
Introduction .. 1
Schemas ... 2
Example ... 3

RETINA Schema .. 4
DEPTH Schema .. 5

Schema Definition... 5
Dynamic Schema Instantiation.. 7
Dynamic Port Instantiation ... 7
Communication... 7
Wrapping... 8

STEREO Schema.. 9
Port Management ... 9
Delegation.. 11
Assemblages .. 11

MAIN Schema .. 12
Extended Example.. 12

RETINA Schema .. 13
DEPTH Schema .. 14
STEREO Schema.. 14
MAIN Schema .. 15

Neural-Schemas .. 15
Comparisons ... 16

Instantiation... 16
Multiple Ports.. 16
Message Passing ... 17
Aggregation... 17
Multi-granularity... 17

Conclusions and Future Research... 18
References.. 18
Appendix - ASL Syntax.. 20

Schema Definition... 20
Declarations .. 20
Expressions ... 22
Statements ... 22

ASL
A Hierarchical Computational Model

for Distributed Heterogeneous Systems

Alfredo Weitzenfeld

Technical Report CNE-93-02, CS-93-552

May 1993

Brain Simulation Laboratory
Center for Neural Engineering

University of Southern California

ASL: A Hierarchical Computational Model
for Distributed Heterogeneous Systems

Alfredo Weitzenfeld

 Computer Science Department
University of Southern California

Los Angeles, CA 90089-2520
alfredo@usc.edu
tel: 213/740-6345

Abstract

The Abstract Schema Language (ASL) defines a hierarchical computational model for the development of

distributed heterogeneous systems. ASL extends the capabilities and methodologies of concurrent object-oriented

programming to enable the construction of highly complex multi-granular systems. The ASL model is described in

terms of schemas (concurrent agents), supporting aggregation (schema assemblages), and both top-down and

bottom-up system designs. ASL encourages code reusability by enabling the integration of heterogeneous

components, e.g., procedural and neural network programs. ASL schemas are designed and implemented in an

orthogonal fashion; integrated, either statically, through wrapping, or dynamically, via (task) delegation. Schemas

include a dynamic interface, made of multiple unidirectional input and output ports, and a body section where

schema behavior is specified. Communication is in the form of asynchronous message passing, hierarchically

managed, internally, through anonymous port reading and writing, and externally, through dynamic port inter-

connections and relabelings.

Keywords
schema, distributed, heterogeneous, multi-granular, hierarchical, concurrent, encapsulation, reusability,

communication, asynchronous, assemblage, port, connection, relabeling, wrapping, task delegation.

Introduction
The Abstract Schema Language (ASL) [Weitzenfeld 1992; 1993] describes an evolved computational model for the

development of distributed heterogeneous systems. ASL presents a hierarchical approach for the design and

implementation of computational models where intensive processing and continuous inter-process communication

are intrinsic system properties. ASL unifies schema modeling [Arbib 1992] with concurrent object-oriented

programming (COOP) [Yonezawa and Tokoro 1987]. Generally speaking, COOP integrates concurrency with

object-oriented design, where an object-oriented language can be analyzed in terms of objects, instantiation,

inheritance, and message passing [Cointe 1984]. In a concurrent world, some of these concepts become more

complex, especially when designing inheritance schemes [Briot and Yonezawa 1990], where as an alternative to

inheritance, the notion of delegation [Lieberman 1986] has been suggested. ASL extends the current state of the art

Alfredo Weitzenfeld: ASL-ECOOP'93 2

in both schema research and COOP while providing a hierarchical approach towards heterogeneous and multi-

granular concurrent object design. In particular, ASL addresses the development of complex systems integrating

developments in Distributed Artificial Intelligence (DAI), Robotics, as well as Brain Theory (BT) and Cognitive

Psychology.

The ASL communication model is asynchronous, based on dynamic multiple input and output ports,

connections and relabelings. The ASL communication model is hierarchically managed, where messages are sent

and received anonymously internally to schemas, while actual communication paths between schema ports are

externally set. The hierarchical port management methodology enables the development of distributed systems

where modules may be designed and implemented independently and without prior knowledge of their final

execution environments. Furthermore, dedicated port inter-connections avoids the overhead of direct process

naming between continuously communicating entities. Yet, ASL communication model is expressive enough,

making it possible to simulate other communication paradigms, such as client/server and blackboards (see

Weitzenfeld [1992]).

The integration of ASL with the Neural Simulation Language (NSL) system [Weitzenfeld 1991], a simulation

system extensibly used by the neural networks research community, gives rise to Neural-Schema Language

(Weitzenfeld [1992] (also referred to as NSL), a comprehensive simulation system for applications in DAI ,

Robotics and Brain Theory.1

1 The ASL operational semantics are described in Weitzenfeld and Arbib [1993], and a multi-process implementation can be
found in Weitzenfeld [1992].

Alfredo Weitzenfeld: ASL-ECOOP'93 3

Schemas
The ASL computational model is

defined in terms of schemas2, autonomous

computational agents which cooperate with

each other in a hierarchical fashion. The

ASL model hierarchy is shown in Figure 1.

At the top of the diagram a schema is

shown decomposed into other schemas.

This decomposition gives rise to schema

aggregation, or schema assemblages, where

schemas are composed into complex

schema networks. Schemas are specified

and implemented in an orthogonal fashion,

either through wrapping, which enables

delegation

neural

schema

procedural

schemas

Figure 1. ASL schema model

static integration of heterogeneous external programs (e.g. procedural and neural), or through delegation, which

enables dynamic integration of schemas as specification and implementation tasks. (Simple lines between boxes

represent connections between objects, while arrows represent task delegation. The barrier separates the higher level

schema specifications from the lower level schema implementations.)

