

WEB SIMULATION OF BRAIN MODELS

Alfredo Weitzenfeld
Instituto Technologico Autonomo de Mexico

Rio Hondo 1
San Angel, C.P. 01000 Mexico D.F.

e-mail: alfredo@lamport.rhon.itam.mx

Amanda Alexander and Michael Arbib
Brain Simulation Lab

USC Brain Project
University of Southern California

Los Angeles, CA 90089-2520
e-mail: aalx@java.usc.edu,

arbib@pollux2.usc.edu

rm-
eri-

s
m-
.

ture
d a
of

m
ve
N,
ng
Ioi
rit-

call
y a
ted
sed
ule

KEYWORDS

Continuous simulation, Hierarchical, Neural networks, Neuroscience, Java

ABSTRACT

In 1994, we set out with a grant from the Human Brain Project to
develop a database of exemplary models that would be freely accessible
from the Web. In achieving this goal, we prototyped the Brain Models on
the Web database (BMW) and the Summary Database (SDB). BMW con-
tains models in an Informix (trademark) database with links into the Sum-
mary Database which contains empirical neuroscience information to
support the model: published literature on experiments, summaries of arti-
cles, etc. To make it easier and faster for the modeler to create new models,
we created a schematic capture system that allows the modeler to "drag-
and-drop" icons/modules on a page and interconnect them. Being able to
see the schematic of the model will help the experimentalist understand the
model better and contribute to the model delineation. We also have created
several interface modules which mimic many of the experimental protocols
used by experimentalists. With a rich set of modules available, the modeler
will only need to develop those features unique to his model. We have also
created a "Web friendly" simulator we call NSL. NSL is a hierarchical sim-
ulator, completely written in java and also available in C++. It provides a
wide variety of output displays, reports, and soon will provide parallel pro-
cessing support.

INTRODUCTION

The Neural Simulation Language (NSL) provides a modeling and sim-
ulation environment for large scale, general purpose neural networks of the
brain, and Brain Models on the Web (BMW) provides a repository of
exemplary models. Because of the need to create “living” models, that is
models that change over time to reflect advances in research or better
experimental data, it was decided that NSL3.0 should be web based so that
modelers from around the world could run and comment on models in the
BMW database easily. Researchers are free to add on to and modify exist-
ing models, and if granted access to BMW, they can upload their models to
the database (Arbib 1995). For example, modelers involved with research
into Huntington’s disease may want to examine the Cortico-Subcortical
Model for the Generation of Spatially Accurate Sequential Saccades (Dom-
iney and Arbib, 1992) which models the “distractibility” syndrome com-
mon in Huntington’s disease patients. Or researchers of Parkinson’s
disease may want to modify the levels of the neurochemical, dopamine,
represented in the Basal Ganglia Model (Crowley, 1997) to see what effects
it has on the oculomotor system. Also, when experimenting on a model,
you can control how a drug is affecting the system, and then apply that
knowledge to what happens in an actual empirical experiment. Eventually,
the continuous updating of a model will cause the model to become more

and more accurate and will reduce the need for empirical testing. Perfo
ing drug experiments on animals is expensive, but performing drug exp
ments on models is comparatively cheap.

To be completely compatible with almost all computer platform
available to researchers, the USC Brain Project has written NSL3.0 co
pletely in Java; a companion effort at ITAM has written NSL3.0 in C++
We will focus here on the Java version which contains a schematic cap
system, a preprocessor/compiler, a simulator, a scripting language an
post processor (see figure 2). In all, it contains more than 94,000 lines
Java code. Fortunately for our sponsors, we only wrote two thirds of it fro
scratch. The grammar for the compiler came from “guavac” from Effecti
Edge Technologies (trademark), the compiler generator (FLEX, BISO
and JBF) came from GNU. The Tool Command Language (TCL) scripti
software, originally by John Ousterhout, was implemented in Java by
Lamb from Cornell (JACL). Because all of these free packages were w
ten in Java, it was relatively easy to integrate them into NSL.

Figure 1: The NSL hierarchical computational model is based on
modules to be implemented by neural networks or other neural

modules in NSL.

