Robot Middleware Architecture Mediating Familiarity-Oriented and
Environment-Oriented Behaviors

Akihiro Kobayashi, Yasuyuki Kono, Atsushi Ueno, Izuru Kume, Masatsugu Kidode
{akihi-ko, kono, ueno, kume, kidode} @is.aist-nara.ac.jp
Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma 630-0192, Japan

Abstract

This paper presents a middleware architecture for
personal robots applied to various environments. The
architecture allows a Tobot to consistently integrate
environment-oriented applications with its original and
familiar characteristics for its user. The familiar char-
acteristics and environment-oriented applications tend
to be developed independently. However, the two kinds
of functions should share sensors and actuators to gen-
erate consistent actions. To this end, we have analyzed
the relationship between robot actions and their men-
tal effects on the user, and have designed middleware,
called the “mediator,” to play the role of mediator by
dynamically selecting either: 1) sequential execution,
2) time-sharing execution, or 3) concurrent execution.
We had an experiment to simulate the mediation, and
to estimate the familiarity and efficiency.

1 Introduction

In this paper, we propose a framework to give per-
sonal robots the ability to supply local, specific services
in each environment while keeping their original famil-
iarity. Recent research provides two viewpoints of the
usage of autonomous mobile robots. On one hand, a
robot is thought of as a mobile and intelligent inter-
face to information systems [1, 10, 7]. On the other
hand, robot owners expect their robots to behave sim-
ilar to a familiar and amusing pet. Therefore, human-
like expression on their appearance and motion is an
important issue [4, 5].

In the near future, a personal robot, which accom-
panies its owner, should gain the ability to interface
with an information system in an office, as long as the
robot stays in the office. This ability to interface gives
benefits to both the owner of the robot and the ser-
vice provider of the office. From the owner’s point of
view, accessing the system through his or her familiar
robot is desired. The information system can use the
personal robot as its physical interface for a visitor, al-
though a traditional service provider needs robots to

provide these services. The benefits are summarized in
the following, and examples are shown in Fig. 1

e Robot Owner

— The owner is provided with services in each
environment.

— The owner can use the familiar interface by
using familiar hardware.

— Adopted behaviors prevent the owner from
getting bored with his/her robot.

— More than one robot in an environment must
work collaboratively in the event of any col-
lisions.

e Service Provider at an Environment

— It is not necessary to stock many robots to
provide service, e.g., for guiding visitors.

— The robot should follow TPO rules without
effort.

Collaborate with other
Intelligent Systems

Guide for Unknown
Building

==
y

@

Figure 1: New Abilities of Personal Robots Realized
by the Middleware Architecture

Keep Quiet in a Library

A robot should execute simultaneously both the
originally-programmed behaviors and the newly-loaded
behaviors, for familiar and useful actions. For exam-
ple, the robot behaves as a pet in its interaction with
the owner, while the owner is accompanied by his/her
robot to their destination. However, these two roles
tend to interfere with each other in the action of the
robot. Generally, parallel resource management archi-
tecture is needed to resolve resource-interference among

independently developed applications. A new theme in
robotics is the integration of two software components,
with both components never knowing how their op-
ponent manages common resources, i.e., the physical
devices in the robot.

2 Mediation

2.1 Mediation Framework

A new framework for mediation is needed for a robot
to execute multi-applications in parallel, but developed
independently. Robot programmers have traditionally
developed whole applications in the robot on the condi-
tion that unknown applications will never be executed.
Controlling the robot’s motion carefully is essential be-
cause a robot has access to the real world. Nonetheless,
keeping a robot’s user and the robot secure while in-
dependent applications run on it in parallel is quite
difficult.

In order to cope with dynamic coordination, we pro-
pose a new process model based on mediation, instead
of coordination. We assume the middleware on which
all applications run. The middleware provides appli-
cations with basic functions for a mobile robot and
mediates between any access to devices from its ap-
plications. In traditional robot programming, multi
applications are coordinated when they are designed.
The proposed middleware is an online interpreter that
can block competitive device accesses, and can sched-
ule threads dynamically using only behaviors and addi-
tional information. We call this middleware a mediator.