Example
Let us introduce the ASL model and its special characteristics through a domain example. Consider a robotics

system, as shown in Figure 2, having a vision component which continually processes external images. The robot

will perform appropriate actions according to the particular input scenes, e.g. object avoidance or object grasping.

VisionImages Robot Action

Figure 2. Robotics Example

There are several aspects in such a robotics system, which may be generalized to other domains. In particular,

let us highlight the following concepts (using ASL terminology):

• Hierarchy: System components may be divided into sub-components giving rise to top-down design

methodology, where the main problem is partitioned into smaller sub-problems; and bottom-up design

where sub-components are developed first and then put together into more complex systems.

2 The concept of schema, as presented in this paper, has no relation to the schema terminology used in database systems.

Alfredo Weitzenfeld: ASL-ECOOP'93 4

• Assemblages: A set of sub-components may be treated as a single component.

• Heterogeneity: Particular schema tasks may be implemented by different programming paradigms, e.g.,

procedural and neural networks programs.

• Wrapping: Independently developed heterogeneous programs may be integrated under a common schema

interface.

• Encapsulation: Schemas specify the basic means for program encapsulation in ASL.

• Reusability: Schemas provide the basis for component reusability.

• Task Delegation: Schema tasks may choose their implementation in a dynamic way.

• Distributed: The system should enable distributed processing of components.

• Concurrency: The system should enable concurrent processing of components.

• Communication: Components performing intensive computations which require continuous message

passing between corresponding processes.

• Multi-granularity: Processes should be able to efficiently map into a multi-granular processing

environment.

Continuing the example exposition, and considering that either the area of robotics, or even that of vision, are

extremely complex, a very simplified example of a vision sub-problem will be presented here, that of stereopsis, in

order to illustrate ASL. The system's objective is to compute object depths from available stereo information, and

can most basically be represented by two components, a retina, performing pre-processing on external images, and a

depth component obtaining depth information from general stereo cues.

Referring to the complete system as 'STEREO', and its two sub-components as a 'RETINA' schema, and a

'DEPTH' schema, a diagram of the functional system is shown in Figure 3. The diagram includes internal data path

between the two sub-schemas, as well as external ones between the two sub-schemas and the outside world.

DEPTH

Wp
Sp

Up

RETINA

UpSpWp
R D

STEREO

Figure 3. The basic stereo model.

RETINA Schema
Before giving the formal definition of a schema, consider the 'RETINA' schema as described in Figure 4 consisting

of a header and a body. The header includes the schema name, 'RETINA', an external section containing an input

port 'Wp' and an output port 'Sp', and an internal section containing two layers, 'W' and 'S' (layers are basically

arrays of numbers). The body contains the schema code describing the schema behavior, in this case, an endless

loop describing the continuous reading (Wp ? W) of external image data, the processing of this data

Alfredo Weitzenfeld: ASL-ECOOP'93 5

(retina_procedure), and the output of the resulting data (Sp ! S)3. The 'RETINA' schema code, as well as other

schema code presented in this paper is simplified for exposition purposes. The function 'retina_procedure' is called

for the actual schema task computing.

schema RETINA
{
external:
 input Wp;
 output Sp;
internal:
 layer W,S;
body:
 while (true) {
 Wp ? W;
 retina_procedure(W,S);
 Sp ! S;
 }
}

Figure 4. RETINA Schema

DEPTH Schema
The 'DEPTH' schema is shown in Figure 5. Analogous to the 'RETINA' schema, the header includes an external

section which consists of the two ports 'Sp' and 'Up', for input and output, respectively, and an internal section

which consists of two layers, 'S' and 'U'. The body consists of an endless loop describing the continuous reading of

data (Sp ? S), the processing of this data (depth_procedure), and the output of the resulting depth maps (Up ! U).

schema DEPTH
{
external:
 input Sp;
 output Up;
internal:
 layer U,S;
body:
 while (true) {
 Sp ? S;
 depth_procedure(S,U);
 Up ! U;
 }
}

Figure 5. DEPTH schema

Schema Definition
Since ASL is a class-based language, we distinguish between a schema as the template for a process, and a schema

instance (SI) as an active copy of that process. A schema template is composed of a header and a body. The header

contains the schema name, a set of optional instantiation parameters, and external and internal declarations. The

3 The notation for reading and writing is similar to that of CSP [Hoare 1978].

Alfredo Weitzenfeld: ASL-ECOOP'93 6

schema body describes the execution of the schema. In Backus-Naur form, a schema class definition, sc, takes the

form given on the right-hand side of

sc ::= schema sn (xp-decl)opt
 {
 external: xv-decl
 internal: iv-decl
 body: s
 }

where sn is the schema (class) name; xp-decl is the optional external instantiation parameters; xv-decl is the set of

external variable declarations (visible both inside and outside the scope of the schema); iv-decl is the set of

declarations visible only inside the scope of the schema; and s is the local schema program executing upon

instantiation.

Encapsulation is accomplished by stipulating that internal (local) variables can only access other internal

variables in the schema instance (SI) environment. The external section of the schema interface specifies which

variables may be accessed both from the external environment as well as locally. If a schema is to be able to

interact with the outside world, a schema must contain external ports. The internal section of the schema interface

specifies which variables may be accessed only from the local schema environment. Instantiation parameters

provide an optional alternative for initializing schema instance variables.

