
Operational Semantics for the Abstract Schema Language ASL

A. Weitzenfeld and M.A. Arbib

 Center for Neural Engineering

University of Southern California

Los Angeles, CA 90089-2520

alfredo@usc.edu and arbib@usc.edu

Abstract
The Abstract Schema Language (ASL) defines a hierarchical computational model for the development of

distributed heterogeneous systems. ASL extends the capabilities of concurrent object-oriented

programming to enable the construction of highly complex multi-granular systems. ASL provides a

basic set of concurrency constructs, distinguishing between a schema as the template for a process, and a

schema instance (SI) as an active copy of that process. The ASL model supports aggregation (schema

assemblages), and both top-down and bottom-up system designs. ASL encourages code reusability by

enabling the integration of heterogeneous components, e.g., procedural and neural network programs.

ASL schemas are designed and implemented in an orthogonal fashion; integrated, either statically,

through wrapping, or dynamically, via (task) delegation. Schemas include a dynamic interface, made of

multiple unidirectional input and output ports, and a body section where schema behavior is specified.

Communication is in the form of asynchronous message passing, hierarchically managed, internally,

through anonymous port reading and writing, and externally, through dynamic port inter-connections

and relabelings. The operational semantics of the language is constructed based on transition systems. An

example is given illustrating the model and its semantics.

Keywords

schema, instance, distributed, heterogeneous, multi-granular, hierarchical, concurrent, encapsulation,

reusability, communication, asynchronous, assemblage, port, connection, relabeling, wrapping, task

delegation, transition systems, configuration.

Introduction

The Abstract Schema Language (ASL) [27][29] describes a computational model for the development of

distributed heterogeneous systems. ASL presents a hierarchical approach for the design and

implementation of computational models where intensive processing and continuous inter-process

communication are intrinsic system properties. ASL unifies schema modeling [3] with concurrent object-

oriented programming (COOP) [31]. Generally speaking, COOP integrates concurrency with object-

Weitzenfeld and Arbib: ASL 2

oriented design, where an object-oriented language can be analyzed in terms of objects, instantiation,

inheritance, and message passing [8]. In a concurrent world, some of these concepts become more

complex, especially when designing inheritance schemes [7], where, for example, as an alternative to

inheritance, the notion of delegation [17] has been suggested.

The ASL computational model is

defined in terms of schemas1,

autonomous computational agents

which cooperate with each other in a

hierarchical fashion. The ASL model

hierarchy is shown in Figure 1. At the

top of the diagram a schema is shown

decomposed into other schemas. This

decomposition gives rise to schema

aggregation, or schema assemblages,

where schemas may be composed into

complex schema networks. Schemas

are specified and implemented in an

orthogonal fashion, either through

wrapping, which enables static

delegation

neural

schema

procedural

schemas

Figure 1. ASL schema model

integration of heterogeneous external programs (e.g. procedural and neural), or through delegation,

which enables dynamic integration of schemas as both, specification and implementation tasks. (Simple

lines between boxes represent connections between objects, while arrows represent task delegation. The

barrier separates the higher level schema specifications from the lower level schema implementations.)

The ASL communication model is asynchronous, based on dynamic multiple input and output ports,

connections and relabelings. The ASL communication model is hierarchically managed, where messages

are sent and received anonymously internally to schemas, while actual communication paths between

schema ports are externally set. The hierarchical port management methodology enables the

development of distributed systems where modules may be designed and implemented independently

and without prior knowledge of their final execution environments. Furthermore, dedicated port inter-

connections avoids the overhead of direct process naming between continuously communicating entities.

The ASL communication model is expressive enough to simulate other communication paradigms, such

as client/server and blackboards (see [27]).

ASL extends previous work of two different schema systems, Robot Schemas (RS) [18] and Vision

Schemas, VISIONS [9]. ASL extends the COOP model by providing a hierarchical approach towards

1 The concept of schema, as presented in this paper, has no relation to the schema terminology used in database systems.

Weitzenfeld and Arbib: ASL 3

heterogeneous and multi-granular concurrent object design. In particular, ASL addresses the

development of complex systems integrating developments in Distributed Artificial Intelligence (DAI),

Robotics, as well as Brain Theory (BT) and Cognitive Psychology.

The integration of ASL with the Neural Simulation Language (NSL) system [28], a simulation system

extensibly used by the neural networks research community, gives rise to the Neural-Schema Language

[27] (also referred to as NSL).

x

fx

xm

pfx

3 2

????

x

fx

xm

pfx

1

1in

out
main Next-1 Next-3

x

fx

xm

pfx
Next-2

3

??in

out
main

x

fx

xm

pfx

2

2

Next-1
x

fx

xm

pfx
Next-2

3

6in

out
main

x

fx

xm

pfx
Next-1

Figure 2. Some of the global configurations that arise during the computation of 3!

An Example of a Schema Program: The Factorial

The schema program for the factorial problem exemplifies ASL constructs. The schema called 'main'

initializes the schema program, passing the value for which a factorial is to be computed, while waiting

until a result is returned. The schema called 'factorial' provides the recursive definition for calculating

the factorial of any number. To convey the essential ideas, we provide snapshots of the global

configurations which occur during the computation of 3!, shown in Figure 2. Basically, the program starts

by 'main' sending '3' to an initial 'Next' factorial schema instance (SI). Since 3 > 1, the initial 'Next' SI will

instantiate another 'Next' SI. Each 'Next' SI will repeat the procedure, getting the 'n' value through its 'x'

port for which it is to calculate a corresponding factorial to be returned through 'fx'. If the number 'n'

Weitzenfeld and Arbib: ASL 4

delivered through 'x' is bigger than '1' then 'n-1' is passed to a newly created 'Next' SI through 'xm' until

the last 'Next' process receives the value of '1' and returns the corresponding factorial of value '1'. 'pfx'

serves as the return path for intermediate factorial results. Each SI will wait for the successful calculation

and delivery of the intermediate factorial value provided by the 'Next' SI to its right, which will de-

instantiate once the intermediate factorial result has been delivered.

The factorial program contains only two schemas, although the execution of the program can create

indefinitely many schema instances. Figures 3 and 4 contain the code for the two schemas, 'main' (for

which only one schema instance is created) and 'factorial' (for which there are many instances, all named

'Next'). Strings in bold letters correspond to ASL language keywords, '//' are utilized to precede

comments (ending at the end of the line), and all statements are terminated with a ';' (semi-colon). We

will briefly go through this code to provide the reader with sufficient intuition to set the stage for the

detailed formal semantics given below.

schema main
{
external:
internal:
 input in; // internal input port
 output out; // internal output port

 int n; // variable for n
 int pn; // variable for !n

 factorial Next; // instance reference
body:
 out >=> Next.x; // connection
 Next.fx >=> in; // connection
 sin ? n; // system input
 out ! n; // send n
 in ? pn; // get !n
 sout ! pn; // system output
 stop self
}

Figure 3. 'Main' schema code

Execution starts by creating an instance of 'main'. ASL includes a set of pre-defined ports dedicated

for system input and output. These structures provide interactive input and output to the programmer.

In terms of input, the system port is known as sin and in terms of output the system port is known as

sout.

In the factorial schema example, the following call enables the programmer to interactively assign a

value to 'n',
 sin ? n; // system input

while the result is printed out on the screen with,

Weitzenfeld and Arbib: ASL 5

 sout ! pn; // system output

schema factorial
{
external:
 input x; // external input port
 output fx; // external output port
internal:
 input pfx; // internal input port
 output xm; // internal output port

 int n; // variable for n
 int pn; // variable for !n

 schema* Next; // instance reference
body:
 x ? n; // wait until n is read
 if (n <= 1)
 fx ! 1;
 else
 {
 Next = new factorial; // Next instance
 xm >=> Next.x; // connection
 Next.fx >=> pfx; // connection
 xm ! n-1; // send n-1
 pfx ? pn; // get (n-1)!
 fx ! pn*n; // send n!
 }
 stop self
}

Figure 4. 'Factorial' schema code

The external declaration is empty - 'main' has no explicit communication with the outside world.

However, the internal declarations set up both the input and output ports, 'in' and 'out', with which it

will communicate locally - with the instance of factorial that it creates as a child SI - and creates two

integer variables, 'n' to hold the initial data, and 'pn' to hold the final result. Finally, this declaration

creates a new instance of the 'factorial' schema and gives it the internal name 'Next'. Once the structure

of the schema instance (in this case unique) is thus established, execution of the body begins

immediately. 'out >=> Next.x' connects the output port out of the 'main' SI to the input port 'x' of its child

SI 'Next', while 'Next.fx >=> in' connects output port 'Next.fx' to the local schema port 'in'. The

command 'out ! n' then causes it to send the current value of internal variable 'n' through its output port

'out'. The final instruction 'in ? pn' will read into 'pn' whatever value the input port 'in' receives - but

once the SI comes to this instruction it blocks, in the fashion made clear by the question marks '??' in

Figure 1, until such a value is indeed received.

We now turn to the way in which the schema code of Figure 4 controls the behavior of each 'Next' SI.

The external declaration makes the ports 'x' and 'fx' external, i.e., they can be referenced by the external

Weitzenfeld and Arbib: ASL 6

environment in which the particular SI of 'factorial' is created, whereas 'pfx' and 'xm' are declared

internally and thus cannot be addressed directly by the external environment. Similarly, 'n' and 'pn' are

declared as integer variables internal to the new SI. The final part of the declaration is dynamic - rather

than creating a new instance of factorial statically, as was done in 'Main', we here simply create a pointer

to 'Next', which will point to an SI whose schema-class has not yet been specified. The body then waits

for a value to arrive on input port 'x' and then reads it into variable 'n', 'x ? n'.

Once n has been given a value, the conditional 'if (n <= 1) A else B' tests to see if this value is less or

equal to '1'. If it is, the value '1' is emitted through output port 'fx' and the SI deinstantiates ('stop self').