(Fig. 2)

Familiarity-oriented ;’Environment-oriented%—
Application Application

(Location)

Behavior & Behavior &
Additional Additional
Information Informatiol
[=— p
[Ex: Say Hello, Mediator Ex: TPO rules,
(| Take pictures, Hardware guide, ...etc

...etc
User %

Figure 2: Mediation between Each Application

As Fig.2 shows, a personal robot uses its original
application to represent familiar actions. We call such
an application a familiarity-oriented application. On
the other hand, the robot dynamically loads a new
application to perform an information service in the
current environment. We call such an application an
environment-oriented application. Usually applications
and the actions of robots are traditionally called a be-
havior. In this paper, we call a sequence of requests

for robot motions from an application a behavior. In
addition, we name a sequence of robot motions which
appear to the user an action. A behavior conflicts
with another behavior requested from the counterpart.
Each application should request the mediator to pro-
tect these behaviors from interference. The mediator
needs information about what is critical for the behav-
iors. We call this information additional information.

2.2 Features of Applications

The mediator’s job is to take care of the difference
between both applications in order to solve the interfer-
ence. Familiarity-oriented applications are usually de-
signed with robot hardware by the same robot designer.
These applications provide familiar actions, which the
user finds comforting. Therefore, the applications must
include many operations to drive motors in order to
achieve delicate motions. The mediator should keep
the minute features of these motions.

On the other hand, developers of the environment-
oriented applications tend to write code with little in-
formation about the robots’ physical nature. There-
fore, predicting the details of robots accompanied by
their owners is impossible. The programmers must
write their codes to command a robot in an abstract
fashion, such as in navigation from one place to an-
other. The environment-oriented applications need to
accomplish useful services, and these applications must
follow TPO rules more seriously than to just duplicate
the details of actions. The mediator should support
basic functions for a mobile robot, and these functions
must be robust.

2.3 Mediation Requirements

Mediated actions must fulfill specific requirements
of the users by estimating the trade-off between the
requirements mentioned in Section 2.2. The mediator
evaluates the quality of the performance of the robot’s
behavior from three aspects, i.e., reliability, familiarity,
and efficiency. Reliability guarantees keeping the user
of the robot and the robot itself secure, in order to
accomplish the services provided by an environment-
oriented application, and to follow TPO rules in the
environment. Reliability is a “must” in a robot’s per-
formance. For example, if the behavior generated from
another application conflicts with speech recognition,
for example, or breaks the context of interaction, the
mediator must solve these problems. Reliability also
contains the use of reactive actions, since such actions
are needed for a robot to keep its user and itself secure.

Familiarity is the degree of owner satisfaction, based
on how much the owner is impressed by the robot’s ac-
tions. Efficiency is measured by the time needed to

accomplish the robot’s actions. The user hopes his/her
robots take familiar actions and accomplish requested
tasks in a matter of minutes. However, trade-offs
among the aspects exist; e.g., the familiarity of a robot
is high if it often performs its familiarity-oriented be-
havior together with environment-oriented behaviors.
In this case, mixing the both behaviors lowers efficiency
in terms of the performance of the given task. Medi-
ation provides a way of selection in the trade-offs. In
this paper, we adopt the policy that familiarity should
be preferred to efficiency as long as familiarity main-
tains a certain degree of reliability, because a personal
robot should be familiar with its user.

3 Mediation Policy

3.1 Familiarity

We suggest a hypothesis on the sources of familiarity
so that the mediator can objectively measure familiar-
ity, which is the user’s impression of the robot. We as-
sume that the robot satisfies familiarity best when the
robot performs familiarity-oriented behaviors faithfully
to the original action of the familiarity-oriented appli-
cation. However, the mediator may suspend or divide,
or reject some behaviors depending on the various sit-
uations facing the robot. From a practical point of
view, deciding the guidelines for a robot to perform
with better familiarity is reasonable. We assume that
the following factors increase the familiarity aspect;

e Similar motions in familiarity-oriented behavior
and its total performance time

e Minimizing the suspended time of the familiarity-
oriented behaviors

e Seamless switching between both of behaviors

e Responding as quickly as possible to the user

We place importance on the suspended time of
familiarity-oriented behaviors. The user’s impression
of whole behaviors presented in a certain time span
must depend on the suspended time. When the sus-
pended time is long, the users’ feel unsatisfied. We
make three assumptions on the unsatisfactory feelings
of the user:

e Dissatisfaction increases at an exponential rate as
the suspended time increases.

e Familiarity decreases dissatisfaction.

e Dissatisfaction becomes little, even if the executed
part of familiarity-oriented behaviors is little.

