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1 Introduction

Stock options are an important component of compensation packages. As reported
by Murphy (1999), in 1996, 39% of the compensation packages of CEO’s of compa-
nies in the S&P 500 consisted of options. This percentage goes up to 47% in 1999.
Additionally, 94% of companies in the S&P 500 granted options to their CEO’s. An
obvious explanation for the widespread use of options as compensation has been the
accounting advantage that options had not to be expensed the moment they were
granted. This is about to change: FASB has decided mandatory expensing of options
starting on June 15, 2005. However, it does not seem this will be the end of the use
of options as compensation. It is still a relevant question whether options should be
part of compensation packages.

Jensen and Murphy (1990) show that the part of the compensation of executives
linked to company performance depends mostly on their holdings of stock and options
rather than on bonuses (more on this topic can be found in Carpenter 1998, Hall and
Leibman 1998, and Murphy 1999). A number of papers consider whether it is opti-
mal to grant options as part of the compensation package. Among the first references
in this area are Lambert, Lanen and Larcker (1989) who argue that executive stock
options induce a reduction in dividend payments. Yermack (1995) reviews some pos-
sible reasons argued in the literature in favor of the use of options for compensation,
but finds little empirical support for most of them. Lazear (2001) introduces sorting
as a possible argument in favor of option compensation: options will be a cheaper
way to compensate optimistic employees. Oyer and Schaefer (2004) find empirical
support in favor of sorting. Assef and Santos (2004) argue that option compensation
provides the right incentives in a moral hazard setting: in a calibration exercise they
find that options can be an optimal contract for plausible risk-aversion parameter
values. In a related paper, Palmon, Bar-Yosef, Chen and Venezia (2004) argue in
favor of the optimality of granting in-the-money options in a moral hazard setting,
versus the standard practice of granting at-the-money options, as examined by Hall
and Murphy (2000). Stoughton and Wong (2004) argue against the use of options
in industries where firms compete to hire because of the extra flexibility features of
options through repricing and resetting policies. Kadan and Swinkels (2004) consider
the possibility of bankruptcy: stock is more likely to be the optimal compensation
when the probability of bankruptcy is high. One of the potential problems of stock
options compensation (see, for instance, John and John, 1993, Johnson and Tian,
2000a, 2000b) is the incentive for the executive to increase volatility, since options
values increase with volatility. Carpenter (2000) addresses this problem in a dynamic
setting, and shows that this is not necessarily the case for a risk averse executive.
Ross (2004) discusses the effects of different compensation schedules and shows that,
in fact, convex fees might make a risk averse executive to behave more conservatively.

In this paper we focus on a different motivation for a firm to offer options as
compensation. Darrough and Stoughton (1988) show that non-linear compensation
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schemes such as options can provide a better self-selection mechanism than linear
schemes. More recently, following a related line of reasoning, Ittner, Lambert and
Larcker (2002) find that a major reason for companies to use equity-based compen-
sation is to attract new employees. In their empirical study they do not differentiate
between restricted stock and stock options compensation, although they argue that
“option-based contracts are (...) more attractive to employees with higher skill lev-
els who have greater ability to take actions that cause their options to finish in the
money.” Finally, Arya and Mittendorf (2005) show that options provide firms with
a tool to screen the true ability of the executive: options will only be accepted by
executives who truthfully claim a high ability.

The main contribution of this paper is to provide a framework that is rich enough
to study under what conditions options are more likely to be used for screening
purposes. We show that option contracts might not be optimal for screening purposes
even in a setting of incomplete information: the utility cost resulting from granting
options for screening purposes might be too high, and the firm might be better off
offering stock and accepting the possibility that all types of executives (even low-
types) might take the contract.

More explicitly, in our model we consider a risk-neutral firm whose objective is
to maximize expected stock price minus cost of the compensation package. The firm
needs to hire a risk-averse executive and chooses the number of options and strike
price to offer. Executives can affect the dynamics of the stock price in two ways:
through the choice of volatility (the manager chooses among a menu of projects) and
through costly effort, that affects the expected stock price appreciation. The higher
the volatility, the higher also the expected appreciation of the stock price. The risk-
neutral firm would like the executive to choose a high level of volatility, and apply
a high level of effort. There are different executive types, depending on the effect
their effort level has on the stock price. In a setting with perfect information about
the executive type, the optimal contract might be stock or options, depending on the
parameter values of the model. However, as pointed out by Darrough and Stoughton
(1988) and Arya and Mittendorf (2005), we show that when the firm is uncertain
about the type, it might be optimal (it is not always optimal, however) to offer
options, even if the optimal contract with perfect information is stock. Furthermore,
we show that options are more likely to be optimal for screening purposes when the
dispersion of types is high and when the firm is large, and less likely to be optimal
when the growth opportunity of the firm is high.

The paper is structured as follows. In section 2 we describe the economic problem
we study in this paper. In section 3 we derive the optimal effort and volatility, as
well as the optimal contract. In section 4 we compute some numerical examples and
derive the main economic results of the paper. We write the conclusions in section 5.
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2 The Model

The framework in this paper is similar to that of Cadenillas, Cvitanić and Zapatero
(2004), but the main difference is that in that paper the firm always knows the type
of the executive. In particular, in this paper we consider the problem of a risk-neutral
firm that has to decide whether to grant stock or options as compensation to a risk-
averse executive that can affect the dynamics of the stock by applying costly effort or
choosing the level of volatility. The objective of the firm is to maximize the expected
value of the stock price minus the cost of the compensation package. Our results
depend on our use of a dynamic setting: we will see that the optimal effort and
volatility adapt dynamically to the resulting state.

