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Abstract

This article proposes a class of asymptotically distribution free speci�ca-

tion tests for parametric conditional distributions. These tests are based on

a martingale transform of a proper sequential empirical process of condition-

ally transformed data. Standard continuous functionals of this martingale pro-

vide omnibus tests while linear combinations of the orthogonal components in

its spectral representation form a basis for optimal directional tests. Finally,

Neyman-type smooth tests, a compromise between directional and omnibus

tests, are discussed. As a special example we study in detail the construc-

tion of optimal tests for the null hypothesis of conditional normality versus

heteroskedastic contiguous alternatives. A small Monte Carlo study shows that

our tests attain the nominal level already for small samples sizes.

Short Title: Speci�cation Tests

�Research funded by the Spanish Ministerio de Eduicación y Ciencia reference number SEJ2004-

04583/ECON and Consejería de Educación de la Comunidad de Madrid reference number

06/0181/02.

AMS 2000 Subject classi�cations. Primary 62G10; secondary 62G30.

Key words and phrases. Speci�cation tests, conditional models, martingale transformation, sequen-

tial empirical process.

1



1. INTRODUCTION

The correct speci�cation of a statistical model is important for several reasons.

First, it provides a convenient framework to describe and understand, e.g., the dy-

namics of a time series or a causal relation between independent and dependent vari-

ables in regression. In each case it turns out that conditional quantities like autore-

gressive functions or conditional distributions are of major interest, while marginal

or noise distributions of explanatory variables may be considered as parametric or

nonparametric nuisance parameters. The choice of the model has some consequences

on the estimation of unknown parameters and hence on the interpretation of data or

the prediction of future values of a dependent variable. Since in most cases compet-

itive models are available, proper speci�cation tests should become an indispensable

part of the statistical analysis.

In the simple case of independent identically distributed observations the history

of goodness-of-�t tests starts with the classical �2-test for cell probabilities. For

continuous variables most of the procedures, like Kolmogorov-Smirnov and Cramér-

von Mises tests, are based on proper functionals of the empirical process. When

the model to be tested is composite, the need to estimate unknown parameters has

some impact on the distributional character under the null model so that available

tables of critical values are no longer valid. See the work of Gikhman (1953) and

Kac, Kiefer and Wolfowitz (1955) for some early fundamental contributions in this

context. A formal derivation of the limit process is due to Durbin (1973) and Neuhaus

(1973, 1976), among others. For practical purposes, critical values of the tests can

be obtained either through resampling or through the orthogonal components in the

spectral representation of the underlying empirical process, as suggested by Durbin,

Knott and Taylor (1975).

A di¤erent approach was initiated by Khmaladze (1981), who proposed to trans-

form the empirical process to an appropriate martingale, whose distribution may be

approximated by a time-transformed Brownian Motion. As a consequence, classical

functionals of these processes like the Kolmogorov-Smirnov or Cramér-von Mises

test statistics become asymptotically distribution-free so that existing tables can be

used.

In this paper we are interested, for a multivariate observation (X;Y ), in the con-
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ditional distribution of Y given X = x. For the related question of testing just the

conditional mean and not the whole conditional distributional structure, the litera-

ture is much more elaborate. Härdle and Mammen (1993) were among the �rst to

compare parametric and nonparametric �ts. These tests require some smoothing to

the e¤ect that the power of these tests may depend on the choice of the smooth-

ing parameter. Stute (1997) investigated so-called integrated regression function (or

cusum) processes which avoid smoothing and at the same time allow for a principal

component analysis. If we replace (in our notation) Y by indicators 1fY�yg, these

approaches lead to tests of conditional probability models and may be found in An-

drews (1997). In particular he investigated the Kolmogorov-Smirnov test. Due to

the complicated distributional character of the test statistic, a bootstrap approx-

imation was proposed and studied. The martingale transformation of the cusum

process for �xed design and linear regression is due to Brown, Durbin and Evans

(1975). The random design case with a possibly nonlinear regression function has

been dealt with in Stute, Thies and Zhu (1998), while applications to time series

and Generalized Linear Models may be found in Koul and Stute (1999) and Stute

and Zhu (2002). See also Nikabadze and Stute (1997) and Khmaladze and Koul

(2004). Zheng (2000) has extended the smoothing approach to speci�cation tests

of conditional distributions, while Bai (2003) has applied Khmaladze�s martingale

approach to tests of the marginal distribution of time series innovations.

To motivate the approach of the present paper we recall a fundamental result

due to Rosenblatt (1952). Namely, let (X;Y ) be a bivariate random vector with an

unknown continuous distribution function (d.f.) F: Denote with FX the marginal d.f.

of X and let FY jX(yjx) be the conditional d.f. of Y given X = x evaluated at y. F is

uniquely determined through FX and FY jX and vice versa. In nonparametric testing

for F; it is known that tests based on the empirical d.f. are no longer distribution-free.

In this context, Rosenblatt (1952) used FX and FY jX to introduce a transformation

T = T (X;Y ) = (U; V ) of (X;Y ) ; which maps (X;Y ) into a vector (U; V ) such that

U and V are independent and uniformly distributed on [0,1]. Just put U = FX(X)

and V = FY jX(Y jX). It is easy to recover (X;Y ) from (U; V ). Actually, we have

with probability one (X;Y ) = (F�1X (U); F�1Y jX(V jF
�1
X (U)), where G�1 denotes the

quantile function of a d.f. G. The transformation T can be extended to higher

dimensions, but for this paper we shall stick to the bivariate case. We rather study
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the important situation whenX = Zt�0; for a p�1 random vector Z and an unknown
parameter vector �0; so that the multidimensionality of the model enters through a

proper projection of a random vector Z. These so called dimension reducing models

are popular in applied �elds and naturally lead to an input-output analysis in which,

at an intermediate step, the independent variable is univariate.

The Rosenblatt transform T constitutes the extension of the transformation U =

FX(X), which is basic in the analysis of univariate data and leads to many distribution-

free procedures based on ranks or Kolomogorov-Smirnov and Cramér-von Mises dis-

crepancies. Since ordering is unavailable in the multivariate case we propose to order

the inputs only thereby treating the V �s as the associated concomitants. This leads

to a sequential version of an empirical process based on concomitants. Its statistical

analysis will be the focus of this paper.