Based on the assumptions directly above, our me-
diation policy is to minimize both the summation and
maximal value of the distance.

3.2 Mediation Layers

One of the following four layers of mediations is se-
lected whenever the mediator gets requests from one of
the applications while executing requests of the other.
A higher layer is more familiar and efficient because the
management of time for execution is more intelligent.
In general, more programmers’ efforts are required to
realize more familiar mediation. The mediator tends
to select a higher layer, as far as both behaviors and
additional informations permit.

Semantic Execution: Both behaviors requested by
each application run efficiently at the same time.
The mediator understands the semantics of the be-
haviors and generates new actions to fulfill both of
the behaviors.

Concurrent Execution: Both behaviors run simul-
taneously. The mediator fuses the motions com-
manded and cuts out a part of the behaviors to
exclude the part of behaviors which conflicts with
requests from the other applications.

Time-Sharing Execution: Each behavior runs ex-
clusively at one time. The mediator makes a time
schedule for exclusive execution. The mediator in-
terrupts running behaviors, or resumes the sus-
pended behaviors on schedule.

Sequential Execution: Each behavior runs using
batch processing. The mediator injects interrup-
tion, and follows the sequence to duplicate the de-
tails of actions.

In the layer of sequential execution, a robot becomes
familiar to its user, when the robot uses the original
motions, which require critical control of motors. If
the programmer desires this type of mediation, he/she
must describe the start and the end of behavior clearly
and should request the layer for short term behaviors.
If many devices are used by the robot in the same ap-
plication, both efficiency and familiarity will decrease
substantially.

In the layer of time-sharing execution, the user is
given an environment-oriented service that contains oc-
casional familiar interactions in addition to sequential
ones. This type of mediation allows the robot to be-
have more familiarly with the user than the sequen-
tial execution does because the suspended time of the
familiarity-oriented behaviors becomes less, than that

of the other. The programmer is required to describe
additional information that defines what is critical for
the behaviors. The mediator must decide whether or
not the current behavior can be suspended. When
the robot suspends the current behavior, the media-
tor must automatically decide when the robot should
resume it. When the robot does not suspend the cur-
rent behavior, the mediator must choose for the robot
to reject the new request, or to stores this request on
a queue for requests awaiting execution.

In the layer of concurrent execution, the robot exe-
cutes both behaviors in parallel. This type of mediation
execution allows the robot to behave more efficiently
than in the time-sharing execution because the robot
can reduce the time to accomplish whole actions. The
mediator modifies the behaviors to resolve any conflict
between the behaviors and the requests of other appli-
cations. Two methods to modify behaviors exist. One
method is cutting a part of the behaviors. If each part
of the behaviors doesn’t relate to the other parts crit-
ically, the robot can cut the part which conflicts with
the other behaviors. For example, a robot can say hello
while guiding the user, although it cannot make a ges-
ture for greeting. The other application is fusing both
motions. Some outputs of motors can be expressed
as a set of motion vectors. The mediator fuses both
vectors of each behavior into a familiar and smooth ac-
tion. If the programmer uses abstract and long-term
expressions, the mediator can simulate fused motion.
For example, a robot can dance while guiding the user
if the robot doesn’t go far away from the user. The
movement of the robot’s legs can be generalized into a
two-dimensional vector.

In the layer of semantic execution, the robot in-
terprets the semantics of both behaviors based on a
knowledge-based system, and creates actions from the
semantics. The mediator doesn’t support this layer,
because this kind of mediation requires a large amount
of knowledge in order to cope with unexpected cases.

4 Implementation

4.1 Selection of Mediation Type

The mediator selects the type of mediation among
three possible types; concurrent ezecution, time-
sharing execution, or sequential execution. In general,
the mediator selects concurrent execution if possible be-
cause this execution is more familiar and effective than
the other executions. For example, suppose that the
robot walks while singing songs. However, two cases
exist such that the mediator should not select the con-
current execution in order to keep the reliability.

