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Abstract- The RatSLAM system can perform vision based
SLAM using a computational model of the rodent hippocampus.
When the number of pose cells used to represent space in
RatSLAM is reduced, artifacts are introduced that hinder its use
for goal directed navigation. This paper describes a new
component for the RatSLAM system called an experience map,
which provides a coherent representation for goal directed
navigation. Results are presented for two sets of real world
experiments, including comparison with the original goal
memory system's performance in the same environment.
Preliminary results are also presented demonstrating the ability
of the experience map to adapt to simple short term changes in
the environment.

Index Terms - SLAM, goal, navigation, mapping

I. INTRODUCTION

The RatSLAM system [1] was developed to determine
whether it is possible to create a biologically inspired SLAM
system that can perform as well as, if not better than,
conventional techniques for SLAM (for example [2], [3]).
Previous work has demonstrated that RatSLAM is capable of
performing real-time, on-line SLAM in indoor [4] and outdoor
[5] environments on a scale similar to other well-known
SLAM systems. RatSLAM has shown some advantages, such
as the ability to use low-cost vision sensing in the place of
typical laser-based measurements to perform goal directed
navigation based on the learnt representations [6].

One of the interesting properties of the RatSLAM system
is that its core representation, the pose cells, do not necessarily
map directly on to the Cartesian space that they encode. A
single cell might represent more than one place (a collision),
or a single place might be represented by more than one cell (a
discontinuity). If the pose cells are arranged sparsely over the
space to be represented, these properties are less apparent.
However, when the number of pose cells is decreased, the
number of collisions and discontinuities increases. The
representations that are formed by the pose cells are still stable
and consistent, but the collisions and discontinuities create
problems for the goal memory system, and goal recall
becomes unreliable.

This paper examines the effect of reducing the number of
pose cells, and introduces an extension to RatSLAM known as
an experience map. The experience map produces a
representation of the Cartesian space without collisions and
discontinuities based on the temporal patterns of the pose cells

combined with external sensor information. Using this new
representation space it is possible to perform effective goal
recall in the presence of a large number of collisions and
discontinuities in the pose cells.

This paper proceeds as follows. Section II briefly
introduces the RatSLAM system and examines the
representation it builds of a large indoor environment. The
goal memory system is also briefly described, followed by
analysis of the temporal map it produces for the same
environment. This leads into Section III, which introduces the
experience mapping algorithm as a solution to the limitations
of goal memory, and explains how it can adapt to simple
environment changes. Section IV describes how experience
maps can be used for goal recall. Section V presents SLAM
and goal recall experiments run in the same indoor
environment as in Section II but using the experience mapping
algorithm. Results for the experiments are presented and
analyzed. Section VI presents preliminary results
demonstrating the ability of the experience map to adapt to the
placement and removal of a simple obstacle blocking a path in
the environment. Section VII discusses the experience
mapping algorithm and related research before the paper
concludes in Section VIII.

II. RATSLAM AND GOAL MEMORY

Pose Cells
(PC)

x
Local View
Cells (LV)

Fig. 1 The core RatSLAM pose cell and local view cell networks.

This section briefly describes the RatSLAM and goal
memory systems - a more detailed description is given in [1]
and [6]. Fig. 1 shows the core structure of the RatSLAM
system. The robot's pose is represented by activity in a
competitive attractor neural network called the pose cells.
Wheel encoder information is used to perform path integration
by appropriately shifting the current pose cell activity.
Activity can wrap in all three directions in the pose cell
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matrix. The path integration model results in each pose cell
initially representing a 0.25m x 0.25m x 10° space. Vision
information is converted into a local view (LV) representation
that is associated with the currently active pose cells. If
familiar, the current visual scene also causes activity to be
injected into the particular pose cells associated with the
currently active local view cells.

For small environments, the RatSLAM representations
have a high degree of correspondence to the Cartesian layout
of the environment. However, as the environments become
larger and more complex, a number of phenomena become
common. Vision information starts to cause more frequent
loop closures. This leads to discontinuities in the pose cell
matrix where the dominant packet of activity jumps from one
location to another. Because re-localization is not an
instantaneous process, the system also learns multiple
representations of the same physical areas in the environment.
The complementary attribute of collisions in the pose cell
matrix also becomes increasingly common - clusters of pose
cells become associated with more than one location in the
environment.

Fig. 3 shows the path of the dominant packet of activity in
the pose cell matrix during an hour long experiment in the
environment shown in Fig. 2. Loop closures are shown by
straight dashed lines. There are many collisions and there is
little spatial correspondence to the actual environment.
Despite these discontinuities and collisions, the maps
produced by the RatSLAM system become consistent and
stable over time. They are valid representations of the space,
but are difficult to use directly for navigation.
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Fig. 2 Floorplan of the indoor environment showing the robot's path. The goal
locations are for the experiments in Section V.