To create a model, researchers must create "black box" objects we
modules. The structure of each model is hierarchical: characterized b
large module which can be broken down into smaller modules, connec
by ports (see figure 1). These modules may in turn be further decompo
until we reach the leaf modules, which are either taken from a mod
library, or are new modules written directly in NSL.

data in data out

Module

module module

neural module special process

pe
e
be

n).
o

ere
r of
his

veral
tor

ace
ide
ells
he
ere
e
is

imu-

 Figure 2: NSL System Processes - Schematic Capture, Pre-
Processor, Simulator, and Post- Processor

As shown in figure 2, there are several steps in creating and running a
model. To define a model, we first use the Schematic Capture System’s
(SCS) Schematic Editor to create the structure of the model and SCS’s Lan-
guage Sensitive Text Editor to define the leaf modules. Next we use SCS’s
NSLJ Generator to create the NSLM files and the Nsl_Link file to compile
them. After that we invoke the Nsl_Link file, which calls the NSL Pre-Pro-
cessor, NPP, which generates all of the model class files used by the simu-
lator. Finally, we run the simulator either as an application or as an applet
over the web. If we run the simulator as an applet, we can only view the
output while the simulator is running due to the security restrictions placed
on applets. If we run the simulator as an application, we can save the output
in a variety of different formats: Postscript, NSLJ data files, and Matlab
(trademark). In the future, we plan to have a postprocessing system that
will allow you to plot and analyze the data files at a later date.

REQUIREMENTS FOR EXECUTING A MODEL

We should note here that all of the NSL tools require Sun Microsys-
tems’ "write once, run everywhere" java virtual machine. (Note: the virtual
machine is available in the Java Development Kit from Sun which can be
found at: "http://www.javasoft.com/products/jdk/1.1/index.html".) Cur-
rently, java runs on 18 platforms including Suns, Macintoshs, and PCs
(Windows95 and Windows NT). The simulator can be executed as either a
application or an applet. In either case, NSLJ models run faster if executed
with one of the Just-In-Time (JIT) compilers available with most Web
browsers.

RUNNING A BMW MODEL FROM THE WEB

Let us assume that we are visiting the BMW site http://www-
hbp.usc.edu/HBP/bmw, and we want to execute the Cortico-Subcortical
Model for Generation of Spatially Accurate Sequential Saccades (Dominey
and Arbib 92) over the Internet using our favorite browser. First we would
select it from a list of available exemplary models sorted according to con-
formance grade, simulator type, species, anatomy, task, author, name, and
date.

 Figure 3. The Dominey Simulation Results

In order to run the simulation as an applet or as an application, we ty
"run" from the Nsl Shell or select "Run" from the Simulation menu. Th
"run" command causes all of the modules in the simulator’s scheduler to
evaluated cyclically until the "end time" is reached (sequential simulatio
Upon reaching this "end time" we would find simulation results similar t
those displayed in figure 3.

In figure 3, we see the output of the double saccade experiment wh
we model a monkey that has been trained to stare at a light in the cente
a grid; once the center light disappears then the monkey is free to move
eyes first to one target and then another. We have chosen to display se
neural layers. The first one is the output tracings of some sample mo
neurons (mn) firing in the brainstem; one for each direction. (To save sp
we only show the left motor neuron’s output.) These motor neurons gu
the eyes to new targets in the visual field. We display the quasi-visual c
from Lateral Inter Parietal Cortex within the Posterior Parietal (PPqv). T
quasi-visual cells reflect where the eyes need to go next relative to wh
they are staring currently on the grid (Dominey and Arbib, 1992). W
should note that all of the plots are update dynamically as the simulation
running; thus you can actually see the eyes chasing the targets as the s

Schematic Capture System
SCS

NSLM files

NSL3.0 Pre-Processor
NPP

class or obj files

NSL 3.0 Graphical Simulator

data files

NSL 3.0 Post-Processor
NPost

Brain Models on the Web
Database

and Shell Interface
NSLS files

the
ry

ule

for
of

ons
one
ery

les
ing

ter-
hen
ade
le, if
the
he

ee
af
e 7),
we

lation progresses. The first plot is a temporal plot, the second is a 3 dimen-
sional spatial plot, and the third is an area level graph.