The schema body gets executed immediately after schema instantiation and proceeds concurrently with other

schema instances. It may contain communication expressions, instantiation commands, and other constructs such as

iteration and conditionals. A schema instance may also spawn other schema instances, thus increasing the level of

concurrency in the system. Schema instances are organized in a tree structure according to their instantiation

history. The root of the parenting tree corresponds to the initial SI in the system, while nodes and leaves represent

schema processes which get instantiated during the on-going execution of the program. Internal nodes in the tree

correspond to parent SIs, while leaves in the tree correspond to SIs having no children processes. In general, all

schema programs are initialized from a 'MAIN' schema which gets initially instantiated by the system. A schema

program terminates once all instantiated processes have de-instantiated. However, in many "on-line" applications,

the program will not terminate.

Independently of whether external or internal in their scope, ASL structures may be static or dynamic. Static

declarations, such as those used in the 'RETINA' schema, are defined and allocated at the same time. The possible

types are the following:

Schemas: Schemas define the active objects in ASL. (Ports, on the other hand are passive types.) A set of

schemas is declared as follows
 sn si1,...,sin;

where sn specifies the schema class to be instantiated, and si1,...,sin the schema instance corresponding identifiers.

This declaration allocates a new instances of the given schema which immediately starts execution.

Alfredo Weitzenfeld: ASL-ECOOP'93 7

Input and Output Ports: Ports are unidirectional. Output ports are used for sending messages from one schema

instance to another. Input ports are used for reading messages from other schemas. Input ports have to be connected

from other output ports before messages may be actually received. A string of output ports is declared as:
 output op1,...,opn;

where op1,...,opn are output port identifier, while a string of input ports is declared by:

 input ip1,...,ipn;

where ip1,...,ipn are input port identifiers.

Primitive Types: ASL supports basic types, particularly int, char and float. These types provide completeness

to the language. A set of primitive types are declared as follows
 p-type v1,...,vn;

where p-type is either int, float or char, and v1,...,vn the corresponding variable identifiers. (Derived types include

layer, which is equivalent to an array of float. ASL also supports array declarations of any ASL structure.)

In contrast to static declarations, dynamic declarations involve a two step process. First a pointer, similar to that

in C [Kernighan and Ritchie 1978], is declared, which does not allocate actual memory for the particular structure

type. It simply specifies an address for future reference. Then, the actual allocation is done as part of the schema

body dynamic execution. While dynamic allocation is possible for any ASL type, the most interesting possibilities

are given by dynamic allocation of ports and schemas. Dynamic port allocation permits the incorporation of new

ports into an already compiled schema structure. Dynamic allocation of schemas provides the most powerful

abstraction in ASL where processes may be instantiated at any point during the execution of a program. Other

features in ASL include dynamically extensible arrays, and local and remote function calling simulating remote

procedure calls (RPC).

Dynamic Schema Instantiation
As mentioned above, schemas can be dynamically instantiated, as well as de-instantiated, in the evolution of a

schema program.

(i) Schema instantiation takes place by first having a schema pointer declaration in the schema interface

sections, complemented by an instantiation construct in the schema body, where the declarations is given by

 schema* sid or sn* sid

depending on whether the generic schema pointer declaration or the specific sn schema name pointer declaration is

used. The instantiation construct takes the form, for either of the above declarations

 sid = new sn or sid = new sn(init-pars)

where the new expression returns a reference to a sn object.

(ii) Schema de-instantiation can be accomplished, either implicitly, when its body finishes execution, or

explicitly by stopping the schema instance. There is a slight difference between both kinds of "deaths". In the

implicit way, a schema instance will only die after all its delegated schema instances have themselves died (refer to

the delegation section). An explicit schema de-instantiation is accomplished by

Alfredo Weitzenfeld: ASL-ECOOP'93 8

 stop sid

where sid is a schema instance and stop is a statement executed in the body of its schema parent process. When a

schema process is stopped all its relabels and connections are deleted (refer to the section on port management).

Dynamic Port Instantiation
ASL greatly enhances the schema model by allowing dynamic port instantiations, as well as de-instantiations.

(i) Port instantiation may be dynamically accomplished by the use of the new p command, analogous to

schema instantiation.

(ii) Ports de-instantiation is accomplished through delete p, where p is the port identifier, and the expression

is general for any type of port. Only dynamically instantiated ports may be deleted.

Communication
Communication is asynchronous and buffered, characterized by that port writing is non-blocking, while port reading

blocks until messages may be retrieved from the input buffer queue.

(i) Buffers are included in every input port, where incoming messages are stored until read. The ASL

communication model assumes that input port buffers are unbounded and that a guarantee of message delivery

exists. The buffer is a first-in-first-out (FIFO) device, where messages are read according to their arrival order.

Once read, messages are retrieved from the buffer. Although reading blocks, the programmer may check the state of

the buffer without blocking. This gives the programmer extended flexibility in deciding when to read from the input

port, and thus avoiding possible blocking.

(ii) Writing data is allowed only through local ports, either internal or external. Remote ports, those ports

belonging to other schemas, may not be directly accessed for writing, only indirectly via port connections. (Port-

interconnections have to exist in order for communication to actually take place.) The syntax for writing data is

given by an expression which returns 'true' when writing has been successful, and 'false' otherwise. There is no

blocking on sending messages out (based on the unbounded buffer assumption) — independently of whether the

receiver gets the message or a connection exists, the body of the SI will continue execution. The writing command

takes the form
 op ! e1,...,en;

where op is the name of a local output port, and e is any value-returning expression. The message may be of any

type, including primitive types, char, int, float, or derived types4.

(iii) Reading data occurs independently from sending, in contrast to synchronous communication. Due to the

asynchronous nature of communication, sending a message involves most of the work of actually delivering a

4 The basic port structure only supports primitive types, integers, floats, and characters. Ports and schemas as messages are not
currently supported. New port types may be derived by the programmer from basic ones, in particular passing derived data types.
Remote procedure calls are simulated by transforming port message blocks into function names and their corresponding
sequence of arguments (refer to Weitzenfeld [1992] for further details).

