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Abstract

As robotic systems become increasingly capable of
complex sensory, motor and information processing
functions, the ability to interact with them in an
ergonomic, real-time and adaptive manner becomes an
increasingly pressing concern.  In this context, the
physical characteristics of the robotic device should
become less of a direct concern, with the device being
treated as a system that receives information, acts on that
information, and produces information.  Once the input
and output protocols for a given system are well
established, humans should be able to interact with these
systems via a standardized spoken language interface
that can be tailored if necessary to the specific system.

The objective of this research is to develop a
generalized approach for human-machine interaction via
spoken language that allows interaction at three levels.
The first level is that of commanding or directing the
behavior of the system.  The second level is that of
interrogating or requesting an explanation from the
system.  The third and most advanced level is that of
teaching the machine a new form of behavior.  The
mapping between sentences and meanings in these
interactions is guided by a neuropsychologically inspired
model of grammatical construction processing. We
explore these three levels of communication on two
distinct robotic platforms, and provide in the current
paper the state of advancement of this work, and the
initial lessons learned.

Introduction
Ideally, research in Human-Robot Interaction will

allow natural, ergonomic, and optimal communication
and cooperation between humans and robotic systems.
In order to make progress in this direction, we have
identified two major requirements:  First, we must study
a real robotics environment in which technologists and
researchers have already developed an extensive
experience and set of needs with respect to HRI.
Second, we must study a domain independent language
processing system that has psychological validity, and
that can be mapped onto arbitrary domains.    In
response to the first requirement regarding the robotic
context, we will study two distinct robotic platforms.
The first is a system that can perceive human events
acted out with objects, and can thus generate
descriptions of these actions.  The second platform
involves Robot Command and Control in the
international context of robot soccer playing, in which
the Weitzenfeld group competes at the international

level.  From the psychologically valid language context,
we will study a model of language and meaning
correspondence developed by Dominey (et al. 2003)
that has described both neurological and behavioral
aspects of human language, and has been deployed in
robotic contexts.

Platform 1
 In a previous study, we reported on a system that

could adaptively acquire a limited grammar based on
training with human narrated video events (Dominey &
Boucher 2005).  An overview of the system is presented
in Figure 1.  Figure 1A illustrates the physical setup in
which the human operator performs physical events
with toy blocks in the field of view of a color CCD
camera.  Figure 1B illustrates a snapshot of the visual
scene as observed by the image processing system.
Figure 2 provides a schematic characterization of how
the physical events are recognized by the image
processing system.  As illustrated in Figure 1, the
human experimenter enacts and simultaneously narrates
visual scenes made up of events that occur between a
red cylinder, a green block and a blue semicircle or
“moon” on a black matte table surface. A video camera
above the surface provides a video image that is
processed by a color-based recognition and tracking
system (Smart – Panlab, Barcelona Spain) that
generates a time ordered sequence of the contacts that
occur between objects that is subsequently processed
for event analysis.

Using this platform, the human operator performs
physical events and narrates his/her events.  An image
processing algorithm extracts the meaning of the events
in terms of action(agent, object, recipient) descriptors.
The event extraction algorithm detects physical contacts
between objects (see Kotovsky & Baillargeon 1998),
and then uses the temporal profile of contact sequences
in order to categorize the events, based on the temporal
schematic template illustrated in Figure 2. While details
can be found in Dominey & Boucher (2005), the visual
scene processing system is similar to related event
extraction systems that rely on the characterization of
complex physical events (e.g. give, take, stack) in terms
of composition of physical primitives such as contact
(e.g. Siskind 2001, Steels and Bailly 2003). Together
with the event extraction system, a commercial speech
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to text system (IBM ViaVoiceTM)  was used, such that
each narrated event generated a well formed <sentence,
meaning> pair.

.

Figure 1.  Overview of human-robot interaction platform.  A.
Human user interacting with the blocks, narrating events, and
listening to system generated narrations.  B. Snapshot of
visual scene viewed by the CCD camera of the visual event
processing system.