However, if the value is larger than '1', then a new instance is created and "hooked up" appropriately

('Next = new factorial; xm >=> Next.x; Next.fx >=> pfx'), and sent the value of 'n' decremented by '1'

through port 'xm' ('xm ! n-1'). The SI then blocks until it can read a value from input port 'pfx' into

variable 'pn' ('pfx ? pn'), whereupon it multiplies the contents of 'pn' (which will have been set to '(n-1)!')

and 'n', and sends the result (which thus equals 'n!') over output port 'pn', to be received by the internal

input port of the parent SI, which can thus unblock. Note that after either branch of the conditional has

been completed, the 'factorial' SI executes the 'stop self' command, i.e., this instance of 'factorial' de-

instantiates itself. (The 'stop self' command is actually implicitly called when the schema completes its

execution.)

The Schema Interface and the Parenting Tree

A schema template is composed of a header containing the schema name and a set of optional

instantiation parameters, external and internal declarations, and the schema body. In Backus-Naur form,

a schema class definition sc takes the form given on the right-hand side of
sc ::= schema sn (xp-decl)opt
 {
 external: xv-decl
 internal: iv-decl
 body: s
 }

where sn is the schema class name; xp-decl is the optional external instantiation parameters; xv-decl is the

external variable declaration (visible both inside and outside the scope of the schema); iv-decl is the

declarations visible only inside the scope of the schema; and s is the local schema program executing

upon instantiation.

All schema programs are initialized from a 'main' schema which gets initially instantiated by the

system2. During the execution of a specific schema instance (SI), a new SI may be created by instantiating

from a schema definition. Similarly, one possible command for an SI is the 'stop' which de-instantiates

2 This is somewhat analogous to the situation in POOL [2] where a program is started by instantiating one object out of the
existing object class definitions.

Weitzenfeld and Arbib: ASL 7

it. A schema program terminates once all instantiated processes have de-instantiated. However, in many

on-line applications, the program will not terminate.

In Figure 1, we showed the changing pattern of connections between input and output ports as SIs

were created and destroyed. The relation between currently active schema instances can also be shown

in an abstract "parenting" diagram, as in Figure 5, where a line links each schema instance (LConf) to all

the "child" instances of which it is a "parent". GConf correponds to the total processing environment of all

instantiated schemas, while LConf corresponds to a single schema process.

LConf

LConfLConf

LConfLConf

GConf

Figure 5. Parenting tree for schema instances

The root of the tree corresponds to the initial SI in the system, while nodes and leaves represent

schema processes which are instantiated during the on-going execution of the program. Internal nodes in

the tree correspond to parent SIs, while leaves in the tree correspond to SIs having no children processes.

In our factorial example (Figure 2), 'main' corresponds to the root process of the program. Processes to

the right are children processes while processes to the left correspond to parent processes. (The tree is

basically one single branch.)

Encapsulation is accomplished by stipulating that internal (local) variables can only access other

internal variables in the SI environment. The external section of the schema interface specifies which

variables may be accessed both from the external environment as well as locally. If a schema is to be

able to interact with the outside world, in particular through port connections, the basis for

communication in ASL, it is crucial that the schema contain external ports. The internal section of the

schema interface specifies which variables may be accessed only from the local schema environment.

Instantiation parameters provide an optional alternative for initializing schema instance variables with

special values.

Weitzenfeld and Arbib: ASL 8

Independently of whether external or internal in their scope, the possible static declarations in ASL

apply to the following entities:

Input and Output Ports: Ports are unidirectional. Output ports are used for sending messages from

one schema instance to another. Input ports are used for reading messages from other schemas. Input

ports have to be connected from other output ports before messages may be actually received. A string

of output ports is declared as:
 output op1,...,opn;

where op1,...,opn are output port identifier, while a string of input ports is declared by:

 input ip1,...,ipn;

where ip1,...,ipn are input port identifiers.

Schemas: Schemas define the active types in ASL. (Ports, on the other hand, are passive types since

they execute as part of a schema process and not independently.) A set of schemas is declared as follows
 schema-name si1,...,sin;

where schema-name specifies the schema type to be instantiated, and si1,...,sin the corresponding schema

instance identifiers. This declaration allocates a new n new instances of the given schema which

immediately starts execution.

Primitive Types: ASL supports basic types, in particular int, char and float. These types provide

completeness to the language. In general a set of primitive types are declared as follows
 p-type v1,...,vn;

where p-type is either int, float or char, and v1,...,vn the corresponding variable identifiers.

Arrays: One important data abstraction in ASL is the array. Arrays in ASL, analogous to other

languages, help define a sequence of structures with a single declaration while enabling the programmer

to access the individual array elements through indexing. The general array definition is given by

 type id[N]

where type corresponds to any type in ASL, including schemas, ports and primitive types, while id is the

name identifier for the array, and N is the number of elements in the array.

Arrays may have more than one dimension, in which case the basic declaration is defined with as

many Ns as needed,

 type id[N1]...[Nn]

where Ni corresponds to the ith dimension in the ith of n dimension array. (Array dimensions may be

dynamically specified [27].)

By contrast with the above static declarations, dynamic declarations involve a two step process. First

a pointer, similar to that in C, gets declared. This pointer does not allocate any memory for the particular

kind of structure which it represents. It simply specifies a pointer serving as future reference to a

corresponding structure allocation. While dynamic allocation is possible for any structure type, the most

Weitzenfeld and Arbib: ASL 9

interesting possibilities are given by dynamic allocation of ports and schemas. The dynamic alternative

for port allocation permits the incorporation of new ports into an already compiled schema structure.

Dynamic allocation in schemas provide the most important abstraction in ASL where processes may be

instantiated and start executing at any point.

For example, in the factorial program, besides the initial static instantiation of a 'Next' factorial

schema from the 'main' schema, a dynamic two step instantiation process was used:

 schema* Next;

declares a pointer called 'Next' pointing to a future schema instantiation, then later the actual 'Next'

schema instantiation in the schema body is executed as

 Next = new factorial;

Extended flexibility was achieved here by declaring a pointer to a generic schema, allowing the

programmer to actually decide the specific schema type during run-time, instead of during compilation.

A final issue in the schema interface is how different structures are referenced according to their

locality. For example, in terms of ports, besides distinguishing between input and output ports, and

between external and internal ports, we distinguish between local and remote port references. Local

ports are those ports which are referenced by the schema instance of which they are part and are usually

referenced simply by the simple identifier. (A local port may also be referenced by prefixing the port

identifier with the local schema instance self reference, i.e., 'self.id', where id is the port identifier.)

Remote ports, on the other hand, are those ports belonging to a child schema instance and referenced by

its parent instance with the syntax si.port where si is the name identifier for a schema instance, and port is

the name identifier for a port belonging to that particular schema.

In the ASL port model, data can only be read or written directly to local ports. Reading and writing

to remote ports can only be accomplished indirectly via connections and relabelings, as will be explained

in the next sections.

Local and Global Configurations

We will approach the definition of ASL semantics in terms of local and global configurations. Local

configurations together define the global configuration, with each local configuration representing the

state of a single schema instance. We thus need a unique way of labeling SIs so we can distinguish their

(local) configurations. In models of serial languages, a configuration of a machine in its simplest form

consists of a program and a store, Conf = Syn ∞ Sto, where programs are taken from Syn, the set of

syntactically correct language programs, and Sto is the set of all stores. A store is defined as a function

from variable names to values, where variables that are not in the store are undefined. In our ASL

semantics, the local configuration must specify not only the state in the local Syn ∞ Sto, but must also

show how the SI is connected to other SIs, and what values are stored in its internal variables.

Weitzenfeld and Arbib: ASL 10

At any time in the execution of a schema program, there will be a parenting tree (Figure 5 for an

example) linking the schema instances. The global configuration will then provide a local configuration

for each node of that tree. Formally, a typical element c of the set GConf (or Conf) of global
configurations is given by a set of local configurations { c1, ... , cn } , with one ci in LConf (the set of local

configurations) for each element of the parenting tree. When any SI executes an instruction it may

simply change internal state, it may read or write over its ports it may change the topology of the SI

network, adding or deleting nodes (instantiating or deinstantiating SIs) or, as we shall see, changing the

connectivity structure or its labeling. In order to define configurations, the following sets are defined:

• SName represents the set of schema class names, sn SName,

• SVDecl represents the set of schema internal and external variables and parameter

declarations, sv-decl SVDecl, SVDecl = XPDecl ≈ XVDecl ≈ IVDecl, where XPDecl represents the set of

schema instantiation parameters, xp-decl XPDecl; XVDecl represents the set of schema external

variables, xv-decl XVDecl; and IVDecl represents the set of schema internal variables, iv-decl IVDecl.

• SBody represents the set of schema bodies corresponding to the schema instance statements,

where a typical element s SBody, defines an ASL language statement.

• SDef = SName ∞ XPDecl ∞ XVDecl ∞ IVDecl ∞ SBody represents the set of schema class

definitions, sd SDef.

• SIR represents the set of schema instance labels, where each different SI is represented by a

unique global identifier α SIR = N+, where '0' corresponds to the root schema instance in the

configuration hierarchy ('main'), and α.n corresponds to the nth SI created as a child of SI α.
• The set of schema instance variable states is Σ = NSVDecl ∞ N+ with elements σ = < σ1, σ2 >. σ1

is the local store with typical element σ1(v) N (assuming integer values for simplicity) for v SVDecl.

σ2 N is the local process instantiation counter which is used to create unique process labels. σ2 is

initially set to '0'. When the given SI α creates a new SI through instantiation, the new SI is given the
label α = αp.σ2 and σ2 is incremented by '1'.

• The set of children processes, SIC ∏ SIR, has typical element ι, representing the set of all locally

instantiated children processes.

Ports, Connections, Relabels, and Buffering

When describing communication, it is necessary to keep track of ports, connections and relabelings.

Thus, we define the following sets:

• The set 2Conn of schema instance port connections has typical element κ = { κ1, ... , κn } where

each κs is an ordered pair of the form κs = [(αi,pi), (αj,pj)] Conn, where αi, αj are schema instance labels,

pi, pj are port identifiers, and port pi of SI αi is connected to port pj of SI αj (the first element must be an

output port, while the second must be an input port).