One case is interference between behaviors and ad-
ditional information. As discussed in Section 2.1, each
application notifies the mediation of additional infor-
mation to protect behavior. The additional informa-
tion includes information about what state is critical
for the behavior. When a behavior of an application
breaks the critical state requested by the additional in-
formation of the counterpart application, the mediator
selects the time-sharing execution. For example, when
a robot is required to keep quiet now, the robot will
not sing for a moment.

The other case is interference between both behav-
iors. Interference contains the case such that both ap-
plications access a device simultaneously. Usually, re-
alizing two behaviors with one device is difficult. For
example, a robot cannot shake hands when it holds a
cup of coffee in one hand. However, when both appli-
cations access to a device for movement, the mediator
can fuse both motion vectors of each behavior, because
the mediator can simplify the movement of robot into
the shift of the robot position in the floor plain. Even
if both behaviors interfere with each other, the media-
tor selects concurrent execution, when both behaviors
request the movement of robots.

4.2 Concurrent Execution

In the layer of concurrent execution, the mediator
fuses trajectories of both applications’ motion because
a robot should execute both applications efficiently,
while maintaining familiarity. As we explained in Sec-
tion 3.1, familiarity contains a human-impression about
the similarity between mediated motion and the usual
motion of familiarity-oriented applications. We assume
that the impression is deeply related with the syn-
chronous motions of multiple outputs for familiarity-
oriented applications. For example, let us imagine a
situation such that a robot dances while guiding its
owner. The mediator modifies the movement of the
dance along the way to the destination. If the timing
of the mediated movement is different from that of the
music and hand gestures for the dance, the owner feels
that the motion is unusual and unnatural. The media-
tor should manage concurrent execution based on the
timing-conscious fusion of motion vectors.

The mediator modifies motions based on the follow-
ing strategies to realize timing-conscious fusion.

1. The mediator supports the description about a se-
quence of motion. The mediator understands the
trajectory from the sequence. The trajectory in-
cludes the shift of position, the direction, and the
velocity of the robot at every unit of time.

2. The mediator supports the description to request
the synchronous motions of multiple outputs. The
description contains a request to start at the same
time, and to end at the same time. The media-
tor should maintain the timing during the fusing
motion.

3. The mediator rotates the whole trajectory of the
local movement at the start position of the tra-
jectory in order to adapt the end position of the
trajectory to the trajectory of the environment-
oriented application. The mediator maintains the
internal movement and the timing of the local mo-
tion.

4. The mediator modifies the direction of linear
movement. This modification may affect the user’s
impression little if the velocity and the time of lin-
ear movement are maintained.

Fig.3 shows an example of a normal dance trajectory
of a familiarity-oriented application.

i). The robot starts dancing and playing music for the
dance when its owner orders it to dance and play
music.

ii). The robot makes a circular movement.

iii). The robot makes liner movements by turning on
its edges.

iv). The robot ends the movement when the music
ends.

ii) Circular i) Start Position i) Linear Movement
Movemen /
iv) End Position
————— Movement of Dance
q Robot’s Direction

@ > Robot's Owner

Figure 3: A Normal Trajectory of Dance

Fig. 4 shows the fused trajectory of the dance move-
ment and the navigation movement of an environment-
oriented application. In Fig. 4, the owner’s destination
is on the left side. In Fig. 4, the current position of the
robot is on the right side.

I). The robot navigates its owner to his/her destina~
tion.

II). When the owner «calls his/her robot, the
familiarity-oriented application makes the robot
stop and turn in the direction of the owner’s voice.
When the owner orders the robot to dance, the
application requests the mediator to dance. The

mediator understands that the end of the trajec-
tory is separate from the destination. To make an
efficient movement, the mediator makes the robot
turn 180-degrees. The mediator starts the dance
movement and music to follow the programmer’s
request to start dancing and playing the music at
the same time.

III). The robot makes a circular movement in the same

way as shown in Fig. 3.

IV). When the robot makes linear movements, the me-

diator changes the turning degree of each edge of
the trajectory to get closer to the destination.

V). The robot ends the dance at the end of the music.

VI). The robot restarts the navigation.

——» Mediated Movement
— » Movement of Navigation

The Owner's Destination @

Figure 4: Timing-Conscious Fusion

4.3 Time-Sharing Execution

The mediator supports a programming style, called
embodiment-based exception handling to express the re-
quests for protecting robots’ actions [6]. As we ex-
plained in section 3.2, the mediator needs some ad-
ditional information for the time-sharing execution.
For that purpose, the mediator should understand (1)
where the programmer needs to protect the robot’s ac-
tion in his/her code, (2) what he/she needs to pro-
tect, (3) whether he/she needs to refuse the counter-
part, and (4) what the programmer needs to do when
protection is broken. An exception handling consists of
four factors programming constructs, block, definition,
seriousness, and handler.

