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1 Introduction

How is cooperation without immediate reciprocity sustained in a long term
relationship? Consider the following example: Two firms are engaged in a
joint venture. At random times one of them finds a discovery; if disclosed,
the discovering firm’s payoffs will be lower but total payoffs higher. In the
absence of immediate reciprocity, will the expectation of future cooperation
induce disclosure? How much cooperation can be supported? In the case
of perfect monitoring -where the arrival of the discovery is jointly observed-
full cooperation can be supported with trigger strategies when discounting
is not too strong. But in the case of imperfect monitoring -when the arrival
of the discovery is privately observed- the first best cannot be supported and
the above questions have no definite answer. This paper attempts to fill this
gap.
The setup is as follows.1 Two players interact indefinitely in continuous

time. At random arrival times, one player has the possiblity of providing
a benefit b to the other player at a cost c < b.2 Following Mobius (2001)
we call this a favor. This opportunity is privately observed, so a player
will be willing to do this favor only if this gives an entitlement to future
favors from the other player. Formally, this model is a repeated game with
incomplete monitoring with random time intervals (given by the arrival of
favors.) We characterize and solve for the Pareto frontier of public perfect
equilibria (PPE).(references).
Mobius (2001) considers a simple class of PPE, which we will call the

chips mechanism.3 Both players start with K chips each. Whenever a player
receives a favor, she gives the other player a chip. If a player runs out of
chips (so the other one has 2K), she receives no favors until she gets a chip
by granting a favor to the other player. Incentive compatibility (giving favors
must be voluntary given the private information) puts a limit on the number
of chips. This is obviously a very nice and simple mechanism. However, it
has two special features that suggest there is room for improvement. In the
first place, the rate of exchange is always one (current) for one (future) favor,

1Our setup is identical to Mobius (2001), with very minor modifications.
2The motivating example can be easily accomodated by letting b denote the value to

firm 2 when firm 1 shares information and c the decrease in firm’s 1’s profits when it
discloses the information rather than keeping it secret.

3This type of mechanism is used in Skrzypacz and Hopenhayn (2004) in repeated
auction with incomplete information.
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so it is independent of the distribution of chips. Due to discounting, a player
that is entitled to many future favors will value a marginal favor less. This
suggests that the rate of exchange (or relative price) of favors should depend
on current entitlements. Secondly, entitlements do not change unless a favor
is granted (e.g. chips do not jump from one player to the other.) This is
a special feature that rules out the possiblity of interest or depreciation of
entitlements. As we show in the paper, relaxing these two features allows
for higher payoffs.
Our analysis proceeds in several steps. As usual in the literature, the re-

cursive approach introduced by Abreu, Pearce and Stacchetti (APS) is used.
We first establish that the set of Pareto optimal PPE is a self-generating set.
This is not true in general and relies on some special features of our formu-
lation that we discuss. Moreover, it also guarantees that the equilibrium is
renegotiation proof. As a consequence of our result, the recursive formula-
tion reduces to a one dimensional dynamic programming problem which is
solved by a simple algorithm. Optimal PPE have two key features: 1) the
relative price of favors decreases with a player’s entitlement and 2) the enti-
tlements change over time even in periods with no trade. As a consequence
of the first result, starting from an initial symmetric point (the analogue of
equal number of chips) if a player receives a number of consecutive favors,
he must pay back considerably more to return to the initial point. We solve
the model numerically for a large set of parameter values and find that the
gains relative to the chips mechanism can be quite large (in some cases over
30% higher). Interestingly, in all our numerical simulations the disadvan-
taged player’s utility increases over time during periods of no trade, so in the
optimal equilibria there is forgiveness.
Our model is a continuous time-repeated game with imperfect monitoring.

This is a class of games that had not been previously analyzed. An excep-
tion is Sannikov (2004), which in independent recent work studies games
within this class where the stochastic component follows independent dif-
fusion processes and provides a differential equation that characterizes the
boundary of the set of PPE. Our model does not fit exactly in that class since
our stochastic process is a jump process (Poisson arrivals), yet we also derive
a differential formulation to characterize the boundary of the set of PPE. In
addition we establish that the set of Pareto optimal PPE is self-generating,
which as far as we know is a new result in the literature on repeated games
of imperfect monitoring.
In our model there is a lack of double coincidence of needs, as players
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cannot reciprocrate immediately for favors received. As suggested in a related
paper by Abdulkadiroglu and Bagwell (2004), players give favors trusting
that the receiver will have incentives to reciprocate in the future. The lack
of observability of opportunities for exchange is a complicating factor that
limits the possibilities of exchange. However, it can be easily shown that as
the discount rate goes to zero (or the frequency of trading opportunities goes
to infinity) the cost of this informational friction disappears.
The paper is organized as follows. Section 2 describes the model. Section

3 describes in more detail the chips mechanism. Section 4 develops the re-
cursive formulation. Section 5 describes the solution algorithm and provides
numerical results.