Alfredo Weitzenfeld: ASL-ECOOP'93 9

message to its destination. Reading, on the other hand, requires only the retrieval of the message from the local

buffer without having to know the message source. The only precondition on message reading is that a message

exists in the local buffer, waiting to be read. A connection or relabel is not actually required at the time of reading.

The read command is
 ip ? v1,...,vn;

where ip is the name of a local input port, and v is the variable where the message received is to be stored.

Wrapping
Both 'RETINA' and 'DEPTH' schemas are good examples of wrapping. The two schemas only provide an interface

to external, possibly independently developed, programs. The two internal schema procedures, 'retina_procedure'

and 'depth_procedure', may be developed as, e.g., procedural or neural networks programs5.6 Thus wrapping is

defined as the integration of independently developed external programs to ASL schemas7.

STEREO Schema
After having defined both 'RETINA' and 'DEPTH', it is necessary to define the 'STEREO' schema assemblage,

providing composition and encapsulation of the two schemas. The 'STEREO' schema shown in Figure 6. Since

schema assemblages are also schemas, the only difference with the 'STEREO' schema definition is in its

instantiation of internal SIs 'R' and 'D', corresponding to 'RETINA' and 'DEPTH' schemas respectively (refer to the

diagram in Figure 3). The external schema section consists of the two external ports to 'STEREO', 'Wp' and 'Up' for

input and output, respectively. The body of the 'STEREO' schema includes port inter-connections between 'R.Sp'

and 'D.Sp' (R.Sp >=> D.Sp), relabelings between 'R.Wp' and 'Wp' (W === R.Wp) and between 'D.Up' and 'Up' (Up

=== D.Up). The last entry in the body corresponds to the delegation command, the dependency of 'STEREO' on 'R'

and 'D' (delegate R,D). This command implies that when instantiated, a 'STEREO' schema will not complete

execution until both 'R' and 'D' have themselves completed. This is done in order to keep external communication

paths to 'R' and from 'D'.

5 Neural network systems may be developed in environments such as NSL2.1 [Weitzenfeld 1991].
6 The key to successfully interfacing an external program to the schema model is more of an implementation issue than of a
theoretical one. It requires that the external program be defined thorugh an external entry point, permitting external reading and
writing of data passed as arguments to the program. Furthermore, this program may be executed more than once.
7 For further applications of wrapping, refer to Bellman and Gillam [1990].

Alfredo Weitzenfeld: ASL-ECOOP'93 10

schema STEREO
{
external:
 input Wp;
 output Up;
internal:
 RETINA R;
 DEPTH D;
body:
 Wp === R.Wp;
 Up === D.Up;
 R.Sp >=> D.Sp;
 delegate R,D;
}

Figure 6. STEREO Schema

Port Management
In order to understand the communication abstraction in ASL, it is important to understand the notion of locality.

Basically, besides distinguishing between input and output ports, and between external and internal ports, we

distinguish between local and remote port. Local ports are those ports which are referenced by the schema instance

to which they belong (as specified through their declaration), and are usually referenced by a simple port identifier,

i.e., p, where p is the port identifier. An example of a local port reference is 'Wp'. Remote ports, on the other hand,

are those ports belonging to another child schema instance and are referenced by prefixing the schema instance

name to the port identifier, i.e., si.p where si is the schema instance identifier, and p is the port identifier. An

example of a remote port reference is 'R.Wp'. The distinction between local and remote ports is made to emphasize

the restriction in the ASL port model, where data can only be read or written directly to local ports. Reading and

writing to remote ports can only be accomplished indirectly via connections and relabelings.

 (i) Connections between ports have to be established in order for communication to take place. Connections

are made exclusively between output and input ports. Ports may be connected and dis-connected in a dynamic

fashion. Connections not only provide the functionality for linking different schema instances, but they serve as

basis for the next generation of schema learning models, where the dynamic nature of port connections becomes

critical in describing evolving network topologies. The syntax for connecting an output port to an input port is

 op >=> ip or ip <=< op

where op is the identifier of the output port and ip is the identifier of the input port.

Possible connection combinations are between remote external ports, or between a local internal port and a

remote external port.

(ii) Disconnections can be made between ports which have been previously connected by using the command

 p1 >=< p2

where p1 and p2 are output and input ports, respectively.

(iii) Relabeling complements the functionality of port connections, and corresponds to local external ports

referencing lower hierarchy ports of the same type, either input or output. Relabeling permits remote ports to

receive and send messages with the external parent schema instance environment. This is specially important in

Alfredo Weitzenfeld: ASL-ECOOP'93 11

defining delegation and composition in schemas. Relabelings are made in a dynamic fashion, analogous to

connections. In general, a port is relabeled by

 p1 === p2

where p1 and p2 are both of the same type, either input or output ports. No relabelings are allowed other than from

local external ports to either remote external ports or to local internal ports.
Since the schema model is hierarchical and based on the notion of "parenting", the intuition behind relabeling is

that a port belonging to a child schema instance may be accessible through its parent schema instance in order to

enable communication beyond the parent schema environment behaving as message relays. In terms of output ports,

a child schema instance communication will be send, indirectly, to the destination specified by the inter-connections

of the parent schema instance port to which the relabeling is made. In terms of input ports, any communications

received by the port belonging to the parent schema instance will be forwarded to the child schema instance port to

which a relabeling has been specified. A parent schema instance port forwarding messages according to local

relabeling specification does not use its local buffer for intermediate storage, all messages are immediately sent to

its new destination.