A block is defined by an area of an application code.
The programmer describes it using a curly brace. The
robot cannot accomplish certain behaviors because of
the actions of the counterpart application. The coun-
terpart application may break the critical control of
what, cause user confusion, or interfere with sensing.
The programmer should signify the block where the
behavior needs a particular state of the robot in its
codes.

A definition is defined by a state of the robot or by a
refusal exception. A programmer describes the state of
the robot using the reference model. When the robot
enters the exception state in the block, the mediator
throws the defined exception, and moves the control to

the handler associated with the exception. The refusal
exception is defined as a special state by the mediator.
The refusal exception is thrown when the requested
command is refused because of the conflict with the
counterpart application.

Seriousness defines whether the application can
compromise or request the refusal of the counterpart.
If an exception is defined as serious, the mediator as-
signs that exception as having high priority to protect
it from the exception with restricting requests by the
counterpart. A handler defines what the application
should do, and when the exception signals are thrown.
One handler is associated with one definition of the
exception. The programmer should describe exception
handling so the robot can take correct action.

The programmer may require the robot to make
more faithful actions than those of the time-sharing ez-
ecution. The mediator also allows the programmer to
require the sequential execution using these program-
ming constructs. If the programmer defines any access
of the other application as the definition of an excep-
tion, the mediator selects the sequential execution.

Of course the mediation result depends on the pro-
grammers’ descriptions. However, we can assume that
a programmer will not use serious exceptions frequently
because too much occupation of robot resources re-
duces the familiarity of the robot.

5 Simulation

5.1 Assumption about Robots’ Abilities

This section describes the simulation results re-
quired to prove that this system can improve familiar-
ity. Suppose that the robot in the simulation has the
following generic abilities of mobile robots: The robot
can move at a rate of 150cm/s, which is faster than the
normal walking speed of humans. The error of move-
ment is very low because the generic mobile robot has
odometers and moves correctly using the information
for moving a short distance.

The generic mobile robot has sensors to localize it-
self, and the mediator has a general localizing method
using the sensors. In this simulation, we assume that
the mediator has an indoor navigation method based
on ceiling images [9]. This method can be applied to
various indoor environments using an inexpensive cam-
era. Assume, therefore, that the robot has a camera to
look up at the ceiling of corridors. The environment-
oriented application has a map of the ceilings of the
building that readies the application. The mediator
can localize the robot, because it can match the cur-
rent view of the camera with the map. The robot nav-
igates at a rate of 100cm/s, which is the normal walk-

ing speed of humans, and is under the maximum speed
of the robot. We assume that the robot can execute
matching at enough frame-rates to move the naviga-
tion speed.

The mediator can make the path to the goal with
the information of walls described in the map using
Voronoi graph methods [2]. The mediator makes a sub-
goal at the corner of the path. The robot stops at every
sub-goal, and turns at the corner. The robot can also
generate a smooth trajectory and does not need to stop
except for the sub-goals. As a consequence, we assume
that the drive distance is equal to the theoretical dis-
tance needed for reaching the goal.

5.2 Original Action of Both Applications

We assume the actions of both applications as in the
following. Fig. 5 shows the action of the environment-
oriented application if the familiarity-oriented applica-
tion has no action. The application makes the robot
help to navigate the guests from an elevator to a labo-
ratory through the corridor. This navigation takes 39.6
seconds through the desirable trajectory.

1220 cm

[:
'>‘M ’—‘ ’—‘ 73/&5

Goal:Laboratory Start: Elevator

195 cm
oLe

w

Figure 5: Experimental Environment

Suppose that the familiarity-oriented application
makes the robot dance as depicted in Fig. 3. When
the owner makes a loud sound, the robot turns to the
direction of the sound using a microphone array. The
robot says, “May I help you?” If the robot recognizes
the keyword “dance”, the robot says “OK!” and starts
dancing, as in Fig. 3. When the robot ends the dance,
the robot says “the dance has ended.” This process
usually takes 33 seconds. The familiarity-oriented ap-
plication requests the exception block during the inter-
actions before the dance. The exception is serious, and
requests that the robot keep quiet and stay in the cur-
rent position to communicate with the owner correctly.

