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Abstract— Nature has always been a source of inspiration
in the development of robotic systems.As such, the study of
animal behavior (ethology)and the study of the underlying neural
structur e responsiblefor behavior (neuroethology)have inspired
many robotic designs.In general, neuroethologicalbasedsystems
tend to be more complex than ethological onesthus being more
expensve to compute, a common problem to both simulation
and robotic experimentation. To overcome this problem, it is
necessary either to incorporate very powerful hardware or,
particularly in the caseof mobile robots, embed the robot via
wir elesscommunication into remote distrib uted computational
system where expensive computation can take place. While
the first approach simplifies the overall robotic architecture it
results in bulky and expensve robots. The second approach
resultsin smaller and less expensve robots, although involving
more complex architectures. The work presentedin this paper
discussedhe secondapproachthat of embeddingmobile robotsto
distrib uted computational systemsWe describeour curr ent work
in conducting neuroethologicalrobotic experimentation using the
MIR O (Mobile Inter net Robotics) systemlink ed to the NSL/ASL
neural simulation system.In optimizing overall system perfor-
mance, communication between the robot and the computing
systemis managedby an Adaptive Robotic Middlewar e (ARM).

I. INTRODUCTION

Many different approachesave been proposedin recent
yearsin controlling autonomougobots. Lately, one of most
popularhasbeenthat of behaioral basedrobotics[1], bothin
termsof technologicabswell asbiologically inspiredrobotics,
such as those imitating animal etholay. In addition to the
study of animal behaior neuoetholgical intendsto model
neural structure as relatedto behaior. It should be noted
that there exist mary robot architectureghat do incorporate
somekind of neural processing althoughmost of them are
of the artificial neuraltype involving non-biologicaltraining
capabilitieq2]. Yet, thereareimportantmotivationsbehindthe
designof neuoetholaical robots.Onereasonis in providing
inspirationfor future robotics architecturesas has happened
before with neural architectures.Another important reason
involvesneuroscientifiexperimentationvherecurrently most
work is donein terms of simulation.By providing with an
experimentationplatform mary issuesthat over simplified
in simulation can be further analyzed by providing with
embodiment.
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One important concernwith neuroethologicakobotic ex-
perimentationinvolveshow to achieve real-time performance
consideringhe expensve natureof neuroscientifiqgrocessing.
Oneapproacho overcomingthis challengeis to have "super
robots” in analogyto supercomputerssomethingthat usually
resultsin prohibitively expensve andbulky robotic systemsA
secondapproachis to incorporatesimplerand lessexpensve
robotic hardware although embeddingit to an inexpensve
network of computers.Under sucha computingarchitecture
time-consumingprocessingwill be done remotely outside
the robotic hardware, with the robot sendingsensoryinput
and receving motor commandsvia wirelesscommunication.
Such an approachreducesthe robot’s physical size, power
requirementsswell ascost.A numberof roboticarchitectures
embeddednto the Internet have already been proposed|[3]
involving a large numberof applications[4]. Theseefforts,
most of them involving teleoperation,have highlighted the
potentialof the Internetwhenlinking remoterobotic devices
to humansor other computationalresourcesn a distributed
fashion.Yet, to take advantageof such embeddedarchitec-
turesit is first necessaryo overcomerestrictionsin wireless
transmissionbandwidth, unreliable communicationor even
completefailures.

In this paperwe discussour currentwork on embedded
robotics, where (1) at the application level biologically in-
spiredneuralbasedbehaiors make it possibleto experiment
with neuroethologicalrobot architectureswhile, (2) at the
systemslevel adaptve middlevare support the embedded
robotic systemin a transparentashion.

Il. BIOLOGICALLY INSPIRED MOBILE ROBOTS

Throughexperimentationrand simulationscientistsare able
to get an understandingpf the underlying biological mech-
anisms involved in living organisms. These mechanisms,
both behaioral and structural, sene as inspiration in the
developmentof neural-basedutonomougobot architectures.
Some examplesof animals having inspired robotic systems
are frogs andtoads[5], praying mantis[6], cockroacheg7],
and hoverflies [8] amongothers.To addressthe underlying
compleity in building suchbiologically inspiredneuralbased
robotics systemswe usually distinguishamongtwo different
levels of modeling,behaior and neuralnetworks [9].



At the behaioral level, neuroethologicaldata from liv-
ing animalsis gatheredto generatesingle and multi-animal
systemsto study the relationship betweena living organ-
ism and its ervironment, giving emphasisto aspectssuch
as cooperationand competition betweenthem. Examplesof
behaioral models include the praying mantis Chantlitaxia
("searchfor a proper habitat”) [10] and the frog and toad
(rana computatrix) prey acquisition and predatoravoidance
models[11]. We describebehavior in termsof perceptuabnd
motor schemaq12] decomposedand refinedin a recursve
fashion.Schemahierarchiesepresent distributed model for
action-perceptiorcontrol. Behaviors, and their corresponding
schemasare processedia the AbstractSimulationLanguage
ASL [13]. For example,in Arkin et al. [14] we describea
praying mantis prey-predatormodel as a basisfor ecological
robotics,designedand implementedexclusively at the beha-
ior level usingfinite stateautomatg15].