2.1 Stock Dynamics

Our benchmark stock has a price that follows a geometric Brownian motion process,

dSt
St

= µdt+ σdWt

with starting value S0. The process W is a standard Brownian motion process and
µ and σ are exogenous constants. However, when the company is managed by the
executive whose problem we address in the next subsection, the dynamics of the stock
price S is given by

dSt = δatdt+ ασtStdt+ σtStdWt, (1)

(without loss of generality, we assume µ = 0). Here a and σ are adapted stochastic
processes chosen by the executive, and α ∈ (0,∞) is a known constant. In the case of
complete information δ ∈ [0,∞) is a known constant, and in the case of incomplete
information that we will consider later δ is a random variable. We assume that
E[
∫ T
0 |at|2dt] < ∞ and E[

∫ T
0 |σtSt|2dt] < ∞. The control a is the level of effort the

executive puts in the management of the company. The higher the effort a, the higher
the expected value of the stock.1 Effort produces disutility for the executive in a way
we model later. The choice of σ is equivalent to the choice of the volatility of the
stock: we assume that the executive can choose within a menu of different projects,
such that riskier projects also offer higher expected return. We interpret the choice
of σ as a choice of projects, and the parameter α is a measure of the benefits of
taking more risk, and it is a characteristic of the firm. Throughout the paper, we will
interpret this parameter as a proxy for growth opportunities available to the firm.
The parameter δ measures the effect the effort of the executive will have on the stock
price appreciation. It can be interpreted as an indicator of the type (quality) of the
executive, but other interpretations are possible, as we will discuss when we present

1Baker and Hall (2004) find empirical evidence that indicates that this is a good approximation.
We could model an effort whose marginal productivity varies with size, but that do not seem relevant
for our purposes of comparing the use of stocks versus options.
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the objective of the executive. Carpenter (2000) studies the optimal choice of σ for
the case in which δ = 0.

2.2 The Executive

In our model, the executive chooses a and σ to maximize expected utility. The
executive is risk-averse and effort is costly in terms of utility. The objective of the
executive is

e(K,n) := max
a,σ

E

[
log

{
n(ST −K)+

}
− 1

2

∫ T

0
a2
tdt

]
. (2)

In (2), n is the number of call options or shares of stock the executive receives as part of
the compensation package. T ∈ (0,∞) is the horizon considered by the executive, that
we make equal to the vesting period and the maturity of the option. We ignore the
possibility of re-negotiation. As usual, K ∈ [0,∞) is the exercise price of the options.
The case K = 0 represents the choice of the firm (whose objective we will discuss
below) to grant stock rather than options. The second term of the objective function
of the executive represents the disutility from effort and we assume it is quadratic.
We point out that instead of characterizing types by the value of their parameter δ we
could have considered a cost parameter in front of the quadratic term of (2). As it will
become clear when we present the solution, the two parameterizations are equivalent
(there is a one to one mapping that yields the same solution). However, this allows
us a more general interpretation of the type: the class of low-type executives will
include executives that might be very skilled, but are not really committed to the
firm (for personal reasons like family obligations, or for professional reasons such as
responsibilities in other firms). The other control, σ, involves the choice of projects
the firm will undertake and has no effect on the disutility of the executive, since it does
not require any effort, but it affects the expected value of the compensation package:
the executive has a menu of projects and decides the level of risk to undertake. The
projects are, in principle, comparable in quality since the projects with higher risk
also offer a higher expected return. Higher volatility has two conflicting effects on
the executive’s utility. On one hand it increases the value of the payoff through
higher stock appreciation. On the other hand, it makes the payoff more volatile and,
therefore, less desirable from an utility point of view. Options magnify both effects
through their implicit leverage properties.

Our choice of logarithmic utility is justified for tractability purposes. A simplifying
consequence of our choice is the fact that the number of options n becomes irrelevant
for incentive purposes, although it is important to determine the total compensation
of the executive and whether the compensation satisfies the participation constraint
(that we discuss later). Additionally, we assume that the total compensation package
consists of only stock or options. As we will see later, however, the intuition of our
results seems to be robust to more general types of utility (at least of the CRRA
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class) and more general compensation packages, at least as long as the equity-based
part of the compensation is substantive. In the next section we discuss the solution
to this problem.

2.3 The Firm With Complete Information

The firm will compensate the executive with stock, or call options on the stock, with
maturity T . The firm will choose both the number of options n and the strike price K.
A strike price of 0 indicates that the firm is giving stock to the executive. We assume
that the firm is risk-neutral, and cares about the final value of the stock, as well as
about the value of the compensation. On the other hand, the firm has to guarantee
that the expected utility of the executive is at least as large as a reservation utility
R. This can be interpreted as the utility that the executive would achieve in the best
alternative job offer from another firm. This restriction amounts to a participation
constraint, standard in the Principle-Agent literature. Let us define

h(K,n) := λE[ST ]− nE[(ST −K)+] (3)

and

A(R) :=

{
(K,n) ∈ [0,∞)2 : max

a,σ
E

[
log

{
n(ST −K)+

}
− 1

2

∫ T

0
a2
tdt

]
≥ R

}
. (4)

The objective of the firm is
max

(K,n)∈A(R)
h(K,n), (5)

where λ is an exogenous constant that represents the relative importance for the firm
of the expected value of the stock with respect to the compensation package. For a
given strike price K, the ratio n/λ would be an indicator of the “option overhang” (or
the proportion of the firm granted in options). The time horizon of the firm matches
the time horizon of the executive and the maturity of the options. The value R, as
we said above, represents the minimum utility the executive has to be able to achieve
through the optimal choice of effort and volatility, in order to work for the firm.

2.4 The Firm With Incomplete Information

The setting is as before, but we assume further that the firm does not know the
type of the executive. That is, the company does not know the value of δ. As we
explained above, this is equivalent to the firm not knowing the cost of effort for the
executive, which might be a more realistic interpretation in some cases. For example,
the executive might have already a reputation (see, for example, Zwiebel 1995 for that
type of consideration), but the firm does not really know the level of commitment
of the executive. Henceforth, we will assume that there are two types of executives,
characterized by the value of δ. More explicitly, the executive can be of high-type δH
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with probability pH , or of low-type δL with probability pL = 1−pH , with δH > δL. The
firm knows the types and their distribution, but cannot tell the particular type of the
executive it is negotiating with. We further assume that the types are independent
of the Brownian motion process. Additionally, the different executive types have
different reservation wages RH , RL, with RH > RL. As a natural extension of (4), we
define A(Ri), i = H,L the set of contracts that satisfies the participation constraint
of an executive of type i. Finally, we will denote by Ei[X], i = H,L the expected
value of a random variable X when the executive is of type i, i = H,L.