Weitzenfeld and Arbib: ASL 11

• The set 2Rel of schema instance port relabelings has typical element ξ = { ξ1, ... , ξn }where each

ξs is of the form ξs = [(αi,pi), pj] Rel, where αi is an SI label, and pi, pj are port identifiers, where port pi

of SI αi is relabeled to be referred to by the port identifier pj.

• The set 2Port of schema instance ports has typical element π = { π1, ... , πn } with typical list

element πs = < p, ptype, buf, bstate, κπin, κπout, ξπin, ξπout > Ports, where

 p is the port identifier,

ptype { input, output } is the port type,

buf is the port's buffer, where we use the notation of buf ∅ x for reading a message out of the buffer,

and buf ♦ x for writing a message x into the buffer. The change in the buffer state is represented by buf '.

bstate { true, false } is the state of the port buffer given by true if a message is waiting in the buffer

and false if the buffer is empty.
κπin = { κπin1, ... , κπinn } represents the set of connected ports to which p is to send data (only

applies to p being an output port), where κπini = (αi,pi),

κπout = { κπout1, ... , κπoutn } represents the set of connected ports from which p is to receive data

(only applies to p being an input port), where κπouti = (αi,pi),

ξπin = { ξπin1, ... , ξπinn } represents the set of relabeled ports to which p is to forward its data (only

applies to p being input port), where ξπini = (αi,pi),

ξπout = { ξπout1, ... , ξπoutn } represents the set of relabeled ports from which p is to receive its data

(only applies to p being an output port), where ξπouti = (αi,pi),

It should be noted that while it may seem that the port connection and relabeling information is

unnecessarily duplicated, this information is replicated since ports may be in distributed processes, and it

would become inefficient to have to ask for this information every time a message is sent or received.

Furthermore, the presence of this extra information enables routing optimization when sending or

receiving messages through multiple relabels.

Since the schema model is hierarchical, and based on the notion of "parenting", the intuition behind

relabeling is that a port belonging to child schema instance may be accessible through its parent schema

instance in order to enable external communication outside the local parent schema instance

environment. In terms of output ports, a child schema instance communication will be sent, indirectly, to

the destination specified by the inter-connections of the parent schema instance port to which the

relabeling is made. On the other hand, in terms of input ports, any communications received by the port

belonging to the parent schema instance will be forwarded to the child schema instance port to which a

relabeling has been specified. A parent schema instance port forwarding messages according to local

relabeling specification does not use its local buffer for intermediate storage, all messages are

immediately sent to its new destination.

Weitzenfeld and Arbib: ASL 12

Both new and old labels can be used simultaneously. Furthermore, since the communication model

supports fan-in and fan-out of both connections and relabels, a port may be simultaneously relabeled and

also have connections to other ports. Each connection or relabel specifies an independent communication

path which does not affect the other ones. Fan-out specifies how each message is copied into multiple

communication paths, while fan-in simply sequentializes messages arriving from multiple

communication sources.

In ASL, each input port has a local buffer. Sending a message involves delivering a message to its

destination, where it is placed in the buffer of the input port. Buffers are unbounded theoretically, so

messages are never lost (besides, one of the assumptions in the model is guaranteed message delivery, an

assumption common to many asynchronous models, like actors [1]). Buffers in ASL are considered

unbounded. (In practice, buffers are bounded by the available memory.) The buffer is a first-in-first-out

(FIFO) device, where messages are read according to their arrival order. Once read, messages are

retrieved from the buffer. ASL supports checking the state of the buffer, as well as checking the current

message to be read, without actually reading it. This gives the programmer extended flexibility in

deciding when to read from an input port, thus avoiding possible blocking. Reading is simply done by

retrieving the first message from a local buffer without having to know its source. The only precondition

on message reading is that the local process buffer has a message waiting to be read. Thus, for each input

port p of SI α, the local configuration must include the state π of that port.

Finally, the following set of elements are defined on ports:

• IPort represents the set of internal ports, ip IPorts ∏ IVDecl

• XPort represents the set of external ports, xp XPorts ∏ XVDecl

• LPort represents the set of local ports, lp IPorts ≈ XPorts

• RPort represents the set of remote ports, (si,rp) SIR ∞ (IPorts ≈ XPorts).

Internal ports are those ports which can only be referenced by the schema body common to the

schema owning the ports. External ports are those ports which may be referenced outside the local

schema body, enabling a parent schema instance to reference the port of its children schema instances.

Local ports are those ports referenced from the schema body belonging to the same schema instance

to which the port belongs. Remote ports, on the other hand, are those ports belonging to a child schema

instance as referenced from its parent schema instance body.

The distinction between local and remote ports is made to emphasize the restriction in the ASL port

model, where data can only be read or written directly to local ports. Reading and writing to remote

ports can only be accomplished indirectly via connections and relabelings. There are two reason for these

restrictions in disallowing direct reading and writing to remote ports. First, the possibility would exist

where messages could be read and written to both local and remote ports, losing the distinction between

input and output ports (i.e. an input port from which data is locally read may be sent remote data as if it

Weitzenfeld and Arbib: ASL 13

were an output port, making the distinction between input and output ports irrelevant). Second, and

most important, the intended anonymous communication hierarchy would be lost through direct naming

of remote ports, making the notion of connections and relabels irrelevant since any process would be able

to directly write (or read) to any port belonging to any other process.

Delegation

The concept of delegation defines how a parent schema, as part of the delegation scheme, will forward its

messages to the delegated (children) schema instances (through port relabeling), which may be many

(multiple delegation). Delegation provides a dependency between the delegated instance and the

delegating one, through the explicit "delegate" command, telling the system that the delegating schema

has to stay alive until all its delegated schemas complete their task an de-instantiate. Without delegation

no dependency exists between parent and children instances, except a hierarchical relation in the global

referencing scheme. Delegation differs from the general notion of children instances existing in a parent

instance's environment in that the delegated schema instance serves as the body of the delegating schema

- and thus should have its ports relabeled to those of the parent or delegating schema instance.3

Furthermore, the delegating process cannot terminate before the delegated process does. This is to ensure

that messages sent to the delegating process are actually transmitted to the delegated one. Delegation

may be defined on multiple children schema instances as follows
 delegate si1,...,sin

where the schema instance executing the above expression will not terminate before si does.

The following set is defined for delegation:

• The next component is the set 2Del of delegated schema instances, with typical element δ =

{ δ1, ... , δn } 2Del, with δs Del ∏ SIC.

In general terms, a schema is considered a delegating schema if the following three conditions are

met, where the child process is considered

i) the schema instantiates a process (at least one process),

ii) the schema relabels its ports to those of the process,

iii) the schema terminates only after the instantiated process has completed its task (de-instantiated).

Defining a Local Configuration
We can now define a local configuration:

3 By delegating the task implementation from a parent schema to its child we define the notion of dynamic schema tasks. On the
other hand if a task implementation is specified into the parent schema at compilation time, we then define wrapping of
implementation programs into schemas. Wrapping enables the development of independent programs, which may then be
integrated into the schema model. Wrapping programs into schema classes provides a way to integrate programs written with
different languages constructs. This aspect is more of an implementation issue, since different compilers have different
restrictions, and sometimes there may be some conflicts when linking object files created through different compilers.

Weitzenfeld and Arbib: ASL 14

 LConf = SIR ∞ SBody ∞ Σ ∞ SIC ∞ 2Conn ∞ 2Rel ∞ 2Del ∞ 2Port ∞ SName

with typical element c = < α, s, σ, ι, κ, ξ, δ , π , sn >.

Structural Operational Semantics

The semantics for ASL will be given in terms of a Structural Operational Semantics (SOS) [22][11], which

serves to describe the basic operations of a language by going over the transitions that a machine might

take during the execution of a program. Related studies have provided an SOS for CSP [22], POOL [2],

and RS [4].

To describe observable inter-process communication in the form of message passing, [23] introduced

the notion of labeled transition systems described by a three element tuple •Conf, ∅, Λ®, where Conf is the

set of possible configurations, Λ is the set of possible communication labels, and ∅ is a subset of the set

Conf ∞ Λ ∞ Conf. The set of possible communication labels Λ defines the observable messages which a

system can have, and for our particular language, are given by,4

• ε which indicates no communication (or externally unobservable communication).

• p ! x which indicates a message x sent to p.

• p ? x which indicates a message x received from p.

We use the notation Ci
λ i⎯ → ⎯ ⎯ Ci+1 to indicate that (Ci, λi, Ci+1) ∅ , i.e., that the semantics allows

a transition from Ci to Ci+1 in which the communication denoted by λi may be observed. We may use Ci

∅ Ci+1 or Ci ∅ε Ci+1 as alternative representations.

The transition relation, defining the possible transitions between configurations, is inductively

defined over the structure of the language using a collection of axioms and rules. Axioms are defined by
 Ci

λ i⎯ → ⎯ ⎯ Ci+1,

which describes a single transition from configuration Ci into configuration Ci+1, having communication

label λi Λ and Ci,Ci+1 Conf. An inference rule

Ca

λ⎯ → ⎯ Cb

Cc
′ λ ⎯ → ⎯ ⎯ Cd

allows us to infer the validity of transition Cc ′ λ ⎯ → ⎯ ⎯ Cd from that of transition Ca λ⎯ → ⎯ λ Cb.

A valid computation is then given by a (finite or infinite) sequence of configurations
C0

λ 0⎯ → ⎯ ⎯ C1
λ 1⎯ → ⎯ ⎯ ... Ci

λ i⎯ → ⎯ ⎯ Ci+1
λ i+1⎯ → ⎯ ⎯ ... ,

starting from some initial configuration C0, and with Ci
λ i⎯ → ⎯ ⎯ Ci+1 a valid transition for some λi for

each i. The actual meaning of the program is abstracted from this sequence. It might be the

transformation of certain variables from the initial state of the store to the values of (other) variables in

the state of the store in some final configuration, or it might be the stream of external communications

4 Similar labels are used in describing the transition system for CSP [23].

Weitzenfeld and Arbib: ASL 15

throughout program execution. Here our concern will be to formalize the legal transitions. It should be

noted that some axioms involve single local configuration while others involve sets of them. When a

transition affects only a single local configuration brackets will be omitted from the corresponding

axioms and rules.