Figure 2.  Temporal profile of contacts defining different event types:
Touch, push, take, take-from, and give.

Processing Sentences with Grammatical
Constructions

These <sentence, meaning> pairs are used as input to
the model in Figure 3 that learns the sentence-to-
meaning mappings as a form of template in which
nouns and verbs can be replaced by new arguments in

order to generate the corresponding new meanings.
These templates or grammatical constructions (see
Goldberg 1995) are identified by the configuration of
grammatical markers or function words within the
sentences (Bates et al. 1987). Here we provide a brief
overview of the model, and define the representations
and functions of each component of the model using the
example sentence “The ball was given to Jean by
Marie,” and the corresponding meaning “gave(Marie,
Ball, John)” in Figure 2A.

Sentences: Words in sentences, and elements in the
scene are coded as single bits in respective 25-element
vectors, and sentences can be of arbitrary length.  On
input, Open class words (ball, given, Jean, Marie) are
stored in the Open Class Array (OCA), which is thus an
array of 6 x 25 element vectors, corresponding to a
capacity to encode up to 6 open class words per
sentence.  Open class words correspond to single word
noun or verb phrases, and determiners do not count as
function words.

Identifying Constructions: Closed class words (e.g.
was, to, by) are encoded in the Construction Index, a 25
element vector, by an algorithm that preserves the
identity and order of arrival of the input closed class
elements.  This thus uniquely identifies each
grammatical construction type, and serves as an index
into a database of <form, meaning> mappings.

Meaning:  The meaning component of the
<sentence, meaning> pair is encoded in a predicate-
argument format in the Scene Event Array (SEA).  The
SEA is also a 6 x 25 array that encodes meaning in a
predicate-argument representation.  In this example the
predicate is gave, and the arguments corresponding to
agent, object and recipient are Marie, Ball, John.   The
SEA thus encodes one predicate and up to 5 arguments,
each as a 25 element vector.   During learning,
complete <sentence, meaning> pairs are provided as
input.  In subsequent testing, given a novel sentence as
input, the system can generate the corresponding
meaning.

Sentence-meaning mapping:  The first step in the
sentence-meaning mapping process is to extract the
meaning of the open class words and store them in the
Predicted Referents Array (PRA).  The word meanings
are extracted from the real-valued WordToReferent
matrix that stores learned mappings from input word
vectors to output meaning vectors.  The second step is
to determine the appropriate mapping of the separate
items in the PredictedReferentsArray onto the predicate
and argument positions of the SceneEventArray.  This
is the “form to meaning” mapping component of the
grammatical construction. PRA items are thus mapped
onto their roles in the Scene Event Array (SEA) by the
FormToMeaning mapping, specific to each construction
type.  FormToMeaning is thus a 6x6 real-valued matrix.
This mapping is retrieved from ConstructionInventory,
based on the ConstructionIndex that encodes the closed
class words that characterize each sentence type.  The
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ConstructionIndex is a 25 element vector, and the
FormToMeaning mapping is a 6x6 real-valued matrix,
corresponding to 36 real values.  Thus the
ConstructionInventory is a 25x36 real-valued matrix
that defines the learned mappings from
ConstructionIndex vectors onto 6x6 FormToMeaning
matrices. Note that in 2A and 2B the
ConstructionIndices are different, thus allowing the
corresponding FormToMeaning mappings to be
handled separately.

Figure 3.  Model Overview: Processing of active and passive sentence
types in A, B, respectively.  On input, Open class words populate the
Open Class Array (OCA), and closed class words populate the
Construction index. Visual Scene Analysis populates the Scene Event
Array (SEA) with the extracted meaning as scene elements.  Words in
OCA are translated to Predicted Referents via the WordToReferent
mapping to populate the Predicted Referents Array (PRA). PRA
elements are mapped onto their roles in the Scene Event Array (SEA)
by the SentenceToScene mapping, specific to each sentence type.
This mapping is retrieved from Construction Inventory, via the
ConstructionIndex that encodes the closed class words that
characterize each sentence type. Words in sentences, and elements in
the scene are coded as single ON bits in respective 25-element
vectors.