To be more precise, assume that we observe a sample of independent identically dis-

tributed (i.i.d.) data with the same distribution as (X;Y ) ; say (X1; Y1) ; :::; (Xn; Yn) :

Put

(Ui; Vi) = T (Xi; Yi) ; 1 � i � n;

and consider the associated uniform empirical d.f.

Gn (u; v) :=
1

n

nX
i=1

1fUi�ug1fVi�vg for 0 � u; v � 1:

Here 1A is the indicator function of the event A. The empirical process

�n (u; v) :=
p
n [Gn (u; v)� uv] ; for 0 � u; v � 1;

is a random element in the Skorokhod spaceD[0; 1]2, endowed with a proper topology.

See, e.g., Straf (1971), Neuhaus (1971) and Bickel and Wichura (1971). Note that

the distribution of �n is free of F . Throughout this paper we shall denote with

��!d " weak convergence or convergence in distribution. It is then well known that

in D[0; 1]2 we have

�n �!d B
1; (1)

where B1 is a tied-down Brownian sheet, i.e., a centered Gaussian process on the

unit square with covariance kernel

E
�
B1 (u1; v1)B

1 (u2; v2)
�
= (u1 ^ u2) � (v1 ^ v2)� u1u2v1v2:
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Functionals of the empirical process �n are distribution-free and form a basis for

goodness-of-�t tests of simple hypotheses on F: They are, however, unsuitable for

testing the speci�cation of FY jX when FX is unknown. In order to circumvent this

problem we propose to substitute Ui by the normalized ranks of the Xi�s:

Uni = FXn (Xi) ; 1 � i � n;

with FXn denoting the empirical d.f. of X1; : : : ; Xn. This leads to

�Gn (u; v) =
1

n

nX
i=1

1fUni�ug1fVi�vg

=
1

n

nX
i=1

1f in�ug1fV[i:n]�vg

=
1

n

bnucX
i=1

1fV[i:n]�vg:

Here, V[i:n] is the V�concomitant associated with Xi:n, i.e., V[i:n] = Vj if Xi:n = Xj
with X1:n � X2:n � ::: � Xn:n denoting the set of X-order statistics. The empirical
process associated with �Gn becomes

��n (u; v) := n
1=2
�
�Gn (u; v)� u � v

�
= n1=2

�
�Gn (u; v)� v � �Gn (u; 1)

�
+ v � bnuc � nu

n1=2
:

Since the second term is negligible, it is natural to consider

�n (u; v) := n
1=2
�
�Gn (u; v)� v � �Gn (u; 1)

�
=

1

n1=2

bnucX
i=1

h
1fV[i:n]�vg � v

i
;

which is the standard sequential empirical process of the concomitants. Notice that,

since fV1; :::; Vng and fX1; :::; Xng are independent,
�
V[1:n]; :::; V[n:n]

	
is a random

permutation of fV1; :::; Vng. That is,
�
V[1:n]; :::; V[n:n]

	
are iid copies of V: It follows

from classical empirical process theory, cf. Shorack and Wellner (1986), that

�n �!d K in the space D[0; 1]2;

where K is the standard Kiefer process, a centered biparameter Gaussian process on

the unit square with covariance function

E [K (u1; v1) �K (u2; v2)] = (u1 ^ u2) (v1 ^ v2 � v1 � v2) :
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The Kiefer process can be represented in terms of the standard Brownian sheet B,

a zero mean Gaussian process with covariance function

E [B (u1; v1) �B (u2; v2)] = (u1 ^ u2) (v1 ^ v2) ;

namely as

K (u; v) = (1� v)
Z v

0

Z u

0

1

1� �vB (d�u; d�v) :

In practical situations, the conditional d.f.�s FY jX are parametrically modeled, and

the hypothesis to be tested becomes

H0 : FY jX 2 F :

Here, F is a given family of parametric conditional d.f.�s

F =
�
FY jX;� : � 2 �

	
;

and � � Rp is a proper parameter space. Under H0; there exists a �0 2 � such that
FY jX = FY jX;�0 ; and given a

p
n� consistent estimator of �0; say �n; �Gn (u; v) can

be replaced by

Ĝn (u; v) :=
1

n

bnucX
i=1

1fV̂n[i:n]�vg;

with V̂ni = FY jX;�n (YijXi) and V̂n[i:n] denoting the V̂ -concomitant of Xi:n: The �nal
version of �n then becomes

�̂n (u; v) := n
1=2
h
Ĝn (u; v)� v � Ĝn (u; 1)

i
=

1

n1=2

bnucX
i=1

h
1fV̂n[i:n]�vg � v

i
:

The asymptotic distribution of �̂n (1; �) may be derived along the lines of Durbin
(1973), who as already mentioned established the weak limit of the univariate em-

pirical process with estimated parameters. The empirical process �̂n (1; �) has also
been considered by Bai (2003) for testing _H0 : E

�
FY jX;�0 (yjX)

�
= FY (y) for some

�0 2 �; with FY denoting the marginal d.f. of Y: The resulting test has trivial

power for testing H0 in all directions where _H0 is satis�ed. Neuhaus (1971, 1976)

extended Durbin�s (1973) results to the multiparameter case and considered general

contiguous nonparametric alternatives. We derive the asymptotic distribution of �̂n
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under the type of regularity conditions on F corresponding to Neuhaus (1976) and

Durbin (1973):

A1: Assume that @FY jX;� (yjx) =@� exists for all (x; y) 2 R2 and each component
of the vector of functions

q� (u; v) :=

Z u

0

@

@�
FY jX;�

�
F�1Y jX

�
vjF�1X (�u)

����F�1X (�u)
�
d�u

is continuous on [0; 1]2 ��:

Our �rst result is crucial for proving the weak convergence of �̂n. It provides a

convenient representation of Ĝn in terms of �Gn and �n � �0.

Theorem 1 Under H0 and for F satisfying A1; suppose that �n = �0+OP
�
n�1=2

�
.

Then we have

sup
(u;v)2[0;1]2

���Ĝn (u; v)� �Gn (u; v) + q�0 (u; v)
t (�n � �0)

��� = oP �n�1=2� :
In many situations �n admits a linear (or i.i.d.) representation in which case we

can identify the limit of �̂n.

