictors and then measure the degree of predictive power of

the estimated model. We derive a method to increase e¢ ciency in the estimation step

and show that this method can lead to substantial gains in measured forecastability.

The key idea is familiar from �rst-year econometrics. If we take any regression

and augment it with regressors that are correlated with the error term, but are known

to be uncorrelated with the original regressors in population, we increase asymptotic

e¢ ciency of the estimates of the original coe¢ cients without compromising consis-

tency. The augmenting variables are not of direct interest, but soak up some residual

variance, increasing precision of the estimates of the coe¢ cients that are of interest.

This idea is an example of the familiar principle that system estimation imposing

correct cross-equation restrictions is more e¢ cient than single equation estimation,1

but we are not aware systematic treatment of the sort we are proposing in forecasting

context.

We argue that forecasting excess returns provides an excellent opportunity for

gains from this approach. The standard predictive regression is of the form,

yt = �0xt�h + "t

where yt is the excess return from t�h to t and the xt�h is observed at t�h. In classic

1As other examples, Hansen (1995) shows how to construct more powerful unit root tests by
augmenting the autoregression with additional covariates that are known to be stationary, and
Eichenbaum, Hansen and Singleton (1988) show how the power of tests of moment restrictions in a
GMM context can be enhanced by imposing other moment restrictions.
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applications, the excess return is for government bonds or equity portfolios, and the

predictors are term spreads or dividend yields at t� h (e.g., Fama and Bliss (1987),

Fama and French (1988), Campbell and Shiller (1988, 1991), Cochrane and Piazzesi

(2005)). The variables in such regressions in practice have several distinct properties:

excess returns are highly variable and have a large unpredictable component. The

predictors are smooth relative to the excess returns and much less variable. In short,

we expect large residual variance relative to the variance of the regressors. In �nite

samples, this is equivalent to saying that the coe¢ cient standard errors will be large.

Our goal is to soak up some of the residual variance to improve the estimates of

�. Formally, a valid augmenting variable, wt must satisfy what we call an identifying

assumption of being uncorrelated with the regressors, xt�h. If wt is also correlated

with "t, then augmenting the estimated regression with wt will increase the asymptotic

e¢ ciency of the estimate of �.

We consider various sets of augmenting variables: In particular, the ex-post

errors in published macroeconomic forecasts, and the surprise components of macro-

economic news announcements that are released between t � h and t. Whether or

not these measures satisfy our identifying assumptions is an important question. We

derive results about the implications of small violations of the assumption of un-

predictability and present tests of this assumption. In the end, however, we argue

that out of sample testing presents a stringent test of the empirical bene�ts of the

approach.

Applying our approach to the prediction of excess returns, we show that the

e¢ ciency gain in pseudo out-of-sample prediction exercises can be quite substantial
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for excess bond returns� a 5 to 30 percent reduction in root mean square prediction

error. Gains for forecasting excess stock returns are only found in some cases, and even

then are very modest. We also consider forecasting returns on orange juice futures

using the weather as an augmenting variable, �nding that the technique increases the

precision of the slope coe¢ cient in this context too. In no case do we �nd that the

method substantially degrades predictive performance.

In section 2, we describe the econometric methodology in a stylized model and

section 3 lays out the speci�c inference procedures that we apply. Sections 4, 5 and 6,

then, report the application to excess bond returns, excess equity returns and orange

juice futures returns, respectively. Section 7 concludes.

2. Methodology

2.1 The baseline case

This section sketches the formal logic of our idea in a simpli�ed framework; the next

section formally explores a more general case. The baseline data generating process

(DGP) is a linear model for the scalar variable to be forecasted, y, a (p � 1) vector

of predictors, x, and a (k � 1) vector of augmenting variables, w. We suppress any

deterministic elements for simplicity. The DGP is then,

yt = �0xt�1 + "t; (1)

xt = Axt�1 + vt (2)

wt = �xt�1 + ut (3)

t = 1; : : : ; T . The variables yt, xt and wt enter the information set at t; ", v , and u

are never directly observed. Assume that the process for x is stationary and that x0
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is known and �xed. The shock vector, ("t; v0t; u
0
t)
0, is iid with 2+� �nite moments for

some � > 0, and its expectation conditional on xt�1 is 0.

We assume that E(wtjxt�1) = 0 which implies that � = 0. Note that "t and vt

can be correlated, but "t is independent of xs, s < t. Thus, x is predetermined but

not strictly exogenous in (1). We can also write

"t = �0wt + �t (4)

where E(�tjwt; xt�1) = 0. For the augmenting variables to be correlated with the

forecast error, � must be nonzero.

Without the restriction that � = 0, equations (1)-(3) form a classical case of

seemingly unrelated regressions (SUR). Because the regressors in each equation of

this system are identical, OLS and SUR estimates of � would coincide. But imposing

the restriction that � = 0, it is straightforward to see that the SUR estimator of � is

a Gaussian pseudo-maximum-likelihood estimator and is a di¤erent OLS estimator:

the estimator of � in the augmented regression:

yt = �0xt�1 + �0wt + �t (5)

obtained by substituting equation (4) into equation (1) (Goldberger (1970)). Let �̂

and ~� be the OLS estimators of � in the unaugmented regression (equation (1)) and

the augmented regression (equation (5)), respectively.

De�ne 
 to be the variance covariance matrix of ("t; v0t; u
0
t)
0 and partition this

matrix conformably as

0@ 
"" 
0v" 
0w"

v" 
vv 
0uv

u" 
uv 
uu

1A. Note that in (4), � = 
�1uu
u". Theorem
1 compares the asymptotic distributions of �̂ and ~�.
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Theorem 1. T 1=2(�̂ � �)!d N(0; �
2��1xx ) and T

1=2(~� � �)!d N(0; �
2(1� �)��1xx ) as

T !1, where �xx = E(xtx
0
t), �

2 = 
"" and � = ��2
0u"

�1
uu
u":

The proofs of the theorems are collected in the appendix. Theorem 1 implies that both

estimators are consistent, regardless of the correlation between the elements of wt and

"t� even if wt is worthless augmenting the regression does not a¤ect consistency. If

wt and "t are correlated, however, then ~� is asymptotically more e¢ cient than �̂. The

relative e¢ ciency (V ar(
~�)

V ar(�̂)
) is 1� � where � is the population R2 in a regression of "t

on wt. In other words, the more variation of "t that is explained by wt, the greater

is the reduction in the asymptotic variance of the estimator.2

Now consider forecast accuracy. The researcher observes xT and wishes to fore-

cast yT+1. The standard forecast in this work is �̂
0
xT . Our proposed alternative

substitutes ~� for �̂, giving the forecast ~�
0
xT . The unconditional mean square predic-

tion error (MSPE) for either of these forecasts is

�2 + T�1tr(V (:)E(xTx
0
T )) + o(T

�1)

as T !1, where V (:) is the asymptotic variance-covariance matrix of the � estimate

in question.3

Note that the augmenting regressors are not used directly in forming the alter-

native forecast; they are used only at the estimation stage to improve the precision

2It is tempting to regress wt on xt�1 and use these residuals instead as the augmenting variables.
However, this would be equivalent to standard SUR estimation of (1)-(3), which would yield the
OLS estimate of � and destroy the e¢ ciency gains.

3This is the unconditional MSPE as opposed to the conditional MSPE (see Phillips (1979) for a
discussion of the distinction). It could equivalently be thought of as the average conditional MSPE
where the parameter is estimated over the �rst T periods and that �xed parameter estimate is then
used for forecasting over a subsequent large sample.
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of the estimate of the projection coe¢ cient of yt on xt�1. Thus, the MSPE in both

cases involves the variance of "t. The advantage of the augmented estimator comes

in the second term, which is that due to error in estimating �. This advantage of the

augmented estimator diminishes asymptotically at the rate T .

Any advantage of the procedure comes from reduced variance in the estimate of

�;reducing forecast error loss for the conventional mean squared-error loss function.

The gains will not necessarily carry over to other loss functions, especially nonsym-

metric loss functions. Indeed there is little basis for focussing on either the ordinary

or augmented OLS estimates of � under more general forecast error loss functions.

The basic idea of our procedure is that the augmented regression soaks up a

component of the error term thereby reducing the error variance and giving more

precise parameter estimates and, hence, better forecasts. This idea is related to

the recent work of Campbell and Yogo (2006), who consider a system consisting of

equations (1) and (2) alone, with a scalar xt. They note that if A is known, then vt

(the innovations to xt) are observed and that one can then obtain a more powerful test

of the hypothesis � = �0 by subtracting the component of "t that is correlated with vt.

