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Abstract

This article uses the notion of a �Local Nash Equilibrium�(LNE) to
model a vote maximizing political game that incorporates valence (the
electorally perceived quality of the political leaders.) Formal stochas-
tic voting models without valence typically conclude that all political
agents (parties or candidates) will converge towards the electoral mean
(the origin of the policy space.) The theorem presented here obtains
the necessary and su¢ cient conditions for the validity of the �mean
voter theorem�. The conditions involve the party valences, and the
electoral and stochastic variances. Since a pure strategy Nash Equilib-
rium (PNE), if it exists, must be a LNE , the failure of the necessary
condition for an LNE at the origin also implies that PNE cannot be at
the origin. The Theorem shows , when the necessary condition fails,
that low valence agents will, in equilibrium, adopt positions far from
the electoral origin. The theoretical conclusions appear to be borne
out by empirical evidence from Israel for the elections of 1988-1996.
JEL Classi�cation C11,C72,C78,D72.
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1 Introduction

The electoral models based on the early work of Hotelling (1929) and Downs
(1957) essentially supposed that the motivation of parties is to win a major-
ity of the votes or seats. The predictions of the Downsian, vote maximizing,
models vary, but they tend to suggest that parties converge to an electoral
center. The simplest model assumes two parties and a one-dimensional pol-
icy space, X. If voters �deterministically" choose the party with the nearest
policy position, then there will exist a Condorcet point, unbeaten under
majority rule vote, at the median of the electoral distribution. In higher di-
mensions, such two party pure strategy Nash equilibria generally do not ex-
ist and instability may occur ( Plott, 1967;McKelvey, 1976, 1979; Scho�eld,
1978, 1983,1985; Cohen and Matthews.1980; McKelvey and Scho�eld 1986,
1987; Saari 1997; Austen-Smith and Banks,1999). That is to say, whatever
position, zi; is picked by party i, there always exists a point zj which will
give party j a majority over party i.

On the other hand,when X has two or more dimensions, it is known
that a Condorcet point exists when electoral preferences are represented by
a spherically symmetric distribution of electorally preferred points. Even
when the distribution is not spherically symmetric, an equilibrium can be
guaranteed as long as the decision rule requires a su¢ ciently large majority
( Scho�eld, 1984; Strnad, 1985; Caplin and Nalebu¤, 1988) or when the
electoral distribution has a concavity property (Caplin and Nalebu¤, 1991)
.Although a pure strategy Nash equilibrium generically fails to exist in com-
petition between two agents under majority rule in high enough dimension,
there will exist mixed strategy Nash equilibria (Kramer 1978) whose sup-
port lies within a subset of the policy space known as the uncovered set
(McKelvey 1986; Cox 1987; Banks Duggan and LeBreton, 2002). All these
�attractors" of the political process are centrally located with respect to the
distribution of voters� ideal points. Such a conclusion seems at odds with
empirical evidence that parties do not exhibit such strong convergence to
the electoral center (Merrill and Grofman, 1999; Adams, 2001).

Extension of the deterministic model to the "multiparty" situation with
more than two parties has also shown failure of existence of pure strategy
equilibria (Eaton and Lipsey, 1975). Partly as a result of these theoretical
di¢ culties with the deterministic model, and also because of the need to
develop empirical models of voter choice (Poole and Rosenthal,1984), atten-
tion has focused on "stochastic" vote models. A formal basis for such models
is provided by the notion of "Quantal response equilibria" (McKelvey and
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Palfrey, 1995,). In such models, behavior of each voter is modeled by a
vector of choice probabilities (Hinich 1977; Enelow and Hinich 1984,1989;
Coughlin 1992; Lin, Enelow and Dorussen,1999; Banks and Duggan,2004).
A standard result in this class of models is that all parties converge to
the electoral origin when the parties are motivated to maximize vote share
(McKelvey and Patty,2004) or plurality in the two party case (Banks and
Duggan,2005).

However, this formal convergence result need not hold if there is an asym-
metry in the electoral perception of the "quality" of party leaders (Stokes,
1992). The average weight given to the perceived quality of the leader of
the jth party is called the party�s valence. In empirical models this valence
is independent of the party�s position, and adds to the statistical signi�-
cance of the model . In general, valence re�ects the overall degree to which
the party is perceived to have shown itself able to govern e¤ectively in the
past, or is likely to be able to govern well in the future.(Penn,2003) The
early empirical model of Poole and Rosenthal (1984) on US Presidential
elections included these valence terms and noted that there was no evi-
dence of candidate convergence . Formal models of elections incorporat-
ing valence have been developed recently (Ansolabehere and Snyder,2000;
Aragones and Palfrey, 2002, Groseclose,2001), but results to date have been
obtained only for the two party case. Extension to the multiparty case
is of interest because of recent empirical models of voting in the Nether-
lands and Germany (Scho�eld,Martin, Quinn and Whitford,1998; Quinn
and Martin, 2002; Scho�eld and Sened, 2005a), Britain (Alvarez and Nagler,
1998; Alvarez, Nagler and Bowler, 2000; Quinn, Martin and Whitford, 1999;
Scho�eld, 2004, 2005a), Israel (Scho�eld, Sened and Nixon, 1998; Scho�eld
and Sened, 2005b) and Italy (Giannetti and Sened, 2004). All these models
have suggested that divergence is generic. Most of these empirical models
have been based on the "multinomial logit"assumption that the stochastic
errors had a "Type I extreme value distribution" (Dow and Endersby , 2004)

This paper will present a "classi�cation theorem" for the formal vote
model of voter choice based on the same stochastic distribution assump-
tion..The "policy space" is assumed to be of dimension w;and there is an
arbitrary number,p; of parties. The party leaders exhibit di¤ering valence.