2 The model

We analyze an infinite horizon, two-agent partnership. Time is continuous
and agents discount future utility at rate r. There are two symmetric and
independent Poisson processes -one for each agent- with arrival rates α rep-
resenting the opportunity of producing a favor. We assume that favors are
perfectly divisible, so partners can provide fractional favors.4 Agents’ util-
ities and costs are linear in the amount of favors exchanged. The cost per
unit of a favor is c and the corresponding benefit to the other player b > c.
Letting xi represent a favor granted by player i and xj a favor received, the
utility for player i is given by:

Ui(xi, xj) = −cxi + bxj.

Since arrivals are Poisson and independent, only one player is able to grant
a favor at a point in time, so xi (t) > 0 implies xj (t) = 0. We assume that
arrivals are privately observed by each player, so the ability of providing a
favor is private information. Since the cost of providing a favor is less than the
benefit generated, it is socially optimal for agents to grant favors. Indeed, in
the absence of informational constraints, a public perfect equilibrium would
exist that achieves this optimum through a simple Nash reversion strategy:
An agent grants favors whenever she can, as long as her partner has done
so in the past, and stops granting favors whenever her partner has defected.

4Alternatively, given our assumption of linear utitilities, we can assume there is public
randomization for the provision of favors.
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This equilibrium can be supported for

c <

µ
α

r + α

¶
b

The problem arises when the ability to do a favor is private information,
so an agent observes whether her partner has provided a favor or not, but is
unable to detect a deviation where her partner has passed the opportunity
to do a favor. The question then becomes: How to ensure the maximum
cooperation and exchange of favors between agents given these informational
constraints?

3 A Simple Debt Accounting Mechanism

In his paper, Mobius considers equilibria of a simple class. The equilibrium
proposed is Markov perfect, where the state variable is the difference k be-
tween the number of favors granted by agent 1, and those received from agent
2. For −K ≤ k ≤ K, the agents obey the following strategies:

• Agent 1 grants favors if k < K, and stops granting favors if k = K

• Agent 2 grants favors if k > −K, and stops granting favors is k = −K

It is obvious that the choice of K is crucial in determining the expected
payoffs of players. Since it is efficient to have favors granted whenever possi-
ble, an efficiency loss occurs when agents reach the boundaries K and −K,
where only the indebted agent is granting favors. So the larger K is, the
lower is the incidence of this situation, and the larger are the expected pay-
offs of the agents. To understand how K is determined, note that because of
discounting the marginal value of the right to an extra favor diminishes with
the current entitlement of favors the player has; 2K is the largest number
such that this marginal value exceeds the cost c.
The scheme proposed by Mobius’ is very simple. Moreover it is assymp-

toticaly efficient (as α/r → ∞). To see this, note that in the long run the
distribution over the states k = {−K,−K + 1, ..., 0, 1, ..., K − 1, K} is uni-
form, so the probability that a favor is not granted is 1/K.It is easy to verify
that K →∞ as α/r →∞, so this probability goes to zero.

4



There are two special features of this scheme that suggest there is room
for improvement. The first special feature is that the rate of exchange of cur-
rent for future favors is the same (equal to one) regardless of entitlements.
Relaxing this constraint could reduce the region of inefficiency for two rea-
sons. First, consider the case where the state is K so agent one has the
maximum entitlement of favors. As we argued before, at this point agent’s
one marginal value to an entitlement of an extra favor is lower than c. But
there is still room for incentives if agent two where to promiss more than
one favor in exchange. Secondly, in Mobius’ scheme the incentive constraints
only bind at the extremes, but are slack in between, where the marginal value
to future favors exceeds c. A lower rate of exchange could allow to expand
the number of possible favors.
The second special feature is that agents’ continuation values do not

change unless one or the other agent grants a favor. This is restrictive,
and rules out the possibilities of appreciation (charging interest) or depe-
ciation (forgiveness) of entitlements and punishment in case “not enough”
cooperation is observed.
In the following section, strategies are not limited to a particular scheme.