We start with few basic rules, and then systematically work through an interleaved exposition of the

syntax and semantics of most of the ASL constructs. The axiom for the empty statement5

< α, ε;s, σ, ι, κ, ξ, δ, π , sn > ∅ε < α, s, σ, ι, κ, ξ, δ, π , sn >

shows that an empty statement has no effect on the configuration state. The next rule describes

sequential statement composition for any arbitrary schema body statement,

 < α, s1, σ, ι, κ, ξ, δ, π , sn > ∅ε < α, s1', σ', ι', κ', ξ', δ,' π', sn >

< α, s1;s2, σ, ι, κ, ξ, δ, π , sn > ∅ε < α, s1';s2, σ', ι', κ', ξ', δ,' π', sn >

where if one configuration changes state by going over one statement in the language, we infer that the

configuration changes state by going over that statement while the next statement is still pending.

Schema Body

The schema body specifies how schema instances actually execute. The language expressions, those

constructs which return a value, and the language statements, those constructs returning no values,

causing only side effects, are described next. We first examine assignment, conditionals, and iteration,

which only involve changes to the local configuration of the SI of the body to which they belong.

(i) The general assignment syntax is given by v = e where e is a value-returning expression,

including a variable, and v is the variable in which the value is to be stored. The value returned by e and

the variable v should be of the same type. Assignment is described by the transition,

< α, v=e, σ, ι, κ, ξ, δ, π , sn > ∅ε < α, ε, σ[σ(e)/v], ι, κ, ξ, δ, π , sn >

where σ(e) represents the value returned by expression e, and σ[σ(e)/v] represents the storing of that

value in v.
(ii) Conditionals are defined in terms of the 'if-else' statement if (e) { s1 } else { s2 } where e is the

conditional expression, which if true enables the execution of s1, with s2 executing otherwise. The 'else'

part of the conditional is optional. The corresponding transition is

< α, if (e) { s1 } else { s2 }, σ, ι, κ, ξ, δ, π , sn > ∅ε < α, s1, σ, ι, κ, ξ, δ, π , sn > if σ(e) = true

 ∅ε < α, s2, σ, ι, κ, ξ, δ, π , sn > if σ(e) = false

where σ(e) represents the value returned by expression e for store σ.

(iii) Iteration is defined in terms of the 'while' statement while (e) { s } where e is the conditional

expression, which if true enables the execution of s. This corresponds to

< α, while (e) { s }, σ, ι, κ, ξ, δ, π , sn > ∅ε < α, if (e) { s; while (e) { s } } else { ε }, σ, ι, κ, ξ, δ, π , sn >

5 In the following axioms and rules, ε represents either an empty statement or an empty label, accordingly.

Weitzenfeld and Arbib: ASL 16

where, depending on the value returned by expression e for σ, either s will be computed and a new

iteration will take place or the statement will be completed, as signified by ε.

(iv) When we turn to instantiation, we must not only update the local configuration of the SI which

contains the instantiation request but must also add a new local configuration representing the initial

state of the new instantiation.

A static schema instantiation takes place in the schema declaration section with

 schema-name sid or schema-name sid(init-pars)

where sid is the schema reference, and schema-name is a previously defined schema name. A dynamic

schema instantiation takes place by first having a schema pointer declaration in the schema declaration

sections, complemented by an instantiation construct in the schema body, where the declarations is given

by

 schema* sid or schema-name* sid

depending on whether the generic schema pointer declaration or the specific schema-name pointer

declaration is used. The instantiation construct takes the form, for either of the above declarations

 sid = new schema-name or sid = new schema-name(init-pars)

where the new expression returns a reference to a schema-name object. In terms of transitions, the net

effect of these statements is to add a new element to the set of local configurations

< α, new sn, σ, ι, κ, ξ, δ, π, sno > ∅ε < α, ε, σ', ι', κ, ξ, δ, π, sno > < αc, s, σ", ι", κ", ξ", δ", π", sn >

The right hand side has two terms. The first corresponds to the parent SI α, while the second
represents the initial state of the LConf for the new SI, which is labeled αc. This label is created by

concatenating the label of the parent schema instance, α, with a new unique number, according to the
local counter σ2 in α, which gets incremented every time a new child schema gets instantiated. Thus, for

σ2 taken from σ = < σ1, σ2 >, the new label is created by αc = α⊇σ2 and the internal counter σ2 is then

incremented to yield σ' = < σ1, σ2+1 >. The set of children schema instances is updated in the parent

schema instance α with the label of the new child schema instance, ι' = ι ≈ { αc }.

For the local configuration of the new SI αc, s is the body of schema sn where execution will

immediately proceed. The store for the newly instantiated schema, σ" = < σ1", σ2" >, is reset with all

variables set to '0'6 and all pointers set to 'nil', and where the new local counter for creating unique local

labels, σ2", is also set to '0'. The set of local schema instances, connections, relabels, and delegated

schema instance for the newly instantiated αc is reset, represented by the empty set, : ι" =

κ" = ξ" = δ" = . (Of course, subsequent instructions in either α or αc may immediately set up new values

for any or all of these). The set of ports is also reset with π" = { π1, ... , πn }, πs = < p, ptype, ε, false,ε,ε,ε,ε

>, where πs corresponds to an arbitrary port. The port p is of type ptype, while if an input port its buffer is

6 When instantiating a new schema with 'new sn(x1,...,xn)', which includes instantiation parameters, the only difference is that
σ" = < σ1", σ2" >, with σ1"(x ∅ v) = { λvi , xi | vi = xi , vi XPDecl }, where x = { x1, ... , xn }, v = { v1, ... , vn }.

Weitzenfeld and Arbib: ASL 17

reset to ε, and the corresponding buffer state is set to false, while all local connections and relabels are

initially empty. If an output port the buffer and its state are irrelevant.

In order to define the initial set of local configurations, it is necessary to construct an initialization

function which depends on a schema's static declarations. This initialization function should be

recursively defined, since a static schema instantiation may in itself contain further static schema

instantiations7. For such purposes a special inference rule is defined based on the addition of a new local

configuration to the set of local configurations every time a static schema instantiation is encountered.

Through the recursive application of this rule, an infinite hierarchy of static schema instantiations may be

taken care of. Furthermore, this initialization function is applied not only during initialization of a

complete schema program, but every time a schema gets instantiated throughout the program.
In general, for a set of local configurations C0

α
 representing the state of the program after the

addition of a new local configuration cα corresponding to a newly instantiated schema α, the

initialization function 'IFunc(α)' will be defined by

IFunc(α)=

C0
αi

αi

U αi ∈SVDecα

ε αi ∉SVDecα

⎧
⎨
⎩

where SVDeclα corresponds to the schema interface of schema instance α, and αi corresponds to every

static schema instantiation in α. So, basically, the function when applied to a newly instantiated schema
α will look at any statically declared schema αi in α. For each one, their own initial configuration C0

α will

be calculated by,

C0
α

 = { cα } ≈ IFunc(α),
and thus recursively defining the initial configuration for α (note that α is a parameter in the function for

any schema instance which is currently initialized).

In order to deal with static schema instantiations as part of dynamic schema creation, the following

instantiation rule is given,
C ε⎯ → ⎯ ′ C ∪ cα{ }
C ε⎯ → ⎯ ′ C ∪ C 0

α

whereC ε⎯ → ⎯ ′ C ∪ cα{ } represents the transition from a set of local configurations C to C' plus the

instantiation of a new schema α and C ε⎯ → ⎯ ′ C ∪ C0
α represents the transition from the set of local

configurations C to C' which now includes any static instantiations due to α and given by C0
α .

(v) A schema instance is de-instantiated either implicitly when its body finishes execution, or

explicitly by stopping the schema instance. There is a slight difference between these. In the implicit way,

a schema instance will only die after all its delegated schema instances have themselves died (refer to the

delegation section below). An explicit schema de-instantiation is accomplished by stop si where si is a

7 [4] described such an initialization procedure for assemblages in RS where he introduced the notions of unfold and collect, yet
their definition involves great complexity, in particular the static assemblage initialization procedure.

Weitzenfeld and Arbib: ASL 18

schema instance and stop is a statement executed in the body of the schema process to be de-instantiated.

When a schema process is stopped all its relabels and connections are deleted. To stop a schema instance

from its local body the following expression is used, stop self, where self corresponds to the local

schema instance reference.

Implicit de-instantiation is described by the following two axioms, where the first case corresponds

to a schema instance having no delegated schema instances, while the second case corresponds to a
schema instance which does have delegated ones. If δc is empty, δc' = Ø, then

{< αc, ε, σc, ιc, κc, ξc, δc, π,c snc>, < α,s, σ, ι, κ, ξ, δ, π, sn >} ∅ε < α, s, σ, ι', κ', ξ', δ, π', sn>

where α is the label of the parent SI of αc. The local configuration of αc is removed from the global

configuration, while all reference to the child instance αc are removed from the parent SI α:

ι' = ι - { αc }; κ' = κ - { (αi,p,q) | [(αc,p), (αi,q)] ∆ [(αi,q),(αc,p)] }; ξ' = ξ - { (p,q) | [(αc,p), q] }; and δ'' = δ' -

{ αc}. (Children schema instances of a stopped schema instance keep on executing.)

All the references to the local port relabel list in π are removed,
π' = { πp', ... , πpn }

πp' = < p, output, n/a, n/a, κπinp, κπoutp, ξπinp', ξπoutp' >

ξπinp' = ξπinp − { (αc, p) | (αc,p) ξπinp }

ξπoutp' = ξπoutp − { (αc, p) | (αc,p) ξπoutp }

Since αc may include connections to other schema instances, then besides the parent schema having

its local configuration modified, it is necessary to reset those references from the child instance αi set of

ports π. The following rule is applied to as many children schemas as necessary.
αc,ε,σc, ιc ,κc,ξc,δc,πc,snc , α,s,σ, ι,κ,ξ,δ,π,sn{ } ε⎯ → ⎯ α,s,σ, ′ ι , ′ κ , ′ ξ , ′ δ , ′ π ,sn{ }∧ αc,αi ∈α.ι

αi, si,σi,ιi,κi,ξi,δi ,π i,sni{ } ε⎯ → ⎯ αi ,si,σi, ιi,κi,ξi ,δi, ′ π i,sni{ }

where all the references to other child instance port connections in αi.π are removed,

πi' = { πp', ... , π'pn }

πp' = < p, ptype, buf, bstate, κπinp', κπoutp', ξπinp, ξπoutp >

κπinp' = κπinp − { (αc, p) | (αc,p) κπinp }

κπoutp' = κπoutp − { (αc, p) | (αc,p) κπoutp }

where connections may be to either input or output ports in αc.