A " convergence coe¢ cient", incorporating all the parameters of the
model will be de�ned. Instead of using the notion of a Nash equilibrium,
the Theorem is given in terms of a "local Nash equilibrium" It is shown that
there are necessary and su¢ cient conditions for the existence of a "pure
strategy vote maximizing local Nash equilibrium"(LNE) at the mean of the
voter distribution. When the necessary condition fails, then parties , in
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equilibrium, will adopt divergent positions. In general, parties whose leaders
have the lowest valence will take up positions furthest from the electoral
mean. Moreover, because a pure strategy Nash equilibrium (PNE) must be
a local equilibrium , the failure of existence of the LNE at the electoral mean
implies non existence of such a centrist PNE. The failure of the necessary
condition for convergence has a simple interpretation; if the variance of the
electoral distribution is su¢ ciently large in contrast to the expected vote
share of the lowest valence party at the electoral mean, then this party has
an incentive to move away from the origin towards the electoral periphery.
Other low valence parties will follow suit, and the local equilibrium will
result will parties distributed along the principal electoral axis.

An empirical study of voter behavior for Israel for the elections of 1988,
1992 and 1996 is used to show that the necessary condition for party conver-
gence failed for these elections. The equilibrium positions obtained from the
formal result, under vote maximization, are in, general, comparable with,
but not identical to, the estimated positions: the two highest valence par-
ties were symmetrically located on either side of the electoral origin, while
the lowest valence parties were located far from the origin Only one of the
lowest valence parties were located o¤ the principal electoral axis. It is sug-
gested that the discrepancy between the formal and empirical model can be
accommodated by considering the strategic calculation of the party with
respect to post- election coalition negotiation.

2 The Formal Model of Elections

The data of the spatial model is a distribution, fxi 2 Xgi2N , of voter ideal
points for the members of the electorate, N , of size n. As usual we can
assume that X is a compact convex subset of Euclidean space, Rw, with w
�nite.

Each of the parties,or agents, in the set P = f1; : : : ; j; : : : ; pg chooses
a policy, zj 2 X, to declare to the electorate prior to the election. Let
z = (z1; : : : ; zp) 2 Xp be a typical vector of agent policy positions. Given z,
each voter, i, is described by a vector ui(xi; z) = (ui1(xi; z1); : : : ; uip(xi; zp)),
where

uij(xi; zj) = u�ij(xi; zj) + �j

and u�ij(xi; zj) = �j � �jjxi � zj jj2
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Here,u�ij(xi; zj) is the "observable" utility for i; associated with party j:
The term �j is the valence of agent j, which we assume is exogenously
determined. The term � is a positive constant and jj�jj is the usual Euclidean
norm on X. The terms f�jg are the stochastic errors,whose cumulative
distibution is denoted by 	: It is natural to assume that the valence of
party j; as perceived by voter i is �ij = �j + �j :

Because of the stochastic assumption, voter behavior is modeled by a
probability vector. The probability that a voter i chooses party j is

�ij(z) = Pr[[uij(xi; zj) > uil(xi; zl)], for all l 6= j]:

Here Pr stands for the probability operator associated with 	: The expected
vote share of agent j is

Vj(z) =
1

n

X
i2N

�ij(z):

In the vote model it is assumed that each agent j chooses zj to maximize
Vj , conditional on z�j = (z1; ::zj�1; zj+1::; zp).

The theorem presented here assumes that the exogeneous valences are
given by the vector � = (�p; �p�1; : : : ; �2; �1) and the valances are ranked
�p � �p�1 � � � � � �2 � �1. The model is denoted M(�;�; 	):

In this model it is natural to regard �j as the �average�weight given
by a member of the electorate to the perceived competence or quality of
agent j. The �weight� will in fact vary throughout the electorate, in a
way which is described by the stochastic distribution. In these models, the
C2�di¤erentiability of the cumulative distribution, 	; is usually assumed, so
that the individual probability functions f�ijg will be C2-di¤erentiable in the
strategies fzjg. Thus, the vote share functions will also be C2-di¤erentiable.,
and Hessians can be calculated.