We now define the firm’s objective function in several cases, in this setting with two
executives with uncertainty, type H with probability pH and type L with probability
pL.

i) Menu of contracts, no exclusion,

hM(KH , KL, nH , nL) := pH
(
λEH [ST ]− nHEH [(ST −KH)+]

)
+pL

(
λEL[ST ]− nLEL[(ST −KL)+]

)
. (6)

ii) Single contract, no exclusion,

hS(K,n) := pH
(
λEH [ST ]− nEH [(ST −K)+]

)
+pL

(
λEL[ST ]− nEL[(ST −K)+]

)
. (7)

iii) Single contract, exclusion of low type,

hH(K,n) := λEH [ST ]− nEH [(ST −K)+]. (8)

iv) Single contract, exclusion of high type,

hL(K,n) := λEL[ST ]− nEL[(ST −K)+]. (9)

Now denote,

h∗M = max
{(KH , nH) ∈ A(RH), /∈ A(RL)}
{(KL, nL) ∈ A(RL), /∈ A(RH)}

hM(KH , KL, nH , nL)

h∗S = max
{(K,n)∈A(RH)∩A(RL)}

hS(K,n)

h∗H = max
{(K,n)∈A(RH),/∈A(RL)}

hH(K,n)

h∗L = max
{(K,n)∈A(RL),/∈A(RH)}

hL(K,n).
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The objective of the firm is to find the pair (K∗, n∗), or menu (K∗H , K
∗
L, n

∗
H , n

∗
L),

that achieves
max(h∗M , h

∗
S, h

∗
H , h

∗
L).

Obviously, a menu of contracts is not necessarily the optimal strategy for the firm.
Clearly, that is the case if, for example, the first-best for the high-type is exclusive of
the low-type and it is preferable to the first-best for the low-type. But it will also be
the case when the cost of excluding the low-type by choosing a second-best contract
is lower than the drop in value resulting from a positive probability that a low-type
will take the contract.

Finally, we point out that the optimal contract can be a separating or a pooling
equilibrium,

i) Separating equilibrium, when the optimal contract is a menu, or it is a single
pair (K∗, n∗) and (K∗, n∗) ∈ A(RH), /∈ A(RL) or (K∗, n∗) ∈ A(RL), /∈ A(RH)

ii) Pooling equilibrium, when the optimal contract is a single pair (K∗, n∗) and
(K∗, n∗) ∈ A(RH) ∩ A(RL)

The solution will be a pooling equilibrium when the first-best of hiring one type of
executive (say the high type) is better than the first-best of hiring the other type,
and the cost of excluding the second agent (the low type) by choosing a contract
outside the acceptable set of the other type (outside A(RL)) is higher than the drop
in expected value resulting from a positive probability of hiring that type of agent
(the low type).

3 Optimal Strategies

In this section we derive the solution to the problems of the executive and firm
described in the previous section. As we will show, the solution to the problem of the
executive is essentially dynamic, since optimal controls are state contingent (unlike
in other papers that consider principal-agent models in a dynamic setting).

3.1 Optimal Effort and Volatility of the Executive

This problem is similar to the problem considered in Cadenillas, Cvitanić and Zapa-
tero (2004). We repeat the results for convenience. We denote the optimal effort by
â, and the optimal choice of volatility by σ̂. First we introduce the following auxiliary
exponential martingale Z,

Zt = exp
{
−1

2
α2t− αWt

}
, (10)
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where α is the parameter in (1) that represents the tradeoff between volatility and
expected return of the projects the executive can choose among. Also, consider the
following function of time T̄ ,

T̄t =
eα

2(T−t) − 1

α2
. (11)

Using the previous notation and given the following quadratic equation in z,

δ2T̄0z
2 + (S0 −K)z − 1 = 0, (12)

we denote by ž the positive solution of (12):

ž =
1

2δ2T̄0

(
(K − S0) +

√
(K − S0)2 + 4δ2T̄0

)
. (13)

We now find the optimal controls of the executive:

Proposition 1 Consider the problem of the executive described in sections 2.1 and
2.2. Assume δ > 0. The optimal effort â of the executive is

ât = δžZt. (14)

The optimal choice of volatility σ̂ is given by

σ̂tSt =
α

žZt
+ αžδ2ZtT̄t. (15)

The optimal effort and volatility determine that the price of the stock be given by the
equation

St =
1

žZt
+K − žδ2ZtT̄t. (16)

The value for the executive is

e = max
a,σ

E

[
log

{
n(ST −K)+

}
− 1

2

∫ T

0
a2
tdt

]
= log(n/ž) +

α2

2
T − 1

2
δ2ž2T̄0. (17)

Proof: See the Appendix. �
We observe that the optimal effort and volatility can also be written as functions

of the price of the stock. That is,

ât =
1

2δ2T̄t

(
(K − St) +

√
(K − St)2 + 4δ2T̄t

)
.

and

σ̂tSt =
αδ

ât
+ αδâtT̄t

=
2αδ2T̄t

(K − St) +
√

(K − St)2 + 4δ2T̄t
+
α

2

[
(K − St) +

√
(K − St)2 + 4δ2T̄t

]
.
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With respect to the optimal effort, â is increasing in the strike price K: as K goes
to infinity, the effort goes to infinity as well. The economic reason for that result is
that, for a given initial price of the stock, as we increase the strike price, the delta
of the option decreases and the implicit leverage in the call increases; this, of course,
provides an incentive to the executive to exercise more effort. Obviously, the nature of
the utility function (logarithmic, but this property extends to all utilities with CRRA
and risk-aversion equal or larger than logarithmic, since they have infinite slope at
zero) is such that the executive, who only receives options (or stock) as compensation,
is forced to push the stock so that the option will finish in-the-money. However, the
relationship between â and the strike price is independent of whether the option is
in-the-money or not, and seems to be driven by incentives rather than by the type of
utility function. Besides, we note that ž is decreasing in T , the time to maturity of
the option (T̄0 is increasing in T and ž is decreasing in T̄0). Therefore, the larger the
maturity of the option, the lower the effort of the executive. The intuition is clear: a
larger T has a similar effect on the executive as a lower strike price.