A2: Assume that

�n = �0 +
1

n

nX
i=1

`�0 (Xi; Yi) + oP

�
n�1=2

�
;

where, for each x 2 R and every � 2 �;Z
R
`� (x; y)FY jX;� (dyjx)=0 and sup

x2[0;1]





Z
R
`� (x; y)`� (x; y)

tFY jX;� (dyjx)




<1:

When F is given through its conditional densities fY jX;�, say, a natural estimator

of �0 is the conditional maximum likelihood estimator:

�n = argmax
�2�

nX
i=1

ln fY jX;� (YijXi) :

In this case,

`� (x; y) = I�1�
@

@�
ln fY jX;� (yjx)

where

I� = E
�
@

@�
ln fY jX;� (Y jX)

@

@�t
ln fY jX;� (Y jX)

�
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is the �conditional�information matrix.

For computational purposes, it is interesting to notice that

q� (u; v) =

Z v

0

Z u

0

@

@�
ln fY jX;�

�
F�1Y jX

�
�vjF�1X (�u)

����F�1X (�u)
�
d�ud�v

�
Z v

0

Z u

0
'�(�u; �v)d�ud�v (2)

The next result is a consequence of Theorem 1 and A2.

Corollary 2 Under the conditions in Theorem 1 and A2;

�̂n �!d �̂1 in the space D[0; 1]2;

with

�̂1 (u; v)=K (u; v)�q�0 (u; v)
t�
Z 1

0

Z 1

0
`�0

�
F�1X (�u) ; F�1Y jX;�0

�
�vjF�1X (�u)

��
B (d�u; d�v) :

We now discuss the case when X = Zt�0. Usually, �0 and �0 have common

components but are unknown otherwise. Let f(Zi; Yi) ; i = 1; :::; ng be independent
copies of (Z; Y ) : Given a

p
n � consistent estimator of �0; say �n, consider the

following modi�cation of �̂n:

~�n (u; v) :=
1

n1=2

bnucX
i=1

h
1f ~Vn[i:n]�vg � v

i
� n1=2

h
~Gn(u; v)� v ~Gn(u; 1)

i
;

where now ~Vn[i:n] is the i-th V̂�concomitant w.r.t. the ordered ~Xn1; :::; ~Xnn; where
~Xni = Z

t
i �n is in place of Xi = Z

t
i �0: In this case the need to estimate �0 requires

an additional correction in the expansion of the associated ~Gn.

For the sake of simplicity we only consider the case when � and � have no co-

ordinates in common. Otherwise the derivative needs to be taken only w.r.t. the

components of � which do not appear in �.

Theorem 3 Under the conditions of Theorem 1, assume that FY jX;�(yjx) is also
di¤erentiable w.r.t. x and let �n and �n be

p
n� consistent estimators of �0 and �0;

respectively. Assume also that Z has �nite second moments. Then

sup
0�u;v�1

��� ~Gn(u; v)� �Gn(u; v) + q�0;�0(u; v)
t(�n � �0) + q1�0;�0(u; v)

t(�n � �0)
��� = oP (1) :
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Here q�0;�0 is the q-function from before, but with FX(x) = P(Zt�0 � x) now de-

pending on the unknown �0 and

q1�0;�0(u; v) =

Z u

0
r
�
F�1X (�u)

� @
@x
FY jX;�0

�
vjF�1X (�u)

�
d�u

with r(x) = E[ZjX = x] denoting the vector-valued regression function of Z given

X = Zt�0 = x.

If also �n admits an i.i.d. representation, we obtain an analogue of Corollary 1.

Since, however, the limit process depends on unknown parameters, the unknown FX

and the model F , tests based on �̂n and ~�n are still not (asymptotically) distribution-
free.

The rest of the paper is organized as follows. The next section presents a trans-

formation of the sequential empirical process of estimated concomitants, which con-

verges in distribution to the standard biparameter Brownian sheet. Hence, con-

tinuous functionals of this transformed process are suitable for testing composite

hypotheses. Power considerations are studied in Section 3, where we provide the

limiting distribution of the transformed process under contiguous alternatives con-

verging to the null at the parametric rate n�1=2. In this section, we also provide the

spectral decomposition of the transformed process and propose test statistics based

on linear combinations of the principal components. Furthermore we derive test

statistics consisting of the optimal combination of principal components, thus maxi-

mizing the power in the direction of a particular contiguous alternative. The results

of a Monte Carlo experiment are reported on in Section 4. Proofs are postponed to

the Appendix.

2. DISTRIBUTION FREE TRANSFORMATION OF THE

SEQUENTIAL EMPIRICAL PROCESS WITH ESTIMATED

CONCOMITANTS

As mentioned earlier, the Kiefer process can be represented in terms of independent

Gaussian increments, namely as a stochastic integral w.r.t. a Brownian sheet:

K (u; v) = (1� v)
Z v

0

Z u

0

1

1� �vB (d�u; d�v) :
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Inverting this last expression, we obtain

B = L0K;

where L0 is the linear operator de�ned as

L0m (u; v) = m (u; v)�
Z v

0

1

1� �v

Z 1

�v

Z u

0
m (d~u; d~v) d�v;

for a generic function m : [0; 1]2 ! R:
Hence, tests on simple hypotheses on FY jX can alternatively be based on the

transformed process

L0�n (u; v) = n1=2L0 �Gn(u; v) =
1

n1=2

bnucX
i=1

h
1fV[i:n]�vg + log

�
1�

�
v ^ V[i:n]

��i
Note that this is the time-sequential version of the martingale part in the Doob-

Meyer decomposition of the uniform empirical process. Applying the continuous

mapping theorem and the weak convergence of �n; we have, under H0;

L0�n �!d B in the space D[0; 1]2:

Similarly

L0�̂n(u; v) = n1=2L0Ĝn(u; v) =
1

n1=2

bnucX
i=1

h
1fV̂n[i:n]�vg + log

h
1� (v ^ V̂n[i:n])

ii
;

while for L0~�n the V̂n[i:n] need to be replaced with ~Vn[i:n].
Assuming that the conditions in Corollary 1 are satis�ed, then

L0�̂n �!d L0�̂1;

with

L0�̂1 (u; v) = B (u; v)�
Z v

0

Z u

0
h�0 (�u; �v)

t d�ud�v �
Z 1

0

Z 1

0

�̀
�0 (~u; ~v)B (d~u; d~v) ;

where

L0q�0 (u; v) =
Z v

0

Z u

0
h�0 (�u; �v) d�ud�v

and
�̀
�(u; v) = `�

�
F�1X (u); F�1Y jX;�

�
vjF�1X (u)

��
:
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If, as in the case of the maximum likelihood estimator, see (2), q� has a Lebesgue

density '�, we have

h�(u; v) = '�(u; v)�
1

1� v

Z 1

v
'�(u; �v)d�v: (3)