Let x� = (1=n)�ixi. Then the mean voter theorem for the stochastic
model asserts that the �joint mean vector� z�0 = (x�; : : : ; x�) is a "pure
strategy Nash equilibrium". Lin, Enelow and Dorussen (1999) used C2-
di¤erentiability of the expected vote share functions, in the situation with
zero valence, to show that the validity of the theorem depended on the con-
cavity of the vote share functions. They asserted that a su¢ cient condition
for this was that stochastic variance was "su¢ ciently large". Because con-
cavity cannot, in general, be assured, I shall utilize a weaker equilibrium
concept, that of "Local Strict Nash Equilibrium"(LSNE). A strategy vec-
tor z� is a LSNE if , for each j; z�j is a critical point of the vote function
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Vj(z
�
1 ; ::z

�
j�1; zj :; z

�
j+1; ::z

�
p) and the eigenvalues of the Hessian of this func-

tion (with respect to zj);are negative. De�nition 1 gives the various technical
de�nitions used here.

De�nition 1. Equilibrium concepts.
(i) A strategy vector z�=(z�1 ; :::z

�
j�1; z

�
j ; z

�
j+1::z

�
p) is a "local strict Nash

equilibrium" (LSNE) i¤, for each agent j;there exists a neighborhood Xj of
zj in X such that

Vj(z
�
1 ; :::z

�
j�1; z

�
j ; z

�
j+1::z

�
p) > Vj(z

�
1 ; :::; zj ::z

�
p) for all zj 2 Xj � fz�j g

(ii) A strategy vector z�=(z�1 ; :::z
�
j�1; z

�
j ; z

�
j+1::z

�
p) is a "local (weak) Nash

equilibrium" (LNE) i¤, for each agent j;there exists a neighborhood Xj of
zj in X such that

Vj(z
�
1 ; :::z

�
j�1; z

�
j ; z

�
j+1::z

�
p) � Vj(z�1 ; :::; zj ::z�p) for all zj 2 Xj

(iii) A strategy vector z�=(z�1 ; :::z
�
j�1; z

�
j ; z

�
j+1::z

�
p) is a "(weak) pure strat-

egy Nash equilibrium" (PNE) i¤, for each agent j;

Vj(z
�
1 ; :::z

�
j�1; z

�
j ; z

�
j+1::z

�
p) � Vj(z�1 ; :::; zj ::z�p) for all zj 2 X

(iv) A strategy vector z�=(z�1 ; :::z
�
j�1; z

�
j ; z

�
j+1::z

�
p) is a "strict pure strat-

egy Nash equilibrium" (PSNE) i¤, for each agent j;

Vj(z
�
1 ; :::z

�
j�1; z

�
j ; z

�
j+1::z

�
p) > Vj(z

�
1 ; :::; zj ::z

�
p) for all zj 2 X � fz�j g

(v) The strategy z�j is termed a "local strict best response", a "local
weak best response", a "global weak best response", a "global strict best re-
sponse",respectively to z��j=(z

�
1 ; :::z

�
j�1; z

�
j+1::z

�
p); :depending on which con-

dition (i) to (iv) is satis�ed.
Obviously if z� is an LSNE or a PNE it must be an LNE, while if it

is a PSNE then it must be an LSNE. We use the notion of LSNE to avoid
problems with the degenerate situation when there is a zero eigenvalue to
the Hessian. The weaker requirement of LNE allows us to obtain a necessary
condition for z�0 = (x

�; : : : ; x�) to be a LNE and thus a PNE, without having
to invoke concavity. The theorem below also gives a su¢ cient condition for
the joint mean vector z�0 to be an LSNE. A corollary of the theorem shows,in
situations where the valences di¤er, that the necessary condition is likely to
fail. In dimension w, the theorem can be used to show that, for z�0 to be an
LSNE, the necessary condition is that a "convergence coe¢ cient ", de�ned
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in terms of the parameters of the model, must be strictly bounded above by
w: Similarly, for z�0 to be a LNE, then the convergence coe¢ cient must be
weakly bounded above by w: When this condition fails, then the joint mean
vector z�0 cannot be a LNE and therefore cannot be a PNE. Of course, even
if the su¢ cient condition is satis�ed, and z�0 = (x�; : : : ; x�) is an LSNE, it
need not be a PNE.

To parallel the empirical applications we assume a Type I extreme value
distribution (Train, 2003) for the errors.

The cumulative distribution,	; takes the closed form

	(h) = exp [� exp[�h] ;

with variance is 1
6�

2:It readily follows (Train, 2003,p.79) for the choice
model given above that, for each i,

�ij(z) =
exp[u�ij(xi; zj)]
pX
k=1

expu�ik(xi; zk)

:

This implies that the model satis�es the independence of irrelevant alterna-
tive property (IIA) namely that for each voter i; and for each pair,j; k; the
ratio

�ij(z)

�ik(z)

is independent of a third candidate l:
To state the theorem ,we �rst transform coordinates so that in the new

coordinates, x� = 0. I shall refer to z�0 = (0,...0) as the joint origin in
this new coordinate system. Whether the joint origin is an equilibrium
depends on the distribution of voter ideal points. These are encoded in the
voter variance/covariance matrix. We �rst de�ne this, and then use it to
characterize the vote share Hessians.