More precisely, if �0 = 0 and the errors are Gaussian with known variance-covariance

matrix, they show that the optimal test reduces to the conventional t-statistic in

a regression of yt � 
v"

vv

vt on xt�1.4 When the error variance-covariance matrix is

not known, this suggests augmenting the regression of yt on xt�1 with the additional

4This test is optimal in the sense that it is the uniformly most powerful (UMP) test in the system
given by equations (1) and (2), conditional on the ancillary statistic �Tt=1x

2
t�1. Campbell and Yogo

(2006) derive the conditional UMP test for the general hypothesis � = �0. It only reduces to this
t-statistic when �0 = 0.
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regressor vt . Of course the parameter A is generally not known, but Campbell and

Yogo model it as being local-to-unity allowing superconsistent estimation. They show

how to use Bonferroni methods in conjunction with a superconsistent estimate of A

to improve inference on �.

Our setup is di¤erent. The A parameter need only be T 1=2-consistently es-

timable. In this case, the system estimation of (1) and (2) as in Campbell and Yogo,

would reduce to OLS. We posit an additional measured variable in (3), which allows

us to form a more e¢ cient system estimator.

The key requirements for the proposed method to give an improvement in one-

step-ahead mean-squared prediction error in this baseline model are that the addi-

tional variable, wt, is uncorrelated with the predictor xt�1 but correlated with the

error in the predictive regression. In this simpli�ed case, we have also exploited that

the errors in the predictive regression are homoskedastic and serially uncorrelated.

2.2 The General Model

The baseline model is quite stylized. The general regression that we consider in this

paper is the h-period-ahead forecasting regression

yh;t = �0hxt�h + "h;t (6)

where yh;t is a return from time t� h to time t, xt�h is a px1 vector of predictors and

wh;t is a kx1 vector of augmenting variables. We make the following assumptions:

(i) wh;t = �hxt�h + uh;t, where �h = 0 and E(uh;tjxt�h; xt�h�1; :::) = 0

(ii) "h;t = �0hwh;t + �h;t, where E(�h;tjwh;t; xt�h; xt�h�1; :::) = 0
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(iii) E(�h;tjxt�h; xt�h�1; :::) = 0, where �h;t = (�h;t; w0h;t)0

(iv) T�1�Tt=1xtx
0
t !p �xx, a full-rank matrix

(v) T�1=2�Tt=1xt�h 
 �h;t !d N(0;
h) where


h = limT!1 T
�1E(xt�hx

0
t�h 
 �h;t�

0
h;t)

which can be partitioned conformably with �h;t = (�h;t; w
0
h;t)

0 as


h =

�
!11 !12
!012 
22

�
:

In this model, we allow for heteroskedasticity and serial correlation in the errors,

with the latter being the norm in the case of overlapping forecasts, h > 1. Let �̂h

denote the OLS estimator of �h in (6), which is the standard estimator of a predictive

regression. Let ~�h denote the OLS estimator of �h in the augmented regression

yh;t = �0hxt�h + �0hwh;t + �h;t (7)

Both �̂h and ~�h will be consistent; we derive their asymptotic distributions in the

next Theorem:

Theorem 2. Under assumptions (i)-(v) of the general model, T 1=2(�̂h � �h) !d

N(0;��1xxU1�
�1
xx ) and T

1=2(~�h � �h)!d N(0;�
�1
xxU2�

�1
xx ) where

U1 = !11 + (I 
 �0h)
22(I 
 �h) + 2!
0
12(I 
 �0h)

U2 = !11.

From Theorem 2, a su¢ cient (but not necessary) condition for the augmented esti-

mator, ~�h, to be more e¢ cient than the OLS estimator, �̂h is that !12 = 0. In the
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one-step case, as in the baseline model, !12 = 0, so the baseline results carryover

fairly directly. In part 1 of the web appendix associated with this paper, we provide

other conditions implying that !12 = 0� these are that the xs are strictly exogenous

or that there is in fact no predictability, i.e. �h = 0� and in many contexts one might

expect that !12 would be small. A deeper �nite-sample rationale for advocating ~�h,

however, can be seen as follows.

We can see our estimators as GMM exploiting two moment conditions: E(xt�h"h;t) =

0 and E(xt�h 
 wh;t) = 0. The OLS estimator, �̂h uses the identity weight matrix
5,

and ~�h uses as the weight matrix the inverse of

HAUG = T�1�txt�hx
0
t�h 
 T�1�tltl

0
t

where lt = ("h;t; w0h;t)
0, iterating until convergence.

E¢ cient GMM instead would use the inverse of a consistent estimate of

HEGMM = limT!1ET
�1�s�t(xtx

0
s 
 ltl

0
s)

Call the e¢ cient GMM estimator ��h. Under our assumptions, its limiting distribution

is

T 1=2(��h � �h)!d N(0;�
�1
xxU3�

�1
xx )

where U3 = !11 � !12

�1
22 !

0
12.

Obviously, ��h is at least as e¢ cient as both the other two estimators. If !12 = 0,

~�h is equivalent to e¢ cient GMM and more e¢ cient than OLS.

5Indeed GMM using any suitably block diagonal positive de�nite matrix will deliver the OLS
estimator given the stated moment conditions.
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Note that HAUG can be seen as a version of HEGMM in which we have shrunken

to zero all terms involving serial correlation in the moment condition errors. Thus,

our progression from ��h to ~�h to �̂h can be seen as GMM imposing stronger and

stronger shrinking restrictions to the weight matrix.

In our Monte-Carlo simulations below, we compare the small-sample properties

of �̂h, ~�h and �
�
h in models calibrated to match broad features of our return prediction

applications. We �nd that the augmented estimator ~�h generally gives the most

accurate estimate of �h. Consistent with much earlier evidence, the small-sample

performance of the e¢ cient GMM estimator, ��h; is quite erratic�in �nite samples,

a more constrained choice of the weight matrix may result in better performance of

GMM (e.g. Altonji and Segal (1996)).

Our advocacy of a less-than-fully-e¢ cient estimation on �nite-sample grounds�

parameter shrinkage� is, of course, completely consistent with the spirit of the return

prediction literature and the forecasting literature more generally. Also, as is stan-

dard in this area, the assumptions that we have made in the general model do not

completely specify the DGP. If we did specify the full DGP, then we could use the

system estimator of �h which would exploit a host of moment conditions involving the

ws and xs. However, as has been widely discussed (e.g. West, Wong and Anatolyev

(2009)) small-sample issues and/or misspeci�cation of the original system may make

the full system estimator badly behaved. Indeed it is for this reason that OLS on

the simple forecasting regression has been a preferred approach. We are advocating

modestly increasing the exploitation of information; the �nite sample merits are to

be found in simulations and out-of-sample prediction exercises.
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2.3 Many augmenting variables: the Large k Case

There are two clear ways one could go awry in applying our approach: using a large

number of augmenting variables that are of limited value, and using augmenting

variables that are, in fact, predictable. In this and the next subsection, we provide

some results about these two problems. For this discussion, we revert to the baseline

model.

Asymptotically, adding augmenting variables cannot cause an e¢ ciency loss,

even if they are uncorrelated with "t. However, in a �nite sample, choosing a number

of augmenting variables, k, that is large relative to T will reduce e¢ ciency. To

illustrate this intuition formally, we consider an alternative asymptotic nesting of our

baseline model in which the number of extra regressors goes to in�nity at the same

rate as the sample size so that k=T approaches a �xed, positive limit.

As usual with such asymptotic nestings, it is not that we are taking a position

about what we would do if someone gave us arbitrarily large samples. Rather, we

hope this alternative asymptotic theory will give a better guide as to the �nite-sample

distributions of �̂ and ~� in moderate sample sizes when k is fairly large relative to T .

We �nd that there still may be e¢ ciency gains, but there may be losses, and

the trade-o¤ turns on how strongly the extra regressors are correlated with "t.

Theorem 3. Take the assumptions of the baseline model with the alterations that

k = �T and �t is Gaussian such that 
v" = 0 and 
uv = 0. Then

T 1=2(�̂ � �)!d N(0; �
2��1xx )

and
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T 1=2(~� � �)!d N(0; �
2 1��
1���

�1
xx )

as T !1:

Under this asymptotic formulation, the e¢ ciency of ~� relative to �̂ falls as k=T rises.

As before, e¢ ciency rises with �.

2.4 Small Violations of the Identifying Assumption

The assumption that wt and xt�1 are uncorrelated (� = 0) is central: the gains in

e¢ ciency come exclusively from imposing what we call our identifying assumption. If

this assumption is not satis�ed, then ~� will not be consistent. Of course, it will often

be di¢ cult in practice to rule out small violations of the assumption. To illustrate

the implications of such violations we consider a variation on the baseline model in

which � is not exactly zero, but instead is local-to-zero: � = T�1=2G. The limiting

distributions of �̂ and ~� are provided in,

Theorem 4. Take the assumptions of the baseline model with the alteration that

� = GT�1=2.

T 1=2(�̂ � �)!d N(0; �
2��1xx )

T 1=2(~� � �)!d N(�G0�; �2(1� �)��1xx )

E((yT+1 � ŷT+1jT )
2) = �2 + T�1�2p+ o(T�1)

and

E((yT+1 � ~yT+1jT )2) = �2 + T�1trf[G0��0G+ �2(1� �)��1xx ]�xxg+ o(T�1)

as T !1.