(iv) Delabeling enables ports, which have been previously relabeled, to be de-referenced by the command

 p1 =|= p2

where p1 and p2 are both either input or output ports.

(v) The ASL communication model supports both fan-in and fan-out of both connections and relabels.

Furthermore, a port may be simultaneously relabeled and also have connections to other ports. Each connection or

relabel specifies an independent communication message path. Fan-out specifies how each message is copied into

multiple communication paths, while fan-in sequentializes messages arriving from multiple communication sources.

Delegation
The notion of delegation, as used in ASL, differs from the notion used in other systems, in particular in the actor

model, where delegation refers to either data or methods shared from an actor to its proxy [Lieberman 1986].

Delegation in the ASL sense, extends the functionality of children schema instances in that delegated schema

instances behave more as continuations of the parent's tasks. This is also similar to the delegation notion in Hybrid

[Nierstrasz 1987], where activities are delegated and not behaviors. On the other hand, the parent schema instance,

or delegator, plays a continued role by forwarding all its external messages to those of the internal delegated

schemas through appropriate port relabelings. This requires the delegating process not to terminate before the

delegated processes does so, ensuring that messages sent to the delegating process are constantly transmitted to the

delegated one. The construct ensuring such dependency is given by
delegate si1,...,sin

where si1,...,sin correspond to the delegated schema instances.

(The integration of statically wrapped schemas, together with dynamically delegating schemas provides the

expressiveness of the schema model. The decision on when to use static or dynamic abstractions depends on the

Alfredo Weitzenfeld: ASL-ECOOP'93 12

desired tradeoff between processing efficiency vs. flexibility. A complex design would include a combination of

both. For example, in a real-time distributed system, most schemas would be statically described, while a system

which includes (dynamic) learning should involve schema delegation.)

Assemblages
'STEREO' is considered a schema assemblage composed of 'RETINA' and 'DEPTH'. The notion of schema

assemblage enables aggregation and the building of complex hierarchical systems in an encapsulated fashion. This

notion has directly evolved from a similar concept in the RS schema model [Lyons and Arbib 1989]. Yet, contrary

to assemblages in RS, which are static in nature, assemblages in ASL are dynamic entities. Furthermore, schemas

are abstractions in ASL, and not special syntactic entities as in RS.

MAIN Schema
Lastly, a complete ASL program requires a 'MAIN' schema which gets implicitly instantiated during system

initialization. Thus, in this case, 'MAIN' schema, shown in Figure 7, contains the instantiation of 'STEREO',

allowing the execution of the system. The 'MAIN' schema has no external ports since it is a the top of the schema

tree hierarchy. Its internal section consists of 'S', a schema instance of 'STEREO' and built-in input port 'sin'

(corresponding to the standard input in C) and output port 'sout' (corresponding to the standard output in C). The

schema body contains port relabelings and its delegation to 'S'. Basically, both input and output may be in the form

of external files, where input could correspond to data from a camera. When the task is finished, all the schemas in

the program implicitly de-instantiate.

schema MAIN
{
internal:
 STEREO S;
 input sin;
 output sout;
body:
 sin === S.Wp;
 sout === S.Up;
 delegate S;
}

Figure 7. MAIN Schema

Up until know a basic stereo system has been presented to illustrates the basics of ASL. In order to appreciate

more the power and expressiveness of the schema model, an extension to this basic example will be given.

Extended Example
Let us extend the basic depth perception model, which only considers stereo information, to a more realistic one

which takes into consideration lens focusing, or accommodation. This extended stereo model will incorporate a

second 'DEPTH' schema. This system corresponds to one where 'DEPTH' is mapped to the 'Dev' neural network for

Alfredo Weitzenfeld: ASL-ECOOP'93 13

basic stereopsis [Dev 1975]. The extended model corresponds then to the 'House' model [House 1984], where two

'Dev' neural networks are integrated to simulate both lens accommodation and binocular disparity cues. A diagram

of the extended system is shown Figure 8. Again, the motivation behind this extensions is to illustrate the properties

of the ASL model, where systems may be easily expanded as their designs and implementations evolve in time.

Such an approach would require a total re-implementation of the system in other models. Yet, ASL hierarchical and

modular structure enables a smooth transition between generations of systems.

In order to accommodate for a second 'DEPTH' schema, there are slight modifications done to the 'STEREO'

schema, and to the 'RETINA' schema and the 'DEPTH' schema. These modification are necessary to enable inter-

connections between the two 'DEPTH' schemas as well as to enable inter-connections from the 'RETINA' schema to

the two 'DEPTH' schemas. It is emphasized, that externally, the 'STEREO' schemas looks exactly the same as

before, as can also be seen by observing that the 'MAIN' schema remains unchanged.

STEREO

DEPTH
Sp

Up

RETINA
Ap

Wp

DEPTH

Sp

Up

Dp

Tp

UpTp

Wp

M

S

R

Figure 8. The extended stereo model

RETINA Schema
The extended 'RETINA' schema is shown in Figure 9. The schema is modified to include two output ports 'Ap' and

'Dp', instead of the previous single 'Sp' port. This modification enables transmission of both disparity (stereo)

information through port 'Dp' to 'DEPTH' schema 'M', and accommodation information through port 'Ap' to

'DEPTH' schema 'S'. The 'retina_procedure' is also extended ('retina_procedure_ext').