De�nition 2: The voter variance- covariance matrix,r. To characterize
the variation in voter preferences, we represent in a simple form the variance
covariance matrix (or data matrix, r) of the distribution of voter ideal
points. LetX have dimension w and be endowed with a system of coordinate
axes (1; : : : ; t; s; : : : ; w). For each coordinate axis let �t = (x1t; x2t; : : : ; xnt)
be the vector of the tth coordinates of the set of n voter ideal points. We
use (�s; �t) to denote scalar product.
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The symmetric w � w voter variance/covariance data matrix r is then
de�ned to be

r =

0BB@
(�1; �1) (�1; �w)

(�s; �s)
(�t; �t)

(�w; �1) (�w; �w)

1CCA
The normalized covariance matrix is 1

nr:We write v
2
s =

1
n(�s; �s) for the

electoral variance on the sth axis and

v2 =
wX
r=1

v2r =
1

n

wX
r=1

(�r; �r) = trace(
1

n
r)

for the total electoral variance. The normalized covariance between the rth

and sth axes is (vr; vs) = 1
n(�r; �s):

The formal model is denotedM(�;�; 	;r); though we shall usually sup-
press the reference to r:

De�nition 3. The Convergence Coe¢ cient of the model M(�;�; 	).
(i) At the vector z0 =(0,..0) the probability �ik( z0) that i votes for

party,k,is

�k =

241 +X
j 6=k

exp [�j � �k]

35�1 :
(ii) The coe¢ cient Akfor party k is

Ak = �(1� 2�k)

(iii) The Hessian for party k at z0 is

Ck =

�
2[A

k
](
1

n
r)� I

�
where I is the w by w identity matrix.
(iv) The convergence coe¢ cient of the model M(�;�; 	) is

c(�;�; 	) = 2�[1� 2�1]v2 = 2A1v2 :

The de�nition of �k follows directly from the de�nition of the extreme
value distribution. Obviously if all valences are identical then �1 =

1
p ;as

8



expected.The e¤ect of increasing �j ; for j 6= 1, is clearly to decrease �1; and
therefore to increase A1;and thus c(�;�; 	):

Theorem . The condition for the joint origin be a LSNE in the model
M(�;�; 	) is that the Hessian

C1 =

�
2[A1 ](

1

n
r)� I

�
of the party 1, with lowest valence,has negative eigenvalues.�
Comment on the Theorem. The proof of the Theorem depends on con-

sidering the �rst and second order conditions at z0 for each vote share func-
tion. The �rst order condition is obtained by setting dVj=dzj = 0 (where
we use this notation for full di¤erentiation, keeping z1; : : : ; zj�1; zj+1; : : : ; zp
constant). This allows us to show that z0 satis�es the �rst order condition.
The second order condition is that the Hessian d2Vj=dz2j be negative de�nite
at the joint origin. If this holds for all j at z0, then z0 is a LSNE. However,
we need only examine this condition for the vote function V1 for the low-
est valence party. As we shall show, this condition on the Hessian of V1 is
equivalent to the condition on C1, and if the condition holds for V1, then the
Hessians for V2; : : : ; Vp are all negative de�nite at z0. As usual, conditions
on C1 for the eigenvalues to be negative depend on the trace, trace(C1);
and determinant, det(C1); of C1. These depend on the value of A1 and on
the electoral variance/covariance matrix, r. Using the determinant of C1,
we can show that 2A1v2 < 1 is a su¢ cient condition for the eigenvalues
to be negative. In terms of the �convergence coe¢ cient� c(�;�; 	) we can
write this as c(�;�; 	) < 1: In a policy space of dimension w, the necessary
condition on C1, induced from the condition on the Hessian of V1; is that
c(�;�; 	) � w. This condition is obtained from examining the trace of C1 .
If this necessary condition for V1 fails, then z0 can be a neither a LNE nor
a LSNE.

Ceteris paribus, a LNE at the joint origin is �less likely�the greater are
the parameters �, �p � �1 and v2:

Proof of the Theorem. At z�1 = (0; ::) , let �i1(z1) be the probability
that i picks 1:Then

�i1(z1) = Pr
�
[�1 � �jjxi � z1jj2 � �j + �jjxi � zj jj2 > �j � �1]; for all j 6= 1

�
:
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Using the extreme value distribution 	 we obtain

�i1(xi; z1) = [[1 + �j=2[exp(fj)]]
�1

where fj = �j � �1 + �jjxi � z1jj2 � :�jjxi � zj jj2

and
d�i1
dz1

= 2(�(z1 � xi)[�2i1 � �i1]

At z1 = 0; �i1 = �1 is independent of i;so we obtain

d�i1
dz1

= 2(�(z1 � xi)[�21 � �1]

and
dV1
dz1

=
1

n

X
i

d�i1
dz1

= 0 at z1 =
1

n

X
i

xi;

giving the �rst order condition z1 = 0 . Obviously the condition
dVj
dzj

= 0

is satis�ed at :z1 = 1
n

X
i

xi = 0: Thus z0 =(0,..0) satis�es the �rst order

condition.
At z�1 = (0; ::0) the Hessian of �i1 is

d2�i1
dz21

= f�i1 � �2i1gf[1� 2�i1][ri1(z1)]� 2�Ig:

Here [ri1(z1)] = 4�2[(xi � z1)(xi � z1)T is the w by w matrix of cross
product terms. Now �i[ri1(0)] = 4�2r; where r is the electoral covariance
matrix given in De�nition 2., Then the Hessian of V1 at z1 = 0 is given by