Instead, we characterize the optimal Perfect Public equilibria

4 Characterizing the optimal Perfect Public
Equilibrium

The game described above falls in the class of repeated games with imperfect
monitoring. As usual in this literature, we restrict our analysis to Public Per-
fect Equilibrium (PPE), where strategies are functions of the public history
only and equilibirum is perfect Bayesian.
A public history up to time t, denoted by ht, consists of agents’ past favors

including size and date. A strategy xit : h
t → [0, 1] for player i specifies

for every history and time period the size of favor the agent grants if the
opportunity to do so arises. A public perfect equilibrium is a pair of strategies
{x1t, x2t}t≥0 that constitute a perfect Bayesian equilibrium. To analyze this
game, we consider a recursive representation following the formulation of
Abreu, Pearce and Stacchetti (APS). Let

V∗= {(v1, v2) |∃ PPE that achieves these values} ,
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Figure 1: Feasible and individually rational payoffs (flow equivalent)

the set of PPE values. Given the linearity of payoffs and convexity of strategy
sets, it follows that the set V ∗ is convex. The set V ∗ is a subset of the set of
feasible and individually rational payoffs, which is given in figure 1.
The set of feasible payoffs is given by the outer x-y axis. Values have been

multiplied by r/α so they are expressed as flow-equivalents. The extreme
points are given by the vectors (−c, b), (b,−c) , (b− c, b− c) , (0, 0) . The
first two correspond to the situation where only one player is giving favors
and doing so at every possible time; the third vector corresponds to full
cooperation by both players and the last one to no cooperation. The feasible
set of payoffs is obtained by convex combinations of these points and are
derived by combining the endpoints over time. Individually rational payoffs
are obtained by restricting this set to the positive orthant. The set V ∗ is a
proper subset of this set.

4.1 Factorization

To characterize the set V ∗ we follow the general idea of APS, which decom-
pose (factorize) equilibrium values into strategies for the current periods and
continuation values for each possible en of period public signal. The difficulty
in our case is that there is no current period in our model.
LetW denote an initial set of vectors of continuation values for the play-

6



ers (v, w). Adapting the approach in Abreu, Pearce and Stacchetti (APS),
equilibrium payoffs can be factorized in the following way. Let t denote the
(random) time at which the next favor occurs. Consider any T > 0. Fac-
torization is given by functions x1 (t) , x2 (t) , v1 (t) , v2 (t) , w1 (t) , w2 (t) and
values vT , wT with the following intepretation: If the first favor occurs at
time t and is given by player i, then xi (t) ∈ [0, 1] specifies the size of the
favor, vi (t) the continuation value for player one and wi (t) the continuation
value for player two, where for each t the vector (vi (t) , wi (t)) ∈ W. If no
favor occurs until time T, the respective continuation values are vT , wT .The
strategies and continuation values give the following utility to player one:

v =

Z T

0

e−rt
½
x2 (t) b+ v2 (t)− x1 (t) c+ v1 (t)

2

¾
p (t) dt+ e−(r+2α)tvT

where p (t) denotes the density of the first arrival occurring at time t. This is
the density of an exponential distribution with coefficient 2α (the total arrival
rate). Letting β = e−(r+2α) and z1 (t) = x2 (t) b− x1 (t) c+ v1 (t) + v2 (t) , the
above equation simplifies to:

v = α

Z T

0

βtz1 (t) dt+ βTvT . (1)

Similarly, letting z2 (t) = x1 (t) b − x2 (t) c + w1 (t) + w2 (t) one obtains the
value w for player two:

w = α

Z T

0

βtz2 (t) dt+ βTwT . (2)

The incentive compatibility condition requires that for all t,

v1 (t)− x1 (t) c ≥ α

Z T

t

βs−tz1 (s) ds+ βT−tvT (3)

w2 (t)− x2 (t) c ≥ α

Z T

t

βs−tz2 (s) ds+ βT−twT (4)

The left hand side gives the net utility of giving a favor at time t and the
right hand side the continuation utility if the agent passes this opportunity.
Starting with a setW ⊂ <2+ of values, this factorization gives a new set

of values BT (W) given by all pairs (v, w) such that there exist functions
x1 (t) , x2 (t) , v1 (t) , v2 (t) , w1 (t) , w2 (t) , where (vi (t) , wi (t)) ∈ W and (1),
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(2), (3), (4) are satisfied. Following APS, a set of valuesW is self generating
ifW ⊂ BT (W). If (v, w) ∈W, then there exists a PPE that gives the players
initial payoffs (v, w). The set of PPE V ∗ is the largest set V such that V =
BT (V) .The corresponding Pareto frontier of values can be characterized by
the following program:

W (V ) = max α

Z T

0

βt {x1 (t) b− x2 (t) c+ w1 (t) + w2 (t)} dt+ βTwT

subject to (1), (3), (4) , (vi (t) , wi (t)) ∈ V and (vT , wT ) ∈ V

In general, payoffs in the Pareto frontier may require inefficient equilibria
(i.e. equilibria with dominated payoffs) after some histories. The following
proposition shows that this is not needed in our repeated game.