If δc' is not empty, δc ≠ Ø, then,

 < αc, ε, σc, ιc, κc, ξc, δc, πc , snc > ∅ε < αc, ε, σc, ιc, κc, ξc, δc, πc , snc >

and no change in the configuration occurs.

In terms of explicit schema de-instantiation, there are two different alternatives. The first one is used

for de-instantiating the executing schema instance through the use of 'stop self',

{< αc, stop self, σc, ιc, κc, ξc, δc, π,c snc>, < α,s, σ, ι, κ, ξ, δ, π, sn >} ∅ε < α, s, σ, ι', κ', ξ', δ, π', sn>

The general stop command is defined for any child SI — any other SIs would be outside the scope of

the locally executing schema.)

Weitzenfeld and Arbib: ASL 19

{< α,stop αc, ι, κ, ξ, δ, π, sn >,< αc, s, σc, ιc, κc, ξc, δc, π,c snc>} ∅ε < α, s, σ, ι', κ', ξ', δ, π', sn>

where now the schema that gets de-instantiated is the one referred to by αc, and not the one executing the

stop command. Yet, the updates to the list of connections, relabels, instantiations and delegations are

treated as before, save that the parent SI is the one issuing the stop command.

Port Management

We now give the syntax and semantics for the various ways of handling the ports of the SIs.

(i) Adding Ports: Ports may be dynamically instantiated, or added to the schema interface, by the use

of the new p command, analogous to schema instantiation. The transition is

 < α, new p, σ, ι, κ, ξ, δ, π, sn > ∅ε <α, ε, σ, ι, κ, ξ, δ, π', sn >

i.e., a new port p is added to the set π, π' = π ≈ { <p,ptype,buf,false> } with the state of p set to false, and buf

set to empty.

(ii) Deleting Ports: Only dynamically instantiated ports may be deleted. The syntax is delete id,

where id is the port identifier, and the expression is general for any type of port. The transition is < α,

delete p, σ, ι, κ, ξ, δ, π, sn > ∅ε <α, ε, σ, ι, κ, ξ, δ, π', sn >

where a port p is deleted from the set π, π' = π - { <p,ptype,buf,bstate> }.

(iii) Connections: In order for communication to take place connections have to be established

between ports. Connections are made exclusively between output and input ports. Ports may be

connected and dis-connected in a dynamic fashion.8 Connections not only provide the functionality for

linking different schema instances, but they serve as basis for the next generation of schema learning

models, where the dynamic nature of port connections becomes critical in describing evolving network

topologies. The syntax for connecting an output port to an input port is

 output_port >=> input_port or input_port <=< output_port

where output_port is the identifier of the output port and input_port is the identifier of the input port.

To further describe the notion of connections, consider Figure 6, where connections are made by 'A'

between the two remote ports 'xpo' and 'xpi' belonging to 'C' and 'B', respectively. Connections are also

made between the two local ports in 'A' and two of its remote ports. The first of those connections is

between 'opo' in 'A' and 'xpi' in 'B', while the second connections is between 'opi' in 'A' and 'xpo' in 'C'.

8 Multiple port inter-connections are allowed, providing fan-in and fan-out. See [27] for details.

Weitzenfeld and Arbib: ASL 20

external:

internal:

schema instance A

xpi xpo

ipi ipo

external:

internal:

schema instance B

xpi xpo

ipi ipo

external:

internal:

schema instance C

xpi xpo

ipi ipo

// port inter-connections
schema schemaA
{
external:
 input xpi;
 output xpo;
internal:
 input ipi;
 output ipo;
 schemaB B;
 schemaC C;
body:
 B.xpo >=> C.xpi;
 C.xpo >=> ipi;
 B.xpi <=< ipo;
}

Figure 6 (Left) Schema port connections diagram. Thin arrows indicate parent-child relations;
thick arrows indicate port connections. (Right) The code for 'schemaA', from which process 'A'
is instantiated

No connections are allowed internally to local external ports, where the possible connection

combinations are either between two remote external ports, or between a local internal port and a remote

external port (remote internal ports are externally invisible)9. Thus, no port connections are allowed from

ports 'xpi' and 'xpo' in schema instance 'A' to any other ports in either 'A', 'B', or 'C' in the above schema

network.

The connection p >=> q is specified by the transition
< α, p >=> q, σ, ι, κ, ξ, δ , π , sn > ∅ε < α, ε, σ, ι, κ', ξ, δ , π , sn >

where ports p and q are specified by p = α1.p1, q = α2.q1 and where α1 and α2 are schema instances. and

the set of connections is updated to κ' = κ ≈ { [(α1, p1), (α2, q1)] }

While the above axiom defines the port inter-connections between, possibly, two children schema

instances, the ports involved have to be notified where they are connected to; in particular the output

port needs to know where to send its outgoing messages. This is achieved by the following inference rule

which updates the state of the involved children instance ports,
α,p>=>q,σ,ι,κ,ξ,δ,π,sn ε⎯ → ⎯ α,ε,σ,ι, ′ κ ,ξ,δ,π,sn

α1,s1,σ1,ι1,κ1,ξ1,δ1,π1,sn1 , α2,s2,σ2,ι2,κ2,ξ2,δ2,π2,sn2{ } ε⎯ → ⎯ α1,s1,σ1,ι1,κ1,ξ1,δ1, ′ π 1,sn1 , α2,s2,σ2,ι2,κ2,ξ2,δ2, ′ π 2,sn2{ }

where for
p = α1.p1

q = α2.q1

and given that

9 Connections between local internal ports are also allowed for consistency in the port model.

Weitzenfeld and Arbib: ASL 21

π1 = { πp1, ... , πpn } and π2 = { πq1, ... , πqm }
then

π1' = { πp1', ... , πpn } and π2' = { πq1', ... , πqm }
where

πp1' = < p1, output, ε, ε, κπinp1', κπoutp1', ξπinp1, ξπoutp1 >

πq1' = < q1, input, buffer, bstate, κπinq1', κπoutq1', ξπinq1, ξπoutq1 >

and
 κπinp1' = κπinp1 ≈ { (α2, q1) }

 κπoutq1' = κπoutq1 ≈ { (α1, p1) }

where ε corresponds to the empty state.

The following possible port connections are allowed:
- α1,α2 ι p1,q1 XPort, (remote to remote ports)

- α1= α p1 IPort α2 ι q1 XPort, (local internal to remote ports)
- α2= α q1 IPort α1 ι p1 XPort, (remote to local internal ports)
- α1,α2 = α p1,q1 IPort. (local internal to local internal ports)

(iv) Disconnection: Ports which have been previously connected may be disconnected by the

command port1 >=< port2 where port1 and port2 are output and input ports, respectively.

< α, p >=< q, σ, ι, κ, ξ, δ , π , sn > ∅ε < α, ε, σ, ι, κ', ξ, δ , π , sn >
where ports p and q are specified by p = α1.p1, q = α2.q1, and where α1 and α2 are schema instances. The

set of connections is updated to κ' = κ - { [(α1,p1), (α2,q1)] }

Analogous to port inter-connections, an inference rule describes the change in state of the

corresponding ports, as described by
α,p>=<q,σ,ι,κ,ξ,δ,π,sn ε⎯ → ⎯ α,ε,σ,ι, ′ κ ,ξ,δ,π,sn

α1,s1,σ1,ι1,κ1,ξ1,δ1,π1,sn1 , α2,s2,σ2,ι2,κ2,ξ2,δ2,π2,sn2{ } ε⎯ → ⎯ α1,s1,σ1,ι1,κ1,ξ1,δ1, ′ π 1,sn1 , α2,s2,σ2,ι2,κ2,ξ2,δ2, ′ π 2,sn2{ }

where for
p = α1.p1

q = α2.q1

and given that
π1 = { πp1, ... , πpn } and π2 = { πq1, ... , πqm }

then
π1' = { πp1', ... , πpn } and π2' = { πq1', ... , πqm }

where
πp1' = < p1, output, ε, ε, κπinp1', κπoutp1', ξπinp1, ξπoutp1 >

πq1' = < q1, input, buffer, bstate, κπinq1', κπoutq1', ξπinq1, ξπoutq1 >

and

Weitzenfeld and Arbib: ASL 22

κπinp1' = κπinp1 − { (α2, q1) }

 κπoutq1' = κπoutq1 − { (α1, p1) }

where ε corresponds to the empty state.

(v) Relabeling: Port relabeling complements the functionality of port connections, and corresponds

to local external ports referencing lower hierarchy ports of the same type, either input or output.

Relabeling permits remote ports to receive and send messages with the external environment as if they

were the actual local external ports in such an environment. This is specially important in defining

delegation and composition in schemas. Relabelings and de-labelings are made in a dynamic fashion,

analogous to connections and disconnections.10 The intuition behind the relabeling notion is that those

ports which are relabeled behave as relay ports forwarding their message according to the specified

relabels. In general, a port is relabeled by p === q where p and q are both of the same type, either input

or output ports.

No relabelings are allowed other than from local external ports to either remote external ports or to

local internal ports, where all ports are of the same type. The transition is
< α, p === q, σ, ι, κ, ξ, δ , π , sn > ∅ε < α, ε, σ, ι, κ, ξ', δ , π , sn >

where ports p and q are specified by p = α1.p1 , q = q1, and where α1 is a schema instance., and the set of

relabels is updated to ξ' = ξ + { [(α1,p1), q1] } where the port relabel is from q1 to α1.p1.