Although the "Cortico-Subcortical Model" is a good example of what
NSL is capable of, it is just one of many types of models that NSL can
encode. In general, it is very flexible and can be use to simulate any type of
modular network requiring continuous updating of information.

THE SCHEMATIC CAPTURE SYSTEM

We have already seen an example of how our Schematic Capture Sys-
tem, SCS, facilitates the creation of modular, hierarchical neural networks.
We now discuss some general properties of SCS. The benefit of having a
schematic capture system is that modules can be stored in libraries and eas-
ily accessed by the schematic capture system. The modeler can use the
graphical user interface to easily connect icons representing the modules to
form a neural network. SCS also provides the following capabilities:

•The ability to create modules using a text editor

•The ability to create icons that represent complex or simple modules

•The ability to connect icons together in a schematic

•The ability to encapsulate new schematics as new modules

•The ability to version new modules

•The ability to traverse hierarchy

•The ability to download and upload models to and from BMW

•The ability to interface with the Summary Database

Currently, the Schematic Capture System consists of seven sub-
systems: the Schematic Editor, the Icon Editor, the Language Sensitive
Text Editor, the Simulator/Nsl_Link Script File Generator, the Consistency
Checker, the BMW interface, and the SDB interface.

The Schematic Editor is responsible for building the whole schematic
structure of the model (see figure 4) and acts as the control window for
SCS allowing access to the other tools in the SCS system. The Schematic
Editor also provides access to the libraries that SCS maintains It lets the
user decide whether they want to use fixed or floating versions of a module.
If the user chooses "float", then every time they enter SCS they will see the
most recent version of that module; if the user chooses "fixed", then they
will always see the version that existed at the time they first created their
schematic.

 Figure 4: The Schematic Editor

•The Icon Editor is responsible for building the graphical appearance of
individual icons (see figure 5). It also reads and writes icons to the libra
of modules.

•The Language Sensitive Text Editor is responsible for building the mod
in NSLM.

•The NSLJ Generator generates NSLM code and Nsl_Link script files
compiling the model. It also calls the Consistency Checker to keep track
the model’s version at the time of creation.

•The Consistency Checker is responsible for keeping track of the versi
of the modules that the model contains and checking that the ports from
level match those of the next level. The Consistency Checker is called ev
time a model, module, or icon is saved.

•The BMW Interface is responsible for downloading models and modu
over the internet, as well as, providing support for uploading and brows
(see the Database Tools Menu in figure 6).

•The SDB Interface allows the user to connect objects (modules and in
connect) on their schematics to the Summary Database (see figure 6). W
in "Image Map Display" mode, selecting modules causes queries to be m
to the SDB and the results to appear on the user’s screen. As an examp
the user clicked on a module representing the brainstem, then all of
"summaries" supporting (or opposing) the modeler’s implementation of t
brainstem would be retrieved from the SDB and displayed.

 Figure 5: The Icon Editor

Figure 6: The Database Tools Menu within the Schematic Capture
System

MODELING IN NSL

We earlier saw that the structure of a NSL model is hierarchical (s
figure 1). At the top level of the hierarchy, we have the model. At the le
level of the hierarchy, we have modules representing neurons (see figur
parts of neurons, or layers of neurons (see figure 8); and in between,
have modules of modules.

u-
s.
eps
s a
m
tial

of
ls.
ich
ject-

kes

are

es

et-
n-

he
fol-
the

ta-
fter
he
y,
it is

tion
se
the
se
and
ses
tal

 Figure 7: A single-compartment neuron, with one output and
many inputs. Its internal state is described by a single scalar

quantity called the membrane potential m; the output is described
by another single scalar called the firing rate F.

Figure 8: An example of a connection mask, here shown providing
the synaptic weights for the connections from array A to a typical

neuron of array B.

In many of our models we use arrays of Leak-Integrator neuron-mod-
els, interconnected by masks which represent regular patterns of neuron
interconnection via synaptic weights (Weitzenfeld 1995). We typically use
one array to represent the membrane potential and another to represent the
average firing rate of a given set of neurons. The computational advantage
of neural arrays and interconnection masks make them a clear choice for
many models. Instead of describing neurons on a one by one basis, an array
can be described as a single unit, while the connections between arrays can
be described by a mask storing synaptic weights.