Interestingly, unlike �̂1; L0�̂1 admits the same type of representation as the limiting
distribution of the standard biparameter empirical process with estimated parame-

ters. This fact suggests to apply the scanning innovation approach proposed by

Khmaladze (1988, 1993) in order to obtain an empirical process converging in distri-

bution to the biparameter Brownian sheet under the null. For this, let us consider a

class of linearly ordered family of measurable subsets,

S =
n
S(u;v) : (u; v) 2 [0; 1]2

o
;

satisfying the following properties:

1. For every (u1; v1) ; (u2; v2) 2 [0; 1]2 ; S(u1;v1) � S(u2;v2) or S(u2;v2) � S(u1;v1);

2. [(u;v)S(u; v) = [0; 1]2 and \(u;v)S(u; v) = ;;

3. If S(ui;vi) 2 S; i = 1; 2; :: then lim infn S(un;vn) 2 S;

4. S(u1;v1)
�
S(u2;v2) ! � as (u1; v1)! (u2; v2) ;

where � is a set with Lebesgue measure equal to zero.

Examples of sets satisfying these conditions are,

S = f[0; 1]� [0; v] ; v 2 [0; 1]g ; (4)

S = f[0; v]� [0; v] ; v 2 [0; 1]g : (5)

For any particular family of sets S; let us de�ne the matrix

A� (u; v) =

Z Z
�S(u;v)

h� (�u; �v)h� (�u; �v)
t d�ud�v;

where �S(u; v) denotes the complement of S(u; v). The scanning innovation of L0�̂1
is given by (L�0 � L0) �̂1;where L� is the linear operator de�ned as

L�m (u; v) = m (u; v)�
Z v

0

Z u

0
h� (�u; �v)

tA�1� (�u; �v)

Z Z
�S(�u;�v)

h� (~u; ~v)m (d~u; d~v) d�ud�v;
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for a generic function m : [0; 1]2 ! R:
Usually, as it will be the case in this paper, it is assumed that the matrix A�0 (u; v)

is nonsingular for (u; v) 2 [0; 1)2: That is, that the components of h�0 are linearly
independent in every interval [0; u]�[0; v] : However, there are families of distributions
where this condition is not ful�lled. In such a situation A�1� (�; �) is the generalized
inverse of A� (�; �) satisfying

A�1� (�; �) [A� (�; �) �] =
(
� if � 2 Image (A� (�; �))
0 otherwise.

Interestingly, the transformation provided by the operator L� is unique irrespective
of the generalized inverse used, as proved by Nikabadze (1997).

The choice of the sets in (4) is very convenient from the computational view point.

In this case,

(L� � L0) �̂n (u; v) = L0�̂n (u; v)

�
Z v

0

Z u

0
h� (�u; �v)

tA�1� (�v)

Z 1

0

Z 1

�v
h� (~u; ~v)L0�̂n (d~u; d~v) d�ud�v;

where

A� (v) =

Z 1

0

Z 1

v
h� (�u; �v)h� (�u; �v)

t d�vd�u

only depends on v.

The following theorem provides the weak convergence of the transformed sequen-

tial empirical process. Since in most examples A� is the null matrix when u or v

equal 1, we shall, in the following, restrict our processes to [0; 1)2. The associated

space D[0; 1)2 is endowed with the topology of Skorokhod convergence on compact

subsets of [0; 1)2. For a related discussion of D[0;1), see Pollard (1984).

Theorem 4 Under H0 and the conditions in Theorem 1,

(L�0 � L0) �̂n �!d B in the space D[0; 1)2:

Since FX and �0 are unknown, the transformation L�0 is unavailable in practice
and needs to be replaced by its data dependent analogue. For this, put

bL�nm (u; v)=m (u; v)�Z v

0

Z u

0
ĥ�n (�u; �v)

tÂ�1�n (�u; �v)

Z Z
�S(�u;�v)

ĥ�n(~u; ~v)m(d~u; d~v)d�ud�v;
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with

Â� (u; v) =

Z Z
�S(u;v)

ĥ� (�u; �v) ĥ� (�u; �v)
t d�ud�v:

Here ĥ� is de�ned through

L0q̂�(u; v) =
Z v

0

Z u

0
ĥ�(�u; �v)d�u�v

and q̂� is de�ned as q�, but with FX replaced with FXn.

Theorem 5 Under H0 and the conditions in Theorem 1,� bL�n � L0� �̂n �!d B in the space D[0; 1)2:

Test statistics are based on continuous functionals of
� bL�n � L0� �̂n. The following

Corollary is a straightforward consequence of Theorem 4 and the continuous mapping

theorem,

Corollary 6 Under H0 and the conditions in Theorem 1,

�
�� bL�n � L0� �̂n� �!d � (B) ;

for any functional � on D[0; 1)2 being continuous at the sample paths of B.

Remark 7 The results of this chapter continue to hold in the situation of Theorem

2. For this replace the function q� by the function (qt�;�; q
1t
�;�)

t.

The Kolmogorov-Smirnov and Cramér-von Mises statistics pertain to the func-

tionals

� (f) = sup
0�u;v<1

jf (u; v)j and � (f) =
Z 1

0

Z 1

0
f (u; v)2 dudv;

respectively, resulting in the test statistics

Kn = sup
0�u;v<1

����L̂�n � L0� �̂n(u; v)��� and Cn = Z 1

0

Z 1

0

���� bL�n � L0� �̂n(u; v)���2 dudv;
respectively. Under H0 and the conditions in Corollary 1,

Kn �!d K1 = sup
0�u;v<1

jB(u; v)j

Cn �!d C1 =

Z 1

0

Z 1

0
B(u; v)2dudv

13



in distribution. Table I provides some quantiles of K1 and C1 obtained through

simulations.

INSERT TABLE I ABOUT HERE

From the computational view point, it is more convenient to use the asymptotically

equivalent versions

K̂n = sup
1�i;j�n

����� bL�n � L0� �̂n� in; V̂nj
�����

Ĉn =
1

n2

nX
i=1

nX
j=1

����� bL�n � L0� �̂n� in; V̂nj
�����2 :

The resulting tests are omnibus, but power in particular directions can be improved

by using linear combinations of the principal components of
�
L̂�n � L0

�
�̂n; as will

be discussed in the next section.