The change of state in π corresponds to a relabeled port having its forwarding address modified

according to the relabeling specification. It should be noted that while a relabeled input port forwards its

messages from a parent instance to a child instance, the direction of output port forwarding is exactly the

opposite. The following inference rule will describe these considerations for changing the state of

relabeled ports,
α, p === q,σ,ι ,κ ,ξ ,δ ,π ,sn ε⎯ → ⎯ α ,ε,σ, ι,κ , ′ ξ ,δ , ′ π ,sn

α1,s1,σ1,ι1,κ1,ξ1,δ1,π1,sn1{ } ε⎯ → ⎯ α1, s1,σ1,ι1, κ1,ξ1,δ1, ′ π 1,sn1{ }

where for
p = α1.p1

q = q1 or (α.q1)

and given that
π1 = { πp1, ... , πpn } and π = { πq1, ... , πqm }

then
π1' = { πp1', ... , πpn } and π' = { πq1', ... , πqm }

where two cases may arise,

i) Relabeling is defined on output ports:
πp1' = < p1, output, ε, ε, κπinp1, κπoutp1, ξπinp1, ξπoutp1' >

10 Fan-in and fan-out allow a single local external port to reference many remote ports in a single environment.

Weitzenfeld and Arbib: ASL 23

πq1' = < q1, output, ε, ε, κπinq1, κπoutq1, ξπinq1', ξπoutq1 >

and
 ξπoutp1' = ξπoutp1 ≈ { (α, q1) }

ξπinq1' = ξπinq1 ≈ { (α1, p1) }

Since message forwarding in relabeled output ports is from a child instance to a parent instance, the
child instance port, in this case p1, will include the port destination address to which its messages are to

be sent, while the parent instance port, in this case q1, will include the port destination address from

which its messages are to be received.

ii) Relabeling is defined on input ports:
πp1' = < p1, input, buffer, bstate, κπinp1, κπoutp1, ξπinp1', ξπoutp1 >

πq1' = < q1, input, buffer, bstate, κπinq1, κπoutq1, ξπinq1, ξπoutq1' >

and
 ξπinp1' = ξπinp1 ≈ { (α, q1) }

ξπoutq1' = ξπoutq1 ≈ { (α1, p1) }

Since message forwarding in relabeled input ports is from a parent instance to a child instance, the
parent instance port, in this case q1, will include the port destination address to which its messages are to

be sent, while the parent instance port, in this case p1, will include the port destination address from

which its messages are to be received.

The following possible port relabels are allowed:
- α1 ι p1,q1 XPort, (remote to local external ports)

- α1= α p1 IPort q1 XPort, (local internal to local external ports).

(vi) Delabeling: Ports which have been previously relabeled may be de-labeled by the command p

=|= q where p and q are both either input or output ports. The transition is
< α, p =|= q, σ, ι, κ, ξ, δ , π , sn > ∅ε < α, ε, σ, ι, κ, ξ', δ , π , sn >
where ports p and q are specified by p = α1.p1, q = q1, and where α1 is a schema instance. The set of

relabels is updated to ξ' = ξ - { [(α1,p1), q1]}.

Analogous to port relabels, an inference rule describes the change in state of the corresponding ports,

as described by
α, p = = q,σ, ι,κ ,ξ ,δ ,π ,sn ε⎯ → ⎯ α ,ε,σ, ι,κ , ′ ξ ,δ , ′ π ,sn

α1,s1,σ1,ι1,κ1,ξ1,δ 1,π1,sn1{ } ε⎯ → ⎯ α1, s1,σ1,ι1, κ1,ξ1,δ1, ′ π 1,sn1{ }

where for
p = α1.p1

q = q1 or (α.q1)

and given that
π1 = { πp1, ... , πpn } and π = { πq1, ... , πqm }

Weitzenfeld and Arbib: ASL 24

then
π1' = { πp1', ... , πpn } and π' = { πq1', ... , πqm }

where the following two cases may arise.

The case where relabeling is defined on output ports:
πp1' = < p1, output, ε, ε, κπinp1, κπoutp1, ξπinp1, ξπoutp1' >

πq1' = < q1, output, ε, ε, κπinq1, κπoutq1, ξπinq1', ξπoutq1 >

and the respective references have to be deleted,
 ξπoutp1' = ξπoutp1 − { (α, q1) }

ξπinq1' = ξπinq1 − { (α1, p1) }

The case where relabeling is defined on input ports:
πp1' = < p1, input, buf, bstate, κπoutp1, ξπinp1', ξπoutp1 >

πq1' = < q1, input, buf, bstate, κπinq1, κπoutq1, ξπinq1, ξπoutq1' >

and the respective references have to be deleted,
 ξπinp1' = ξπinp1 − { (α, q1) }

ξπoutq1' = ξπoutq1 − { (α1, p1) }

Communication

Port Writing

Writing data is allowed only through local ports, either internal or external. Remote ports may not be

directly accessed for writing, only indirectly via port connections. The syntax of writing data is given by

an expression which returns 'true' when writing has been successful, and 'false' otherwise. There is no

blocking on sending messages out (based on the unbounded buffer assumption) — independently of

whether the receiver gets the message or a connection exists, the body of the SI will continue execution.11

The writing command takes the form

 output_port ! expr

where output_port is the name of a local output port, and expr is any value-returning expression. The

message may be of any type, including primitive types, char, int, float, or derived types12.

11 Since writing to an output port which is not connected will cause the data to be lost, the programmer should check for the
existence of connections. ASL includes special constructs, which are not part of the basic language, for this purpose - see [27] for
details.
12 New types may be derived from basic ones, including derived ports which can understand new derived types. The basic port
structure only supports basic types, integers, floats, and characters. Ports and schema as port messages are not currently
supported by the basic language. Writing also supports multiple messages sent as one block through a single port. Remote
procedure calls are simulated by transforming the actual function call into a message list corresponding to the function name and
the sequence of the function's arguments, but we will not go into the details here.

Weitzenfeld and Arbib: ASL 25

Communication is achieved by sending messages to local output ports, where transitions include a

pending communication labeled in general by p!x, where x represent any message. In particular for an

expression e written through port p,
α , p!e,σ,ι ,κ ,ξ ,δ ,π, sn p!σ e()⎯ → ⎯ ⎯ ⎯ α,ε ,σ,ι ,κ, ξ ,δ ,π, sn

where p!σ(e) specifies the value returned by expression e, according to the local store σ, to be sent through

port p. There is no blocking on sending messages out (based on the unbounded buffer assumption).

The actual communication will only take place if there exists a connection or relabel on the

corresponding port. The next inference rule corresponds to the actual sending of a message between two

inter-connected process α1 and α2, according to the reference list stored in π1, referencing a port in α2.

This rule is applied to all port references in π1 so the same message is sent to all destinations.
α1,p!e,σ1,ι1,κ1,ξ1,δ1,π1,sn1

p!σ e()⎯ → ⎯ ⎯ ⎯ α1,ε,σ1,ι1,κ1,ξ1,δ1,π1,sn1 ∧α2,q()∈π1.κπoutp∧ α1,p()∈π2.κπinq
α1,p!e,σ1,ι1,κ1,ξ1,δ1,π1,sn1 , α2,s2,σ2,ι2,κ2,ξ2,δ2,π2,sn2{ } p!σ e()⎯ → ⎯ ⎯ ⎯ α1,ε,σ1,ι1,κ1,ξ1,δ1,π1,sn1 , α2,s2,σ2,ι2,κ2,ξ2,δ2, ′ π 2,sn2{ }

where
π1 = { πp, ... , πpn }

πp = < p, output, n/a, n/a, κπinp, κπoutp, ξπinp, ξπoutp >

(α2,q) κπoutp

and
π2' = { πq', ... , πqn }

πq' = < q, input, buf', bstate', κπinq, κπoutq, ξπinq, ξπoutq >

(α1,p) κπinq

the actual communication will take place by changing the state of port q in α2 according to

buf' = buf ♦ σ(e) storing the message in the local buffer,

bstate' = true since a message has been received.

In case where ξπout is not empty then relabelings exist for q and the message has to be forwarded on

according to the following relabeling rules.

When considering inter-process communication through port relabeling the following rule is used,
α1, p!e,σ1,ι1,κ1,ξ1,δ1,π1,sn1

p!σ e()⎯ → ⎯ ⎯ ⎯ α1,ε,σ1,ι1,κ1,ξ1,δ1,π1,sn1 ∧ α,q()∈π1.ξπoutp ∧ α1, p()∈π.ξπinq

α1,p!e,σ1,ι1,κ1,ξ1,δ1,π1,sn1 , α,s,σ,ι,κ,ξ,δ,π,sn{ } q!σ e()⎯ → ⎯ ⎯ ⎯ α1,ε,σ1,ι1,κ1,ξ1,δ1,π1,sn1 , α,s,σ,ι,κ,ξ,δ,π,sn{ }

where α1 is the child of α, and it has its port p relabeled to q in α.

Furthermore,
π1 = { πp, ... , πpn }

πp = < p, output, ε, ε, κπinp, κπoutp, ξπinp, ξπoutp >

(α2,q) ξπoutp

and
π = { πq, ... , πqn }

Weitzenfeld and Arbib: ASL 26

πq = < q, output, ε, ε, κπinq, κπoutq, ξπinq, ξπoutq >

(α1,p) ξπinq

the actual communication will take place by port q in α relaying the message according to its own list of

connections or further relabels.

The two rules, the one for port inter-connections and the output port relabeling rule, together define

the message sending communication path. In particular, the relabeling rule may be recursively applied to

a single message when involving relabels of relabels.