Alfredo Weitzenfeld: ASL-ECOOP'93 14

schema RETINA
{
external:
 input Wp;
 output Ap,Dp;
internal:
 layer W,SA,SD;
body:
 while (true) {
 Wp ? W;
 retina_procedure_ext(W,SA,SD);
 Ap ! SA;
 Dp ! SD;
 }
}

Figure 9. Extended RETINA schema

DEPTH Schema
The extended 'DEPTH' schema is shown in Figure 10. It consists of basically the same code as before except that an

extra input port, 'Tp', has been added to enable communication between the two 'DEPTH' schemas. The

'depth_procedure' is also extended ('depth_procedure_ext') to reflect the new change.

schema DEPTH
{
external:
 input Sp,Tp;
 output Up;
internal:
 layer U,S,T;
body:
 while (true) {
 Sp ? S;
 Tp ? T;
 depth_procedure_ext(S,T,U);
 Up ! U;
 }
}

Figure 10. Extended DEPTH schema

Alfredo Weitzenfeld: ASL-ECOOP'93 15

schema STEREO
{
external:
 input Wp;
 output Up;
internal:
 RETINA R;
 DEPTH M,S;
body:
 Wp === R.Wp;
 R.Ap >=> M.Sp;
 R.Dp >=> S.Sp;
 S.Up >=> M.Tp;
 M.Up >=> S.Tp;
 M.Up === Up;
 delegate R,M,S;
}

Figure 11. Extended STEREO schema

STEREO Schema
The extended 'STEREO' schema is shown in Figure 11. It includes two 'DEPTH' schema instances, 'M' and 'S',

corresponding inter-connections between 'RETINA' and the two 'DEPTH' schema instances, and two port inter-

connections between the two 'DEPTH' schema instances, from 'M.Up' to 'S.Tp', and from 'S.Up' to 'M.Tp'. The

external relabeling is exactly the same, reflecting that theses changes have not affected the interaction of 'STEREO'

with its external world. Also note that delegation is now extended from two to three schema instances.

MAIN Schema
The most important aspect of the extended model is that 'MAIN' schema stays exactly the same as before, as shown

in Figure 12. This reflects that externally 'STEREO' has not changed.

schema MAIN
{
internal:
 STEREO S;
 input sin;
 output sout;
body:
 sin === S.Wp;
 sout === S.Up;
 delegate S;
}

Figure 12. MAIN Schema

Alfredo Weitzenfeld: ASL-ECOOP'93 16

Neural-Schemas
The ASL modeling methodology has been

applied to neural networks simulation,

giving rise to the Neural Schema Language

(NSL)8, a system for the describing

modular neural networks. Figure 13 shows

the basic neural model, where neural

networks correspond to schemas, and

networks of neural networks correspond to

schema assemblages. NSL exploits the

notions of delegation and wrapping, by

enabling a neural schema to recruit any

number of neural networks for its

implementation. Similarly a single neural

network may be recruited by different

delegation

neural
networks

network
 of

networks

neurons

complex simple
Figure 13. NSL model

schemas. Such an approach enables the encapsulation of neural networks into schema classes and the composition

of hierarchical networks. Furthermore, at a lower level neurons may have their task delegated by neural

implementations of different levels of detail, from the very simple neuron models to the very complex ones

[Weitzenfeld and Arbib 1991]. (It is interesting to note, that the neuron model is best modeled also as a multi-port

entity.)

Comparisons
The following sections contrast the ASL model most important characteristics to other models, including other

concurrent object-oriented systems.9

Instantiation
In concurrent object-oriented systems, there are basically two different paradigms for object creation, class-based

and prototype-based. The concept of classes, basic in sequential object-oriented systems, such as Smalltalk [Robson

and Goldberg 1984], defines a special class template in creating class objects. In some concurrent object-oriented

(object-based) models, such as actors, object creation is through prototyping, where an object makes a copy of itself

in creating a new object.10

8 Not to confuse with the Neural Simulation Language. Basically, both systems merge under the upcoming NSL3.0 system at the
end of 1993.
9 For a more extensive comparison refer to Weitzenfeld [1992].
10 Refer to Briot and Yonezawa [1990] for an anlysis their shortcomins in the context of inheritance.

Alfredo Weitzenfeld: ASL-ECOOP'93 17

Multiple Ports
Multiple ports have been utilized in such computational models as CSP [Hoare 1978] and Port Automata

[Steenstrup et al. 1983]. Yet most concurrent object-oriented models follow a single port model, in particular the

actor model [Agha 1986]. (Some models based on Concurrent Logic Programming are also based on multiple ports,

such as Vulcan [Kahn 1987].)

Contrasting ASL to languages derived from CSP, we have Ada [Ichbiah 1983], having synchronous

communication and multiple ports, where ports define entry queues in remote procedure calls ('entry-per-

procedure'), and data paths are set through direct naming. On the other hand Occam [INMOS 1984] is based on

communication channels, supports point-to-point synchronous communication, yet, not allowing multiple inter-

connections, i.e. fan-in nor fan-out. Some concurrent object-oriented languages, such as POOL [America 1987],

incorporate synchronous communication and remote procedure calls similar to Ada.

In contrast to single port models, where communication is asynchronous, such as actors, the multiple port

paradigm avoids the need to search through single input queues when looking for a particular type of message. This

allows to avoid special communication modes, such as the express mode in ABCL [Yonezawa et al. 1986] in

addition to the ordinary communication mode), and the special reply port, in addition to the regular message port,

which are mainly designed to compensate for the restrictions of single port models.