For the sets in (4), the transformation of �̂n can be written as� bL�n � L0� �̂n (u; v) = n1=2 � bL�n � L0� Ĝn(u; v)
=

1

n1=2

bnucX
i=1

h
1fV̂n[i:n]�vg + log

h
1�

�
v ^ V̂n[i:n]

�ii

�n1=2
Z v

0

0@ 1
n

bnucX
i=1

ĥ�n

�
i

n
; �v

�t1A Â�1�n (�v)Z 1

0

Z 1

�v
ĥ�n(~u; ~v)L0Ĝn(d~u; d~v)d�v:

It may happen that the function '� in (2) and hence h� does not depend on u:

'�(u; v) = '�(v) h�(u; v) = h�(v):

This may be the case, e.g., when ' pertains to the maximum likelihood estimator and

F is the normal location-scale family. See Section 4 for details. In such a situation,

ĥ = h and the transformation of �̂n becomes

� bL�n � L0� �̂n(u; v) = 1

n1=2

bnucX
i=1

h
1fV̂n[i:n]�vg + log

h
1�

�
v ^ V̂n[i:n]

�ii
� n1=2u

Z v

0
h�n(�v)Â

�1
�n
(�v)

Z 1

�v
h�n(~v)L0Ĝn(1; d~v)d�v:

Here

Â�(v) =

Z 1

v
h�(�v)h�(�v)

td�v;

14



while the last double integral may be seen to be equal to

Z v

0

 
0

h�n (�v)

!t"
1� �v

R 1
�v '�n (~v)

td~vR 1
�v '�n (~v)d~v

R 1
�v '�n (~v)'�n (~v)

td~v

#�1 R 1
�v Ĝn (1; d~v)R 1

�v '�n (~v)Ĝn (1; d~v)

!
d�v=

1

n

nX
i=1

0@ 1

'�n

�
V̂n[i:n]

�1AtZ v^V̂n[i:n]

0

"
1� �v

R 1
�v '�n (~v)

td~vR 1
�v '�n (~v)d~v

R 1
�v '�n (~v)'�n (~v)

td~v

#�1 
0

h�n (�v)

!
d�v:

In our simulations the integrals were computed using numerical methods. See

Chapter 4.

3. CONTIGUOUS ALTERNATIVES AND DIRECTIONAL TESTS

Consider the contiguous alternatives

A3:

H1n :
FY jX (dyjx)
FY jX;�0 (dyjx)

= 1 +
tn�0 (y; x)

n1=2
some �0 2 �;

where tn� : R2 ! R is such that for each x 2 R and all � 2 �:Z
R
tn� (y; x)FY jX;�(dyjx)= 0 and tn�! t� as n!1 in L2

The functions tn� are designed to model particular departures from the null hy-

pothesis. To study �̂n under H1n, we may again proceed in steps. To compensate

for the deviation from the null model, the expansion of Ĝn under H1n now becomes

sup
0�u;v�1

jĜn(u; v)� �Gn(u; v) + q�0(u; v)
t(�n� �0) + n�1=2T 1�0(u; v)j = oP(n

�1=2); (6)

where

T 1� (u; v) =

Z u

0

Z v

0
t�(F

�1
Y jX;�

�
�vjF�1X (�u)

�
; F�1X (�u))d�vd�u:

Under contiguous alternatives the expansion A2 of �n still continues to hold, but

the `�0-terms typically are not centered anymore. See Behnen and Neuhaus (1975).

This results in the additional shift

T 2� (u; v) = q
t
� (u; v)

Z 1

0

Z 1

0

�̀
�(�u; �v)t�

�
F�1Y jX;�

�
�vjF�1X (�u)

�
; F�1X (�u)

�
d�vd�u:

15



Put

T�(u; v) = T
1
� (u; v)� T 2� (u; v):

Then, under H1n, �̂n � T�0 has the same limit as �̂n under H0. This yields the
following result.

Theorem 8 Under H1n and the conditions in Theorem 1,� bL�n � L0���̂n � T�0� �!d B in the space D[0; 1)2:

The associated shift function T�0 will be in charge of the local power of the test.

Through the additional term T 2� it is possible that, though parameters may be known,

their estimation increases the power of the test.

In the following we brie�y study the null model

H0 : FY jX;�0 (yjx) = �
�
y � x
�

�
;

where � (") =
R "
�1 � (�") d�" and � (") = exp

�
�"2=2

�
=
p
2� is the standard normal

probability density function. Here, �2 is the conditional variance under H0; i.e., the

model is homoskedastic. An interesting local alternative is

H1n : FY jX (yjx) = �
�
y � x
�n (x)

�
with �2n (x) = �

2

�
1 +


 (x)

n1=2

�
for some � > 0;

for a particular positive function 
: This contiguous alternative can be alternatively

written as

H1n :
dF

(n)
Y jX

dFY jX;�0
(yjx) = �

�n (x)
exp

(
�(y � x)

2

2

�
1

�2n (x)
� 1

�2

�)
= 1 +

tn�0 (y; x)

n1=2
;

with

tn�0 (y; x) = �n1=2
"
1� �

�n (x)
exp

(
�(y � x)

2

2

�
1

�2n (x)
� 1

�2

�)#
:

Therefore,

tn�0 (y; x)! t�0 (y; x) = 
 (x) �
"
(y � x)2

2�2
� 1
#
as n!1:
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It is well known, see Kuelbs (1968), that B has the Kac-Siegert representation:

B (u; v) =

1X
i=1

1X
j=1

zij�
1=2
ij �ij (u; v) ;

where

�ij =
16

[(2i� 1) (2j � 1)�2]2
, �ij (u; v) = 2 sin

�
(2i� 1)�u

2

�
sin

�
(2j � 1)�v

2

�
and

zij =

Z 1

0

Z 1

0

B (u; v) �ij (u; v)

�
1=2
ij

dudv; i; j = 1; 2; 3; ::::

are the principal components of B:

The principal components of
� bL�n � L0� �̂n are

ẑij =

Z 1

0

Z 1

0

� bL�n � L0� �̂n (u; v) �ij (u; v)
�
1=2
ij

dudv:

Hence, applying the continuous mapping theorem, ẑij !d N (� ij ; 1) under H1n with

� ij =

Z 1

0

Z 1

0

(L�0 � L0)T�0 (u; v) �ij (u; v)
�
1=2
ij

dudv:

Tests can be based on linear combinations of some ẑij ; as has been suggested, in

the context of goodness-of-�t testing of marginal distributions, by Durbin, Knott

and Taylor (1975). Notice that, under H1n; upon applying Parserval�s Theorem,

Ĉn =
1

n2

nX
j=1

nX
i=1

�� bL�n � L0� �̂n� in; V̂nj
��2

!d

1X
i=1

1X
j=1

(zij + � ij)
2 �ij :

Conclude that the resulting tests will hardly detect high frequency alternatives, since

�ij will take very small values when i and j become large. See Eubank and La Riccia

(1992) for a discussion. This suggests to use Neyman-type test statistics. For this

�x m1 and m2. Then

Sn (m1;m2) =

m1X
i=1

m2X
j=1

ẑ2ij �!d �
2
m1+m2

0@m1X
i=1

m2X
j=1

�2ij

1A under H1n;

with �2m (�) denoting a noncentral chi-square variate with noncentrality parameter

�: These smooth tests are expected to perform better than those based on the

17



Cramér-von Mises or Kolmogorov-Smirnov criteria in the direction of high frequency

alternatives. It is also relevant to �nd the optimal linear combination of principal

components such that the resulting test maximizes the power in the direction of

particular contiguous alternatives, along the lines suggested by Schoenfeld (1977,

1980) and Stute (1997).

Now, under H1n,� bL�n � L0� �̂n �!d M = B + (L�0 � L0)T�0 :

M has the spectral representation,

M (u; v) =

1X
i=1

1X
j=1

rij�
1=2
ij �ij (u; v)

where rij is distributed as N (� ij ; 1). Conclude that we may consider a test of the

hypothesis
�H0 : E [rij ] = 0 all i; j = 1; 2; :::

versus

�H1 : E [rij ] = � ij some i; j = 1; 2; :::

The asymptotic likelihood-ratio test statistic based on rij ; i=1; :::;m1; j=1; :::;m2

is given by

�m1m2 = exp

8<:
m1X
i=1

m2X
j=1

� ij

�
rij �

� ij
2

�9=;
= exp

�Z 1

0

Z 1

0
�m1m2 (u; v)

�
M (u; v)� (L�0 � L0)T�0 (u; v)

2

�
dudv

�
;

with

�m1m2 (u; v) =

m1X
i=1

m2X
j=1

� ij�ij (u; v)

�
1=2
ij

:

Grenander (1950) showed that if
P1
i=1

P1
j=1 �

2
ij < 1; the most powerful test, at

the signi�cance level �, consists of rejecting �H0 when

�1 > k with P (�1 > k) = �:

Here

�1 = exp

�Z 1

0

Z 1

0
�1 (u; v)

�
M (u; v)� (L�0 � L0)T�0 (u; v)

2

�
dudv

�
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with

�1 (u; v) =
1X
i=1

1X
j=1

� ij�ij (u; v)

�
1=2
ij

:

We can use, as a test statistic,

' =

P1
i=1

P1
j=1 rij � � ij�P1

i=1

P1
j=1 �

2
ij

�1=2
=

R 1
0

R 1
0 �1 (u; v)M (u; v) dudv�P1

i=1

P1
j=1 �

2
ij

�1=2 ;

Then ' � N (0; 1) under �H0. �H0 is rejected when

' � c1��;

with c1�� denoting the (1� �) th quantile of N (0; 1) :
In practice, we must estimate � ij , truncate and rescale the series to come up with

an upper one-sided test based on

'̂n;m1m2
=

Pm1
i=1

Pm2
j=1 �̂ ij � ẑij�Pm1

i=1

Pm2
j=1 �̂

2
ij

�1=2 �!d N (0; 1) under H0;

with m1 and m2 �xed integers,

�̂ ij =

Z 1

0

Z 1

0

� bL�n � L0� T̂n�n (u; v) �ij (u; v)
�
1=2
ij

dudv;

T̂n� (u; v) =
1

n

bnucX
i=1

tn�
�
Y[i:n]; Xi:n

�
1fV̂n[i:n]�vg

� q̂�(u; v)t
1

n

nX
i=1

`�(Xi; Yi)tn�(Yi; Xi):

4. MONTE CARLO

In this chapter we apply the Cramér-von Mises test based on Ĉn to test for con-

ditional normality with homoscedastic disturbances, i.e.,

FY jX;� (yjx) = �
�
y � z
�

�
,
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with z = �00 + �01x, �0 =
�
�t0 ; �

2
�t 2 R2 � R+ and �0 = (�00; �01)t, where � is the

standard normal distribution. Conclude that

fY jX;� (yjx) =
1

�
�

�
y � z
�

�
with � the standard normal probability density function: Therefore,

@

@�
ln fY jX;� (yjx) =

1

�2

0BB@
1
2

�
(y�z)2
�2

� 1
�

y � z
x (y � z)

1CCA :
Notice that, for all � 2 R2 � R+;

F�1Y jX (vjx) = z + � � �
�1 (v) :

Hence,

@

@�
ln fY jX

�
F�1Y jX (vjx)

���x� = 1

�2

0BB@
1
2

�
��1 (v)2 � 1

�
� � ��1 (v)
x � � � ��1 (v)

1CCA ;
which is used for computing q� in (2). It is immediate that the function '� in (2)

and hence h� in (3) does not depend on u. The random variable X is always distrib-

uted as U (0; 1) with � = �00 = �01 = 1: Programs were written in double precision

FORTRAN 90 and run using a Intel Pentium 4 processor at 2.4 MGz with the Mi-

crosoft Developer Studio Compiler, and the IMSL library was used for generating the

random numbers (routines DRNUN and DRNNOR), for computing the inverse of

the standard normal distribution (routine DNORDF), for numerical integration tak-

ing into account possible singularities at the end points (routine DQDAGS). Monte

Carlo experiments are based on 5000 simulations.

We have considered sample sizes of n = 15; 25; 50 and 100: We report on the

percentages of rejection for the cases where a) �0 is completely known and b) �0 is

known but �2 unknown (and estimated).

The proportion of rejections under H0 is reported on in Table II.

INSERT TABLE II ABOUT HERE

The attained level is very good, even for small sample sizes like n = 25:
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Table III reports on the proportion of rejections under the alternative hypothesis

H1 : FY jX;� (yjx) = �
�
y � z
� (x)

�
with �2 (x) = 12 � (x� 0:5)2 :

Note that �2 = E (V ar (Y jX)) = E
�
�2 (X)

�
= 1, as under H0:

INSERT TABLE III ABOUT HERE.