The effect of δ (the “type” of executive) depends on whether the option is in-, out-,
or at-the-money. When the option is at-the-money, the optimal effort is independent
of δ, as we can see by substituting (13) in (14). We can also check that when the option
is in-the-money the effort is increasing in δ, and when the option is out-of-the-money
the optimal effort decreases with δ. The fact that the relationship changes at-the-
money is due to the logarithmic utility function and the absence of cash compensation.
However, the intuition of this result is useful to understand the main conclusion of
the paper (which does not appear to be driven by this result). CRRA forces the
executive to put the option in-the-money: when the option is out-of-the-money, low-
type executives apply more effort in order to push the price of the stock upwards; high-
type executives prefer to chose higher volatility, that guarantees a higher expected
return; the problem with choosing higher volatility for low-type executives is that
they will have to apply even higher effort later on, if the higher volatility leads to
lower prices of the stock; since high-type executives are more efficient at affecting the
price of the stock, they accept this possibility. When options are in-the-money, the
main risk (finishing out-of-the-money) is greatly lowered, and then, the higher the
marginal productivity of effort, the higher the effort exercised by the executive.

Since Z is a martingale, the expected value of the effort at any point in time is,

E[ât] = δž. (18)

With respect to the effect of α, we note that T̄0 is increasing in α and, therefore,
ž is decreasing in α. Expected effort is, then, decreasing in α (everything else con-
stant): the better the menu of projects the executive can choose among, the lower
the expected effort of the executive.

The analysis of the optimal volatility is more complicated. Since T̄T = 0, the
second term of (15) decreases in expected value as we approach maturity, and will
tend to be negligible relative to the first term. Therefore, for short maturities, optimal
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volatility will tend to decrease with higher strike price. For maturities long enough,
the relation will tend to be the opposite. We also see that the volatility is increasing in
the type of executive δ (ž is decreasing in δ, and žδ2 is increasing in δ). The economic
intuition is the same we presented before: a high-type executive can afford more
volatility because if the price of the stock drops fast, the high-type is more effective
applying effort in order to counteract the drop in the value. It is straightforward to
see that the expected value of the volatility at a future date t is

E[σ̂tSt] =
α

ž
eα

2t + αžδ2T̄t. (19)

Since T̄t is increasing in α, the expected volatility is increasing in α. In other words,
the higher the expected return-risk tradeoff, the higher the risk the executive will be
willing to undertake, on average.

It is also interesting to study the correlation between optimal effort and optimal
volatility. By Ito’s lemma, and equation (15), the dynamics of the optimal volatility
are

d(σ̂tSt) = (·)dt+ α2
(

1

žZt
− δ2žZtT̄t

)
dWt. (20)

Equation (14) yields
dât = (·)dt− αâtdWt. (21)

It is clear that their correlation can be either positive or negative. Considering only
the instantaneous correlation and ignoring the drift terms, we see that for a short ma-
turity of the option they tend to be negatively correlated, and increases in the optimal
effort will be typically associated with decreases in the optimal level of volatility.

3.2 Optimal Strike Price and Number of Options

We assume that the firm has full information about the parameters that characterize
the dynamics of the stock, as well as the preferences of the executive. The objective
of the firm is given by (5).

From equation (16), we obtain

h(K,n) = λE[ST ]− nE[(ST −K)+]

= λ
(
g(K)eα

2T +K
)
− ng(K)eα

2T , (22)

where

g(K) =
1

ž
=

2δ2T̄0

(K − S0) +
√

(K − S0)2 + 4δ2T̄0

. (23)

We see that the optimal n is the smallest n that we can take, namely the smallest
n such that the participation constraint of the executive is satisfied. As shown in the
Appendix, the participation constraint (4) yields,

1

2
δ2T̄0ž

2 + log ž − log n− α2

2
T +R = 0. (24)
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From this it follows that the firm will take the value of n equal to

n(K) = f(K) exp
{
R− α2T/2 + δ2T̄0f(K)2/2

}
. (25)

Here,

f(K) =
1

g(K)
=

1

2δ2T̄0

(
(K − S0) +

√
(K − S0)2 + 4δ2T̄0

)
.

Substituting back in h, we get the objective function of the firm as the function of
one argument only:

ψ(K) = λg(K)eα
2T + λK − eα2T/2 exp

{
R + δ2T̄0f(K)2/2

}
. (26)

We now state the result about the optimal strike price and the number of options
for the firm.

Proposition 2 Consider the firm whose objective is given by (5). The optimal strike
price K̂ is the value of K that maximizes (26). Then, the optimal number of options
is given by n(K̂). The value for the firm is ψ(K̂).

Proof: See the Appendix. �
In the next section we perform some numerical exercises and discuss the economic

implications of our model.

4 Numerical Results and Analysis

4.1 The Case of Perfect Information

It is useful to consider first the shape of the value function of equation (26). In
figure 1 we present the value function with perfect information (for a particular set of
parameter values) as a function of the strike price K (the number of options/shares
n is adjusted to satisfy the participation constraint of the executive, as given by
equation (25)). K = 0 represents stock. We observe that the value function always
has the following shape: there is a local maximum for K = 0, that is, stock, and
another local maximum for some high K, which represents options. As parameter
values change, the relative position of these two points changes, so that sometimes
K = 0 is the global maximum, and sometimes the other point (which also varies in
value, as parameters change) is the global maximum. Also, the slope of the value
function around K = 0 is very large in absolute value, so that if K = 0 is the global
maximum, the range of values of K for which the expected value for the firm is larger
than for the other local maximum is always small.