When G 6= 0, ~� is biased, which will tend to degrade forecasting performance. It

still may be true, however, that the mean square error of ~� is smaller than that of
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�̂. Thus, we have the sort of bias-variance trade-o¤ that often arises in forecasting.

Theorem 4 suggests that the balance can go either way.

Both theorems 3 and 4 set out trade-o¤s, and one might seek to optimize these

trade-o¤s to choose a number of augmenting variables, k, taking account of modest

violations of the identifying assumption, G 6= 0. Following up this idea would require

a much richer framework, and we do not pursue these lines. In the end, we believe

that the case for using the augmented regression would be hard to make if we do not

have strong reason to believe that wt and xt�1 are very nearly uncorrelated and so

we henceforth revert to our baseline model in which it is assumed that � = 0:

2.5 A Monte Carlo Simulation

We illustrate the potential gains or losses from using augmenting variables using a

Monte Carlo simulation. The design of the experiment is

yt = �xt�1 + "t

xt = axt�1 + vt

"t = �0wt + �t

where � is normalized to zero (without loss of generality), a = 0:9 (to capture the

high degree of persistence that is common in the explanatory variables in the returns

prediction exercises we take up below), and the sample size is T . The shocks vt and

"t are iid standard normal random variables with correlation �. We set � to be a

constant times a kx1 vector of ones such that the population R2 in the regression of

"t on wt is �, while (w0t; �t)
0 is iid N(0; 1

�0�+1Ik+1).
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Let yh;t = yt + yt�1:: + yt�h+1 and de�ne "h;t and wh;t in the same way. In the

regression

yh;t = �0hxt�h + "h;t

we can then consider the three estimators of �h described in subsection 2.2 (OLS,

augmented OLS and e¢ cient GMM). The true value of �h is zero in this setting; if

h = 1, then this reduces to a special case of the baseline model. Table 1 shows the

simulated mean square errors of ~�h and �
�
h relative to those of the OLS estimator

�̂h for various values of k, �, � and T , and for h = 1; 4. Entries less than one mean

that the augmented OLS or e¢ cient GMM estimators, ~�h or �
�
h, respectively, are

doing better than the OLS estimator in a mean-square error sense.

As expected, the higher is � (the population R2 in a regression of "t on wt), the

better the augmented estimator, ~�h; fares, consistent with Theorem 1. Meanwhile,

other things being equal, the advantage of using ~�h rather than the OLS estimator

declines as k increases relative to T , consistent with Theorem 3. Indeed ~�h can even

give a larger mean square prediction error than OLS if k is very large relative to T ,

or if � very small. But even with � as small as 10 percent, ~�h is better than OLS in

all the cases considered.

It is likewise true that ��h gives an improvement in mean-square error provided

that � is not very small and k is not too large relative to T: However, the mean-square

error of ��h exceeds that of ~�h in nearly all cases, and there are indeed many cases in

which ��h has a higher mean-square error than OLS. This estimator appears to have

a more erratic performance, which must owe to di¢ culty in estimating the weight
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matrix. From this point on, the estimators of predictive regressions that we consider

in this paper are the OLS estimator, �̂h, and the augmented estimator, ~�h: Also,

from this point on, we omit the h subscript denoting the horizon of the forecasting

regression.

3. Our speci�c inference procedures

There are three natural hypotheses of interest: 1) Is the identifying assumption that

the ws are unpredictable satis�ed (H1 : � = 0)? 2) Are the augmenting variables

irrelevant (H2 : � = 0)? 3) Is the recursive out-of-sample root mean square prediction

error of the augmented approach relative to the baseline OLS approach (RRMSPE)

smaller than one (H3 : RRMSPE = 1 against the one-sided alternative RRMSPE <

1)? As we de�ne it, RRMSPEs less than one indicate that the augmented approach

has smaller errors. In the best case for the approach, we fail to reject the �rst

hypothesis, and reject the latter two. Unfortunately, all of these inferences are likely

to be complicated by well-known problems arising from persistent variables.

For example, the natural way to test the identifying assumption that � = 0

and that the augmenting variables are worthless (� = 0) is to simply use the rel-

evant regression-based Wald test that the parameters of interest are zero. In the

present case, however, conventional asymptotics for evaluating marginal signi�cance

are known to provide a very poor approximation to behavior in relevant sample sizes.

The main culprit here is that in our applications� as in most predictive regressions

in �nance� the predictors, the xs, are highly persistent. Meanwhile, the overlapping

nature of the long-horizon returns we will be predicting implies that the appropriate

augmenting variables will also be overlapping and, hence, persistent as well. Re-
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gressing persistent variables on each other poses severe challenges to small-sample

inference: the relationship between fwtg and fxt�hg is akin to a spurious regression

(see, for example, Hodrick (1992), Goetzmann and Jorion (1993) Elliott and Stock

(1994) and Stambaugh (1999)). Thus, we expect that the conventional asymptotic

p-values would be misleading. Various conventional bootstraps do not resolve the

problem because the test statistics have non-pivotal distributions in the presence of

roots that are local to unity (Basawa et al. (1991)). In some simple models, such as

an AR(1), a grid bootstrap provides a workable alternative (Hansen (1999)); but in

more complicated models with local-to-unit roots there is no widely accepted practical

solution.

Kilian�s (1998) bias-adjusted bootstrap provides a pragmatic alternative that�

while not asymptotically valid in the local-to-unit root case� has been shown to have

relatively small size and coverage distortions in the presence of near-unit roots. We

adapt this approach to our problem and report a Monte-Carlo simulation providing

evidence that the approach has reasonable small-sample properties in the current

context.

For our bootstrap, we �rst use the bias-adjusted bootstrap of Kilian (1998) to

�t a VAR(1) to 1, 2, 3, 4 and 5 year zero-coupon interest rates. In each bootstrap

sample, we draw interest rates from this VAR and then compute excess returns fytg

and predictors fxt�hg. Each replication of the bootstrap separately re-samples from

the ws, making them uncorrelated with both excess returns and the predictors. The

details of how we re-sample the ws depend on the character of the ws and are described

below. This resampling scheme ensures that � = 0 and � = 0 by construction under
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the null, while preserving the persistence properties of the variables.

We use this resampling scheme to assess the statistical signi�cance of tests of

the hypotheses that � = 0 and � = 0, by comparing the relevant Wald statistic to

the bootstrap distribution of the test statistic.6 We also use this method to test

the hypothesis that the RRMSPE is equal to 1, by comparing the Diebold-Mariano

statistic (Diebold and Mariano (1995)) to the bootstrap distribution, in a one-sided

test.7

We assess whether our concerns with conventional asymptotics are warranted

and whether our bootstrap approach overcomes the problems using a Monte Carlo

experiment summarized here and reported in detail in part 2 of the web appendix.

This experiment varies the largest autoregressive root of interest rates in the range

from 0.8 to 0.99. Using the 5 percent critical value from the asymptotic �2 distrib-

ution, we �nd that the actual sizes of the Wald tests of � = 0 and � = 0 are about

20 percent and 50 percent, respectively. The well-known problems with inference

in persistent data manifest themselves quite dramatically in this case. Meanwhile,

the actual size of the nominal 5 percent bootstrap tests are between 2 and 8 per-

cent. For the test of statistical signi�cance of the RRMSPE, the empirical size of a

nominal 5 percent bootstrap test is close to 5 percent. Thus, we conclude our in-

ference approach�although not theoretically justi�ed in the local-to-unit root case�is

6The Wald statistics are computed using Newey-West heteroskedasticity and autocorrelation
consistent variance-covariance matrices with a truncation lag of h.

7The hypothesis that we are e¤ectively testing in this inference procedure is that the augmenting
variables are strictly exogenous with respect to fytg and fxtg. That is su¢ cient, but not necessary,
for the augmenting variables to be irrelevant for forecasting. If there is feedback from wt to future
values of xt, then wt is not strictly exogenous, but is not necessarily of any help in prediction.
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nonetheless fairly well calibrated, even with roots that are very close to the unit circle.

4. Predicting Excess Bond Returns

As noted in the introduction, regression-based excess return prediction is a natural

application for our method. We expect these regressions to have very modest pre-

dictive power (if any) for excess returns, which are very volatile. These facts suggest

that the relevant � may be di¢ cult to estimate precisely. Further, the facts suggest

that there will be a great deal of variance in the forecast error that could potentially

be soaked up if we can �nd augmenting variables. These intuitions are examined in

two widely studied areas: excess bond and equity return prediction.

There are many regressions predicting excess bond returns, but we take as

our baseline the recent and in�uential work of Cochrane and Piazzesi (2005). Their

predictions are based on a regression of excess bond returns on the term structure of

forward rates.