Message Passing
As previously described, communication in ASL is asynchronous. Messages may be received through any input port

and sent through any output port. Messages in ASL could stand for method invocation, in the way of message

patterns activating scripts or as simple data values. The notion of message patterns and scripts is somewhat similar

to that used in ABCL, where method arguments are passed as separate message entries in the pattern, and the script

is activated when a message pattern is matched. (It is important to note that since messages may be sent and

received through different ports, reading and writing in ASL is explicitly managed as opposed to other models,

particularly those following the client/server model, where remote procedure calls are implicitly serviced.) In the

asynchronous communication paradigm, a schema sending a message doesn't have to wait for an acknowledgment

or for the actual reception and servicing of the message. Yet, synchronous communication is possible with the help

of a 'wait-for-reply' mechanism, similar to Ada's rendezvous. The general asynchronous communication paradigm

also permits the past, now, and future modes of communication in ABCL. The paradigm supports multi-party

communication, where a single output port may send messages to many other schema's input ports, and similarly

many input ports may receive messages from a single output port.

Aggregation
Basic schemas may be composed together into schema assemblages in building complex systems. In contrast to

ASL, in the actor model, this composition notion corresponds to configurations where receptionist actors and

external actors are integrated together with 'regular' actors; yet contrary to assemblages, which are themselves

Alfredo Weitzenfeld: ASL-ECOOP'93 18

schemas, an actor configuration is not considered a 'first-class' actor. This is partially due to the fact that schemas

are multiple port entities while actors are single port abstractions. Moreover, when contrasting aggregation in both

models, receptionist actors could correspond to assemblage input ports while external actors could correspond to

assemblage output ports, whereas if we consider a basic schema as an actor configuration, then schema assemblages

would correspond to configurations of configurations, which points out to the higher level abstraction and the multi-

granularity of the schema model.

Multi-granularity
When contrasting schemas with actors we have distinguished the difference in granularities between the two

models. Yet the schema model also supports fine-grained object models, such as neurons in neural networks

systems [Weitzenfeld and Arbib 1991]. This is similar to domains in Hybrid [Nierstrasz 1987], which may be of

different granularity to match hardware processing characteristics. A schema system may also be designed to match

the particular machine environment, from coarse-grain to fine-grain schemas.

Conclusions and Future Research
This paper has presented the Abstract Schema Language (ASL) computational model and its main characteristics,

hierarchy, composition, heterogeneity and multi-granularity. ASL notion of schemas, assemblages, wrapping, and

delegation extend the current state of concurrent object-oriented programming.

ASL is part of on-going research in the development of schema systems. In terms of ASL as a language, current

research involves the incorporation of typing, providing schema signatures. Other issues yet to be fully analyzed,

include aspects arising from asynchrony and non-determinism present in truly parallel systems. Furthermore, there

is the issue of how to deal with inheritance [Briot and Yonezawa 1990]. In parallel, research is under way in

extending the theoretical work in defining an asynchronous model for ASL in particular, and COOP in general

[Milner 1990, Honda and Tokoro 1990].

In terms of implementation, ASL has been prototyped on a multi-processing system, and current thrust is in its

distributed, parallel, and heterogeneous implementation. ASL is a machine independent language, which translates

into other high level languages. In particular, C++ [Stroustrup 1987] is currently both the underlying prototyping

language for interpretation and system implementation.

An application of ASL, as previously discussed, is the development of the domain specific schema language for

neural networks simulation, Neural Schema Language (NSL), based on previous work with the Neural Simulation

Language [Weitzenfeld 1991]). Its goal is the development of complex distributed applications in the areas of Brain

Theory and Distributed Artificial Intelligence (DAI). These developments integrate with current work in defining a

common ground between COOP and DAI [Briot and Gasser 1990].11

11 For further discussions on the Neural Schema Language refer to Weitzenfeld [1992].

Alfredo Weitzenfeld: ASL-ECOOP'93 19

Work is also under way in extending the basic schema model in two different directions. One thrust is in the

extension of the model into the real-time domain, for applications in robotics and vision. The other thrust is the

incorporation of learning capabilities into the schema model, through the introduction of computational reflection

[Maes 1987].

References
Agha, G., 1986, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press.

America, P., 1987, POOL-T: A Parallel Object-Oriented Language, Object-Oriented Concurrent Programming,

edited by A. Yonezawa and M. Tokoro, MIT Press.

Arbib, M.A., 1992, Schema Theory, In the Encyclopedia of Artificial Intelligence, 2nd. Edition, edited by Stuart

Shapiro, 2:1427-1443, Wiley.

Bellman, K.L., Gillam, A., 1990, Achieving Openness and Flexibility in VEHICLES, In AI and Simulation, Edited

by W. Webster and R. Uttansingh, Simulation Series, 22(3), Society for Computer Simulation.

Briot, J.-P., Gasser, L., 1991, From Objects to Agents: Connections between Object-Based Concurrent

Programming and Distributed Artificial Intelligence, IJCAI '91 Workshop on Objects and AI.

Briot, J.-P., Yonezawa, A., 1990, Inheritance and Synchronization in Object-Oriented Concurrent Programming,

ABCL: An Object-Oriented Concurrent System, edited by A. Yonezawa, MIT Press.

Cointe, P., 1984, Implementation et Interpretation des Langages Objets, Application aux Langages Formes,

ObjVlisp et Smalltalk, (these d'Etat), LITP Research Report, No. 85-55, LITP -Iniversite Paris-Vi - IRCAM,

Paris.

Dev, P., 1975, Perception of Depth Surfaces in Random-dot Stereograms: A Neural Model, Int. J. Man-Machine

Studies, 7:511-528.

Goldberg, A., Robson, D., 1984, Smalltalk-80: The Language and its Implementation, Addison Wesley.

Hoare, C.A.R., 1978, Communicating Sequential Processes, Communications of the ACM Vol. 21 No. 8, pp 666-

677, August.

Honda, K., Tokoro, M., 1991, An Object Calculus for Asynchronous Communication, Proc. ECOOP '91, Geneve,

Switzerland.