To gain some intuition, in table 1 we present results for the case of perfect in-
formation. We use the formulas of section 3. In order to find the optimal contract
(within the set of contracts considered in our model), we have to find numerically
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the strike price K that maximizes the right-hand side of equation (26). The number
of options needed to satisfy the participation constraint of the executive (that is, to
clear the reservation wage R) is given by equation (25). We see that, due to the
curvature properties of the value function (see figure 1) the optimal strike price is not
continuous in the values of the model parameters. For example, the optimal strike
price decreases as α increases and, for some threshold value of α (that will depend on
the other parameter values) it jumps to zero, so that the optimal contract consists of
stock for that higher value of α. In summary, we observe that the strike price (and
therefore the delta or implicit leverage of the option) increases with the type of the
executive δ and with λ (that we interpret as the size of the firm), and it decreases
with the trade-off between risk and volatility, α. The intuition is the following: the
firm is risk-neutral and would like the executive to be aggressive and choose a high
level of volatility, because it offers a high expected return. The higher α, the better
a high choice of volatility for the firm. Options grants provide executives with a
positive incentive (both through higher expected return and through the convexity
effect pointed out by Ross, 1973, 2004) and a negative incentive through the increase
in risk due to the implicit leverage in options. For executives with high δ (high type)
the positive effect outweighs the risk. The reason is that in bad states executives will
have to put more effort to drive up the price of the stock, but for executives with high
δ the cost of that potential extra effort is acceptable. However, for bad executives,
the cost of that potential extra effort is too high, and the optimal contract will be
options with lower strike price or stock.

4.2 Incomplete Information: A Particular Case

We now turn our attention to the case of incomplete information about the type of
executive. We focus on a particular case which allows us to derive some interesting
conclusions.

As in section 2, we consider only two types of executives, that we call “high” and
“low,” endowed with different values for δ, that we denote δH and δL, with δH > δL.
They might also have different reservation utility values, that we denote, respectively,
RH and RL. The firm does not know if the parameter that characterizes the type
of executive is δH or δL, but it knows these two values and their probabilities. We
assume that the firm knows the reservation utility associated with each type: that
is, the firm knows that an executive with δi, i ∈ {L,H}, can command a minimum
expected utility Ri, i ∈ {L,H}.

Darrough and Stoughton (1988) and Arya and Mittendorf (2005) show that option
compensation can be optimal for screening purposes. We now want to analyze further
that result. To make our analysis simpler, we will focus on cases with the following
characteristics:

i) The first-best contract with full information is stock, both for the high and the
low-type executives. As discussed in the previous subsection, this is the case
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when δ is not “too high” and α is “high enough.”

ii) We assume that high-type executives have higher reservation value than low-
type executives but, with perfect information, the firm would prefer high-type
executives.

iii) We only consider cases in which the optimal contract with perfect information
involves more shares for the high-type than for the low-type.

We want to explore if the solution to the problem is such that the firm will optimally
offer option grants (instead of stock) due to the agency problem. The numerical
solution of this problem is easy to find, given the nature of the value function.

Based on the previous properties, we use the following algorithm to find the op-
timal contract:

1. First, we find first-best contracts with perfect information for both H and L
types, (0, nH), (0, nL).2 In similarity with the notation introduced in section
2, we denote the value function of the firm for these contracts hH(0, nH) and
hL(0, nL), respectively. Obviously, since (by choice of parameters) the first-best
contract with full information for the executive type H requires more shares
than that for the executive type L, hH(0, nH) is not feasible, because that
contract does not exclude the type L. However, the single contract (0, nH) is a
candidate for a pooling equilibrium pHhH(0, nH) + pLhL(0, nH).

2. Next, we look for a possible menu of contracts. Since (by choice of parameters)
(0, nH) is in the interior of A(RL), the only possible optimal menu is to offer
type L the contract (0, nL) (which obviously excludes type H) and find the
contract (KV , nV ) ∈ A(RH) which excludes type L (it is in the boundary of
A(RL)). The value of that contract for the firm is pHhH(KV , nV )+pLhL(0, nL).

3. Next, we consider the contract consisting of the other local maximum for exec-
utive H (see figure 1). Let us denote that contract (KM , nM). From figure 1,
it is clear that very often (given the huge slope in absolute value of the value
function at K = 0) hH(KM , nM) > hH(KV , nV ). Therefore, it is possible that
hH(KM , nM) > pHhH(KV , nV ) + pLhL(0, nL), in which case, (KM , nM) is a
candidate for a separating equilibrium with exclusion of type L.

4. Finally, we consider the possible separating equilibrium (0, nL), which excludes
type H. Obviously, it is possible that hL(0, nL) > hH(KV , nV ), in which case
this contract would be preferable to the menu.

2Since we focus on the case in which the optimal contract is stock, we choose parameter values
which yield that result. As we showed before, the optimal strike price with perfect information
depends monotonically on the values of the parameters of the model, so this is easy to do.
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Out of the four contracts considered above, the contract that yields the highest value
for the firm will be the equilibrium contract. As we see, the equilibrium can be a
no-exclusion menu of contracts, a pooling equilibrium or a separating equilibrium
with exclusion of type H or exclusion of type L.

In tables 2 and 3 we compute the optimal contract for the case in which the
firm does not know the type (δ) of the executive. In table 2 we consider the case of
a “small” firm (measured by the parameter λ of the objective function of the firm
described in section 2) and in table 3 we consider the case of a “large firm.” As we ex-
plained before, we focus on cases in which the optimal contract under full information
would be stock, both for the “high” and the “low” types, but the firm would prefer
the “high” type. We see that, with incomplete information, the optimal contract can
be pooling or separating. For our particular examples, when the pooling contract is
optimal, the firm offers the first-best contract to type H. When the separating con-
tract is optimal, the firm offers options, which are acceptable only to the executives of
type H. By changing the parameters of the model, we can derive conclusions about
the likelihood of the use of options for screening purposes. In particular, we study the
likelihood of the use of options for screening purposes as a function of δ, the param-
eter that measures the ability of the executive, α, the parameter that measures the
additional expected return resulting from choosing more risk, and λ, which measures
the dilution resulting from granting stock-based compensation and we interpret as a
proxy for size of the firm.