Communicative Performance:  We have
demonstrated that this model can learn a variety of
grammatical constructions in different languages
(English and Japanese) (Dominey & Inui 2004).  Each
grammatical construction in the construction inventory
corresponds to a mapping from sentence to meaning.
This information can thus be used to perform the
inverse transformation from meaning to sentence.  For
the initial sentence generation studies we concentrated
on the 5 grammatical constructions below.  These
correspond to constructions with one verb and two or
three arguments in which each  of the different
arguments can take the focus position at the head of the
sentence.  On the left are presented example sentences,
and on the right, the corresponding generic
construction.   In the representation of the construction,

the element that will be at the pragmatic focus is
underlined.  This information will be of use in selecting
the correct construction to use under different discourse
requirements.

This construction set provides sufficient
linguistic flexibility, so that for example when the
system is interrogated about the block, the moon or the
triangle after describing the event give(block, moon,
triangle), the system can respond appropriately with
sentences of type 3, 4 or 5, respectively.  The important
point is that each of these different constructions places
the pragmatic focus on a different argument by placing
it at the head of the sentence.  Note that sentences 1-5
are specific sentences that exemplify the 5 constructions
in question, and that  these constructions each
generalize to an open set of corresponding sentences.

Sentence
1.  The triangle pushed the moon.
2. The moon was pushed by the triangle.
3. The block gave the moon to the triangle.
4. The moon was given to the triangle by the block.
5. The triangle was given the moon by the block.

Construction <sentence, meaning>
1. <Agent event object,
                        event(agent, object>.
2. <Object was event by agent,
                        event(agent, object>
3. <Agent event object to recipient,
           event(agent, object, recipient)>
4. <Object was event to recipient by agent,
           event(agent, object, recipient)>
5. <Recipient was event object by agent,
           event(agent, object, recipient)>
Table 1.   Sentences and corresponding constructions.

The algorithm for selection of the construction type
for sentence production takes as input a meaning coded
in the form event(arg1, arg2, arg3), and an optional
focus item (one of the three arguments).  Based on this
input, the system will deterministically choose the
appropriate two or three argument construction, with
the appropriate focus structure, in a pragmatically
relevant manner.  Thus, in the dialog example below,
the human user generates an event corresponding to
gave(block, cylinder, moon) and then asks what
happened to the moon.  Based on these inputs, the
system selects the three argument construction in which
the recipient is the focus element (Construction 5).  The
predicate and arguments from the meaning are inserted
into their appropriate positions, and the system thus
responds: The moon was gave the cylinder by the block.

The next task at hand is to integrate these pieces,
including (a) scene processing for event recognition, (b)
sentence generation from scene description and
response to questions, (c) speech recognition for posing
questions, and (d) speech synthesis for responding -
into an interactive environment.  The CSLU Speech
Tools Rapid application Development (RAD)
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(http://cslu.cse.ogi.edu/toolkit/index.html) provides
useful capability in this context.  The system provides
dialog management with a flexible and powerful
graphical user interface, coupled with the global ability
to link speech recognition and synthesis to the
conditional execution of code on the same machine or
on remote machines via ftp and socket protocols.  This
results in a hub architecture with RAD at the hub and
the vision processing, language model, speech-to-text
and voice synthesis at the periphery.

Example Dialog with Platform 1
Here we provide an example of  typical dialog.  Speech
is indicated in italics.

Robot:  Welcome to the talking robot demonstration.  Show
me an object.
Human:  (Picks up and moves the block)
Robot:  That is the block.  Another object?
Human: Yes (moves the moon)
Robot:  That is the moon.  Another object?