House, D., 1984, Neural models of depth perception in frog and toad, PhD dissertation, Dept. of Computer and

Informatin Science, U. of Massachusetts at Amherst.

Ichbiah, J., 1983, Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A.

INMOS, 1984, Occam Programming Manual. London: Prentice-Hall.

Kahn, K. Tribble, E., Miller, M., Bobrow, D., 1987, Research Directions in Object-Oriented Programming:

Functions, Relations and Equations, chapter Vulcan: Logical Concurrent Objects, pp. 75-112, MIT Press.

Kernighan, B.W., Ritchie, D.M., 1978, The C Programming Language, Prentice-Hall.

Lieberman, H., 1986, Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems,

OOPSLA '86, Conference Proceedings.

Alfredo Weitzenfeld: ASL-ECOOP'93 20

Lyons, D.M., Arbib, M.A., 1989, A Formal Model of Computation for Sensory-Based Robotics, IEEE Trans. on

Robotics and Automation, 5:280-293, June.

Maes, P., 1987, Concepts and Experiments in Computational Reflection, Proc. OOPSLA '87, :147-155, Orlando,

FL, Oct. 4-8.

Milner, R., 1990, Functions as Processes, In Automata, Language, and Programming, LNCS 443:167-180,

Springer-Verlag.

Nierstrasz, O., 1987, Active Objects in Hybrid, OOPSLA '87, Conference Proceedings.

Steenstrup, M., Arbib, M.A., Manes, E.G., 1983, Port Automata and the Algebra of Concurrent Processes, J.

Computer Syst. Sci., Vol. 27, no. 1, pp. 29-50, Aug.

Stroustrup, B., 1987, The C++ Programming Language, Addison-Wesley.

Weitzenfeld, A., 1991, NSL: Neural Simulation Language, Version 2.1, CNE-TR 91-05, University of Southern

California, Center for Neural Engineering, Los Angeles, CA.

Weitzenfeld, A., Arbib, M., 1991, A Concurrent Object-Oriented Framework for the Simulation of Neural

Networks, Proceedings of ECOOP/OOPSLA '90 Workshop on Object-Based Concurrent Programming, OOPS

Messenger, 2(2):120-124, April.

Weitzenfeld, A., 1992, A Unified Computational Model for Schemas and Neural Networks in Concurrent Object-

Oriented Programming, PhD Thesis, Center for Neural Engineering, University of Southern California, Los

Angeles, CA.

Weitzenfeld, A., 1993, An Overview of ASL: Hierachy, Composition, Heterogeneity, and Multi-Granularity in

Concurrent Object-Oriented Programming, Proceedings of OOPSLA '92 Workshop on Next Generation

Computing, Vancouver, Canada (in press).

Weitzenfeld, A., Arbib, M.A., 1993, Operational Semantics for the Abstract Schema Language ASL, (in

preparation).

Yonezawa, A., Briot, J-P., Shibayama, E., 1986, Object-Oriented Concurrent Programming in ABCL/1, OOPSLA

'86, Conference Proceedings.

Yonezawa, A., Tokoro, M., Eds., 1987, Object-oriented concurrent programming, MIT Press.

Alfredo Weitzenfeld: ASL-ECOOP'93 21

Appendix - ASL Syntax
Schema Definition

sd ::= schema sn (xp-decl)opt
 {
 external: xv-decl
 internal: iv-decl
 body: s
 }

Declarations
// schema types
Sdecl ::= schema // generic schema ref.
 | sn // specific schema ref.

SRdecl ::= Sdecl* // schema reference ptr

// port types
Pdecl ::= input // input port reference
 | output // output port reference

PRdecl ::= Pdecl* // port reference pointer

// schema/port types
SPdecl ::= Sdecl // schema
 | Pdecl // port

// schema/port ptr types
SPRdecl ::= SRdecl // schema ptr
 | PRdecl // port ptr

// primitive (variable) types
Vdecl ::= int // integer
 | float // float
 | char // character
 | const // constant

VRdecl ::= Vdecl* // primitive type ptr

// instantiation parameter:
xp-decl ::= ε // empty
 | Vdecl id1,...,idn
 | xp-decl1; xp-decl2 // sequence

// external declaration:
xv-decl ::= ε // empty
 | SPdecl id1,...,idn // schema/port
 | SPRdecl id1,...,idn // schema/port ptr
 | xv-decl1; xv-decl2 // sequence

Alfredo Weitzenfeld: ASL-ECOOP'93 22

// internal declaration:
iv-decl ::= ε // empty
 | SPdecl id1,...,idn // schema/port
 | SPRdecl id1,...,idn // schema/port ptr
 | Vdecl id1,...,idn // primitive
 | VRdecl id1,...,idn // primitive ptr
 | iv-decl1; iv-decl2 // sequence

// all variable declaration:
sv-decl ::= xp-decl // inst. parameter
 | xv-decl // external
 | iv-decl // internal

Expressions
e::= v // variable
 | new sn // dynamic schema inst.
 | self // self reference
 | p?v1,..., vn // message reception
 | p!e1,..., en // message delivery
 | p >=> q1,..., qn // connect ports
 | p <=< q1,..., qn // alternative syntax
 | p >=< q1,..., qn // disconnect ports
 | p === q1,..., qn // relabeling ports
 | p =|= q1,..., qn // de-labeling
 | stop si1,..., sin // de-instantiate schema
 | delegate si1,..., sin // delegation
 | f(e1,..., en) // function call

Statements
s ::= ε // empty statement
 | e // expr. as statement
 | v = e // assignment
 | if (e) then { s1 } else { s2 } // if-else
 | while (e) { s } // while-loop
 | s1; s2 // sequential composition