It is clear from tables 2 and 3 that the likelihood of the use of options for screening
purposes increases with the dispersion of the types. Arguably, the higher the standard
deviation of the distribution of types, the more likely is the firm to use options for
screening purposes. Higher dispersion of the distribution of types (or, at least, on the
priors of the firm with respect to the distribution of types) is likely to happen in more
recent industries, with executives with no track record. We have to stress, though,
that the parameter δ can also be interpreted as measuring the degree of commitment
of the executive, so the age of the executive is not a clear indicator of high uncertainty
about δ.

With respect to α, we observe that the likelihood of the use of options decreases
with α. This parameter is likely to be higher in more recent industries, therefore this
effect would go in the opposite direction as the one described in the previous section.

With respect to λ, we observe that the larger the firm, the more likely it is to
use options for screening purposes. Large firms are more likely to be in a mature
industry, with lower growth opportunities, which would make this effect consistent
with that resulting from α.

Finally, we point out that in the examples we have presented the optimal contract
is a single contract. However, the optimal contract might be a menu which will typi-
cally consist of an option-based contract for type H which satisfies the participation
constraint of type L, but L is offered instead a stock-based contract that yields the
same expected utility for L as the former contract, but with a higher expected value
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for the firm. In our numerical exercises, we could find examples of this sort, but
they do not seems as easy to construct as the ones we present in tables 2 and 3.
Additionally, they also involve options as a way to separate the H and the L types.

5 Conclusions

We study the use of stock options in compensation packages when the type of the
executive is unknown: it has been shown in the literature (for instance, Darrough
and Stoughton, 1988, and Arya and Mittendorf, 2005) that a possible role for options
is to discourage low-type executives (even if low-type executives are less expensive).
We consider a dynamic framework to analyze further when options are more likely to
be the optimal contract. In our setting, we can parameterize the dispersion of types,
the size of the firm, and the growth opportunity of the firm. We show that options
are more likely to be optimal for screening purposes when the dispersion of types is
high and when the firm is large, and it is less likely to be optimal when the growth
opportunity of the firm is high.
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[4] A. Cadenillas, J. Cvitanić and F. Zapatero, “Leverage Decision and Manager
Compensation with Choice of Effort and Volatility,” Journal of Financial Eco-
nomics 73 (1) (2004), 71–92.

[5] J. Carpenter, “The Exercise and Valuation of Executive Stock Options,” Journal
of Financial Economics 48 (2) (1998), 127–158.

[6] J. Carpenter, “Does Option Compensation Increase Managerial Risk Appetite?,”
Journal of Finance 55 (2000), 2311–2331.

[7] Y.S. Chow and H. Teicher, “Probability Theory: Independence, Interchangeabil-
ity, Martingales. Second Edition,” Springer-Verlag, New York, (1988).

[8] J.C. Cox and C.-F. Huang, “Optimal Consumption and Portfolio Policies when
Asset Prices Follow a Diffusion Process,” Journal of Economic Theory 49, (1989),
33-83.

[9] M. Darrough and N. Stoughton, “Managerial Compensation: Linear Sharing vs.
Bonus Incentive Plans Under Moral Hazard and Adverse Selection,” in Economic
Analysis of Information and Contracts, G. A. Feltham, A. H. Amershi and W.
T. Ziemba, eds., Kluwer Academic Publishers, Boston, (1988).

[10] B. Hall and J. Leibman, “Are CEOs really paid like bureaucrats?,” Quarterly
Journal of Economics, 113 (3) (1998), 653–691.

[11] B. Hall and K. J. Murphy, “Optimal Exercise Prices for Executive Stock Op-
tions,” American Economic Review, 2 (2000), 209–214.

[12] C. Ittner, R. Lambert and D. Larcker, “The Structure and Performance Conse-
quences of Equity Grants to Employees of New Economy Firms,” working paper,
University of Pennsylvania, (2002).

[13] M. Jensen and K. J. Murphy, “Performance Pay and Top-Management Incen-
tives,” Journal of Political Economy 98 (1990), 225–264.

16



[14] K. John and T. John, “Top Management Compensation and Capital Structure,”
Journal of Finance 48 (1993), 949–974.

[15] S. Johnson and Y. Tian, “The Value and Incentive Effects of Nontraditional
Executive Stock Option Plans,” Journal of Financial Economics 57 (2000a),
3–34.

[16] S. Johnson and Y. Tian, “Indexed Executive Stock Options,” Journal of Finan-
cial Economics 57 (2000b), 35–64.

[17] O. Kadan and J. Swinkels, “Stock or Options? Managerial Compensation
and Bankruptcy - Theory and (Some) Evidence,” working paper, Washington
University-Saint Louis (2004).

[18] I. Karatzas, J.P. Lehoczky and S.E. Shreve “Optimal Portfolio and Consumption
Decisions for a ‘Small Investor’ on a Finite Horizon,” SIAM Journal of Control
and Optimization 25 (1987), 1557-1586.

[19] I. Karatzas and S.E. Shreve, “Brownian Motion and Stochastic Calculus,”
Springer-Verlag, New York, 1991.

[20] R. Lambert, W. Lanen and D. Larcker, “Executive Stock Option Plans and
Corporate Dividend Policy,” Journal of Financial and Quantitative Analysis 24
(4) (1989), 409–425.

[21] E. Lazear, “Output-Based Pay: Incentives or Sorting?” forthcoming, Research
in Labor Economics (2004).

[22] K.J. Murphy, “Executive Compensation,” O. Ashenfelter and D. Card, Eds.,
Handbook of Labor Economics, Vol. III, North Holland, 1999, 2485–2563.

[23] P. Oyer and S. Schaefer, “Why Do Some Firms Give Stock Options To All
Employees?: An Empirical Examination of Alternative Theories,” forthcoming,
Journal of Financial Economics, (2004).

[24] O. Palmon, S. Bar-Yosef, R.-R. Chen and I. Venezia, “Optimal Strike Prices of
Stock Options for Effort Averse Executives,” working paper, Hebrew University
(2004).

[25] S. Ross, “The Economic Theory of Agency: The Principal’s Problem,” American
Economic Review 63 (1973), 134–139.