A. Goal Memory
Fig. 4 shows the temporal map created for this

environment by the goal memory system described in [6], for
a goal located at the 'Start' location in Fig. 3. Because the
goal memory system produces a temporal map by using a
copy of the pose cell matrix, it inherits the discontinuities and
multiple representations of the pose cell matrix. Consequently
the goal memory system is not capable of producing a
meaningful temporal map under these conditions. The
following section describes a new algorithm that uses the
RatSLAM representations to build a map that solves the
problems highlighted in this section.

x, (m)
Fig. 4 Temporal map produced by the goal memory system.

III. EXPERIENCE MAPPING

The premise of the experience mapping algorithm is the
creation and maintenance of a collection of experiences and
inter-experience links. The algorithm creates experiences to
represent certain states of activity in the pose cell and local
view networks. The algorithm also learns behavioral,
temporal, and spatial information in the form of inter-
experience links. Fig. 5 shows the relationship between the
experience map and the core RatSLAM representations. A
more detailed discussion of the algorithm is given in [7].

v{,(

w.c
,, Lbcal View
Cells (LV)

Experience Map
Coordinate Space

Pose Cells
(PC ),

Fig. 3 Path of the dominant packet of activity through the pose cell matrix for a
40 x 20 x 36 pose cell matrix, projected onto the (xI y ) plane. Each grid

square represents 4 x 4 pose cells in the x' y' plane. 'Start' and 'End' mark the
initial and final location of the dominant activity packet.

Fig. 5 An experience is associated with certain pose and local view cells, but
exists within the experience map's own coordinate space.

A. Experiences
Experiences have an activity level that is dependent on

how close the activity peaks in the pose cells and local view
cells are to the cells associated with the experience. The
component of activity determined by the pose cell network
activity is given by:
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(2)

(3)

where x'PC, ,YPC and O' are the coordinates in the pose

cell matrix of the dominant activity packet, x'i, y I, and O'
are the coordinates of the pose cells associated with
experience i, ra is the zone constant for the (x',y') plane, and

0a is the zone constant for the 0' dimension. The visual scene

V, switches an experience on or off:

E = E foiV rV (4)

E,, if Vcurr V

where Vcurr is the current visual scene, and Vi is the visual
scene associated with experience i. The most active
experience is known as the peak experience. Learning of new
experiences is triggered by the peak experience's activity level
dropping below a threshold value.

B. Experience Transitions

(0j)

Xi,S Yi )
Fig. 6 Links between experiences store several types of information, including

odometric information about the robot's movement during the transition.

Inter-experience links store temporal, behavioral, and
odometric information about the robot's movement between
experiences. Fig. 6 shows a transition from experience i to
experience j. The physical movement of the robot during this
transition is given by:

,0 Oi~ dSij
dpi = pj -pi (xJ xj dxi.J (5)

where dpij is a vector describing the position and orientation
of experience j relative to experience i. Repeated transitions
between experiences result in an averaging of the odometric
information:

dp new = A.dpld + B. dpcurr (6)

(1/2 0 0 '1/2 0 0
(1) where A= 0 d,.cosdO -d,.sindO B= O O ,

0 d,.sindO d,.cosdO 0 O O

~ old]dO
I

tan yj tan' d
and

2 dXcurr dXold)j^

ds (dburr + dyld )/(2d°ldy)

C. Map Correction
Discrepancies between a transition's odometric information
and the linked experiences' (x,y,0) coordinates are minimized
through a process of map correction:

Nf ~~N,
Api =arz(P pi dpj )+Z(Pk pi dPkJ (7)

Lj=l k=1

where a is a learning rate constant, Nf is the number of links
from experience i to other experiences, and N, is the number
of links from other experiences to experience i. The
experience map is subject to the same constraints of any
network style learning system- appropriate learning rates
must be used to balance rapid convergence with instability.
Experimentation has determined that a learning rate of 0.5
resulted in the map rapidly converging to a stable state.

When the orientation of an experience is changed through
the map correction process, the (dx,dy) component of the
transitional information must also be updated to account for
the rotation:

1 0 0
dpZe. cosAOi -sinAi cpicJurr

LO sinAOi cosAOi

(8)

D. Experience Map Adaptation
The experience maps represent changes in the

environment through modification of the inter-experience
transition information. As well as learning experience
transitions, the system also monitors transition 'failures'.
Transition failures occur when the robot's current experience
switches to an experience other than the one expected given
the robot's current movement behavior. If enough of these
failures occur for a particular transition, indicated by the
confidence level dropping below a certain threshold, then that
link is deleted from the experience map. The confidence level
is given by:

(9)

where nij is the number of times the transition between
experience i andj has occurred, and nifgj is the number of times
a transition from experience i to any experience using the
behavior flu has occurred. For longer term experiments a more
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advanced scheme will be required such as the recency
weighted averaging described in [8].