To describe the regressions, de�ne Pn;t to be the price of an n-month zero-

coupon bond in month t; the yield on this bond is zn;t = � 1
n
log(Pn;t), and the

12-month forward rate ending n months hence is fn;t = log(Pn�12;t)� log(Pn;t). The

return from buying an n-month bond in month t�12 and selling it as an n�12-month

bond in month t is log(Pn�12;t) � log(Pn;t�12) and the excess return from holding an

n-month bond for 12 months over holding a 12-month bond for that same holding

period is

rxnt�12;t = log(Pn�12;t)� log(Pn;t�12)� z1;t�12

Cochrane and Piazzesi consider the regression of excess returns on forward rates at
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the �rst �ve annual horizons:

rxnt�12;t = �0;n + �1;nz12;t�12 + �2;nf24;t�12

+�3;nf36;t�12 + �4;nf48;t�12 + �5;nf60;t�12 + "t�12;t (8)

for n = 24; 36; 48; 60. They also estimate a restricted version of this model in which

the coe¢ cients on the forward rates are the same, up to a scaling factor, for each

maturity n, i.e. �j;n = 
n�j. To estimate this restricted model, they �rst run the

regression

rx�t�12;t = �0+�1z12;t�12+�2f24;t�12+�3f36;t�12+�4f48;t�12+�5f60;t�12+"
�
t�12;t (9)

where rx�t�12;t =
1
4
�5j=2rx

12j
t�12;t; and then regress the excess returns on the �tted values

from (9).We focus on improving the precision of the estimates in equations (8) and (9).

Our baseline regressions consist of (8) and (9) estimated using the CRSP Fama-Bliss

dataset of monthly zero-coupon bond prices.

We consider several di¤erent sets of augmenting variables, each constructed as

a sort of ex post forecast error from some forecast related to the macroeconomy:

A1. Ex post errors from the Survey of Professional Forecasters. Each quarter,

in the middle of February, May, August and November, the Survey of Professional

Forecasters (SPF) reports analysts�predictions for several variables over the next four

quarters. For each SPF back to the beginning of the survey in 1968Q4 we take the

median forecast of nominal GDP growth, GDP de�ator in�ation and the unemploy-

ment rate four quarters hence and then take the di¤erences between these forecasts

and the actual realized values to form the augmenting variables fwtg.8 Because the

8For GDP growth and GDP de�ator in�ation, this is the annualized growth rate from the quarter
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survey data are available only at the quarterly frequency, the regressions (8) and (9)

are run only using data from each January, April, July and October (i.e. just before

the survey) for a total of four observations per year. For example, we use the ex-post

forecast error from the forecast made in February as the augmenting variable for pre-

dicting 12-month excess bond returns starting in January. The timing ensures that

only what forecasters learned after time t� 12 goes into the augmenting variables9.

A2. Expanded SPF errors. Starting with the 1981Q3 survey, the SPF ex-

panded the set of variables being predicted to include the CPI and some interest

rates. Accordingly, for each SPF back to 1981Q3, we take the median predictions

of the variables considered in A1 plus CPI in�ation, short-term Treasury bill yields

and long-term Treasury bond yields and again construct realized forecast errors as

described above. We then take the �rst 3 principal components of these 6 realized

forecast errors to form the augmenting variables fwtg. As with A1, only four obser-

vations are used per year.

A3. A News Index of Macro Announcement Surprises. We take the following

monthly macroeconomic news announcements: CPI, durable goods orders, housing

starts, industrial production, index of leading indicators, nonfarm payrolls, PPI, retail

sales and unemployment. For each month and each of these announcement types,

we construct the di¤erence between the actual released value and the expected value

as found in the MMS survey taken the previous Friday. We form news index as a

before the survey to four quarters later. As the actual realized values of the series, we use the �rst
released values from the Federal Reserve Bank of Philadelphia�s realtime dataset.

9The survey deadline date is a few days before the SPF publication date, but is always in the
second month of each quarter.
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weighted average of these surprises, giving each type of release a weight equal to the

slope coe¢ cient in a regression of the intraday changes in the fourth Eurodollar futures

contract10 from 5 minutes before the announcement until 15 minutes afterwards on

the surprise component of the news announcement.11 This is designed to weight each

type of announcement by its market impact. We then cumulate the resulting index

over all months from t � h + 1 to t, inclusive, to form the augmenting variable wt

where h denotes the horizon of the regression. Our data for these announcements

and, hence, the news index spans 1985:02 to 2006:12.

A4. Expanded News Index. As in A3, except adding the following announce-

ments as well: capacity utilization, core CPI, factory orders, the advance release of

GDP12, new home sales, personal consumption expenditures, core PPI, retail sales

excluding autos. Our data for this larger set of announcements go back to 1989:09.

The extra variables are not available earlier.

A5. Further Expanded News Index. This is as in A3, except adding the following

10This is the fourth contract in the quarterly cycle and settles to the three-month interest rate
about one year hence.

11Some announcements come out concurrently. In A3, A4 and A5, the slope coe¢ cients were
obtained from a single regression of the intraday change in the fourth Eurodollar futures rate on
the surprise components of all of the following announcements: capacity utilization, consumer con-
�dence, CPI (total and core), durable goods orders, the employment cost index, factory orders, the
advance release of GDP, hourly earnings, housing starts, initial jobless claims, industrial production,
the index of leading indicators, the Michigan survey, NAPM, nonfarm payrolls, new homes sales,
personal consumption expenditures, PMI, PPI (total and core), retail sales (total and ex autos) and
unemployment. Each surprise was set to zero whenever that particular announcement type did not
come out or was missing from our dataset. The regression was run over the period 1982 to 2006.

12This is the one quarterly release that we consider. The monthly advance GDP surprise series
is set to zero in all months for which there was no advance GDP announcement.
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announcements as well: consumer con�dence, initial jobless claims13, the NAPM

index. Our data for this largest set of announcements go back only to 1991:07.

A6. Alternative Aggregation of News Index. We take the �rst three principal

components of the monthly surprises that go into the construction of the index in

A5. We then cumulate these principal components over all months from t� h+1 to

t, inclusive, to form the augmenting variables wt.

The cumulative economic news indexes in A3, A4 and A5 are plotted in Figure 1. If

the SPF andMMS forecasts are predictions of upcoming releases and quarterly macro-

economic data, respectively, made by a rational forecaster who minimizes quadratic

loss, then these forecasts must be e¢ cient (i.e. equal to the conditional expectation)

and all the variables A1�A6 must be orthogonal to everything in the information set

at the time the forecasts were made, including xt�h. Evidence on the e¢ ciency of SPF

survey forecasts is mixed. Froot (1989) and Romer and Romer (2000) report evidence

against the e¢ ciency of survey forecasts, but Thomas (1999), Mehra (2002) and Ang,

Bekaert and Wei (2007) report more favorable evidence. Much of the discrepancy

appears to relate to the sample period considered. In the 1970s and early 1980s the

surveys appear to have had poor success in forecasting some variables, notably in�a-

tion, but have been more successful subsequently. Evidence on the e¢ ciency of MMS

survey forecasts (forecasts for a speci�c news release taken the previous Friday) is

more uniformly favorable (see, for example, Balduzzi, Elton and Green (2001)).

In any case, forecast e¢ ciency is a su¢ cient but not necessary condition for

13This is the one weekly release that we consider. All surprises within a given month are cumulated
to form the monthly claims surprise series.
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our identifying assumption. If the expectations are e¢ cient but for an expectational

error that is orthogonal to xt�h, then wt and xt�h will still be uncorrelated and the

augmented estimator will be consistent for the population projection coe¢ cient of

yt onto xt�h. Our identifying assumption will only fail if the expectational error is

correlated with xt�h, which seems unlikely to us, but which we test below.

With the sets of augmenting variables de�ned, we can now complete our descrip-

tion of the method for re-sampling from the augmenting variables for the bootstrap

(owing to di¤erences in the SPF versus news index variables, the re-sampling methods

are slightly di¤erent in these two case). The SPF data are for overlapping forecast

periods and to preserve this structure insofar as possible, we draw blocks of four-

quarter-ahead SPF forecast errors with a block length of 3 years. For the news index,

we have underlying monthly surprises, which are not overlapping and are arguably

uncorrelated. Thus, we re-sample randomly from the monthly surprise indexes, and

then, as with the actual data, we aggregate these monthly surprise data between

t � h and t to form augmenting variables in each bootstrap sample. As a result,

the augmenting variables in the bootstrap sample are by construction of no value in

increasing e¢ ciency (� = 0 in (7)) and are uncorrelated with the predictors (� = 0).

4.1 Results

The results from estimating equation (8) using the regressors A1 and A3 in the aug-

mented estimator, as well as the results of the baseline OLS regression over the same

sample periods for n = 24; 36; 48 and 60 are shown in Table 2. The corresponding re-

sults for the estimation of equation (9) are also shown in Table 2. The Table reports

estimates of � and asymptotic standard errors from the regressions, both baseline
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and augmented. Results using augmenting variables A2, A4, A5 and A6 are in part

3 of the web appendix.