Proposition 1 The Pareto set of values {(v, w) ∈ V∗ such that w =W (v)}
is self-generating. The domain is given by an inteval [0, vh] where vh ≤ v̄.
The Pareto frontier is concave and its slope lies in the interval [−b/c,−c/b] .

Proof. see appendix 1.
Self-generation implies that any point in the Pareto frontier can be ob-

tained by relying on continuation values that are also in the frontier. This
implies that PPE supporting the Pareto frontier are renegotiation proof.
As in APS, an algorithm of succesive approximations can be defined by

iterating on the operator BT , starting from a set containing V ∗ (such as
the set of feasible and individually rational payoffs defined above.) This
procedure converges monotonically (by set inclusion) to V ∗. The algorithm
can be simplified in our case, restricting to iterations on a value function
defined by the frontier of values. It can be shown that starting from the
frontier of the set of feasible and individually rational payoffs, convergence to
the frontier of V ∗ is monotonic. There is a difficulty with this algorithm, since
for each iteration the optimal strategies are the solution to an optimal control
problem rather than a simple optimization problem, as in APS. Appendix 2
provides an alternative simplified algorithm, where incentive constraints are
relaxed, that gives monotone convergence (from above) to the Pareto frontier
relying on an elementary optimization problem.5

5In the appendix we show that the largest self-generating set V of the operator BT is
independent of T.
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The following section develops an alternative procedure to characterize
the Pareto frontier that relies on the differentiable structure of the game. 6

5 A differential approach

We follow a heuristic approach. For small T the equation

W (v (0)) = α

Z T

0

βt {x1 (t) b− x2 (t) c+W (v1 (t)) +W (v2 (t))} dt+βTW (v (T ))

can be approximated by:

W (v (0))−W (v (T )) = αT {x1b− x2c+W (v1) +W (v2)}+
¡
βT − 1¢W (vT )

Dividing by T , taking limits as T → 0 and letting v (0) = v,

W 0(v)v̇ = −α {x1b− x2c+W (v1) +W (v2)}+ (r + 2α)W (v)

Following a similar procedure in equation (1) gives:

v̇ = −α {x2b− x1c+ v1 + v2}+ (r + 2α) v
Finally, taking limits the incentive constraints read:

v1 − x1c ≥ v

W (v2)− x2c ≥ W (v) .

In this continuous time problem, the choice variables are x1, x2, v1, v2 and v̇,
where the first four variables are the analogue of the controls x1 (t), x2 (t),
v1 (t), v2 (t) in the previous problem, and v̇ is the analogue of choosing v (T ) .
The optimization problem can be rewritten as:

rW (v) = max
x1,x2,v1,v2,v̇

α(x1b− x2c) (5)

+α (W (v1)−W (v) +W (v2)−W (v)) +W 0 (v) v̇ (6)

subject to :

rv = α (x2b− x1c+ v1 − v + v2 − v) + v̇ (7)

v ≤ v1 − x1c (8)

W (v) ≤ W (v2)− x2c. (9)
6A related procedure was developed by Sannikov (2004) for a continuous time game

with stochastic diffusion processes.
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The following properties can be established as a result of the concavity of
the function W.

Proposition 2 The solution to the optimization problem defined by (5)-(9)
has the following properties:

1. Both incentive constraints bind.

2. x1 = min ((vh − v) /c) ;x2 = min ((W (0)−W (v)) /c) .

As in Mobius’, favors are done while the values of the players are away
from the boundary. Full favors are given unless there is not enough utility
in the set to compensate for the cost of the player giving the favor. In that
case, the size of the favor given by the player is limited by the distance
to this boundary (divided by the unit cost). In contrast to Mobius, the
lower bound on player values is actually zero, so the individual rationality
constraint binds. Also in contrast to Mobius, the relative price of favors
depends on v, i.e. on the entitlements of the players. This rate of exchange
is approximately |W 0 (v)| ∈ [c/b, b/c] . In the simulations reported below,
the extremes of this set are attained (at least approximately), giving rise
to a range of relative prices of the order of (b/c)2 . Both of these features,
i.e. the larger domain of values and the variable relative prices of favors,
can potentially accomodate a considerably larger number of favors before
reaching the frontiers.
The following Proposition gives properties of the optimal v̇.