IV. GOAL RECALL USING EXPERIENCE MAPS

The temporal link information and local spatial properties
of the experience map are used to form a temporal map that
can be used for goal recall.

A. Temporal Map Creation
To create the temporal map, the peak experience is seeded

with a zero time stamp value, and all other experiences are
seeded with a 'very large' value. Time stamp values are then
assigned to linked experiences based on the peak experience's
time stamp and the temporal link information. This process is
iterated, with any experience A only updating experience B if
they are linked and if experience B's time stamp is larger,
shown by (10) and (11):

T. = tij±ti (10)
k
1

k1tk = min(r,tj)

where ti is the time stamp value of experience i, tij is the
temporal link from experience i to experience j, Tj is the
resultant proposed time stamp value of experience j, T is the
set of proposed time stamp values for experience j, k is the
iteration number, and tjk+1 is the updated time stamp value.

B. Route Finding
To find the shortest route to a goal, a gradient climbing

procedure is used, starting at the goal location. The route is
stored as a sequence of nodes, with each node corresponding
to an experience. Each node is time stamped to represent the
estimated time it will take from the robot's current position to
reach each node along the route to the goal.

C. Behavior Arbitration
RatSLAM uses the goal route as input to its local

movement module in order to pick appropriate movement
behavior. The robot chooses the local movement path that is
spatially closest to the recalled route, shown in Fig. 7.

Recalled
route to goal _

Fig. 7 Behavior arbitration. In this situation the robot would choose to go left,
as that local movement behavior more closely matches the proposed route.

D. Route Loss Recovery
As the robot navigates toward the goal, the navigation

system is constantly finding the shortest route to the goal
based on the current peak experience. New visual scenes can
trigger the learning of new experiences even when the robot is
traversing a previously traveled path. This allows the robot to
more completely learn the route but also results in the

temporary loss of a functional temporal map, since time
stamps cannot be propagated from a brand new experience
that is not yet linked to any others.

In this situation the robot uses the last known 'good' route
to the goal to navigate. The robot's position along the route is
updated based on time elapsed. If an old route is relied on for
longer than a certain time period, it is discarded and the robot
returns to exploration in order to acquire a fresh route to the
goal.

V. EXPERIMENTS AND RESULTS

Two experiments were run in the indoor environment
shown in Fig. 2 to test the ability of the system to perform
goal navigation under the conditions described in Section II.
These experiments used a Pioneer 2DXE mobile robot
equipped with a 500 field of view camera, 180° scanning laser,
and wheel encoders. Camera images were down sampled to
12 x 8 pixel grayscale images and classified using a sum of
absolute differences template matching system. Local obstacle
avoidance was performed using the scanning laser, although
this will soon be replaced by a vision based movement system
[9]. Computation was shared between the robot's on-board
400 MHz Athlon K6 processor and a 1.1 GHz Pentium III
laptop wirelessly connected to the robot. The system ran in
real-time with all network iteration, algorithms, and sensory
updates running at 7 Hz.

Each experiment consisted of an hour of exploration,
followed by navigation to six goal locations (goal navigation
commenced with the robot navigating from the top left corner
to goal number one). Two different pose cell matrix sizes
were used. For the first experiment, a 100 x 40 x 36 (x , ',0 )
matrix was used, corresponding to approximately a 25 x 10
meter area. The actual environment was larger than this,
meaning it could not be represented without some wrapping of
the pose cell matrix and hence collisions. The second
experiment used a much smaller 40 x 20 x 36 matrix, roughly
corresponding to a 10 x 5 meter area.

A. Results
Fig. 8 and Fig. 9 show the trajectory of the dominant

packet of energy through the pose cell matrix for each
experiment. Each dashed line shows where visual information
has driven the system to close a loop. There are a large
number of collisions, especially for the smaller pose cell
matrix case. The pose cell matrix also contains multiple
representations of the same physical place, although this is
easier to see while watching the experiment in real-time.

Fig. 10 and Fig. 11 show the experience maps produced
for each experiment. Approximately 5900 experiences were
created during each of the 70 minute experiments. The
discontinuities visible in the pose cell matrix plots are gone,
and multiple representations have been grouped into
overlapping areas of the map. Fig. 12 shows one of the
temporal maps created during the second experiment for the
40 x 20 x 36 pose cell matrix, for navigation between goal 4
and goal 5. The planned path to the goal is shown by the
arrowed line. Despite the nature of the RatSLAM pose cell
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representations, the goal recall mechanism was still able to

plan and execute routes to each goal with a success rate

over 12 trials.

Fig. 8 Path of dominant activity packet through the pose cell matrix for a

00 x 40 x 36 pose cell matrix.