5.3 Simulation Results

Fig. 6 shows the simulation results of the mediated
movement of the applications as mentioned in Section
5.2. In this case, the mediator selects concurrent ex-
ecution during the dance. In order to clear the effect
of each mediation method, we simulate the case of the
time-sharing execution (Fig. 7), and the case of the se-
quential execution (Fig. 8).

The owner calls the robot in the way of the navi-
gation as shown in Fig. 6. 21.7 seconds pass since the
robot starts the navigation. When the robot hears that
the owner is calling it, the robot stops the navigation
and turns to the owner. The robot communicates with
the owner as explained in Section 5.2, which takes 9 sec-
onds. The robot starts dancing as shown in Fig. 4. The
dance takes 24 seconds, and the robot moves 346.4cm
toward the goal as shown in Fig. 5. The robot reports
the end of dance, and restarts the navigation. This
navigation takes 18.4 seconds to reach the goal.

263.6 cm 610 cm

/
ﬁﬁﬂx C

Figure 6: Concurrent Execution

95 cm

wo oLg

In Fig. 7, the owner calls the robot at the same time
as in the example in Fig. 6. In the time-sharing execu-
tion, the robot stops the navigation during the dance.
The robot plays the dance faithfully to the familiarity-
oriented application. The location between the robot
and its owner is the same as shown in Fig.3. In conse-
quence of the dance, the robot moves 346.4cm toward
the start position.

| .
20 My

N

Figure 7: Time-Sharing Execution

95 cm
woole

If the mediator selects the sequential execution, the
robot moves as shown in Fig. 8. In this case, the robot
doesn’t stop the navigation, even if the robot hears that
the owner is calling it. The robot starts the interactions
after the navigation. Consequently, the owner waits
17.9 seconds for the robot’s reaction.

1220 cm

N

Figure 8: Sequential Execution

195 cm
wo oLe

In this paper, we only simulate cases where the me-
diator mediates both actions. The robot executes an
action without any consideration of the counterpart.
Therefore, the robot may fail to recognize the owner’s
requests, or the robot may make a movement that
doesn’t look like part of the dance.

Table.l summarizes the results of the simulation.
Responsibility represents the time necessary for a
robot’s reaction to the owner’s order of the familiarity-
oriented application. The more responsibility a robot
has, the smaller the suspended time of familiarity-
oriented behaviors becomes. As explained in Section
3.1, suspended time is deeply related to familiarity. In
the case of the time-sharing execution and the concur-
rent execution, the robot turns to the user as soon as
possible when it hears that the owner is calling it. In
consequence, the concurrent execution and the time-
sharing execution have an advantage regarding famil-
iarity. Efficiency is the entire time required to accom-
plish the owner’s orders. Concurrent execution is the
most efficient execution of the executions.

[[Responsibility | Efficiency ||

Concurrent 0 73.1
Time-Sharing 0 80.4
Sequential 17.9 75.6

Table 1: Simulation Results

6 Discussions

In the simulation in Section 5.3, we should measure
the modification of the robot’s motion from the usual
motion in order to strictly estimate the familiarity-
oriented behavior. The robot behaves more efficiently
if the mediator transforms the trajectory more than
from the original trajectory. However, the transfor-
mation makes the robot somewhat unnatural from the
owner’s point of view. We estimate the appearance
of this modification by the following parameters: syn-
chronous motion with other outputs, the shape of the
trajectory, and the distance and direction of the robot
from the owner. The mediator keeps the applications
synchronous because the mediator aims for a timing-
concise fusing motion. The mediator also keeps the
shape of the trajectory in substance. If the difference
in the direction of linear movement is small, then the
owner will feel that the action is natural. The distance
and direction of the robot from the owner may change
a lot from the naturally-perceived action. A long ac-
tion brings about a great difference of the distance and
direction. The mediator should cut a long action into
some parts, in order to modify the distance and direc-
tion at the cut points.

7 Related Work

Few attempts have been made to give robots the
ability to execute parallel multi-applications developed
independently.