Consistent with the theory, the standard errors on the elements of � in the

augmented regressions are typically� though not always� lower than in the baseline

regressions. Often they are often substantially lower. This is a preliminary indication

that the inclusion of additional regressors may be improving e¢ ciency.

Cochrane and Piazzesi emphasized a �tent� shape in the coe¢ cients on the

forward rates whereby the shortest and longest term forward rates have negative

coe¢ cients while the intermediate term forward rates have positive coe¢ cients. In

some cases, the inclusion of the additional regressors indicates a more pronounced

tent shape than is found in the OLS regressions.

Table 2 also gives the Wald test statistics testing the hypothesis that the coef-

�cients on the augmenting regressors are jointly equal to zero (� = 0) which would

imply that the augmenting variables are not correlated with the forecast error. For

augmenting variables A1�A5, this hypothesis is rejected at conventional signi�cance

levels, typically at levels between 0:001 and 0:05. For variables A6 (panel 2-6), the

hypothesis is not rejected at the 10 percent level.

Finally Table 2 gives p-values for testing our identifying restriction � = 0. This

assumption is never rejected at conventional signi�cance levels using the bootstrap

p-values. It is true, however, that for variables A1, the result is borderline with a

p-value of about 0.12.

4.2 Pseudo-Out-of-Sample Forecasting

Perhaps the most stringent test of the practical usefulness of the proposed approach
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to prediction can be obtained in a standard recursive out-of-sample prediction exer-

cise. Starting half-way through each of the respective estimation periods, we estimate

equation (8) using all data back to the beginning of the sample period that would

have been available in that month, and then construct predictions of excess bond

returns over the subsequent year using benchmark and augmented regressions; we

repeat this estimation and prediction exercise in each subsequent month, in each case

using all data back to the start of the sample period. We compute the out-of-sample

root mean square prediction error for each of the augmented regressions, relative to

the out-of-sample root mean square prediction error from the corresponding base-

line regression model. The results are reported in Table 3 for both the unrestricted,

(8), and restricted (9), models. A relative root mean square prediction error (RRM-

SPE) below one means that the augmented regression is giving better out-of-sample

predictions of excess bond returns than the baseline.

As can be seen from the Table, the relative root mean square prediction errors

are mostly between 0.7 and 0.95, implying about a 5-30 percent reduction in root mean

square prediction error. The best results obtain with the SPF regressors (additional

regressors A1 and A2) and the news index that combines the largest number of

announcements (additional regressors A5). The weakest results are found when using

the three principal components of the surprises as additional regressors (A6).

The improvement in root mean square prediction error is signi�cant at the 5

percent level for additional regressors A1, A2 and A5 and the p-values are between

5 and 20 percent for A3 and A4. Using the principal components of the surprises as

additional variables (A6), the improvement in root mean square prediction error is
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not close to being signi�cant at any conventional level.

Thus, our new method leads to reductions in the estimated standard error

of the estimator of � and improvements in out-of-sample RMSPE. One may well

wonder, however, whether the improvements in RMSPE are plausibly due to the

mechanism we describe. To shed some light on this, we did a �back-of-the-envelope�

calculation. The expected relative RMSPE is approximately

r
�2+(1��)tr(V�̂�x)
�2+tr(V�̂�x)

where

�2 denotes the error variance, �x = E(xtx
0
t), � is the population R-squared in the

regression of the errors on the augmenting variables, V�̂ is the estimated variance-

covariance matrix of the parameter estimates (which is Op(T�1)) and xt is the vector

of predictors. We can form a crude estimate of the expected improvement by plugging

in estimates of these parameters generated from our application. When we do this,

we get estimated mean improvements in relative RMSPEs in the range of 0.92 to

0.95.14 While our improvements are generally a bit larger than our estimate of the

expected improvement, these crude estimates of expected improvement are broadly

consistent with what we report for additional regressors A1-A4 and A6.

5. Predicting Excess Stock Returns

The second predictive regression that we consider is the prediction of excess stock

returns, following authors such as Fama and French (1988), Campbell and Shiller

(1988) and Ang and Bekaert (2007). We use the following notation: the return on

14We plug in the standard regression estimates of �2, �x and �. In the current context, the
standard Newey-West estimate of V�̂ is well known to work poorly in small samples, so we �t a
VAR(1) to yields and forward rates over the period since January 1985 and used this as the data-
generating process to form a Monte-Carlo estimate of V�̂ in samples of the average sample size for
the in-sample period in our forecasting exercise.
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the CRSP value-weighted portfolio from month t�1 to month t is Rt�1;t = log(Pt+DtPt�1
)

where Pt denotes the price and Dt denotes the dividend in month t. We de�ne three-

month excess stock returns as rxSt�3;t = �
2
j=0Rt�3+j;t�3+j+1�z1;t�3, where z1;t�3 is the

three-month Fama-Bliss risk-free rate. De�ne the log dividend-price ratio in month

t as dpt = log(�11j=0Dt�j=Pt). Summing the dividends over the past year deals with

the seasonality in dividends. Finally de�ne the stochastically detrended short-term

interest rate as ~rRFt = rRFt � 1
4
(rRFt + rRFt�3 + rRFt�6 + rRFt�9) where r

RF
t is the three-

month Fama-Bliss riskfree rate. We consider predicting excess stock returns with the

following predictors: dpt alone, ~rRFt alone, and dpt and ~rRFt together in the following

three regressions:

rxSt�3;t = �1;0 + �1;1dpt�3 + "1t (10)

rxSt�3;t = �2;0 + �2;1~r
RF
t�3 + "2t (11)

and

rxSt�3;t = �3;0 + �3;1dpt�3 + �3;2~r
RF
t�3 + "3t (12)

As in section 3, we take these regressions as the baseline prediction equations for

excess stock returns, and our focus is on improving the precision of the estimates in

equations (10), (11) and (12). The horizon here is h = 3. We estimate these baseline

regressions and augmented regressions including the augmenting regressors A1-A6,

where these news surprise measures are now cumulated over 3-month rather than

12-month horizons.
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Table 4 shows the coe¢ cient estimates and Wald tests from the estimation of

(10), (11) and (12) both with and without the additional regressors. Exactly the

same information is shown as for the corresponding excess bond return prediction

equations. This table shows results only for augmenting regressors A1 and A3 �results

for augmenting regressors A2, A4, A5 and A6 are in part 4 of the web appendix. With

additional regressors A1 (SPF forecast errors), the standard errors in the augmented

regressions are a bit lower than those in the baseline regressions. TheWald test testing

the hypothesis that the additional variables are relevant is signi�cant in (10), (11) or

(12), using the bootstrap p-values. On the other hand, using additional regressors A3

(announcement surprise measures), the standard errors in the augmented regressions

are little changed from those in the baseline regressions and the Wald test for the

joint relevance of these extra regressors is not signi�cant. This is quite di¤erent

from what we found in the excess bond return prediction equations, but is perhaps

not surprising since many authors have found that a considerably greater fraction

of bond price movements can be explained by macroeconomic news announcements

than is the case for stock prices (see e.g. Andersen, Bollerslev, Diebold and Vega

(2007)).

For each of the augmented regressions in Table 4, we recursively compute the

out-of-sample mean square prediction error relative to that from the baseline regres-

sion starting half-way through the sample period. The results are reported in Table 5.

Again, the results are di¤erent depending on whether one uses the SPF forecast errors

or announcement surprise measures as additional variables. With the SPF forecast

errors, the RRMSPE is a bit below 1, showing some improvement in root mean square
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prediction error. Using our bootstrap test, the improvement is statistically signi�-

cant, at least at the 10 percent level, in all cases. The improvement is more modest

than was obtained in forecasting excess bond returns with additional regressors A1

and A2. Meanwhile, with additional regressors A3-A6, the RRMSPE is around 1 in

all cases and there are no cases in which the augmented regression gives a signi�cant

improvement in out-of-sample forecasting performance, as one might expect given

that the announcement surprise measures do not have a signi�cant association with

quarterly excess stock returns.

6. Predicting Returns on Orange Juice Futures

The �nal predictive regression that we consider in this paper is quite di¤erent, namely

the prediction of returns on frozen orange juice concentrate futures over the course of

the winter, using the weather as an augmenting variable. It is meant as an illustration

of other contexts in which the methodology proposed in this paper may be useful.

Let Rt�1;t denote the returns to buying a March orange juice futures contract on the

last day of the previous November and selling it on the last day of February. We

consider regressions of these returns on two predictors that are commonly used in

forecast commodity futures returns (see, for example, Bessembinder (1992)). These

are (i) the slope of the futures curve at the start of the holding period (the log

di¤erence between the prices of nine-month-ahead and front futures contracts at the

end of November) and (ii) the net long positions of speculators in the orange juice

futures market at the end of November from the Commitment of Traders reports of

the Commodity and Futures Trading Commission. For the augmenting variable, wt,

we use the total number of freezing degree days at Orlando airport during December,
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January and February. This is calculated as the sum of the number of degrees that

the minimum temperature fell below 320F, summed across all days in these three

months that the temperature fell below freezing.