Fig. 9 Path of dominant activity packet for a 40 x 20 x 36 pose cell matrix.
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Fig. Experience map produced using a 00 x 40 x 36 pose cell matrix.
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Fig. 11I Experience map produced using a 40 x 20 x 36 pose cell matrix.

Fig. 12 Temporal map for navigating between goal 4 and goal 5. The temporal

distance is measured in seconds.

VI. ADAPTATION To ENVIRONMENT CHANGE

In this section we present results showing that the

experience maps are capable of adapting to simple short term

changes in the environment as described in Section IIID. Fig.
13 shows the testing environment and the location where an

obstacle (a cardboard box) was added and then removed.

During the experiment the robot was instiructed to navigate

from the start location to the goal location three times. The

first instiruction came just after the obstacle was placed in the

environment, after the robot had spent about twenty minutes

exploring the unmodified (no obstacle) environment. The

second command occurred six minutes later, with the obstacle

still in the environment. The obstacle was then removed, and

the robot allowed six minutes to explore the environment,

before the third and final trial was started.

Navigating to the goal for the first time, the robot was

unaware of the obstacle, as revealed by the planned path to the

goal shown in the left of Fig. 14. After multiple attempts to

get to the goal via this path, the robot unlearned the inter-

experience links near the obstacle's location. The robot then

picked the new best route to the goal and reached it. Although

the confidence level threshold can be tuned to reduce the time

taken to learn an obstacle, at its current level the robot avoids

learning shorter term obstacles such as people.

The second time the robot was told to navigate to the

goal, it immediately planned the longer route to the goal,

having learned that the top route was blocked during the first

trial (Fig. 15). The suboptimal behavior at the beginning of the

trial is due to the lack of a reactive turn around behavior-

currently the robot cannot reactively turn around mid-corridor.

During the period of exploration after reaching the goal a

second time, the robot learned new links connecting the

experiences along the top corridor. When told to navigate to

the goal a third time, the system planned a route via the top

unblocked path, and the robot successfully navigated to the

goal via this route (Fig. 16).

1~

Fig. 13 Floorplan for adaptation experiment, showing obstacle location, start and

goal locations, and robot's path.

oal~~ ~ ~ ~

Fig. 14 Temporal map and planned route for trial and actual route taken.
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Fig. 15 Temporal map and planned route for trial 2 and actual route taken.
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Fig. 16 Temporal map and planned route for trial 3 and actual route taken.

VII. DISCUSSION

The experience mapping algorithm shares characteristics
with other research. The approach taken in [10] produces a
globally consistent map by minimizing an energy function
using only local metrical information. A theoretical proof of
convergence is also presented; a similar proof for the
experience mapping algorithm is currently being developed.
The system appears to be restricted to distinct representations
of places, unlike experience mapping which groups together
multiple representations of places in the environment built by
RatSLAM. A panoramic sensor is also used which
significantly reduces the difficulty of loop closing - the
largest loop closed was about 20 meters long. The experience
mapping algorithm successfully closed a 122 meter long loop
during the robot's first traverse of the large indoor
environment, with a cumulative odometric error of 8.5 meters
and 6.7 meters for the two experiments.

Subjective localization relaxes the requirement that a
robot must estimate its pose in a global frame of reference
[11]. Instead action respected embedding (ARE) is used to
learn a low dimensional representation of vision and range
data related to the generation process - such as the movement
of the robot and camera through the environment. This is
similar to the experience mapping algorithm learning
odometric information between experiences that are
themselves associated with visual templates. Results are
presented demonstrating the system's ability to localize a
robot during a simple repeated corridor maneuver.

SLAM can also be performed using a cognitive map [12].
The cognitive map consists of a sequence of links that connect
discrete episodic memories, with each episode a sequence of
event representations. Each event contains spatial and non-
spatial stimuli as well as behavioral actions, much like the
experiences and inter-experience links described in this paper.
This paper also discusses recognizing when episode

recollection fails and recovering from such failures, which is
addressed in Section IVD of this paper.

Each experience uses up to 6.7 kB of memory. From
experimentation so far it appears that the number of
experiences required to represent an indoor office-like
environment scales with the area. To sufficiently represent an
environment such as shown in Fig. 2 requires about 6000
experiences, corresponding to 40 MB of memory.
Computationally the time taken to perform map correction and
create a temporal map approximately scales with the number
of experiences. At the end of the experiments in Section V the
temporal map creation process took about 10 ms.

VIII. CONCLUSION

This paper has described the application of the experience
mapping algorithm in a variety of situations. The algorithm
complements the core RatSLAM representations and produces
maps that are more suitable for goal recall than the original
goal memory system. Furthermore the technique allows the
environment size to be increased (within limits) without an
associated scaling of the pose cell matrix, which has
computational advantages. The experience maps can also
adapt to simple short term changes in an environment.
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