In this paper we have tried to measure human im-
pressions to decide the policy of mediation. Imai and
Kanda et al. [4, 5] have discussed human-robot interac-
tions from the viewpoint of human impression expres-
sion. Their research discovers evaluative methods of
human-robot interaction (both subjective and objec-
tive measurements), analyzes social relationships be-
tween humans and robots, in order to introduce robots
to actual human society.

The mediator should be applied to various hardware.
Recent research of middleware for robots will help us to
deal with the various hardware. ORIN [8] standardizes
the specifications of interface and data, as well as stan-
dardizing negotiation for robot controllers to commu-
nicate with various applications. This research allows
heterogeneous robots to communicate with each other,
and separates applications from robot controllers.

OPEN-R [3] is a re-configurable robot platform for
the robot entertainment system. This platform ana-
lyzes a robot configuration in syntax and gives seman-
tics to robot components. Based on OPEN-R, a pro-
gram is portable to robot hardware without changing
codes.

8 Conclusion

This paper has described several factors required for
extending the scope of personal robots. We established
familiarity among the requirements and suggested a
policy of mediation for personal robots. We introduced
four methods for mediation and explained the mecha-
nism to realize three of these methods. We proposed
a timing-conscious fusing motion to realize concurrent
execution, and proposed an exception-handler to real-
ize time-sharing execution. We simulated each medi-
ation method, and proved that the proposed system
improves familiarity.

References

[1] J. Buhmann, W. Burgard, A. Cremers, T. H.
D. Fox, F. Schneider, J. Strikos, and S. Thrun.
The Mobile Robot Rhino. AI Magazin, 16(1):31-
38, 1995.

[2] H. Choset, K. Nagatani, and A. Rizzi. Sensor
Based Planning: Using a Honing Strategy and
Local Map Method to Implement the Generalized
Voronoi Graph. In SPIE Mobile Robotics, 1997.

[3]

[10]

M. Fujita, H. Kitano, and T. Doi. Syntactic-
Semantic Analysis of Reconfigurable Robot. In
Proc. of the 1999 International Conference on In-
telligent Robots and Systems (IROS), pp. 1567—
1572. IEEE/RSJ, 1999.

M. Imai, T. Kanda, T. Ono, H. Ishiguro, and
K. Mase. Robot Mediated Round Table: Anal-
ysis of the Effect of Robot’s Gaze. In Proc of
The 11th International Workshop on Robot and
Human Commaunication (RO-MAN), pp. 411-416.
IEEE, September 2002.

T. Kanda. A Constructive Approach for Commu-
nication Robots. PhD thesis, Kyoto University,
2003.

A. Kobayashi, I. Kume, A. Ueno, Y. Kono, and
M. Kidode. A robot programming model for me-
diating between familiarity-oriented behaviors and
environment-oriented behaviors. In Proc. the 7th
of the World Multi-Conference on Systemics, Cy-
bernetics and Informatics (SCI), 2003. to Appear.

T. Matsui, H. Asoh, J. Fry, Y. Motomura,
F. Asano, T. Kurita, I. Hara, and N. Otsu. In-
tegrated Natural Spoken Dialoge System of Jijo-2
Mobile Robot for Office Services. In Proc. of The
16th National Conference on Artificial Intelligence
(AAAI-99), Florida, July 1999.

M. Mizukawa, H. Matsuka, T. Koyama, T. Inukai,
A. Noda, H. Tezuka, Y. Noguchi, and N. Otera.
ORIiN: Open Robot interface for the Network, The
Standard Network Interface for Industrial Robots
and its Applications. In Proc. of International
Symposium on Robotics (ISR), 2002.

H. Tani, Y. Matsumoto, and T. Ogasawara.
Indoor Navigation Based on Ceiling Images -
Automatic Mosaic Method for Building Ceiling
Maps-. In Proc. The 19th Annual Conference
of the Robotics Society of Japan, pp. 1013-1014,
2001. in Japanese.

S. Thrun, M. Bennewitz, W. Burgard, A. B. Cre-
mers, F. Dellaert, D. Fox, D. Hahnel, C. Rosen-
berg, N. Roy, J. Schulte, and D. Schulz. NIN-
ERVA: A Second-Generation Museum Tour-Guide
Robot. In Proc. of the International Conference on
Robotics and Automation (ICRA), pp. 1999-2005.
IEEE, 1999.