Our identifying assumption is that wt is unforecastable at the end of November.

The augmenting variable will help with e¢ ciency as long as the weather is correlated

with orange juice futures returns, which seems very likely as frost is very damaging

to orange trees and central Florida is a major orange-growing area.

The results of the baseline and augmented regressions are shown in Table 6. For

both regressions, including the augmenting variable reduces the standard error on the

predictor. Using the slope of the futures curve as the predictor, we do not reject the

null of no predictability in either case. Using the net long speculative positions as

the predictor, the t-statistic on the slope coe¢ cient goes from 1.94 in the baseline

regression to 2.71 in the augmented regression, and so controlling for the weather

allows us to reject the null of no predictability.

7. Conclusions

Researchers using a regressor xt�h to forecast excess returns, yt, conventionally regress

the excess returns on xt�h and use the resulting coe¢ cients for forecasting. However,

if there exists a variable wt that is correlated with the regression error, but not

with xt�h, then a more e¢ cient approach to estimating the coe¢ cient on xt�h in the

forecasting regression is to augment the regression with wt. This may in turn enable

better forecasts to be constructed, because the coe¢ cient on xt�h is more precisely

estimated, even though wt is not observed at the time the forecast is made, and so

cannot be directly used in prediction.

30



In this paper, we demonstrate the merits of augmenting the estimation model

for predictive regressions with ex post measures of any unpredictable component of

variable being forecasted. This method is most likely to yield advantages in cases

such as forecasting excess returns where there is a large unforecastable component

and precision of the coe¢ cient estimates is likely to be a major issue. In the excess

returns context, we argue that ex-post SPF survey forecast errors and the surprise

components of macroeconomic news announcements may satisfy the required condi-

tions for augmenting variables.

We demonstrate the merits of the approach using canonical predictive regres-

sions for excess bond and equity returns. The gains are quite pronounced in our

extension of the Cochrane and Piazzesi (2005) study of excess bond returns. We �nd

little, if any, gains in conventional equity returns regressions. Our goal in the empiri-

cal work was to show the bene�ts in well-known cases. We suspect further gains may

be found in other cases and using other augmenting variables. Indeed, we present

a small illustration for agricultural commodity future returns using the weather as

an augmenting variable. Other possible augmenting variables include data revisions

(Koenig et al. (2003)) and oil supply shocks (as identi�ed, for example, by Kilian

(2006)), though, at least for the oil supply shocks, we think that the case that these

are uncorrelated with the predictors is relatively weak.

The approach could of course easily be misused, say, by searching over a large

set of potential augmenting variables for those that give the greatest reduction in

(in sample) standard errors. While out-of-sample tests can provide some protection

against the sort of false inference this could promote, we believe that, in practice,
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our approach should only be entertained if the researcher has a strong belief that the

identifying assumption is satis�ed. In any case, we think our results suggest that the

approach deserves serious consideration.
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Appendix: Proof of Theorems

Proof of Theorem 1.

This follows from the usual formula for the asymptotic distribution of OLS given that

V ar("t) = �2 and

V ar(�t) = V ar("t � �0wt) = 
"e + �0
uu�� 2�0
u" = 
"e � 
0u"
�1uu
u" =

�2 � 
0u"
�1uu
u" = �2(1� �)

Proof of Theorem 2.

Since �̂h � �h = (�Tt=1xtx
0
t)
�1�Tt=1xt"h;t and ~�h � �h = (�Tt=1xtx

0
t)
�1�Tt=1xt�h;t, the

result follows from the facts that T�1�Tt=1xtx
0
t !p �xx, T�1=2�Tt=1xt"h;t !d N(0; U1)

and T�1=2�Tt=1xt�h;t !d N(0; U2).

Proof of Theorem 3.

We begin with a lemma provided by Bekker (1994) (lemma 2 in that paper).

Lemma. Let U be any n �m matrix with rows fuigni=1 that are iid Gaussian with

mean zero and variance-covariance matrix �, c be any �xed m� 1 vector, and let P

be any nonstochastic n�n projection matrix of rank r: If r=n!  as n!1, then

1

n1=2
(U 0PUc� E(U 0PUc))!d N(0;  c

0�c� +  �cc0�) (A1)

and

n�1U 0PUc!p  �c (A2)
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The result for �̂ follows from the usual formula for the asymptotic distribution of

OLS with a �xed number of regressors. To prove the result for ~�, write the model in

matrix form as y = X�+W�+� whereW is a T�k matrix, the tth row of which is w0t.

Under the stated assumptions, the regressors in this equation are strictly exogenous

and so we may condition on them. We can then write

~� = � + (X 0PWX)
�1X 0PW � (A3)

where PW = I �W (W 0W )�1W 0.

Now PW is a projection matrix of rank T � k. In the notation of the lemma, let

U = [X �], n = T and

� =

�
�xx 0
0 V ar(�t)

�
From (A2), letting c be each of the �rst p standard basis vectors in turn, conditional

on W ,

T�1X 0PWX !p (1� �)�xx

From (A1), letting c be the p+ 1st standard basis vector, conditional on W ,

T�1=2X 0PW � !d N(0; V ar(�t)(1� �)�xx)

and so, from (A3), again conditional on W;

T 1=2(~� � �)!d N(0;
1

1��V ar(�t)�
�1
xx )

As this limiting distribution does not depend on W , it holds unconditionally as

well. As V ar(�t) = �2(1� �), it follows that
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T 1=2(~� � �)!d N(0;
�2(1��)
1�� ��1xx )

as required.

Proof of Theorem 4.

The proof for �̂ is as in Theorem 1. Turning to ~�, let � = 
�1uu
u" and �t = "t��0ut.

From (1),

yt = �0xt�1+"t = �0xt�1+�
0ut+�t = �0xt�1+�

0(wt��xt�1)+�t = ��0xt�1��
0
wt+�t

where �� = � � �0� and E(�tjxt�1; wt) = 0. The estimator ~� is the OLS estimate

of the coe¢ cient on xt�1 in this regression. Since � = GT�1=2, T 1=2(� � ��) =

G0�. From the usual formula for the asymptotic distribution of OLS, given that

V ar(�tjxt�1; wt�1) = 
"e � 
0u"
�1uu
u" = �2(1� �), and

T�1�xt�1w
0
t = T�1�xt�1(x

0
t�1�

0 + u
0
t) = T�3=2�xt�1x

0
t�1G

0 + T�1�xt�1u
0
t !p 0,

it follows that

T 1=2(~� � ��)!d N(0; �
2(1� �)��1xx )

Finally, since T 1=2(~� � �) = T 1=2(~� � ��) � T 1=2(� � ��) we have T 1=2(~� � �) !d

N(�G0�; �2(1��)��1xx ), as required. The formulas for the unconditional mean square

prediction errors follow from simple algebra.
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Table 1: Simulated mean square errors of ~�h and �
�
h relative to �̂h

Panel A: Case h=1
� � k=1 k=5 k=10 k=1 k=5 k=10 k=1 k=5 k=10

T=100 T=500 T=1000
MSE of Augmented estimator (~�h) relative to OLS

0 0 1.00 1.02 1.06 1.00 1.01 1.01 1.00 1.00 1.01
0.01 0 0.99 1.02 1.05 0.99 1.00 1.01 1.00 0.99 1.00
0.1 0 0.95 0.97 1.00 0.94 0.96 0.96 0.96 0.95 0.96
0.3 0 0.84 0.86 0.88 0.83 0.85 0.85 0.85 0.84 0.85
0.5 0 0.71 0.74 0.75 0.70 0.73 0.72 0.71 0.72 0.72
0 0.5 1.00 1.01 1.03 1.00 1.01 1.01 1.00 1.00 1.01
0.01 0.5 0.99 1.01 1.02 0.99 1.00 1.00 1.00 0.99 1.00
0.1 0.5 0.94 0.95 0.96 0.95 0.96 0.96 0.95 0.94 0.96
0.3 0.5 0.82 0.83 0.83 0.83 0.85 0.85 0.84 0.83 0.85
0.5 0.5 0.67 0.70 0.69 0.70 0.72 0.72 0.71 0.70 0.72
0 0.9 1.00 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.01
0.01 0.9 0.99 0.99 1.01 1.00 1.00 1.00 0.99 0.99 1.00
0.1 0.9 0.93 0.94 0.95 0.95 0.95 0.95 0.93 0.94 0.95
0.3 0.9 0.79 0.81 0.80 0.83 0.82 0.83 0.80 0.81 0.83
0.5 0.9 0.64 0.66 0.65 0.69 0.68 0.70 0.67 0.68 0.69