APPENDIX

In the following Lemma we analyze the local behaviour of the sequential empirical

process associated with the concomitants of the V 0i s: For this, de�ne for 0 � u; v � 1
and real �1; �2; :::; �n;

�0n (u; v; �1; :::; �n) =
1p
n

bnucX
i=1

h
1fV[i:n]�v+�in�1=2g � 1fV[i:n]�vg � �in

�1=2
i
:

We shall see that �0n converges to zero uniformly in (u; v) and �1; :::; �n; as long as

the �i range in a compact interval.

Lemma 9 For each �nite K; as n!1;

sup
0�u;v�1

fj�ij�K;i=1;:::;ng

���0n (u; v; �1; :::; �n)�� = oP (1)
Proof. For �xed u; v and �i; i = 1; :::; n; the assertion is trivial. Just observe that

the concomitants are independent and identically distributed as a U (0; 1) random

variable. Then use Bienaymé to show that �0n converges to zero in squared mean and

hence in probability. For a given sequence �1; �2; :::; �0n is also tight in (u; v) ; since it

is only a variation of a time-sequential empirical process, which is well known to be

tight. In order to get uniformity in �; use monotonicity of the indicators, decompose

the interval [�K;K] into small subintervals and reduce the analysis, up to a small
error, to a �nite grid. Since this is standard, details are omitted.

Proof of Theorem 1:

Since

V̂ni = FY jX;�n

�
F�1Y jX (VijXi)

���Xi� ;
21



we have, by continuity,

1fV̂ni�vg = 1
n
Vi�FY jX

�
F�1
Y jX;�n (vjXi)

���Xi�o:
Applying a mean value theorem argument, for 1 � i � n,

FY jX

�
F�1Y jX;�n (vjXi)

���Xi� = v + (�0 � �n)t @

@�
FY jX;�

�
F�1Y jX;�n (vjXi)

���Xi�����
�=��ni

;

(7)

where k��ni � �0k � k�n � �0k : Since @FY jX;�
�
F�1Y jX;�n (vjXi)

���Xi�. @� is bounded
in a neighborhood of �0; and since �n = �0 +OP

�
n�1=2

�
; (7) implies that

FY jX

�
F�1Y jX;�n (vjXi)

���Xi� = v + �i � n�1=2; i = 1; 2; :::;
where �i ranges in a possibly large but compact set. Hence, from Lemma 1, we

obtain uniformly in (u; v) 2 [0; 1]2 that, up to a remainder oP(1),

�̂n (u; v) = �n (u; v)�n1=2 (�n � �0)t
1

n

bnucX
i=1

@

@�
FY jX;�

�
F�1Y jX;�n (vjXi:n)

���Xi:n�����
�=��ni

:

The result now follows from the assumed continuity of @FY jX;�
�
F�1Y jX;�n (vjXi)

���Xi�.@�,
the consistency of �n; and the uniform convergence of the involved empirical integrals.

Proof of Theorem 2:

Compared with the previous proof, we now have

V̂ni = FY jX;�n(Yij ~Xni);

with ~Xni = Z
t
i �n and Yi = F

�1
Y jX;�0(VijZ

t
i �0). Hence

1fV̂ni�vg = 1fVi�FY jX;�0 (F
�1
Y jX;�n (vj

~Xni)jXi)g:

But

FY jX;�0(F
�1
Y jX;�n(vj

~Xni)jXi)

= v + (�0 � �n)t
@

@�
FY jX;�(F

�1
Y jX;�n(vj

~Xni)jZti �0)�=��ni

+ (�0 � �n)tZi
@

@x
FY jX;�n(FY jX;�n(vj ~Xni)jx)x=x�ni ;
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where x�ni is between Z
t
i �n and Z

t
i �0. If we sum these terms up for the �rst bnuc

ordered Xi = Zti �0, note that in probability and uniformly in 0 � u; v � 1:

1

n

bnucX
i=1

@

@�
FY jX;�(F

�1
Y jX;�n(vj

~X[i:n])jXi:n)! q�0;�0(u; v)

1

n

bnucX
i=1

Zi
@

@x
FY jX;�n(F

�1
Y jX;�n(vj

~X[i:n])jx�ni)! q1�0;�0(u; v):

Actually, this follows from the continuity of the involved functions, upon noticing

that because of the n1=2-consistency of �n and the fact that Z has �nite second

moments we have

max
1�i�n

Zti (�n � �0) = oP(1):

Proof of Theorem 3:

It follows from Corollary 1 that �̂n is tight. It is then not di¢ cult to show that

also (L�0 �L0)�̂n is tight. Since also the �nite dimensional distributions converge, it
su¢ ces to show that in distribution (L�0 �L0)�̂1 equals a Brownian sheet. First, the

operator L�0 � L0 is linear so that the limit is a centered Gaussian process. Check
the covariance structure to get the assertion of the theorem. See also Khmaladze

(1988, 1993) or Lemma 3.1 in Stute, Thies and Zhu (1998) for related arguments.

Proof of Theorem 4:

To prove Theorem 4 it su¢ ces to show that

(L̂�n � L0)�̂n � (L�0 � L0)�̂n ! 0 in probability:

This may be proved along the lines of Stute, Thies and Zhu (1998), where similar

things have been done in the context of model checks in regression.

Proof of Theorem 5:

We already pointed out that Theorem 5 is a consequence of the expansion (6) and

the central limit theorem under contiguous alternatives due to Behnen and Neuhaus

(1975). To show (6), recall

FY jX(dyjx) =
�
1 + n�1=2tn�0(y; x)

�
FY jX;�0(dyjx):
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Hence, compared to the proof of Theorem 1, we have to add another term, namely

n�1=2

F�1
Y jX;�n (vjXi)Z
�1

tn�0(y;Xi)FY jX;�0(dyjXi);

to the right hand side of (7). Summation over the �rst bnuc X-order statistics and
using a continuity argument as well as assumption A3 yield the representation (6)

and hence the assertion of Theorem 5.