Proposition 3 In the optimal policy,

1. v̇ (0) = v̇ (v∗) = v̇ (vh) = 0, where v∗ is the unique point satisfying
v∗ =W (v∗) ;

2. v̇0 (0) > 0, v̇0 (v̄) < 0.

This Proposition shows that v̇ > 0 in some region to the left of v∗ and
v̇ < 0 in some region to the right of this point. Our simulations reported
below suggests that this property indeed holds in the whole region (except
the extremes), so that v̇ drifts towards the equal treatment point v∗: the
player with a lower entitlement is gradually rewarded.
In the equilibrium described above, the player’s values provide an ac-

counting device of past history and current entitlements. An alternative
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equivalent accounting is given below. Let Ti represent de expected discounted
number of favors that player i will give in the rest of the game. It obviously
follows that:

v = T2b− T1c

w = T1b− T2c

which solving gives:

T1 =
vc+ bw

b2 − c2

T2 =
wc+ bv

b2 − c2

and
T1 − T2 =

v − w

b+ c
.

This difference has the interpretation of a net balance between the player’s
assets and liabilities. When T1 < T2, the player is in a net debt position. As
we find, v̇ > 0 in this region, which has the interpretation of debt forgiveness.

6 Numerical results

The optimal strategies differ in several dimensions from the very simple
strategies proposed by Mobius. How important is this? This section pro-
vides some numerical computations to examine this question.
There are 4 parameters in the model: r, α, c, b. In comparing the perfor-

mance of different alternatives, two normalizations can be made where all
that matters in these comparisons are the values of c/b and r/α.In the next
tables, the following normalizations are used: b = 1 and r = 0.01.
The following tables give a measure of how far each alternative scheme is

from the first best at the symmetric point of the boundary where players get
equal utilities. The first column gives the % values for the optimal scheme
described above; the second column gives values for an optimal scheme with
the added restriction that v̇ = 0; the third column gives the values for Mobius’
scheme.
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%difference with optimum
α 0.8
c V̇ 6= 0 V̇ = 0 Mobius
0.4 2.7 3 6.4
0.5 3.1 3.3 7.6
0.65 3.4 3.5 10.5
0.75 3.5 3.6 13.5
0.95 10.3 10.3 32.3

%difference with optimum
c 0.5
α V̇ 6= 0 V̇ = 0 Mobius
0.2 6 6.5 15.5
0.3 4.9 5.3 12.9
0.4 4.3 4.6 11
0.5 3.8 4.1 9.8
0.6 3.5 3.7 9.1

The performance of all these schemes decreases with c and increases with
the arrival rate α. There can be substantial improvements over Mobius’
scheme: e.g. for α = 0.8 and c = 0.95, the second best is 10% within the first
best, while Mobius’ scheme is 30% apart. It is also interesting to observe
that restricting v̇ = 0 does not have a substantial impact on performance.
The following two tables give the maximum number of consecutive favors

starting at the midpoint that lead to the boundary. The optimal scheme
can accomodate a much larger number of favors (between 5 to over 10 times
more.) In part this is due to flexible relative prices, which depart significantly
from one.

Number of favors Avg. price left
α 0.8 of midpoint
c V̇ 6= 0 Mobius
0.4 167.1 13.2 2.32
0.5 119 11.2 1.87
0.65 70.1 8.1 1.46
0.75 45.7 6.2 1.29
0.95 6.5 2.1 1.39

Number of favors Avg. price left
c 0.5 of midpoint
α V̇ 6= 0 Mobius
0.2 29 5.1 1.87
0.3 44 6.2 1.87
0.5 74 8.5 1.87
0.6 89 9.2 1.87
In all the simulations, V̇ is positive for values of V under the symmetric

point V ∗ so the equilibrium displays forgiveness. Figure 2 illustrates this
for the benchmark case. It is interesting to note that V̇ /V is monotonically
decreasing and that it equals the interest rate r = 1% in the lower section of

12



its domain. Using (7) and the incentive constraint for player one it follows
that:

r − α

v
(x2b+ v2 − v) =

v̇

v

so that v2−v ≈ x2b. Using the incentive constraint for player two this implies
that in this range of values W 0 (v) must be approximately equal to −c/b so
that player one is almost indifferent between receiving an extra favor or not.

vdot/v

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.1 30.1 33.1 36.1 39.1 42.1 45.1 48.1 51.1 54.1 57.1

v

Fig 2. Forgiveness
Figure 3 provides the decomposition of values in terms of favor entitlements
indicated above. Note that for lower values of v most of the increase in value
for player one is the result of an increased entitlement to favors of player two,
with basically no change in the favors owed by player one.
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Fig 3. Favors owed

7 Implementation with chips and bargaining

This section examines implementation of our equilibrium with a chips mech-
anism. We first define such a mechanism and provide a mapping from values
to chips. We then discuss the connection between forgiveness and inflation
generated by the injection of chips.