MSE of EGMM estimator (��h) relative to OLS
0 0 1.01 1.03 1.08 1.01 1.03 1.05 1.00 1.01 1.03
0.01 0 1.01 1.02 1.07 1.00 1.02 1.05 1.00 1.01 1.02
0.1 0 0.97 0.98 1.03 0.95 0.98 1.00 0.96 0.96 0.98
0.3 0 0.86 0.89 0.95 0.84 0.87 0.89 0.85 0.85 0.87
0.5 0 0.74 0.79 0.85 0.71 0.74 0.76 0.71 0.73 0.74
0 0.5 1.02 1.06 1.08 1.00 1.02 1.05 1.01 1.02 1.03
0.01 0.5 1.01 1.05 1.08 1.00 1.02 1.04 1.00 1.01 1.03
0.1 0.5 0.96 1.00 1.04 0.95 0.98 1.00 0.96 0.96 0.98
0.3 0.5 0.85 0.90 0.94 0.84 0.87 0.89 0.84 0.85 0.86
0.5 0.5 0.71 0.78 0.85 0.70 0.74 0.76 0.71 0.71 0.73
0 0.9 1.03 1.07 1.12 1.00 1.04 1.07 1.01 1.03 1.06
0.01 0.9 1.02 1.07 1.12 1.00 1.04 1.07 1.00 1.03 1.06
0.1 0.9 0.96 1.01 1.08 0.96 0.98 1.02 0.93 0.97 1.00
0.3 0.9 0.83 0.90 0.97 0.84 0.85 0.90 0.81 0.84 0.87
0.5 0.9 0.69 0.77 0.86 0.70 0.71 0.76 0.68 0.69 0.72
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Table 1 (continued): Simulated mean square errors of ~�h and �
�
h relative to �̂h

Panel B: Case h=4
� � k=1 k=5 k=10 k=1 k=5 k=10 k=1 k=5 k=10

T=100 T=500 T=1000
MSE of Augmented estimator (~�h) relative to OLS

0 0 1.01 1.02 1.09 1.00 1.02 1.04 1.00 1.00 1.01
0.01 0 1.00 1.01 1.09 0.99 1.01 1.03 1.00 1.00 1.01
0.1 0 0.95 0.97 1.04 0.94 0.97 0.98 0.95 0.95 0.96
0.3 0 0.84 0.87 0.92 0.83 0.86 0.87 0.83 0.84 0.85
0.5 0 0.72 0.74 0.78 0.71 0.73 0.74 0.70 0.72 0.72
0 0.5 1.01 1.05 1.14 1.00 1.02 1.06 1.00 1.01 1.02
0.01 0.5 1.00 1.05 1.13 0.99 1.02 1.05 1.00 1.00 1.02
0.1 0.5 0.96 0.99 1.08 0.94 0.97 1.01 0.94 0.95 0.97
0.3 0.5 0.84 0.87 0.93 0.82 0.86 0.89 0.83 0.83 0.85
0.5 0.5 0.71 0.72 0.76 0.69 0.72 0.75 0.70 0.70 0.71
0 0.9 1.03 1.11 1.23 1.00 1.03 1.09 1.01 1.02 1.05
0.01 0.9 1.02 1.11 1.23 1.00 1.03 1.08 1.00 1.01 1.04
0.1 0.9 0.97 1.05 1.16 0.95 0.97 1.03 0.94 0.95 0.98
0.3 0.9 0.84 0.92 0.99 0.83 0.84 0.89 0.81 0.82 0.84
0.5 0.9 0.69 0.75 0.80 0.68 0.69 0.74 0.68 0.68 0.70

MSE of EGMM estimator (��h) relative to OLS
0 0 1.03 1.01 1.00 1.01 1.07 1.09 1.01 1.04 1.05
0.01 0 1.03 1.01 1.00 1.01 1.06 1.08 1.00 1.03 1.05
0.1 0 0.99 0.99 0.99 0.95 1.02 1.04 0.95 0.99 1.01
0.3 0 0.91 0.95 0.98 0.84 0.91 0.94 0.84 0.88 0.90
0.5 0 0.81 0.90 0.96 0.72 0.79 0.83 0.71 0.75 0.77
0 0.5 1.03 1.05 1.01 1.01 1.06 1.11 1.01 1.05 1.08
0.01 0.5 1.03 1.05 1.01 1.00 1.05 1.10 1.01 1.04 1.08
0.1 0.5 0.99 1.02 1.00 0.95 1.01 1.06 0.95 0.99 1.03
0.3 0.5 0.91 0.97 0.98 0.83 0.90 0.96 0.84 0.87 0.91
0.5 0.5 0.81 0.91 0.96 0.70 0.78 0.84 0.71 0.74 0.77
0 0.9 1.05 1.06 1.03 1.02 1.09 1.15 1.02 1.08 1.13
0.01 0.9 1.05 1.07 1.03 1.02 1.08 1.15 1.02 1.07 1.12
0.1 0.9 1.01 1.05 1.02 0.97 1.03 1.10 0.96 1.01 1.06
0.3 0.9 0.92 1.00 0.99 0.84 0.90 0.98 0.83 0.86 0.92
0.5 0.9 0.81 0.94 0.97 0.70 0.76 0.84 0.69 0.72 0.77

Notes. Mean square errors of ~�h and �
�
h divided by those of �̂h; obtained by Monte-Carlo simulations, as described in the text. In

each experiment, 1000 replications were conducted.
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Table 2-1: Regressions predicting excess bond returns using forward rates and additional regressors A1
n = 24 n = 36 n = 48 n = 60 Average

Regression: Baseline Aug. Baseline Aug. Baseline Aug. Baseline Aug. Baseline Aug.
y12 -0.75 -1.34 -1.41 -2.44 -2.13 -3.47 -2.73 -4.37 -1.76 -2.91

(0.22) (0.20) (0.38) (0.33) (0.50) (0.44) (0.61) (0.52) (0.43) (0.37)
f24 0.12 1.04 -0.25 1.35 0.05 2.10 0.25 2.75 0.05 1.81

(0.45) (0.36) (0.77) (0.64) (1.01) (0.85) (1.26) (1.07) (0.86) (0.72)
f36 1.04 1.18 2.63 2.85 2.74 3.01 2.99 3.31 2.35 2.59

(0.38) (0.32) (0.64) (0.58) (0.86) (0.80) (1.10) (1.02) (0.74) (0.68)
f48 0.80 0.08 1.48 0.24 2.83 1.25 3.43 1.51 2.14 0.77

(0.29) (0.25) (0.52) (0.48) (0.67) (0.65) (0.84) (0.80) (0.58) (0.54)
f60 -0.94 -0.88 -2.02 -1.89 -2.92 -2.75 -3.23 -3.00 -2.28 -2.13

(0.37) (0.28) (0.63) (0.48) (0.84) (0.66) (1.07) (0.84) (0.72) (0.56)

Wald � 64.33 47.05 43.33 43.37 46.79
p-val (boot) 0.000 0.000 0.000 0.000 0.000
p-val (asy) 0.000 0.000 0.000 0.000 0.000

Wald � 120.88
p-val (boot) 0.126
p-val (asy) 0.000

Notes. The baseline regressions show the estimated coe¢ cients in regressions of excess 24-, 36-, 48- and 60-month bond returns on

the term structure of forward rates and of the average of these four excess returns on the term structure of forward rates. The

regressions are run on data from the �rst month of each quarter from 1968Q4 to 2006Q4. Asymptotic standard errors are shown

in parentheses. All asymptotic standard errors and p-values are Newey-West with a lag length of 4. The augmented regressions

control for the additional variable A1. The estimated coe¢ cients on this additional variable are not reported, but the row Wald �

denotes the Wald statistic testing the hypothesis that it is equal to zero along with the associated asymptotic and bootstrap p-values,

constructed as described in the text. The row Wald � denotes the Wald statistic testing the hypothesis that � = 0, again along with

the associated asymptotic and bootstrap p-values. These are the same for each regression in the table because they depend only on

fxtg and fwtg.
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Table 2-2: Regressions predicting excess bond returns using forward rates and additional regressors A3
n = 24 n = 36 n = 48 n = 60 Average

Regression: Baseline Aug. Baseline Aug. Baseline Aug. Baseline Aug. Baseline Aug.
y12 -0.28 -0.60 -0.84 -1.45 -1.60 -2.43 -2.43 -3.41 -1.29 -1.97

(0.44) (0.33) (0.83) (0.61) (1.09) (0.80) (1.29) (0.96) (0.91) (0.67)
f24 -0.55 -0.15 -0.99 -0.22 -0.63 0.40 0.19 1.41 -0.50 0.36

(0.77) (0.54) (1.37) (0.95) (1.81) (1.24) (2.17) (1.50) (1.53) (1.05)
f36 1.32 1.46 3.12 3.38 3.56 3.91 3.74 4.15 2.94 3.23

(0.93) (0.62) (1.01) (1.11) (2.31) (1.51) (2.76) (1.84) (1.92) (1.26)
f48 0.71 0.53 0.87 0.66 1.90 1.43 1.74 1.19 1.34 0.95

(0.45) (0.30) (0.59) (0.62) (1.22) (0.92) (1.54) (1.25) (1.00) (0.76)
f60 -0.92 -0.88 -1.80 -1.72 -2.50 -2.39 -2.35 -2.22 -1.89 -1.80

(0.44) (0.33) (0.82) (0.63) (1.13) (0.89) (1.39) (1.13) (0.94) (0.74)

Wald � 31.52 29.27 26.45 20.89 26.00
p-val (boot) 0.000 0.002 0.004 0.007 0.004
p-val (asy) 0.000 0.000 0.000 0.000 0.000

Wald � 13.41
p-val (boot) 0.556
p-val (asy) 0.037

Notes. The baseline regressions show the estimated coe¢ cients in regressions of excess 24-, 36-, 48- and 60-month bond returns

on the term structure of forward rates and of the average of these four excess returns on the term structure of forward rates.