Port Reading

In ASL, receiving occurs independently from sending, in contrast to synchronous communication. The

important aspect when contrasting reading with writing, is that, due to the asynchronous nature of the

communication, sending a message involves most of the work of actually delivering a message to its

destination, while on the other hand reading is simply done by retrieving the message from a local buffer

without having to know its source. The read command is

 p ? var

where p is the name of a local input port, and var is the variable where the message received is to be

stored. All write command are non-blocking, while read commands block until there is something to be

read from the queue. Thus, the only requirement is for port p having bstate = true in π. In case bstate =

false, the configuration enters a waiting state, where no reading will take place until bstate becomes true.
if π.bstatep = true then

α, p?v,σ,ι,κ,ξ,δ,π, sn p?v⎯ → ⎯ ⎯ α,ε, ′ σ ,ι,κ,ξ,δ,π,sn

else
α , p?v,σ,ι ,κ ,ξ,δ,π, sn ε⎯ → ⎯ α, p?v, σ,ι ,κ,ξ ,δ ,π, sn

p?v is the communication label and specifies the reception of a message into variable v through port p.

After reading the message, the state of the store (buffer) is updated with the new value for v,
σ' = < σ1 [p.buf ∅ v], σ2 >

where p.buf ∅ v represents the reading of a buffer message from p into v.

When considering inter-process communication through port relabeling the following rule is used,
α1, p?v,σ1,ι1,κ1,ξ1,δ1,π1,sn1

p?v⎯ → ⎯ ⎯ α1,ε,σ1,ι1,κ1,ξ1,δ1, ′ π 1,sn1 ∧ α,q()∈π1.ξπoutp ∧ α1, p()∈π.ξπinq

α1,p?v,σ1,ι1,κ1,ξ1,δ1,π1,sn1 , α,s,σ,ι,κ,ξ,δ,π,sn{ } q?v⎯ → ⎯ ⎯ α1,ε,σ1,ι1,κ1,ξ1,δ1, ′ π 1,sn1 , α,s,σ,ι,κ,ξ,δ,π,sn{ }

where α1 is the child of α, and is the process having its port p relabeled to q in α.

Furthermore,
π1' = { πp', ... , πpn }

πp' = < p, input, buf', bstate', κπinp, κπoutp, ξπinp, ξπoutp >

(α2,q) ξπoutp

Weitzenfeld and Arbib: ASL 27

buf = buf ♦ σ(e) storing the message in the local buffer,

bstate = true since a message has been received.

and
π = { πq, ... , πqn },
πq = < q, input, buf', bstate, κπinq, κπoutq, ξπinq, ξπoutq >,

(α1,p) ξπinq

further communication will take place if port p includes its own relabels.

The above rule defines the message receiving communication path which may be recursively applied

to a single message when involving relabels of relabels.

Delegation

The delegation scheme is defined by an axiom describing the semantics of the delegate expression

< α, delegate si, σ, ι, κ, ξ, δ, π , sn >
ε→ <α, ε, σ, ι, κ, ξ, δ', π , sn >

where the set of delegated schema instances is updated with δ' = δ' ≈ { si }.

Assemblages

A key concept evolving from the RS schema model [18] is that of schema composition in the form of

schema assemblages, enabling the building of complex hierarchical systems in an encapsulated fashion,

with the following characteristics

• an schema assemblage instantiate instantiates more than one internal schema instance, and

• internal schema instance ports are connected to other internal schema instance ports, or

• schema assemblage instantiate ports are relabeled to some of the internal schema instances ports.

The schema assemblage in RS is a special construct described by

 [N(ip)(op)(v)(s)(ib)(p)(n)]

where

 - N is the assemblage name

 - ip is the list of input ports

 - op is the list of output ports

 - v is the list of variables

 - s is the list of component schemas

 - ib describes the component schema instantiations

 - p describes the port relabeling

 - n defines the internal port connections

Weitzenfeld and Arbib: ASL 28

Contrary to assemblages in RS, the schema assemblage abstraction in ASL is built from other basic

ASL constructs, such as relabeling, connections and delegation, and not as a special class of schema

assemblage classes. A general schema assemblage composed of two subschemas is shown in Figure 7,

we can see the following equivalence

 - the schema name N corresponds to schemaA

 - the list of input ports ip corresponds to xpi,ipi

 - the list of output ports op corresponds to xpo,opo

 - the list of variables v is in this case empty

 - the list of component schemas s corresponds to schemaB,schemaC

 - the component schema instantiations ib corresponds to schemaB,schemaC

 - the port relabeling p corresponds to xpi♦schemaB(xpi), xpo♦schemaC(xpo)

 - the internal port connections n corresponds to schemaC(xpi)♦schemaB(xpo)

Note that since no variables are included as part of the schema definitions, ib looks exactly the same

as s. The ASL schema delegation is implicit in the RS schema assemblage construct, while the body

section is absent in the RS schema assemblage. This aspect contrasts the extended flexibility of the ASL's

assemblage notion, while keeping homogeneity with a single general schema definition type.

// schema assemblage
schema schemaA
{
external:
 input xpi; // external input port
 output xpo; // external output port
internal:
 input ipi; // internal input port
 output ipo; // internal output port
 schemaB B; // schema instance reference
 schemaC C; // schema instance reference
body:
 B.xpo >=> C.xpi;
 C.xpo === xpo;
 B.xpi === xpi;
 delegate B,C;
}

Figure 7. Assemblage example code

Comparisons

The following sections contrast the ASL model most important characteristics to other models, including

other concurrent object-oriented systems.13

13 For a more extensive comparison refer to [27].

Weitzenfeld and Arbib: ASL 29

Instantiation

In concurrent object-oriented systems, there are basically two different paradigms for object creation,

class-based and prototype-based. The concept of classes, basic in sequential object-oriented systems, such

as Smalltalk [10], defines a special class template in creating class objects. In some concurrent object-

oriented (object-based) models, such as actors, object creation is through prototyping, where an object

makes a copy of itself in creating a new object.14

Multiple Ports

Multiple ports have been utilized in such computational models as CSP [12] and Port Automata [24]. Yet

most concurrent object-oriented models follow a single port model, in particular the actor model [1].

(Some models based on Concurrent Logic Programming are also based on multiple ports, such as Vulcan

[16].)

Contrasting ASL to languages derived from CSP, we have Ada [14], having synchronous

communication and multiple ports, where ports define entry queues in remote procedure calls ('entry-

per-procedure'), and data paths are set through direct naming. On the other hand Occam [15] is based on

communication channels, supports point-to-point synchronous communication, yet, not allowing

multiple inter-connections, i.e. fan-in nor fan-out. Some concurrent object-oriented languages, such as

POOL [2], incorporate synchronous communication and remote procedure calls similar to Ada.

In contrast to single port models, where communication is asynchronous, such as actors, the multiple

port paradigm avoids the need to search through single input queues when looking for a particular type

of message. This allows to avoid special communication modes, such as the express mode in ABCL [30] in

addition to the ordinary communication mode), and the special reply port, in addition to the regular

message port, which are mainly designed to compensate for the restrictions of single port models.

Message Passing

As previously described, communication in ASL is asynchronous. Messages may be received through

any input port and sent through any output port. Messages in ASL could stand for method invocation, in

the way of message patterns activating scripts or as simple data values. The notion of message patterns

and scripts is somewhat similar to that used in ABCL, where method arguments are passed as separate

message entries in the pattern, and the script is activated when a message pattern is matched. (It is

important to note that since messages may be sent and received through different ports, reading and

writing in ASL is explicitly managed as opposed to other models, particularly those following the

14 Refer to [7] for an anlysis their shortcomins in the context of inheritance.

Weitzenfeld and Arbib: ASL 30

client/server model, where remote procedure calls are implicitly serviced.) In the asynchronous

communication paradigm, a schema sending a message doesn't have to wait for an acknowledgment or

for the actual reception and servicing of the message. Yet, synchronous communication is possible with

the help of a 'wait-for-reply' mechanism, similar to Ada's rendezvous. The general asynchronous

communication paradigm also permits the past, now, and future modes of communication in ABCL. The

paradigm supports multi-party communication, where a single output port may send messages to many

other schema's input ports, and similarly many input ports may receive messages from a single output

port.

Aggregation

Basic schemas may be composed together into schema assemblages in building complex systems. In

contrast to ASL, in the actor model, this composition notion corresponds to configurations where

receptionist actors and external actors are integrated together with 'regular' actors; yet contrary to

assemblages, which are themselves schemas, an actor configuration is not considered a 'first-class' actor.

This is partially due to the fact that schemas are multiple port entities while actors are single port

abstractions. Moreover, when contrasting aggregation in both models, receptionist actors could

correspond to assemblage input ports while external actors could correspond to assemblage output ports,

whereas if we consider a basic schema as an actor configuration, then schema assemblages would

correspond to configurations of configurations, which points out to the higher level abstraction and the

multi-granularity of the schema model.

Multi-granularity

When contrasting schemas with actors we have distinguished the difference in granularities between the

two models. Yet the schema model also supports fine-grained object models, such as neurons in neural

networks systems [26]. This is similar to domains in Hybrid [21], which may be of different granularity to

match hardware processing characteristics. A schema system may also be designed to match the

particular machine environment, from coarse-grain to fine-grain schemas.

Implementation
The language has been implemented in C++ under Unix15, where concurrency is simulated by using the

Unix Light Weight Process (LWP) library16. The parsing of the language has been developed using Lex

15 Unix is a registered name.
16 LWP is a registered product.

Weitzenfeld and Arbib: ASL 31

and Yacc17. We are currently developing a truly distributed implementation where a number of

workstations are networked, and schema processes can be mapped to Unix processes.

Conclusions
The ASL modeling methodology has been applied as a domain specific schema language to neural

networks simulation, giving rise to the Neural Schema Language (NSL)18, a system for the describing

modular neural networks. Figure 8 shows the basic neural model, where neural networks correspond to

schemas, and networks of neural networks correspond to schema assemblages. NSL exploits the notions

of delegation and wrapping, by

enabling a neural schema to recruit any

number of neural networks for its

implementation. Similarly a single

neural network may be recruited by

different schemas. Such an approach

enables the encapsulation of neural

networks into schema classes and the

composition of hierarchical networks.