Definition 4 A chips mechanism induced by the equilibrium of the game is
a strictly increasing mapping c (v) from agent’s one value to the interval [0, 1]
with the symmetry property that: c (v) = 1− c (W (v)) .

The value c (v) is interpreted as the share of chips held by agent one. The
first property says it is an accounting device sufficient for determining the
values of the players. The second property implies that the share of chips
fully determines the utility of a player independently of its identity. These
are two conditions satisfied by Mobius’ scheme.
Let c (v) = v/ (v +W (v)) . It is easy to verify that both properties of

the definition are satisfied. In our equilibrium prices depend on the shares
of chips as follows:

1. Player one does a favor: p1 (c) = c (v1)− c (v) where c = c (v) .
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2. Player two does a favor: p2 (c) = c (v)− c (v2) where c = c (v) .

The share of chips also changes independently of favors over time: ċ (c) =
c0 (v) v̇ (v) where c = c (v) . Subject to this forgiveness rule, the equilibrium
can be implemented by a chips mechanism where the receiver of a favor has all
bargaining power to determine the price (in terms of chips) of a transaction.
This follows immediately from the fact that in our equilibrium the incentive
compatibility constraint binds for the agent doing the favor.
Forgiveness suggests negative real interest rates. These can be obtained

by a specific injection of chips. Let m (t) denotes the total number of chips
at time t and mi (t) the number held by player i. Then m1 (t) /m (t) = c (t) .
Let ṁ (t) denote the injection of chips at time t and suppose that ṁ1 (t) =
ṁ2 (t) = m (t) /2 so that both players receive the same number of chips. All
prices grow at the same rate as the stock of chips. Note that

ċ (t) =
d

dt

m1 (t)

m (t)
=

m (t) ṁ (t) /2 +m1 (t) ṁ (t)

m (t)2

=
ṁ (t)

m (t)

µ
1

2
− c (t)

¶
so the rate of expansion of chips

ṁ (t)

m (t)
=

ċ (t)
1
2
− c (t)

,

which is positive whenever the sign of ċ (t) equals the sign of 1
2
− c(t), as

occurs in our computations. Figure 4 the implied rates of chips expansion
(i.e. inflation) implied by the equilibrium levels of forgiveness. The peak
occurs at the symmetric point reaching a value of 4% (four times larger than
the discount rate r = 1%.). Since the rate of inflation is equivalent to the
negative interest rate implied, an alternative implementation is to have ap-
proximately 4% constant rate of expansion of chips and charge an interest to
fill the gaps which according to the figure would increase with the size of the
debt

¡
1
2
− c
¢
, from zero to approximately 4% as it approaches its maximum

at the extremes of the interval.
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Fig 4. Rate of expansion of chips

8 Final remarks

This paper considers cooperation in the absence of reciprocity. The lack of
double coincidence of needs has been the subject of many papers in mone-
tary theory. In most of that literature, trading requires the existence of a
medium of exchange since players do not interact repeatedly. In our paper
the repeated interaction of players makes exchange possible as an equilib-
rium outcome though informational frictions put a limit on what can be
achieved. As seen in the computations, this cost decreases significantly with
the frequency of trading opportunities α.
In many organizations internal exchange is not mediated with money. Ob-

vious examples are the household and other partnerships such as co-authors
or co-workers. Our analysis suggests that the lack of use of money should be
related to the frequency of trade opportunities. Casual observation suggests
that in many of these organizations, there multiple dimmension of exchanges
enhance the frequency of trading opportunities, thus reducing the value of
mediating trade with monetary payments.
Our model can be reinterpreted as a moral hazard problem. Agents may

choose to exert effort or not at a cost c/α. If they choose to do so, the other
agent may receive a reward with Poisson arrival rate α with a value b. If no
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effort is exerted the arrival rate is zero. This is a special case of the good
news scenarios of Abreu, Milgrom and Pearce in a bilateral game. In a recent
paper Kalesnik studies extensions to all other cases.
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9 Appendix I: Proof of Proposition 1