The regressions are run on monthly data from 1985:02 through 2006:12. Asymptotic standard errors are shown in parentheses.

All asymptotic standard errors and p-values are Newey-West with a lag length of 18. The augmented regressions control for the

additional variable A3. The estimated coe¢ cients on this additional variable are not reported, but the row Wald � denotes the Wald

statistic testing the hypothesis that it is equal to zero along with the associated asymptotic and bootstrap p-values, constructed as

described in the text. The row Wald � denotes the Wald statistic testing the hypothesis that � = 0, again along with the associated

asymptotic and bootstrap p-values. These are the same for each regression in the table because they depend only on fxtg and fwtg.
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Table 3: Out-of-Sample RRMSPE for excess bond returns from augmented regression relative to baseline
Additional Regressors Bond Maturity

n = 24 n = 36 n = 48 n = 60
A1 Unrestricted 0.913 0.910 0.914 0.902

0.030 0.026 0.027 0.017
Restricted 0.948 0.925 0.900 0.892

0.076 0.036 0.020 0.012
A2 Unrestricted 0.907 0.871 0.848 0.777

0.063 0.040 0.028 0.008
Restricted 0.815 0.815 0.826 0.851

0.017 0.020 0.025 0.026
A3 Unrestricted 0.910 0.925 0.940 0.957

0.071 0.099 0.130 0.177
Restricted 0.960 0.948 0.938 0.931

0.181 0.148 0.131 0.107
A4 Unrestricted 0.893 0.891 0.897 0.904

0.111 0.108 0.115 0.119
Restricted 0.908 0.903 0.894 0.895

0.144 0.127 0.107 0.104
A5 Unrestricted 0.685 0.690 0.707 0.723

0.018 0.017 0.019 0.025
Restricted 0.730 0.719 0.699 0.698

0.027 0.021 0.020 0.015
A6 Unrestricted 0.911 0.931 0.967 0.991

0.238 0.267 0.330 0.385
Restricted 0.973 0.965 0.958 0.956

0.353 0.322 0.311 0.300

Notes. This table shows the root mean square prediction error for excess bond returns from the augmented model in which the

augmenting regressors are predicted to be zero divided by the root mean square prediction error from the baseline model. Bootstrap

p-values for one-sided tests testing the hypothesis of equality in root mean square prediction errors are shown in italics. The models

are as described in the notes to Table 2 (but results are shown here for all 6 additional regressors). Models are either restricted

or unrestricted: Restricted predictions impose that there is a single return forecasting factor with a di¤erent loading for each bond

maturity n. Predictions are pseudo-out-of-sample with the �rst prediction made half-way through the estimation period.
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Table 4-1: Regressions predicting excess stock returns using log dividend-price ratio and/or stochastically
detrended short-term interest rate and additional regressors A1
Regression: Baseline Aug. Baseline Aug. Baseline Aug.
dpt 0.013 0.020 0.013 0.020

(0.015) (0.014) (0.015) (0.014)
~rRFt -1.336 -0.894 -1.343 -0.897

(0.668) (0.615) (0.646) (0.596)

Wald � 23.77 16.68 18.66
p-val (boot) 0.000 0.007 0.003
p-val (asy) 0.000 0.001 0.000

Wald � 12.78 24.49 34.85
p-val (boot) 0.573 0.000 0.139
p-val (asy) 0.005 0.000 0.000

Notes. The baseline regressions show the estimated coe¢ cients in regressions of 3 month excess stock returns (CRSP value-weighted

returns less the Fama-Bliss riskfree rate) on the corresponding log dividend-price ratio and/or the stochastically detrended short term

interest rate. The regressions are run on data from the �rst month of each quarter from 1968Q4 through 2006Q4. Asymptotic

standard errors are shown in parentheses. The augmented regressions control for the additional variable A1. The estimated

coe¢ cients on this additional variable are not reported, but the row Wald � denotes the Wald statistic testing the hypothesis that it

is equal to zero along with the associated asymptotic and bootstrap p-values, constructed as described in the text. The row Wald

� denotes the Wald statistic testing the hypothesis that � = 0, again along with the associated asymptotic and bootstrap p-values.

These are the same for each regression in the table because they depend only on fxtg and fwtg.
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Table 4-2: Regressions predicting excess stock returns using log dividend-price ratio and/or stochastically
detrended short-term interest rate and additional regressors A3
Regression: Baseline Aug. Baseline Aug. Baseline Aug.
dpt 0.034 0.036 0.034 0.037

(0.018) (0.019) (0.019) (0.019)
~rRFt 0.221 0.270 0.386 0.476

(1.005) (0.987) (0.983) (0.956)

Wald � 0.608 0.270 0.681
p-val (boot) 0.494 0.649 0.476
p-val (asy) 0.436 0.603 0.409

Wald � 0.125 1.237 1.540
p-val (boot) 0.771 0.385 0.642
p-val (asy) 0.724 0.266 0.463

Notes. The baseline regressions show the estimated coe¢ cients in regressions of 3 month excess stock returns (CRSP value-weighted

returns less the Fama-Bliss riskfree rate) on the corresponding log dividend-price ratio and/or the stochastically detrended short

term interest rate. The regressions are run on monthly data from 1985:02 through 2006:12. Asymptotic standard errors are shown

in parentheses. The augmented regressions control for the additional variable A3. The estimated coe¢ cients on this additional

variable are not reported, but the row Wald � denotes the Wald statistic testing the hypothesis that it is equal to zero along with

the associated asymptotic and bootstrap p-values, constructed as described in the text. The row Wald � denotes the Wald statistic

testing the hypothesis that � = 0, again along with the associated asymptotic and bootstrap p-values. These are the same for each

regression in the table because they depend only on fxtg and fwtg.
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Table 5: Out-of-Sample RMSPE for excess stock returns from augmented regression relative to baseline
Additional Regressors Predictors

dpt ~rRFt dpt & ~rRFt
A1 0.974 0.978 0.975

0.030 0.015 0.036
A2 0.960 0.947 0.917

0.018 0.000 0.003
A3 0.999 1.000 0.998

0.332 0.402 0.266
A4 1.028 0.995 1.033

0.929 0.203 0.939
A5 1.014 0.999 1.014

0.842 0.373 0.815
A6 1.013 0.996 1.005

0.675 0.284 0.459

Notes. This table shows the root mean square prediction error for excess stock returns from the augmented model in which the

augmenting regressors are predicted to be zero divided by the root mean square prediction error from the baseline model. Bootstrap

p-values for one-sided tests testing the hypothesis of equality in root mean square prediction errors are shown in italics. The models

are as described in the notes to Table 4 (but results are shown here for all 6 additional regressors).
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Table 6: Regressions predicting orange juice futures returns over the course of the winter with freezing degree
days as additional regressors

Regression: Baseline Aug. Baseline Aug.
Slopet -0.044 0.054

(0.577) (0.501)
Net Longt 1.002 1.378

(0.518) (0.508)

Notes. The baseline regressions show the estimated coe¢ cients in regressions of returns on holding March frozen orange juice con-

centrate futures from the last day of the previous November to the last day of Febuary on either (i) the slope of the futures curve or

(ii) the net long speculative positions, at the end of November. The augmented regression control for the number of freezing degree

days in December, January and Feburary at Orlando airport. Heteroskedasticity-robust standard errors are shown in parentheses.

There is one observation per year. The sample period is 1967/68-2007/08 for the regression on the slope of the futures curve and

1983/84-2007/08 for the regression on net long speculative positions, because of the absence of earlier positions data. This makes for

a total of 41 and 25 observations in the two regressions, respectively. Futures data are from Norman�s historical data and are closing

quotes on the New York Board of Trade that was subsequently acquired by the Intercontinental Exchange . Positions data are from

the Committment of Traders survey run by the Commodity and Futures Trading Commission. Freezing degree days were calculated

from daily minimum temperatures at Orlando International Airport obtained from the National Climatic Data Center.
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Fig. 1: 12-Month Moving Sum of Economic News Indexes Ending in Month Shown
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