An interconnection among neurons would then be processed by com-
puting a spatial convolution of a mask and an array. For example, as shown
in figure 8, if A represents an array of outputs from one array of neurons,
and B represents an array of inputs to another array, and if the mask W(k,l)
(for -d<=k,l<=d) represents the synaptic weight from the A(i+k,j+l) (for -
d<=k,l<=d) elements to B(i,j) element for each i and j, we then have

which can be described by a simple expression in the NSLM language as:

B = W@A.

The short hand notation "@" represents convolution and is easily expanded
by the simulator into the more complex expression (Arbib, 1989).

THE NSL SIMULATOR

NSL is a flexible, neural network simulator that can be used to sim
late a variety of biologically realistic as well as artificial neural network
The core system provides a scheduler that allows for different time st
and hierarchical processing of modules. The core system also provide
library of common neural network math functions. The interactive syste
includes graphical plotting capabilities such as temporal plots, spa
plots, area level graphs, and zoom/unzoom, as well as a rich collection
input widgets that can be linked together to mimic experimental protoco
To understand the simulator better we will examine the architecture, wh
is made up of several processes designed and implemented in an ob
oriented fashion.

The main system contains four processing threads (see figure 9):

•The Control Thread where modules are loaded and model control ta
place.

•The Scheduler Thread where both executable and graphical modules
executed.

•The Display Frame Window Interface where all graphics interaction tak
place.

•The Script Interpreter where the NSL Script (NSLS) language is interpr
ed. NSLS typically defines the simulation environment, specifies the co
trol commands, and assigns the model input and display parameters.

 Figure 9: NSL Processor Threads: Control, Scheduler,
Interpreter Window, and Display Frame Window

FUTURE WORK

Currently, the models in BMW have been generated at USC. In t
coming year, we propose to open it to models developed elsewhere, as
lows. Once a model has been created, a researcher can submit it to
BMW Review board. First the researcher sends e-mail to the BMW da
base master for a "one time" password to access the BMW ftp site. A
placing it at the ftp site, it is evaluated by the board for compliance with t
BMW model and documentation guidelines; as well as for originalit
accuracy, and substance. Once reviewed it receives a "bronze" grade if
downloadable and executable from the ftp site and all of the documenta
exists; a "silver" grade if it is able to be stored in the Informix Databa
Management System with its documentation, and is executable from
Web; and a "gold" grade if it is able to be stored in the Informix Databa
Management System with documentation, is executable from the web,
has links from the BMW database to other USC Brain Project databa
such as the Anatomy Database (NeuArt), the Collection of Experimen

Sm

m F

input neuron output

W - Connection Mask

0

i

7
j

A

B

0 j 7

i

B i j,() W k l,()A i k j l+,+()
l d–=

d

∑

k d–=

d

∑=

Graphic

Input
Graphic

Output

Control Scheduler

Interpreter

interpreter window

display frame window

Module

Files

Script

Files

Executable

and Graphic

Modules

Output

Files

E

is.

a-

Data database (TSDB), or the Summary Database (SDB). More than likely
it will have links to the Summary database since the SDB provides the sup-
porting material for the model. Once graded, the model will be placed in
the appropriate location within BMW and will be accessible by the world
from the Web via the Informix’s Web Datablade.

CONCLUSIONS

Providing exemplary neural models of the brain to the experimentalist
on a wide variety of computer platforms would not be economically possi-
ble without the World Wide Web and Java. While the Web now makes it
easier for an experimentalist to find data related to their field of study,
BMW is being developed to bring distant neural researchers together into
one virtual laboratory allowing them to run experiments on the same model
and comment on the findings. By implementing the NSL simulator in Java
we were able to provide the experimentalist with almost real-time results
over the Web, without having to support a different version of the simulator
for every platform and operating system currently in use. But by providing
databases such as BMW, NeuArt (Anatomy), the Empirical Experimental
Database (TSDB), and the Summary Database (SDB), we are able to
increase the time and energy an experimentalist can devote to his experi-
ments by reducing the time required to conduct background research. The
USC Brain Project is an example of how the World Wide Web and Java can
be used to accelerate the advancement of a field of research by enabling
better communication and collaboration within the research community.