1

n

X
i

d2�i
dz21

= f�1 � �21gf[1� 2�1][4�2]
�
1

n
r
�
� 2�Ig:

Because the �rst term f�1��21gis positive, the eigenvalues of this matrix
will be determined by the eigenvalues of

C1 =

�
2[A1 ](

1

n
r)� I

�
where A1 = �[1� 2�1]

as required.
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Moreover,

�p � �p�1 � � � � � �2 � �1
implies that �p � �p�1 � � � � � �2 � �1

so thatA1 � A2 � � � � � Ap:
This implies that trace(C1) � trace(C2) � � � � � trace(Cp)

and det(C1) � det(C2) � � � � � det(Cp)

Thus if C1 has negative eigenvalues then so do C2; : : : ; Cp, and this implies
that z1 = z2 = � � � = zp = 0 will all be mutual local strict best responses.
This shows that the stated condition is su¢ cient for z0 = z�0 = (0; 0; : : : ; 0)
to be an LSNE. Obviously, if C1 does not have negative eigenvalues, then
z0 cannot be a LSNE..�

Note that for a general spatial model with an arbitrary, non-Euclidean
but di¤erentiable metric �(xi; zj) = jjxi�zj jj; a similar expression for A1can
be obtained., but in this case the covariance term r will not have such a
ready interpretation. Note also that if the non-di¤erentiable Cartesian
metric �(xi; zj) = �wk=1jxik � zjkj were used, then the �rst order condition
would be satis�ed at the median rather than the mean.

For the case of the Euclidean norm, the Theorem gives the following
Corollaries.

Corollary 1. Assume X is two dimensional. Then, in the model
M(�;�; 	); the su¢ cient condition for the joint origin to be a LSNE is
that c(�;�; 	) be strictly less than 1. The necessary condition for the joint
origin to be a LNE is that c(�;�; 	) be no greater than 2.

Proof. The condition that both eigenvalues of C1 be negative is equiv-
alent to the condition that det(C1) is positive and trace(C1) is negative.
Now

det(C1) = (2A1)
2
�
(v1; v1) � (v2; v2)� (v1; v2)2

�
+1� (2A1) [(v1; v1) + (v2; v2)] :

By the triangle inequality,the term
�
(v1; v1) � (v2; v2)� (v1; v2)2

�
is non

negative. Thus det(C1) is positive if

2A1) [(v1; v1) + (v2; v2)] < 1

or 2�[1� 2�1]v2 < 1:

This gives the su¢ cient condition that c(�;�; 	) < 1 for z0 = z�0.to be
a. LSNE ..
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The necessary condition for z0 to be an LNE is that the eigenvalues be
non-positive. Since trace(C1) equals the sum of the eigenvalues we can use
the fact that

trace(C1) = (2A1)[(v1; v1) + (v2; v2)]� 2;

to obtain the necessary condition 2�[1� 2�1]v2 � 2:
Thus c(�;�; 	) � 2 gives the necessary condition. �
Notice that the case with two parties with equal valence immediately

gives a situation with 2�[1�2�1]v2 = 0; irrespective of the other parameters.
However, if �2 >> �1; then the joint origin may fail to be a LNE if �v2 is
su¢ ciently large. Note also that for the multiparty case �1 is a decreasing
function of (�p � �1) so the necessary condition is more di¢ cult to satisfy
as (�p � �1) increases.

If the su¢ cient condition fails, but the necessary condition is satis�ed,
then the eigenvalues may still be non-positive, and can be explicitly com-
puted in terms of the model parameters and data. If the second condition
fails then obviously at least one of the eigenvalues must be strictly positive,
and so z�0 cannot be an LNE. The condition c(�;�; 	) = 2 includes the
non-generic case where both eigenvalues are zero.

In the two dimensional case there is one situation where computation
of eigenvalues is particularly easy. If the covariance (�1; �2) of the electoral
data on the two axes is (close to) zero, then the voter covariance matrix
is (approximately) diagonal and the two policy dimensions can be treated
separately. In this case we obtain two separate necessary conditions

2�[1� 2�1]v2t � 1

for both t = 1; 2, for z�0 to be a LNE. If v
2
t � v2s then we obtain essentially

identical necessary and su¢ cient conditions in terms of v2s . In the two-
dimensional case we can compute the eigenvalues explicitly.