Human: No.
Robot:  Shall we stop or go on?

Human: Go on.
Robot:  When you are ready, make a movement with the
objects so that I can see what you are doing.  I will then
describe what you did.

Human:  (picks up  the block and uses it to move  the
cylinder to the moon).
Robot:  The block gave the cylinder to the moon.  Was I
correct?
Human: Yes.
Robot:   Good for me. (stores results in database) Do you have
any questions?
Human: Yes.
Robot:  Would you like to know about the block, the moon or
the cylinder?
Human: The moon.
Robot:  The moon was gave the cylinder by the block.  Do you
have any questions?
Human: Yes.
Robot:  Would you like to know about the block, the moon or
the cylinder?
Human: The cylinder.
Robot: The cylinder was gave to the moon by the block.

The sample dialog illustrates how vision and
speech processing are combined in an interactive
manner.  Two points are of particular interest.  In the
response to questions, the system uses the focus
element in order to determine which construction to use
in the response.  This illustrates the utility of the
different grammatical constructions.  However, we note
that the two passivized sentences have a grammatical
error, as “gave” is used, rather than “given”.  This type
of error can be observed in inexperienced speakers
either in first or second language acquisition.
Correcting such errors requires that the different tenses
are correctly associated with the different construction
types, and will be addressed in future research.

These results demonstrate the capability to
command the robot (with respect to whether objects or
events will be processed), and to interrogate the robot,

with respect to who did what to whom. Gorniak and
Roy (2004) have demonstrated a related capability for a
system that learns to describe spatial object
configurations.

Platform 2
In order to demonstrate the generalization of

this approach to an entirely different robotic platform
we have begun a series of studies using the AIBO ERS7
mobile robot platform illustrated in Figure 4.  We have
installed on this robotic system an open architecture
operating system, the Tekkotsu framework developed at
CMU (http://www-2.cs.cmu.edu/~tekkotsu/),
graphically depicted in Figure 4B.  The Tekkotsu
system provides vision and motor control processing
running on the AIBO, with a telnet interface to a control
program running on a host computer connected to the
AIBO via wireless internet.  Via this interface, the
AIBO can be commanded to perform different actions
in the Tekkotsu repertoire, and it can be interrogated
with respect to various internal state variables.

Figure 4.  A.  A schematic view of the Tekkotsu architecture for
vision and behavioral event processing that runs on B., the Sony
AIBO ERS7TM  robot.

The objective of the current exercise is to provide a
spoken language interface to the AIBO using the
CSLU-RAD framework as described in Platform 1.
The interface will be used between Aibo Robots in the
RoboCup robot soccer context, and coaches that direct

A
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the activity of the robots.  The RoboCup environment
has been chosen because it is a well documented
standardized robot environment that the ITAM team has
extensive experience with, and thus provides a
quantitative domain for evaluation of success.

In order to demonstrate the feasibility of this
approach we have developed an initial platform
prototype that we now describe.  Using the CSLU-RAD
interface, the AIBO offers the human a set of possible
actions that can be commanded, including shaking
hands, chasing the red ball, or following the red ball
with the gaze direction.  The user then speaks one of
these commands and the robot performs the command.
This is illustrated in the sample dialog below.

Robot:  Hello I am AIBO the talking dog.  I can look at the
ball, chase the ball and shake hands.  Ask me to do something.
Human:  Chase the ball
Robot:  OK I will chase the ball for a bit and then I will stop.
(Chases the ball for 10 seconds).  So, you wanted me to chase
the ball.  Do you want to do something else?
Human: Yes.
Robot:  I can look at the ball, chase the ball and shake hands.
Ask me to do something.
Human:  Shake hands.
Robot:  (Raises and lowers its left paw).  So, you wanted me
to shake hands.  Do you want to do something else?
Human: No.
Robot:  Ok, I think I will take a rest now.