At the structurallevel, neuroanatomicahnd neurophysio-
logical dataare usedto generateperceptuabnd motor neural
network models correspondingo schemasdevelopedat the
behaioral level. Thesemodelstry to explain the underlying
mechanismgor sensorimotointegration. Examplesof neural
network modelsare tectumand pretectum-thalamusesponsi-
ble for discriminationamongpreys andpredatorg10], the prey
acquisitionand predatoravoidanceneuralmodels[16] andthe
toad prey acquisitionwith detour behaior model involving
adaptationand learning [17]. Neural networks are processed
via the Neural Simulation LanguageNSL [18]. Models that
involve neural networks are usually limited in scopeas in
[19], while more complex models[20] aresimplified in terms
of their inherentneuralcomplexity. For example,let us con-
siderthetoads’prey-predator’visuomotorcoordinationmodel
describedin [21], with schemaand neurallevel components
shawvn in Figurel. The diagramshows two levels of modeling
granularity At theschemdevel, blockscorrespondo schemas
or behaior agentsrepresentinganimal or robot behaior.
At the neurallevel, blocks representneural networks, some
having a direct correspondenceo brain regions[22]. One of
themainconcernswvith neuralnetworkshasbeenthe expensve
natureof computation.For example,a "typical” retinamodel
[23] may consistof more than 100,000 neuronsand half a
million interconnectionsequiring mary hoursof simulation.
This haslead to a number of distributed neural processing
architectureg§24].

I1l. EMBEDDED DISTRIBUTED ARCHITECTURE

As part of our currentwork in the design of embedded
distributedarchitectureve have developedthe MIRO (Mobile
InternetRobotics)systemasshavn in Figure2. The architec-
ture consistof multiple robots,eachone connectedo its own
particularcopy or instanceof the neuralcomputationakystem
wherecommunications donein awirelessfashion.Processing
is distributed among the actual robotic hardware and the
remotecomputationasystem Althoughit would be possiblen
principle to sharerobot "intelligence” amongmultiple robots,
we keepa fully autonomougobot architecturein providing

Fig. 1. Toads prey-predatorvisuomotorcoordinationmodel archi-
tecturewith schemaand neurallevel modules

with truly neuroethologicaéxperimentationOtherapplication
could easily take advantageof information sharing(see[25]
for a discussionon distributed versus centralized robotic
systems).Under our MIRO architecture:(i) time-consuming
processesarecarriedoutin the (neural)computationakystem,
implementedusingthe distributed NSL/ASL systemwhile (ii)
sensonyinput, motor outputandotherlimited tasksarecarried
out in the robot hardware.

A typical computationcycle involves the robot initially
sendingsensoryinput (visual and tactile) data to the neu-
ral computationalsystem.The neural computationalsystem
would then processthe sensoryinput cycling through its
neural moduleswhile finally sendingmotor output back to
the robot. Thesecycles continue indefinitely or until some
specifictask is completed.In sucha way, the computational
system provides the robot’s "intelligence”, while the robot
doeslimited processingThe major challengan thedistributed
architecturerelatesto the always-changingretwork and envi-
ronmentconditions(suchastransientfailures,disconnections,
or reducedconnectvity). For suchpurposewe have developed
anAdaptive RoboticMiddleware(ARM) framewnork managing
communicationbetweenthe robot and neural computational
systemin adaptingto changingconditions,primarily that of
communicationa major concernwhenvideo is involved.

The great advantageof a middleware approachis that it
provideswith transparentnechanismsn enhanceapplication
responseat run-time [26] [27] [28]. Most current middle-
ware framavorks dynamically add and remove components
at run time without interrupting systemoperationwith com-
municationservicesusually tailored to static conditions[29]
[30] [31] [32]. This approachis not well suited for highly
mobile ervironments,where resourceand power constraints,
togethemwith securityissueqauthenticationauthorizatiorand
communicationsecreyg or integrity) penadethe application.
In suchenvironmentsthe communicatiorframenork mustbe
ableto automaticallyreconfigureitself in orderto respondto
changesn the communicationervironment,a critical aspect
in an embeddedeal-timearchitecture.