Take a point (v, w) in the Pareto frontier of V ∗. For any T this is fac-
torized by strategies and continuation values {xi (t) , vi (t) , wi (t) , vT , wT} .
Suppose (vT , wT ) is not in the Pareto frontier so there exists ε > 0 such
that (vT + ε, wT + ε) ∈ V ∗. Define new paths x̃i (t) = max (0, xi (t)− d (t)) ,
where d (t) = ε

c
eα(T−t)βT−t. We prove these paths together with

{vi (t) , wi (t) , vT + ε, wT + ε}

are admissible with respect to V. Letting

z (s) = x1 (s) b− x2 (s) c+ w1 (s) + w2 (s) ,

α

Z T

t

βs−t {x̃2 (s) b− x̃1 (s) c+ v1 (s) + v2 (s)} ds+ βT−t (vT + ε)

≤ α

Z T

t

βs−t
©
z (s) + εeα(T−s)βT−s

ª
ds+ βT−t (vT + ε)

= α

Z T

t

βs−tz (s) ds+ βT−t (vT + ε) + αεβT−t
µ−1 + eα(T−t)

α

¶
=

Z T

t

βs−tz (s) ds+ βT−tvT + d (t) c

≤ v1 (t)− x1 (t) c+ d (t) c = v1 (t)− x̃1 (t) c

so the incentive constraint for player one is satisfied. Similar argument shows
that the same holds for player two. Let (ṽ, w̃) denote the values associated
to the new admissible path. Then

ṽ ≥ α

Z T

0

βtz (s) ds+ βt (vT + ε)− α

Z T

0

βtbd (t) dt

= v + βtε− α

Z T

0

βtbd (t) dt.

Since d (t) is bounded, the right hand side exceeds v for T small. Similar
argument shows that w̃ > w,contradicting the hypothesis that (v, w) are in
the Pareto frontier of V ∗. This proves that (vT , wT )must belong to the Pareto
frontier of V ∗.
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We now show that (vi (t) , wi (t)) also belong to the frontier. Suppose
towards a contradiction that this was not true. Let

b = min {v + w| (v, w) are in the Pareto frontier of V ∗} .
From the concavity and symmetry of the boundary of V ∗, b = W (0) which
by lemma 5 is strictly positive. It follows that vT +wT ≥ b.Let Ti be the set
of time periods such that vi (t) , wi (t) are not in the Pareto frontier of V ∗.
We construct an alternative admissible path that improves on the given one
as follows. Let v̂i (t) be the value such that the pair (v̂i (t) , wi (t)) is in the
frontier. Similarly define ŵi (t) . Without loss of generality (by choice of T ),Z T

0

βt (v̂i (t)− vi (t)) dt+

Z T

0

βt (ŵi (t)− wi (t)) dt < βT b.

It is thus possible to construct paths {ṽi (t) , w̃i (t)} where for each t and i
either (ṽi (t) , w̃i (t)) equals (vi (t) , ŵi (t)) or it equals (v̂i (t) , wi (t)) such that

ε1 =

Z T

0

βt [ṽ1 (t)− v1 (t) + ṽ2 (t)− v2 (t)] dt < vT

and

ε2 =

Z T

0

βt [w̃1 (t)− v1 (t) + w̃ (t)− w2 (t)] dt < wT .

Define ṽT = vT − ε1 and w̃T = wT − ε2. Note that (ṽT , w̃T ) ∈ int (V ∗) . We
now show that the path {xi (t) , ṽi (t) , w̃i (t) , ṽT , w̃T} is admissible. Let

δ1 (t) = ṽ1 (t)− v1 (t) + ṽ2 (t)− v2 (t)

and
δ2 (t) = w̃1 (t)− v1 (t) + w̃ (t)− w2 (t) .

α

Z T

t

βs−tz̃i (t) dt+ βT−tṽT

= α

Z T

t

βs−tzi (t) dt+ βT−tvT +
Z T

t

βs−tδ1 (t) dt− βT−tε1

= α

Z T

t

βs−tzi (t) dt+ βT−tvT + β−t
µZ T

t

βsδ1 (t) dt− βTε1

¶
≤ α

Z T

t

βs−tzi (t) dt+ βT−tvT

≤ v1 (t)− x1 (t) c

≤ ṽ1 (t)− x1 (t) c.

19



A similar argument can be used to verify incentive compatibility for player
two. We have constructed paths where (ṽi (t) , w̃i (t)) are in the Pareto fron-
tier for all t. To end the proof, note that since (ṽT , w̃T ) are not in the frontier,
by our previous argument the path can be further improved by an alternative
one that takes values in the Pareto frontier (without modifying (ṽt (t) , w̃i (t)).

Lemma 5 The boundary of V ∗ has slope in the set [−b/c,−c/b].

Proof. We show that if the set V satisfies this property, so will the set
U = BT (V ) for all T. Let (v, w) be a point in the boundary of U where
v > 0. If there is a set of positive Lebsgue measure where x2 (t) > 0 then for
any 0 < ε <

R
βtx2 (t) dt there is a new path x̂2 (t) ≤ x2 (t) withZ

βtx̂2 (t) dt =

Z
βtx2 (t) dt− ε.