Corollary 2. In the two dimensional case, let v2t =
1
n(�t; �t) be the

electoral variances on the two axes t=1,2. Then the two eigenvalues of C1
are

a1 = (A1)f
�
v21 + v

2
2] + [[v

2
1 � v22]2 + 4(v1; v2)2

� 1
2 g � 1

a2 = (A1)f
�
v21 + v

2
2]� [[v21 � v22]2 + 4(v1; v2)2

� 1
2 g � 1

Proof.This follows immediately from the proof of Corollary 1, using the
fact that a1 + a1 = trace(C1) = c(�;�; 	)� 2: �
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When the covariance term (v1; v2) = 0;then the eigenvalues are obviously
at = A1)fv2t g; t = 1; 2: The more interesting case is when the covariance
(v1; v2) is signi�cant. By a transformation of coordinates, we can choose
vt; vs to be the eigenvectors of the Hessian matrix for agent 1, and let these
be these new "principal components " of the electoral covariance matrix. If
v2t � v2s then the sthcoordinate can be termed " the principal electoral axis".
The two dimensional empirical analysis of Israel, discussed below, shows
that the valence di¤erences implied that the eigenvalue associated with the
principal electoral s-axis was large and positive, while the eigenvalue on the
minor axis was negative. This immediately implies that, with other agents
at the electoral origin, the position z1 = 0 is a saddlepoint of the vote share
function for agent 1. The eigenspace associated with the large eigenvalue
can be identi�ed with the principal electoral axis, and the smaller eigenvalue
is associated with the orthogonal minor axis. Consequently, the gradient of
agent 1�s vote share function near the origin points in a direction away
from the origin,and is aligned with the principal axis. It follows that, in
local equilibrium, all agents will be located on (or close to) the principal
axis, with the lowest valence agents farthest from the origin. This formal
result is matched by the simulation of the vote maximizing model.

In the general w-dimensional situation, it is obvious that trace(C1) in-
volves the dimension, w, so we obtain the necessary condition

trace(C1) = (2A1)[trace(
1

n
r)� w � 0;

or 2�[1� 2�1]v2 � w

for the joint origin to be a LNE in this case.
Corollary 3.In the case that X is w-dimensional. then the necessary

condition for the joint origin to be a LNE is that c(�;�; 	) � w: �
Computation of the eigenvalues is more di¢ cult, but presents no fun-

damental theoretical problem.When the necesary condition fails, then the
origin will be a minimum or saddle of of the low valence party. As in the
two dimensional case, if the electoral variance is much larger on a principal
electoral component, then this axis will coincide with the eigenvector of the
Hessian of party 1, and we expect parties to allign themselves on this axis.

Previous formal analyses of the stochastic vote model ( Banks and Dug-
gan, 2005; McKelvey and Patty,2004) have focused on conditions su¢ cient
for a "coincident " vector, z� = (x�; :::x�) to be a Nash equilibrium. Gen-
erally this has involved assuming that the vote share functions are concave.
Obviously, if the necessary condition,given in Corollary 2, fails at the joint
origin, then so must concavity. This casts doubt on the existence of PNE in
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these vote models. The natural question is whether there can be multiple
LSNE but no Nash equilibria., Generic existence of LSNE can be shown by
more abstract arguments (Scho�eld and Sened, 2002) Such arguments sug-
gest that, in general, there will exist many di¤erent, non-convergent LSNE.
In the simulation of the model for the Israel elections,discussed below, the
various LSNE that were found were essentially permutations of one another.
Most importantly, none of these equilibria involved parties adopting posi-
tions very close to the electoral origin.
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3 Empirical Analysis for Israel.

Consider the case of the election of Israel in 1996. Figure 1 shows the
estimated positions of the parties at the time of the 1996 election,

while Table 1 presents summary statistics of the 1996 election, together
with valence estimates based on a multinomial logit model, and therefore on
the Type I extreme value distribution on the errors. The two dimensions of
policy deal with attitudes to the PLO (the horizontal axis) and religion (the
vertical axis. The policy space was derived from voter surveys (obtained
by Arian and Shamir, 1999) and the party positions from analysis of party
manifestos (Scho�eld, Sened and Nixon, 1998; Scho�eld and Sened 2005a).
Using the formal analysis,we can readily show that one of the eigenvalues
of the low valence party, the NRP, is positive. Indeed it is obvious that
there is a principal component of the electoral distribution, and this axis
is the eigenspace of the positive eigenvalue. It follows that low valence
parties should then position themselves on this eigenspace as illustrated in
the simulation given below in Figure 2.

[Insert Table 1 and Figure 1 about here]
In 1996, the lowest valence party was the NRP with valence �4.52. The

spatial coe¢ cient is � = 1:12;so.for the extreme value model M(	) we com-
pute �NRP ' 0:and ANRP = 1:12

�NRP ' 1

1 + e4:15+4:52 + e3:14+4:52
' 0:

Thus ANRP = � = 1:12:

CNRP = 2(1:12)

�
1:0 0:591
0:591 0:732

�
� I =

�
1:24 1:32
1:32 0:64

�
c(	) = 3:88

Then the eigenvalues are 2.28 and -0.40, giving a saddlepoint, and a
value for the convergence coe¢ cient of 3.88. . The major eigenvector for the
NRP is (1.0,0.8), and along this axis the NRP vote share function increases
as the party moves away from the origin.The minor, perpendicular axis is
given by the vector (1,-1.25) and on this axis the NRP vote share decreases..
Figure 2, gives one of the local equilibria in 1996, obtained by simulation
of the model..The Figure makes it clear that the vote maximizing positions
lie on the principal axis through the origin and the point (1.0,0.8).In all,
�ve di¤erent LSNE were located. However, in all the equilibria, the two
high valence parties, Labor and Likud, were located at precisely the same
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positions. The only di¤erence between the various equilibria were that the
positions of the low valence parties were perturbations of each other.