TABLES

TABLE I

Critical values of C1 and K1

C1 K1

� = 0:10 0.534043 2.11175

� = 0:05 0.718028 2.31996

� = 0:01 1.182003 2.73419
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TABLE II

Proportion of rejection under H0 : Y jX � N
�
Z; �2

�
; Z = �00 + �01X

No estimated parameters �2 estimated

n = 15 n = 15

� = 0:10 0.1236 0.1188

� = 0:05 0.0646 0.0680

� = 0:01 0.0206 0.0240

n = 25 n = 25

� = 0:10 0.1080 0.1052

� = 0:05 0.0578 0.0582

� = 0:01 0.0146 0.0142

n = 50 n = 50

� = 0:10 0.1030 0.1038

� = 0:05 0.0522 0.0548

� = 0:01 0.0126 0.0132

n = 100 n = 100

� = 0:10 0.0976 0.1010

� = 0:05 0.0506 0.0508

� = 0:01 0.0094 0.0100
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TABLE III

Proportion of rejection under �xed alternative H1 : Y jX � N
�
Z; 12 � (X � 0:5)2

�
No estimated parameters �2 estimated

n = 50 n = 50

� = 0:10 0.0950 0.1650

� = 0:05 0.0370 0.0814

� = 0:01 0.0064 0.0208

n = 100 n = 100

� = 0:10 0.2038 0.3282

� = 0:05 0.0724 0.1834

� = 0:01 0.0080 0.0496

n = 200 n = 200

� = 0:10 0.6426 0.6962

� = 0:05 0.2982 0.4722

� = 0:01 0.0246 0.1620

26



REFERENCES

Andrews, D. W. K. (1997). A conditional Kolmogorov test. Econometrica 65

1097-1128.

Bai, J. (2003). Testing parametric conditional distributions of dynamic models.

The Review of Economics and Statistics 85 531-549.

Behnen, K. and Neuhaus, G. (1975). A central limit theorem under contiguous

alternatives. Annals of Statistics 3 1349-1353.

Bickel, P. and Wichura, M. (1971). Convergence criteria for multiparameter

stochastic processes. Annals of Mathematical Statistics 42 1656-1670.

Brown, R. L., Durbin, J. and Evans, J. M. (1975). Techniques for testing the

constancy of regression relationships over time. Journal of the Royal Statistical

Society, Series B 37 149-192.

Durbin, J. (1973). Weak convergence of the sample distribution function when

parameters are estimated. Annals of Statistics 1 279-290.

Durbin, J., Knott, M. and Taylor, C. C. (1975). Components of Cramér-

von Mises statistics II. Journal of the Royal Statistical Society, Series B 37

216-237.

Eubank, R. L. and LaRiccia, V. N. (1992). Asymptotic comparison of Cramér-

von Mises and nonparametric function techniques for testing goodness-of-�t.

Annals of Statistics 20 2071-2086.

Gikhman, I. I. (1953). Some remarks on A. Kolmogorov�s goodness of �t test.

Dokladi Akademii Nauk 91 715-718 (In Russian).

Grenander, U. (1950). Stochastic processes and statistical inference. Arkiv för

Matematik 1 195-277.

Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus para-

metric regression �ts. Annals of Statistics 21 1926-1947.

27



Kac, M., Kiefer, J. andWolfowitz, J. (1955). On tests of normality and other

goodness of �t based on distance methods. Annals of Mathematical Statistics

26 189-211.

Khmaladze, E. V. (1981). Martingale approach to the goodness of �t tests�.

Theory of Probability and its Applications 26 246-265.

Khmaladze, E. V. (1988). An innovation approach in goodness-of-�t tests in Rm.
Annals of Statistics 16 1503-1516.

Khmaladze, E. V. (1993). Goodness of �t problem and scanning innovation

martingales. Annals of Statistics 21 798-829.

Khmaladze, E. V. and Koul, H. L. (2004). Martingale Transforms Goodness-

of-Fit Tests in Regression Models�. Annals of Statistics 32 995-1034.

Koul, H. and Stute, W. (1999). Nonparametric model checks for time series.

Annals of Statistics 27 204-236.

Kuelbs, J. (1968). The invariance principle for a lattice of random variables.

Annals of Mathematical Statistics 39 382-389.

Neuhaus, G. (1971). On weak convergence of stochastic processes with multi-

dimensional time parameter Annals of Mathematical Statistics 42 1285-1295.

Neuhaus, G. (1973). Asymptotic properties of the Cramér-von Mises statistic

when parameters are estimated. Proceedings of the Prague Symposium on

Asymptotic Statisics 2 257-297.

Neuhaus, G. (1976). Weak convergence under contiguous alternatives of the em-

pirical process when parameters are estimated: The Dk approach. Lecture

Notes in Mathematics 566 68-82, Springer Verlag, Berlin.

Nikabadze, A. (1997). Scanning innovations and goodness of �t tests for vector

random variables against the general alternative. A. Razmadze Mathematical

Institute, Tbilisi Preprint.

Nikabadze, A. and Stute, W. (1997). Model checks under random censorship.

Statistics and Probability Letters 32 249-259.

28



Pollard, D. (1984). Convergence of Stochastic Processes. Springer Verlag, New

York, Berlin.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of

Mathematical Statistics 23 470-472.

Schoenfeld, D. A. (1977). Asymptotic properties of tests based on linear com-

binations of the orthogonal components of the Cramér-von Mises statistic.

Annals of Statistics 5 1017-1026.

Schoenfeld, D. A. (1980). Tests based on linear combinations of the orthogonal

components of the Cramér-von Mises statistic when parameters are estimated.

Annals of Statistics 8 1017-1022.

Shorack, G. R. and Wellner, J. A. (1986). Empirical processes with applica-

tions to statistics. Wiley & Sons, New York.

Straf, M. L. (1971). Weak convergence of stochastic processes with several pa-

rameters. Proceedings of the Sixth Berkeley Symposium on Mathematical Sta-

tistics and Probability 2 187-221, University of California Press.

Stute, W. (1997). Nonparametric model checks for regression. Annals of Statistics

25 613-641.

Stute, W., Thies, S. and Zhu, L. X. (1998). Model checks for regression: an

innovation process approach. Annals of Statistics 26 1916-1934.

Stute, W. and Zhu, L. X. (2002). Model checks for generalized linear models.

Scandinavian Journal of Statistics 29 535-545.

Zheng, J. X. (2000). A conditional test of conditional parametric distributions.

Econometric Theory 16 667-691.

Departamento de Economía

Universidad Carlos III de Madrid

C./ Madrid 126-128

Getafe 28903, Madrid, Spain

e-mail: miguelangel.delgado@uc3m.es

Mathematical Institute

University of Giessen

Arndtstr. 2

D-35392 Giessen, Germany

e-mail: winfried.stute@math.uni-giessen.de

29