This gives rise to the points (v − εb, w + εc) in BT (V ) . On the contrary
suppose that x2 (t) = 0 for all t ∈ [0, T ]. Since v > 0, either vT > 0 or there
exists a set of positive Lebesgue measure in [0, T ] where v1 (t) or v2 (t) is
strictly positive. Since x2 (t) = 0 for all t, the points (vT , wT ) , (v1 (t) , w1 (t))
and (v2 (t) , w2 (t)) must be in the Pareto frontier of V.Suppose vT > 0. Then
for any 0 < ε < vT there exists values (v̂T , ŵT ) in the frontier of V where
v̂T = vT − ε and ε · c/b ≤ ŵT − wT . These terminal values together with
the original path are self-generating (recall that x2 (t) = 0 for t ∈ [0, T ])
and give rise to a point (v̂, ŵ) ∈ BT (V ) where (ŵ − w) / (v̂ − v) ≤ −c/b.
Similar argument can be used in case there exists a set of positive Lebesgue
measure in [0, T ] where v1 (t) or v2 (t) is strictly positive. This proves that the
boundary of BT (V ) has slope less or equal to −c/b. A symmetric argument
shows that the slope is greater or equal to −b/c.

10 Appendix 2: other proofs

Let B (V ) denote the APS operator associated to T =∞.

Lemma 6 If V ⊂ BT (V ) , then V ⊂ B (V ) .
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Proof. Let (v, w) ∈ BT (V ) . By monotonicity, (v, w) is also in Bn
T (V )

for all n with factorization (xi (t) , vi (t) , wi (t) , v (nT ) , w (nT ))
nT
t=0 and asso-

ciated values zi (t) such that:

v = α

Z nT

0

βtz1 (t) dt+ βnTvnT

w = α

Z nT

0

βtz2 (t) dt+ βnTwnT ,

such that as n is increased all previous zi (t) terms are maintained. Taking the
limit of (xi (t) , vi (t) , wi (t)) as n → ∞ delivers a factorization of (v, w) for
B. (this is like in a standard dyamic programming problem iterating forward
the optimal policy.)

Lemma 7 If V = B (V ) then V ⊂ BT (V ) .

Proof. Take (v, w) ∈ B (V ) with factorization {xi (t) , vi (t) , wi (t)} with
corresponding values {zi (t)} . Let vT = α

R
βtz1 (t+ T ) dt andwT = α

R
βtz2 (t+ T ) dt.

By definition the associated values (vi (t+ T ) , wi (t+ T )) ∈ V, so (vT , wT ) ∈
B (V ) = V. It follows immediately that {xi (t) , vi (t) , wi (t) , v (T ) , w (T )}
factorizes (v, w) for BT .

Corollary 8 The largest fixed point of B and BT are the same.

Proof. Let V be a fixed point of B. By Lemma 7, V ⊂ BT (V ) , so the
largest fixed point of BT contains V. Let V be a fixed point of BT . By Lemma
6, V ⊂ B (V ) , so the largest fixed point of B contains V.

11 Appendix 3: Algorithm

We consider a relaxed problem. More precisely, we will say that³
{xi (t) , vi (t) , wi (t)}Tt=0 , vT , wT

´
is weakly admissible with respect to V if the above conditions hold with the
weaker incentive constraints:

v1 (t)− x1 (t) c ≥ βTvT

w2 (t)− x2 (t) c ≥ βTwT
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Lemma 9 Suppose that
³
{xi (t) , vi (t) , wi (t)}Tt=0 , vT , wT

´
is weakly admis-

sible with respect to convex V. then the constant paths

(x1, x2, v1, v2, w1, w2, vT , wT )

defined by:

xi =
1R T

0
βtdt

Z T

0

βtxi (t) dt

vi =
1R T

0
βtdt

Z T

0

βtvi (t) dt

wi =
1R T

0
βtdt

Z T

0

βtwi (t) dt

are weakly admissible with respect to V.

Proof. By convexity of V, the continuation values lie in V and it is
also obvious that 0 ≤ xi ≤ 1. So we only need to verify (weak) incentive
compatibility. The incentive verify immediately.
Denote by B̂T the associated APS operator. Note that by definition, the

averaged path gives rise to the same values v, w. So without loss of generality
in defining B̂T we can restrict to constant paths. Because the incentive
constraints defining B̂T are weaker than those defining BT , its largest fixed
point contains the set of PPE values.
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