CREDITS

NSL was first written in 1990 by Alfredo Weitzenfeld, working with
Michael Arbib at the University of Southern California. The present ver-
sion, NSL 3.0, has been developed so that it compiles into Java (developed
at USC in the US by Amanda Alexander's team) or C++ (developed at
ITAM in Mexico by Alfredo Weitzenfeld's team). NSL in Java has been
developed under a grant from the NIH Human Brain Project while SCS has
been developed by a grant from CONACyT and NSF. MIT Press will be
publishing "The NSL Book" written by Arbib, Weitzenfeld, and Alexander
spring 1999. For more information on our project please visit our web page
at "http://www-hbp.usc.edu/~nsl/unprotected".

UNIVERSAL RESOURCE LOCATORS (URLS)

A postscript copy of this document exists at: "ftp://www-cof-
fee.usc.edu/pub/nsl/websim99". A hypertext copy of this document exists
at: "http://www-hbp.usc.edu/~nsl/unprotected/websim99. The root NSLC
web site can be found at: "http://cannes.rhon.itam.mx/Alfredo/English/
. The root NSLJ web site can be found at: "http://www-hbp.usc.edu/~nsl/
unprotected".

RECOMMENDED READING
Brown, M., etal.,1995, Using Netscape 2, Que Corp.

Cornell, G., and Horstmann, C., 1996,Core Java,SunSoft Press.

Ousterhout, J., 1994,Tcl and the Tk Toolkit, Addison-Wesley.Eds

Tyma, P., Torok, G., and Downing, T., 1996,Java Primer Plus, The Waite

Group.

BIBLIOGRAPHY
Arbib, M.A., 1989,The Metaphorical Brain 2: Neural Networks and Be-

yond, Wiley Interscience, pp. 124-126.

Arbib, M.A., 1995, Brain Models on the Web, inComputational Intelli-

gence, A Dynamic Systems Perspective, (M. Palaniswami, Y. Attikou-

zel, R.J. Marks II, D. Fogel, and T. Fukunda, Eds.), New Your: IEE

Press, pp. 219-231.

Crowley, M., 1997,Neuromodulation in Basal Ganglia Plasticity for Visuo-

motor Coordination, USC Computer Science Department, Phd Thes

Dominey, P. and Arbib, M., 1992, Cortico-Subcortical Model for Gener

tion of Spatially Accurate Sequential Saccades,Cerebral Cortex,

2:153-175.

Weitzenfeld, A., 1995, NSL Neural Simulation Language,The Handbook of

Brain Theory and Neural Networks, (M.A. Arbib, Ed.), Bradford

Books/MIT Press, pp. 654-658.

		WEB SIMULATION OF BRAIN MODELS

		1.0

		KEYWORDS

		ABSTRACT

		INTRODUCTION

		Figure 1: The NSL hierarchical computational model is based on modules to be implemented by neura...

		Figure 2: NSL System Processes - Schematic Capture, Pre- Processor, Simulator, and Post- Processor

		REQUIREMENTS FOR EXECUTING A MODEL

		RUNNING A BMW MODEL FROM THE WEB

		Figure 3. The Dominey Simulation Results

		THE SCHEMATIC CAPTURE SYSTEM

		Figure 4: The Schematic Editor

		Figure 5: The Icon Editor

		Figure 6: The Database Tools Menu within the Schematic Capture System

		MODELING IN NSL

		Figure 7: A single-compartment neuron, with one output and many inputs. Its internal state is des...

		Figure 8: An example of a connection mask, here shown providing the synaptic weights for the conn...

		THE NSL SIMULATOR

		Figure 9: NSL Processor Threads: Control, Scheduler, Interpreter Window, and Display Frame Window

		FUTURE WORK

		CONCLUSIONS

		CREDITS

		UNIVERSAL RESOURCE LOCATORS (URLS)

		RECOMMENDED READING

		BIBLIOGRAPHY