[Insert Figure 2 about here]
We next analyse the situation for 1992, by computing the eigenvalues for

the Type I extreme value distribution,	 (See Figure 3). From the empirical
model we obtain �shas = �4:67; �likud = 2:73; �labor = 0:91; � = 1:25: When
all parties are at the origin, then the probability that a voter chooses Shas
is

�shas ' 1

1 + e2:73+4:67 + e0:91+4:67
' 0:

Thus Ashas = � = 1:25:

Cshas = 2(1:25)

�
1:0 0:453
0:453 0:435

�
� I =

�
1:5 1:13
1:13 0:08

�
c(	) = 3:6

Then the two eigenvalues for Shas can be calculated to be +2.12 and -0.52
with a convergence coe¢ cient for the model of 3.6. Thus we �nd that the
origin is a saddlepoint for the Shas Hessian. The eigenvector for the large,
positive eigenvalue is the vector (1:0; 0:55): Again,this vector coincides with
the principal electoral axis. The eigenvector for the negative eigenvalue is
perpendicular to the principal axis. To maximize vote share, Shas should
adjust its position but only on the principal axis. This is exactly what
the simulation found. Notice that the probability of voting for Labor is
[1+e1:82]�1 = 0:14; and Alabor = 0:9; so even Labor will have a positive
eigenvalue at the origin.Clearly, if Likud occupies the mean voter position,
then Labor as well as all low valence parties would �nd this same position
to be a saddlepoint. In seeking local maxima of vote shares all parties
other than Likud should vacate the electoral center. Then, however, the
�rst order condition for Likud to occupy the electoral center would not be
satis�ed. Even though Likud�s vote share will be little a¤ected by the other
parties, it too should move from the center. This analysis predicts that the
lower the party�s valence, the further will its equilibrium position be from
the electoral mean. This is illustrated in Figures 2 and 4.

Calculation for the model M(	) for 1988 gives eigenvalues for Shas of
+2.0 and -0.83 with a convergence coe¢ cient of 3.16, and a principal axis
through (1.0,0.5). Again, vote maximizing behavior by Shas should oblige
it to stay strictly to the principal electoral axis. The simulated vote maxi-
mizing party positions indicated that there was no deviation by parties o¤
the pricipal axis or eigenspace associated with the positive eigenvalue.
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Thus the simulation was compatible with the predictions of the formal
model based on the extreme value distribution. All parties were able to
increase vote shares by moving away from the origin, along the principal
axis, as determined by the large , positive principal eigenvalue . In partic-
ular, the simulation con�rms the logic of the above analysis. Low valence
parties, such as the NRP and Shas, in order to maximize vote shares must
move far from the electoral center . Their optimal positions will lie either
in the �north east�quadrant or the �south west�quadrant The vote maxi-
mizing model, without any additional information, cannot determine which
way the low valence parties should move. As noted above, the simulations
of the empirical models found multiple LSNE essentially di¤ering only in
permutations of the low valence party positions.

In contrast, since the valence di¤erence between Labor and Likud was
relatively low in all three elections, their optimal positions would be rela-
tively close to, but not identical to, the electoral mean. The simulation
�gures for all three elections are also compatible with this theoretical infer-
ence. The �gures also suggest that every party, in local equilibrium, should
adopt a position that maintained a minimum distance from every other
party. The formal analysis, as well as the simulation exercise, suggests that
this minimum distance depends on the valences of the neighboring parties.
Intuitively it is clear that once the low valence parties vacate the origin,
then high valence parties, like Likud and Labor will position themselves al-
most symmetrically about the origin, and along the major axis. It should
be noted that the positions of Labor and Likud, particularly, closely match
their positions in the simulated vote maximizing equilibria.

Clearly, the con�guration of equilibrium party positions will �uctuate
as the valences of the large parties change in response to exogenous shocks.
The logic of the model remains valid however, since the low valence parties
will be obliged to adopt relatively "radical" positions in order to maximize
their vote shares.

The correlation between the two electoral axes was much higher in 1988
(r2 = 0:70) than in 1992 or 1996 (when r2 ' 0:47). It is worth observing
that as r2 falls from 1988 to 1996, a counter-clockwise rotation of the
principal axis that can be observed,. This can be seen in the change from
the eigenvalue (1.0,0.5) in 1988, to (1.0,0.55) in 1992 and then to (1.0,0.8)
in 1996. Notice also that the total electoral variance increased from 1988
to 1992 and again to1996. Indeed, in 1996, Figure 3 indicates that there is
evidence of bifurcation in the electoral distribution in 1996.

In comparing Figure 1, of the estimated party positions, and Figure 2,
of simulated equilibrium positions, there is a notable disparity particularly
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in the position of Shas. In 1996, Shas was pivotal between Labor and Likud,
in the sense that to form a winning coalition government, either of the two
larger parties required the support of Shas. It is obvious that the location of
Shas in Figure 1suggests that it was able to bargain e¤ectively over policy,
and presumably perquisites. Indeed, it is plausible that the leader of Shas
was aware of this situation, and incorporated this awareness in the utility
function of the party.

The relationship between the empirical work and the formal model, to-
gether with the possibility of strategic reasoning of this kind, suggests the
following conclusion.