In sucha way, the middleware architectureallows specifi-
cation of communicatiorrequirementsn a high level manner
thatcanbelaterassociatedavith low-level specificarchitectural
implementationsisinga comprehensie setof basiccommuni-
cationprotocols.The middlevareis responsiblén determining
how, whenandwhat information shouldbe modifiedin order
to matchcommunicatiorfluctuations For example,bandwidth
adaptatiorenablesnformationdelivery in a mannersensitve
to theresourceswvailable,andmay entailthe useof techniques
such as media corversion and compressionto achieve the
desiredresults.
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Fig. 2. MIRO embeddedobotic architectureconsistingof multiple
autonomousrobots linked to their own instanceof the distributed
neural computationalsystem.All such instancesare connectedto
Internetfor remotemonitoring
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IV. EXPERIMENTS AND RESULTS

We have prototypedthe MIRO robot architecturewith a
number of experimentsinvolving prey acquisition predator
avoidance.For example,in Figure 3 we show threedifferent
experimentsinvolving a toad and a barrierin front of a prey,
wherefencepospapsinterposed33] togetherwith simulation
results (Figure 4 for the correspondingexperiments. The
original simulationswere developedin the NSL C++ system
andthenportedto the newer NSL Java systemgcurrentlylinked
to the MIRO robotic architecture. To monitor systemresults,
Internet-linked aerial camerasas well as the robot cameras
were included, as shav in Figure 5 (top). Note that one of
the key adwantagesof the MIRO distributed architectureis
that neural behaviors can be visualizedat the sametime as
the actual experimentsit performing, as shavn in Figure 5
(down). Obviously thereis an additional penalty to pay in
performancebut it is well worth during model development
or fine-tunning.In Figure 6 we shav sampleoutput for one
of the experiments,involving prey acquisitionwith a 10cm
barriershaving direct detour The experimentwas carriedout
on a single Lego-basedobot connectedn a wirelessfashion
to the MIRO system.A wirelesscamerawas addedon top of
the robot transmittingvideo in a wirelessfashionto remote
video capturedevices. Initial experimentcontrol, experiment
monitoring and model visualizationwe all carried out from

Internetvia a client-sener architectureinvolving appletsand
servlets.
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Fig.3. A. Approachto prey with singlelOcmbarrierwith immediate
detour B. Approachto prey with single 20cm barrier: first trial
with toadin front of 20cm barrier (numbersindicatethe succession
of the movements).The toad directly approachegle centerof the
barrierrequiring successie trials to managethe detouraroundit. C.
Approachto prey with single 20cm barrier After 3 trials the toad
detoursdirectly aroundthe 20cm barrier Arrowheadsindicate the
position and orientation of the toad following a single continuous
movementafter which the toad pauses.

E F

Fig. 4. In diagramsD-F we seecorrespondingimulatedresultsof
the experiment.

V. DISCUSSION

The work presentedn the paperoverviews the challenges
and compleity in modeling autonomousrobots inspired by
biological systemsin terms of both behaior and neural
structure Oneof the motivationsbehindthis work is to provide
neuroscientistawith robotic experimentationcapabilities as
well as prototyping new robotic architecturesOne primary
concernwith neuralprocessings the extensve natureof com-
putation,a crucial concernwith realtime robotics.To improve
on performancendreducethe sizeandcostof robots,we have
developed an embeddeddistributed robot architecturesup-
portedby adaptve middlewvare managingoverall architecture
and communication.While most time-consumingtasks can
take advantageof the distributedrobotic systemby processing
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Fig. 5. Top: Internetaerial view of autonomougobot and robot’s
cameraview of "blue” prey-like stimulus.Down: NSL framesshav-
ing resultsfrom differentvisual and neuralmodulesin a basicprey
acquisitionrobot experiment(without barrier).

- :Hm(

l
| & !. | Kkl
©
Fig. 6. Resultsfrom prey acquisitionexperimentfor 10cm barrier

with direct detouraroundbarrier

them remotely there are a numberof issuesthat arise from
such a distributed architecture,such as what happenswhen
communicationbetweenthe robot and computationalsystem
actually fails or becomesextremely slow or unreliable.The
robot could respondin mary ways, simply waiting without
doing anything until communicationis restored,ending its
mission,or performingothermorelimited tasksthatmay put it
backin action.Additionally therobotcould actively searchor
alocationwherecommunicatiorcanbe reestablishedAs part
of the processf robot experimentationwve have taken models
previously simulated under NSL where their correctnesss
first tested.After that, the modelsare prototypedunder the
MIRO robotarchitecturao testtheir behaior underrealworld
conditions.The MIRO architecturehasprovenquite beneficial
providing real-time monitoring capabilitiesof both external
as well as internal robot behaiior. Among the interesting
aspectghat have emeged from the robot experimentsis the

problem of "losing” the prey once the robot directs itself
around the barrier While this can be solved by a "pan”

control on the camera,where the cameracan always "look”

into the prey, it raisesan interestingnumberof issuessucha
recalling prey positionsfrom memory suchas with memory
saccademodels[34]. Until now we have experimentedwith

singlerobot neuroethologicaimodels,suchasprey acquisition
and predatoravoidance.We are currently working on multi-

robotexperimentatiorwith self-madeobots,whereeachrobot
instantiatests own prey, robotor predatoibehaior. In general,
the MIRO architectureand the Adaptive Robotic Middleware
are currently at the prototype stageand have not yet been
completed.We expect that once we completeand integrate
thesetwo architectureswve will be able to incorporatemore
complex neuroethologicamodelsas currently done.
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