[26] S. Ross, “Compensation, Incentives, and the Duality of Risk Aversion and Risk-
iness,” Journal of Finance 59 (2004), 207–225.

[27] N. Stoughton and K. Wong, “Option Compensation and Industrial Competi-
tion,” working paper, UC Irvine (2004).

17



[28] D. Yermack, “Do Corporations Award CEO Stock Options Effectively?” Journal
of Financial Economics 39 (1995), 237–269.

[29] J. Yong and X.Y. Zhou, “Stochastic Controls: Hamiltonian Systems and HJB
Equations,” Springer-Verlag, New York, 1999.

[30] J. Zwiebel, “Corporate Conservatism and Relative Compensation,” Journal of
Political Economy 105 (1995) 1–25.

18



A Appendix: Proofs

A.1 Proof of Proposition 1.

We consider the more general case in which the executive maximizes

max
a,σ

E

[
F (ST )−

∫ T

0
G(as)ds

]
,

where

F (s) =
1

γ
[n(s−K)+]γ, G(a) =

a2

2

and γ < 1 is the risk-aversion parameter. The log-utility case F (x) = log(x) cor-
responds to γ = 0. We approach this problem by familiar duality/martingale tech-
niques, as introduced by Cox and Huang (1989), Karatzas, Lehoczky and Shreve
(1987). Consider the dual function

F̃ (z) = max
s≥0

[F (s)− sz].

The maximum is attained at the points of the form

ŝ = ŝ(z, b) =

((
z

nγ

) 1
γ−1

+K

)
1
{( z
nγ

)
1

γ−1> Kγ
1−γ }

+ b1
{( z
nγ

)
1

γ−1 = Kγ
1−γ }

,

where b is either 0 or ( z
nγ

)
1

γ−1 +K. Consider also the dual function

G̃(z) = max
a

[−G(a) + δaz],

where the maximum is attained at

â = â(z) = δz.

Define the stochastic process

Mt = ZtSt − δ
∫ t

0
Zsasds. (27)

where Z is the exponential martingale defined in (10). Applying Ito’s rule, we get

dMt = (σt − α)StZtdWt and M0 = S0. (28)

Obviously, M is a local martingale, but we would like to prove that M is also a
martingale. For that purpose, it is good enough to verify the condition

E

[
sup

0≤t≤T
|Mt|

]
<∞.
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According to the Burkholder-Davis-Gundy inequality (see, for instance, Theorem
3.3.28 of Karatzas and Shreve (1991)), it is enough to check that

E

(∫ T

0
(σt − α)2S2

tZ
2
t dt

)1/2
 <∞.

We observe that, according to Theorem 6.1.6 of Yong and Zhou (1999), E
[
sup0≤t≤T Z

2
t

]
<

∞. SinceE[
∫ T

0 |σtSt|2dt] <∞, that theorem applied to equation (1) gives E
[
sup0≤t≤T S

2
t

]
<

∞. Applying Hölder’s inequality (see, for instance, Theorem 4.2 of Chow and Teicher
(1988)) and again the condition E[

∫ T
0 |σtSt|2dt] <∞, we note that

E

(∫ T

0
(σtStZt)

2 dt

)1/2
 ≤ E

( sup
0≤t≤T

Z2
t

∫ T

0
(σtSt)

2 dt

)1/2


= E

( sup
0≤t≤T

Z2
t

)1/2 (∫ T

0
(σtSt)

2 dt

)1/2


≤
(
E

[
sup

0≤t≤T
Z2
t

])1/2 (
E

[∫ T

0
(σtSt)

2 dt

])1/2

< ∞.

This implies that

E

(∫ T

0
((σt − α)StZt)

2 dt

)1/2
 <∞,

and therefore that M is a martingale. Thus,

E[MT ] = S0.

By definitions, we get

E

[
F (ST )−

∫ T

0
G(as)ds

]
≤ E

[
F̃ (zZT ) +

∫ T

0
G̃(zZs)ds

]
+ zE[MT ],

where we can replace E[MT ] by S0. Therefore, the above inequality gives an upper
bound for our maximization problem. The upper bound will be attained if the maxi-
mums are attained, and if E[MT ] = S(0). In other words, the optimal terminal stock
price and the optimal effort â are given by

ST = ŝ(žZT , B) and ât = δžZt, (29)

where B and ž are chosen so that B is any FT measurable random variable taking

only two possible values, 0 and ( žZT
nγ

)
1

γ−1 +K, and so that E[MT ] = S(0).
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For γ = 0, we can choose B ≡ 0, and we see that

ST =
1

žZT
+K.

Using this and the martingale property of M , we get

ZtSt = E

[
1

ž
+KZT − žδ2

∫ T

t
Z2
sds

∣∣∣∣ Ft
]

=
1

ž
+KZt − žδ2Z2

t T̄t, (30)

in the notation of (11). In other words,

St =
1

žZt
+K − žδ2ZtT̄t. (31)

Using Ito’s rule we see that the diffusion term of S is given by

σ̂tSt =
α

žZt
+ αžδ2ZtT̄t,

as claimed in (15). We observe that the â and σ̂ defined above are adapted stochastic
processes with E[

∫ T
0 |ât|2dt] < ∞ and E[

∫ T
0 |σ̂tSt|2dt] < ∞. Finally, the requirement

E[MT ] = S0, obtained by setting t = 0 in (31), gives

S0 =
1

ž
+K − žδ2T̄0. (32)

This is equivalent to (12), and we are done.

�

A.2 Proof of Proposition 2

Our first objective is to compute the objective function of the firm

h(K,n) := λE[ST ]− nE[(ST −K)+], (33)

and

e = e(n,K) := max
a,σ

E

[
log

{
n(ST −K)+

}
− 1

2

∫ T

0
a2
tdt

]
.