This dialog demonstrates the feasibility of the use of
a “generic” natural language interface to the AIBO via
the Tekkotsu architecture, and provides a demonstration
of the ability to verbally command the robot in this
context.  In this same context it will be straightforward
to read status data from the AIBO in order to ask
questions about the state of the battery, whether or not
the AIBO can see the ball, etc. and to use the
construction grammar framework for formulating the
answers  In this sense we have demonstrated the first
steps towards the development of a generic
communication architecture that can be adapted to
different robot platforms.

Learning
The final aspect of the three part “tell, ask, teach”

scenario involves learning.  Our goal is to provide a
generalized platform independent learning capability
that acquires new <percept, response> constructions.
That is, we will use existing perceptual capabilities, and
existing behavioral capabilities of the given system in
order to bind these together into new, learned <percept,
response> behaviors.

In both of these Platform contexts common idea is
to create new <percept, response> pairs that can be
permanently archived and used in future interactions.
This requirement breaks down into three components.
The first component involves specifying to the system
the nature of the percept that will be involved in the

<percept, response> construction.  This percept can be
either a verbal command, or an internal state of the
system that can originate from vision or from another
sensor such as the battery charge state.  The second
component involves specifying to the system what
should be done in response to this percept.  Again, the
response can be either a verbal response or a motor
response from the existing behavioral repertoire.  The
third component is the binding together of the <percept,
response> construction, and the storage of this new
construction in a construction data-base so that it can be
accessed in the future.  This will permit an open-ended
capability for a variety of new types of communicative
behavior.

For Platform 1 this capability  will be used for
teaching the system to name and describe new
geometrical configurations of the blocks.  The human
user will present a configuration of objects and name
the configuration (e.g. four object placed in a square,
and say « this is a square »).  The system will learn this
configuration, and the human will test with different
positive and negative examples.

For Platform 2 this capability will be used to teach
the system to respond with physical action or other
behavioral (or internal state) responses to perceived
objects, or perceived internal states.  The user enters
into a dialog context, and tells the robot that we are
going to learn a new behavior.  The robot asks what is
the perceptual trigger of the behavior and the human
responds.  The robot then asks what is the response
behavior, and the human responds.  The robot links the
<percept, response> pair together so that it can be used
in the future. The human then enters into a dialog
context from which he tests whether the new behavior
has been learned.

Lessons Learned
The research described here represents work in

progress towards a generic control architecture for
communicating systems that allows the human to “tell,
ask, and teach” the system.  This is summarized in
Table 1.

Robot Platforms

Capability

Platform 1.
Event Vision

and Description

Platform 2. Behaving
Autonomous Robot

1.  Tell Tell to process
object or event

description

Tell to perform actions

2. Ask Ask who did
what in a given

action

Ask what is the battery
state ?

Where is the ball ?
(TBD)

3.  Teach This is a stack
This is a square,

etc.
(TBD)

When you see the ball, go
and get it (TBD)

Table 1.  Status of “tell, ask, and teach” capabilities in the two robotic
platforms.  TBD indicates To Be Done.
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For the principal lessons learned there is good
news and bad news (or rather news about hard work
ahead, which indeed can be considered good news.)
The good news is that given a system that has well
defined input, processing and output behavior, it is
technically feasible to insert this system into a spoken
language communication context that allows the user to
tell, ask, and teach the system to do things. This may
require some system specific adaptations concerning
communication protocols and data formats, but these
issues can be addressed.  The tough news is that this is
still not human-like communication.  A large part of
what is communicated between humans is not spoken,
and rather relies on the collaborative construction of
internal representations of shared goals and intentions
(Tomasello et al in press).  What this means is that
more than just building verbally guided interfaces to
communicative systems, we must endow these systems
with representations of their interaction with the human
user.  These representations will be shared between the
human user and the communicative system, and will
allow more human-like interactions to take place
(Tomasello 2003).  Results from our ongoing research
permit the first steps in this direction (Dominey 2005).
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