Conclusion . The close correspondence between the simulated LSNE
based on the empirical analysis and the estimated actual political con�gu-
ration suggests that the true utility function for each party j has the form
Uj(z) = Vj(z)+�j(z), where �j(z) may depend on the beliefs of party leaders
about the post election coalition possibilities, as well as the e¤ect of activist
support for the party.

This conclusion leads to the further conjecture , for the set of feasible
strategy pro�les in the Israel polity, that �j(z) is �small�relative to Vj(z).
A formal model to this e¤ect could indicate that the LSNE for fUjg would
be close to the LSNE for fVjg.

If this were valid in general, then it would be possible to use a combina-
tion of multinomial logit electoral models, simulation of these models and
the formal electoral model based on exogeneous valence to study general
equilibrium characteristics of multiparty democracies.

4 Concluding Remarks.

Most of the early work in formal political theory focused on two-party com-
petition, and generally concluded that there would be strong centripetal
electoral forces causing parties to converge to the electoral center ( Or-
deshook and Riker,1973). The extension of this theory to the multiparty
context, common in European polities, has proved very di¢ cult, because
of the necessity of dealing with coalition governments (Riker,1962). How-
ever, the symmetry conditions developed by McKelvey and Scho�eld (1987)
showed that a large centrally located party could dominate policy, if it oc-
cupied what is known as a "core position" Thus, in situations where there is
a stable policy core, there would be certainty over the post-election policy
outcome of coalition negotiation (Laver and Scho�eld, 1998). Absent a pol-
icy core, the post-election outcome will be a lottery across various possible
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coalitions, all of which are associated with di¤ering policy outcomes and cab-
inet allocations. Modeling this post election "committee game" can be done
either with cooperative game theoretical concepts, such as the "competitive
solution" ( McKelvey, Ordeshook and Winer,1978),or the "uncovered set"
(McKelvey,1986; ; Banks, Duggan, Le Breton, 2002). Other recent analyses
have utilized non-cooperative game-theoretical techniques to model coalition
bargaining ( Banks and Duggan,2000).

Although the non-cooperative stochastic electoral model presented here
can give insight into the relationship between electoral preferences and be-
liefs (regarding the valences of party leaders), it is still incomplete. The
evidence suggests that party leaders pay attention not only to electoral re-
sponses, but also to the post election coalition consequences of their choices
of policy positions.(Cox, 1984,1987,1990,1997). Nonetheless, the combina-
tion of the electoral model and post-election bargaining theory suggests the
following:

(i) Parties with high valence will be attracted towards the electoral cen-
ter, but if there are two such competing parties, neither will locate quite at
the center.

(ii) Under proportional electoral rule, there may be many low valence
parties, whose equilibrium, vote maximizing positions will be far from the
electoral center.

(iii) In order to construct winning coalitions, one or other of the high
valence parties must bargain with more "radical" low valence parties,and
this could induce a degree of coalitional instability.

In an attempt to model this complex political game, this paper has
introduced the idea of local Nash equilibrium. The underlying premise of
this notion is that party principals will not consider "global" changes in
party policies, but will instead propose small changes in the party leadership
in response to changes in beliefs about electoral response and the likely
consequences of policy negotiations. It is also evident that the electoral
model depends on the notion of "valence". Although the empirical models
provide a justi�cation for the inclusion of this variable, no attempt has been
made to provide a formal justi�cation. Valence can, however, be regarded
as that element of a voter�s choice which is determined by judgement rather
than preference. This accords well with the arguments of James Madison
in "Federalist 10" of 1787 and of Condorcet in his treatise of 1785 on social
choice theory (Scho�eld,2005b).
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Table 1
Seats and votes in the Knesset

Party 1996 1996 1996 1996 1996 1992
National % Sample % Seats Valence1 %correct Seats

Others Left 7.3 0 9 - prediction 5
Meretz 7.6 6.0 9 0 28.5 12
Labor 27.5 44.0 34 4.15 71.7 44
3rd Way 3.2 1.8 13 -2.34 28.7
Likud 25.8 43.0 30 3.14 70.1 32
Shas 8.7 2.0 10 -2.96 30.9 6
NRP 8.0 5.1 9 -4.52 40.8 6
Molodet 2.4 1.8 2 -0.89 . 78.0 3
Others Right 3.7 1.8 4 - 12

1The � coe¢ cient for the MNL model with valence is 1.12 (con�dence
interval �0.15 )
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Figure 1: The Electoral Distribution and Party Positions in the Knesset in
1996.
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Figure 2: A Representative Local Nash Equilibrium of the Vote Maximizing
Game in the Knesset for the 1996 Election.Key: 1 = Shas, 2 = Likud, 3 =
Labor, 4 = NRP, 5 = Molodet, 6 = Third Way , 7= Meretz.
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Figure 3: The Electoral Distribution and Party Positions in the Knesset in
1992.
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Figure 4: A Representative Local Nash Equilibrium of the vote maximizing
Game in the Knesset for the 1992 election.
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Figure 5: Electoral Distribution and Party Positions in the Knesset, 1988
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Figure 6: A Representative Local Nash Equilibrium of the vote maximizing
Game in the Knesset for the 1988 election.
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