It is easily seen that

E[Z2(t)] = eα
2t, E[Z(t)] = 1, E[Z−1(t)] = eα

2t. (34)

Thus, according to equation (16),

E[St] =
1

ž
eα

2t +K − žδ2T̄t.
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We also see that E[(ST − K)+] = eα
2T/ž, and, using (13), we verify that the value

h(K,n) of (33) is equal to the value h(K,n) of (22).
Finally, using â = δžZ and (34), we can compute

e = log(n/z) +
α2

2
T − 1

2
δ2ž2T̄0,

in terms of z and n. Here, ž is given in equation (13). We can check that e(n(K), K) =
R, with n given in (25).

To complete the proof, we note that the firm wishes to maximize the function h as
a function of K, so that the strike price is non-negative and the executive’s rationality
constraint is satisfied.

�
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Table 1
Optimal strike price with perfect information

The column K̂ measures the optimal strike price at the initial time for a fixed initial
stock price of S0 = 100 and a fixed horizon T = 5. K̂ = 0 means that the optimal
contract consists of stock. The column n̂ represents the optimal number of call options
or shares of stock to offer to the manager as compensation, at the initial time, and for
the same initial stock price and time horizon. In this table, λ represents the parameter
that measures the relative importance of the expected price of the stock with respect
to the value of the compensation package, α is the parameter that measures the
additional expected return resulting from an additional unit of volatility, δ is the
type of the manager, and R is the reservation compensation of the manager.

α = 0.1 α = 0.2

δ R K̂ n̂ δ R K̂ n̂

λ = 100 1 1 0 0.0265 1 1 0 0.0246
1 2 0 0.072 1 2 0 0.0668
1 5 0 1.447 1 5 0 1.3425
2 1 111.279 94.519 2 1 0 0.0246
2 2 109.584 94.351 2 2 0 0.0668
2 5 0 1.446 2 5 0 1.3414
5 1 131.682 94.622 5 1 132.712 79.99
5 2 127.862 94.508 5 2 128.702 79.557
5 5 112.676 93.447 5 5 0 75.301

λ = 1000 1 1 106.758 946.793 1 1 0 0.0246
1 2 106.825 945.912 1 2 0 0.0668
1 5 0 1.447 1 5 0 1.3425
2 1 114.571 947.255 2 1 0 0.0246
2 2 113.224 946.554 2 2 0 0.0668
2 5 108.259 941.724 2 5 0 1.3414
5 1 139.294 947.739 5 1 140.673 805.674
5 2 136.155 947.204 5 2 137.393 803.652
5 5 124.934 943.952 5 5 125.619 791.23
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Table 2
Optimal contract with unknown executive type for a “small” firm, that
would prefer the high-type with perfect information

The column “Type” indicates whether the executive is of known type “low” (L),
known type “high” (H) or unknown type (U), which means the firm thinks it is type
L with probability 50% and type H with probability 50%. Columns δi, which mea-
sures the impact of the effort on the expected return, and Ri, which represents the
reservation wage of each executive, characterize the particular type. The column V i

records the value of the objective of the firm for that case and optimal contract. The
column labeled “equilibrium” denotes whether the resulting equilibrium is “separat-
ing” (S) or “pooling” (P). We assume the initial stock price to be S0 = 100 and a fixed
horizon T = 5. K = 0 means that the optimal contract consists of stock. We also
assume that λ (the parameter that measures the relative importance of the expected
price of the stock with respect to the value of the compensation package) has a value
of 1000. α is the parameter that measures the additional expected return resulting
from an additional unit of volatility.

Type δi Ri K̂i n̂i V i Equilibrium
α = 0.25 H 5 2.5 0 0.103452 138646

L 4 1.5 0 0.038156 137950
U - - 0 0.103452 138293.5 P

H 5 2.5 0 0.103452 138646
L 3 1.5 0 0.038233 137397
U - - 136.57 707.09 138031 S

α = 0.26 H 5 2.5 0 0.102131 142255
L 4 1.5 0 0.037670 141531
U - - 0 0.102131 141888.5 P

H 5 2.5 0 0.102131 142255
L 2 1.5 0 0.037803 140542
U - - 0 0.102131 141394 P

α = 0.249 H 5 2.5 0 0.103582 138298
L 4 1.5 0 0.038204 137605
U - - 136.55 709.212 137995 S

H 5 2.5 0 0.103582 138298
L 4.5 1.5 0 0.038157 137938
U - - 0 0.103582 138113.5 P
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Table 3
Optimal contract with unknown executive type for a “large” firm, that
would prefer the high-type with perfect information

The column “Type” indicates whether the executive is of known type “low” (L),
known type “high” (H) or unknown type (U), which means the firm thinks it is type
L with probability 50% and type H with probability 50%. Columns δi, which mea-
sures the impact of the effort on the expected return, and Ri, which represents the
reservation wage of each executive, characterize the particular type. The column V i

records the value of the objective of the firm for that case and optimal contract. The
column labeled “equilibrium” denotes whether the resulting equilibrium is “separat-
ing” (S) or “pooling” (P). We assume the initial stock price to be S0 = 100 and a fixed
horizon T = 5. K = 0 means that the optimal contract consists of stock. We also
assume that λ (the parameter that measures the relative importance of the expected
price of the stock with respect to the value of the compensation package) has a value
of 1100. α is the parameter that measures the additional expected return resulting
from an additional unit of volatility.

Type δi Ri K̂i n̂i V i Equilibrium
α = 0.25 H 5 2.5 0 0.103452 152513

L 4.5 1.5 0 0.0381094 152113
U - - 0 0.103452 152308.5 P

H 5 2.5 0 0.103452 152513
L 4 1.5 0 0.038156 151746
U - - 136.92 778.58 152202 S

α = 0.252 H 5 2.5 0 0.10319 153286
L 3 1.5 0 0.0381372 151900
U - - 0 0.10319 152588.5 P

H 5 2.5 0 0.10319 153286
L 1 1.5 0 0.0382266 151192
U - - 136.96 769.468 152281 S
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Figure 1: A plot of the value of the objective of the firm as a function of the strike
price, for a number of options that satisfies the participation constraint of the exec-
utive. Parameter values are α = 0.15, T = 5, λ = 1000, δ = 2.5, and R = 4.5.
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