Furthermore, at a lower level neurons

may have their task delegated by

neural implementations of different

levels of detail, from the very simple

neuron models to the very complex

ones [26]. (It is interesting to note, that

the neuron model is best modeled also

as a multi-port entity.)

delegation

neural
networks

network
 of

networks

neurons

complex simple

Figure 8. NSL model

Future Research
This paper has presented the Abstract Schema Language (ASL) computational model and its main

characteristics, hierarchy, composition, heterogeneity and multi-granularity. ASL notion of schemas,

assemblages, wrapping, and delegation extend the current state of concurrent object-oriented

programming.

17 Both Lex and Yacc are registered products.
18 Not to confuse with the Neural Simulation Language. Basically, both systems merge under the upcoming NSL3.0 system at
the end of 1993.

Weitzenfeld and Arbib: ASL 32

ASL is part of on-going research in the development of schema systems. In terms of ASL as a

language, current research involves the incorporation of typing, in the form schema signatures. Other

issues yet to be fully analyzed, include aspects arising from asynchrony and non-determinism present in

truly parallel systems. Furthermore, there is the issue of how to deal with inheritance [7]. In parallel,

research is under way in extending the theoretical work in defining an asynchronous model for ASL in

particular, and COOP in general [20][13].

In terms of implementation, ASL has been prototyped on a multi-processing system, and current

thrust is in its distributed, parallel, and heterogeneous implementation. ASL is a machine independent

language, which translates into other high level languages. In particular, C++ [25] is currently both the

underlying prototyping language for interpretation and system implementation.

An application of ASL, as previously discussed, is the development of the domain specific schema

language for neural networks simulation, Neural Schema Language (NSL), based on previous work with

the Neural Simulation Language [28]). An interesting concept in the integration of ASL as a

computational model, and NSL as a simulation system is that of wrapping [5] where existing code may

be interfaced to the ASL model without requiring a major rewriting of the system. The goal is the

development of complex distributed applications in the areas of Brain Theory and Distributed Artificial

Intelligence (DAI), where schemas may integrate with hardware processing. These developments

integrate with current work in defining a common ground between COOP and DAI [6].19

Work is also under way in extending the basic schema model in two different directions. One thrust

is in the extension of the model into the real-time domain, for applications in robotics and vision. The

other thrust is the incorporation of learning capabilities into the schema model, through the introduction

of computational reflection [19].

Appendix

Schema Definition

sd ::= schema sn (xp-decl)opt
 {
 external: xv-decl
 internal: iv-decl
 body: s
 }

19 For further discussions on the Neural Schema Language refer to [27].

Weitzenfeld and Arbib: ASL 33

Declarations
// schema types
Sdecl ::= schema // generic schema ref.
 | sn // specific schema ref.

SRdecl ::= Sdecl* // schema reference ptr

// port types
Pdecl ::= input // input port reference
 | output // output port reference

PRdecl ::= Pdecl* // port reference pointer

// schema/port types
SPdecl ::= Sdecl // schema
 | Pdecl // port

// schema/port ptr types
SPRdecl ::= SRdecl // schema ptr
 | PRdecl // port ptr

// primitive (variable) types
Vdecl ::= int // integer
 | float // float
 | char // character
 | const // constant

VRdecl ::= Vdecl* // primitive type ptr

// instantiation parameter:
xp-decl ::= ε // empty
 | Vdecl id1,...,idn
 | xp-decl1; xp-decl2 // sequence

// external declaration:
xv-decl ::= ε // empty
 | SPdecl id1,...,idn // schema/port
 | SPRdecl id1,...,idn // schema/port ptr
 | xv-decl1; xv-decl2 // sequence

// internal declaration:
iv-decl ::= ε // empty
 | SPdecl id1,...,idn // schema/port
 | SPRdecl id1,...,idn // schema/port ptr
 | Vdecl id1,...,idn // primitive
 | VRdecl id1,...,idn // primitive ptr
 | iv-decl1; iv-decl2 // sequence

Weitzenfeld and Arbib: ASL 34

// all variable declaration:
sv-decl ::= xp-decl // inst. parameter
 | xv-decl // external
 | iv-decl // internal

Expressions
e::= v // variable
 | new sn // dynamic schema inst.
 | self // self reference
 | p?v1,..., vn // message reception
 | p!e1,..., en // message delivery
 | p >=> q1,..., qn // connect ports
 | p <=< q1,..., qn // alternative syntax
 | p >=< q1,..., qn // disconnect ports
 | p === q1,..., qn // relabeling ports
 | p =|= q1,..., qn // de-labeling
 | stop si1,..., sin // de-instantiate schema
 | delegate si1,..., sin // delegation
 | f(e1,..., en) // function call

Statements
s ::= ε // empty statement
 | e // expr. as statement
 | v = e // assignment
 | if (e) then { s1 } else { s2 } // if-else
 | while (e) { s } // while-loop
 | s1; s2 // sequential composition

References
1. Agha, G., Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, 1986.

2. America, P., POOL-T: A Parallel Object-Oriented Language, Object-Oriented Concurrent Programming,

edited by A. Yonezawa and M. Tokoro, MIT Press, 1987.

3. Arbib, M.A., Schema Theory, In the Encyclopedia of Artificial Intelligence, 2nd. Edition, edited by

Stuart Shapiro, 2:1427-1443, Wiley, 1992.

4. Baldamus, M., Formal Semantics of Robot Scheme Programs, Technical Report, Institute of Software

and Theoretic Information, Technische Universitat Berlin, Germany, 1991.

5. Bellman, K.L., Gillam, A., Achieving Openness and Flexibility in VEHICLES, In AI and Simulation,

Edited by W. Webster and R. Uttansingh, Simulation Series, 22(3), Society for Computer Simulation,

1990.

6. Briot, J.-P., Gasser, L., From Objects to Agents: Connections between Object-Based Concurrent

Programming and Distributed Artificial Intelligence, IJCAI '91 Workshop on Objects and AI, 1991.

Weitzenfeld and Arbib: ASL 35

7. Briot, J.-P., Yonezawa, A., Inheritance and Synchronization in Object-Oriented Concurrent

Programming, ABCL: An Object-Oriented Concurrent System, edited by A. Yonezawa, MIT Press,

1990.

8. Cointe, P., Implementation et Interpretation des Langages Objets, Application aux Langages Formes,

ObjVlisp et Smalltalk, (these d'Etat), LITP Research Report, No. 85-55, LITP -Iniversite Paris-Vi -

IRCAM, Paris, 1984.

9. Draper, B., Collins, R., Brolio, J., Hanson, A., Riseman, E., The Schema System, Int. Journal of

Computer Vision, 2:209-250, 1989.

10. Goldberg, A., Robson, D., Smalltalk-80: The Language and its Implementation, Addison Wesley, 1984.

11. Henessy, M., Plotkin, G.D., Full Abstraction for a Simple Parallel Programming Language, Proc. 8th

MFCS, LNCS 74:108-120, Springer, 1979.

12. Hoare, C.A.R., Communicating Sequential Processes, Communications of the ACM Vol. 21 No. 8, pp

666-677, August, 1978.

13. Honda, K., Tokoro, M., An Object Calculus for Asynchronous Communication, Proc. ECOOP '91,

Geneve, Switzerland, 1991.

14. Ichbiah, J., Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A, 1983.

15. INMOS, Occam Programming Manual, London, Prentice-Hall, 1984.

16. Kahn, K., Tribble, E., Miller, M., Bobrow, D., Research Directions in Object-Oriented Programming:

Functions, Relations and Equations, chapter Vulcan: Logical Concurrent Objects, pp. 75-112, MIT Press,

1987.

17. Lieberman, H., Using Prototypical Objects to Implement Shared Behavior in Object Oriented

Systems, OOPSLA '86, Conference Proceedings, 1986.

18. Lyons, D.M., Arbib, M.A., A Formal Model of Computation for Sensory-Based Robotics, IEEE Trans.

on Robotics and Automation, 5:280-293, June, 1989.

19. Maes, P., Concepts and Experiments in Computational Reflection, Proc. OOPSLA '87, :147-155,

Orlando, FL, Oct. 4-8, 1987.

20. Milner, R., Functions as Processes, In Automata, Language, and Programming, LNCS 443:167-180,

Springer-Verlag, 1990.

21. Nierstrasz, O., 1987, Active Objects in Hybrid, OOPSLA '87, Conference Proceedings.

22. Plotkin, G.D., A Structural Approach to Operational Semantics, DAIMI FN-19, Computer Science

Dept, Aarhus University, Aarhus, Denmark, Sept, 1981.

23. Plotkin, G.D., An Operational Semantics for CSP, Formal Description of Programming Concepts II, D.

BjØrner Editor, North-Holland, 1983.

24. Steenstrup, M., Arbib, M.A., Manes, E.G., Port Automata and the Algebra of Concurrent Processes,

J. Computer Syst. Sci., Vol. 27, no. 1, pp. 29-50, Aug, 1983.

25. Stroustrup, B., The C++ Programming Language, Addison-Wesley, 1987.

Weitzenfeld and Arbib: ASL 36

26. Weitzenfeld, A., Arbib, M., A Concurrent Object-Oriented Framework for the Simulation of Neural

Networks, Proceedings of ECOOP/OOPSLA '90 Workshop on Object-Based Concurrent Programming,

OOPS Messenger, 2(2):120-124, April, 1991.

27. Weitzenfeld, A., A Unified Computational Model for Schemas and Neural Networks in Concurrent Object-

Oriented Programming, PhD Thesis, Center for Neural Engineering, University of Southern

California, Los Angeles, CA, 1992.

28. Weitzenfeld, A., Arbib, M.A., NSL: Neural Simulation Language, Neural Network Simulation

Environments, Ed. J. Skrzypek, Kluwer, 1993 (in press).

29. Weitzenfeld, A., An Overview of ASL: Hierarchy, Composition, Heterogeneity, and Multi-

Granularity in Concurrent Object-Oriented Programming, Proceedings of OOPSLA '92 Workshop on

Next Generation Computing, Vancouver, Canada, 1993 (in press).

30. Yonezawa, A., Briot, J-P., Shibayama, E., Object-Oriented Concurrent Programming in ABCL/1,

OOPSLA '86, Conference Proceedings, 1986.

31. Yonezawa, A., Tokoro, M., Eds., Object-oriented concurrent programming, MIT Press, 1987.

