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Abstract— Nature has always been a source of inspiration
in the development of robotic systems.As such, the study of
animal behavior (ethology)and the study of the underlying neural
structur e responsiblefor behavior (neuroethology)have inspired
many robotic designs.In general,neuroethologicalbasedsystems
tend to be more complex than ethological onesthus being more
expensive to compute, a common problem to both simulation
and robotic experimentation. To overcome this problem, it is
necessary either to incorporate very powerful hardware or,
particularly in the caseof mobile robots, embed the robot via
wir elesscommunication into remote distrib uted computational
system where expensive computation can take place. While
the first approach simplifies the overall robotic architecture it
results in bulky and expensive robots. The second approach
results in smaller and lessexpensive robots, although involving
more complex architectures. The work presentedin this paper
discussesthe secondapproachthat of embeddingmobile robotsto
distrib uted computational systems.We describeour curr ent work
in conducting neuroethologicalrobotic experimentation using the
MIR O (Mobile Inter net Robotics) systemlink ed to the NSL/ASL
neural simulation system. In optimizing overall system perfor-
mance, communication between the robot and the computing
systemis managedby an Adaptive Robotic Middlewar e (ARM).

I . INTRODUCTION

Many different approacheshave beenproposedin recent
yearsin controlling autonomousrobots.Lately, one of most
popularhasbeenthatof behavioral basedrobotics[1], both in
termsof technologicalaswell asbiologically inspiredrobotics,
such as those imitating animal ethology. In addition to the
study of animal behavior neuroethological intendsto model
neural structure as related to behavior. It should be noted
that there exist many robot architecturesthat do incorporate
somekind of neural processing,althoughmost of them are
of the artificial neural type involving non-biologicaltraining
capabilities[2]. Yet, thereareimportantmotivationsbehindthe
designof neuroethological robots.Onereasonis in providing
inspiration for future roboticsarchitectures,as hashappened
before with neural architectures.Another important reason
involvesneuroscientificexperimentationwherecurrentlymost
work is done in terms of simulation.By providing with an
experimentationplatform many issues that over simplified
in simulation can be further analyzed by providing with
embodiment.

One important concernwith neuroethologicalrobotic ex-
perimentationinvolveshow to achieve real-timeperformance
consideringtheexpensivenatureof neuroscientificprocessing.
Oneapproachto overcomingthis challengeis to have ”super-
robots” in analogyto supercomputers,somethingthat usually
resultsin prohibitively expensiveandbulky roboticsystems.A
secondapproachis to incorporatesimplerand lessexpensive
robotic hardware although embeddingit to an inexpensive
network of computers.Under such a computingarchitecture
time-consumingprocessingwill be done remotely outside
the robotic hardware, with the robot sendingsensoryinput
and receiving motor commandsvia wirelesscommunication.
Such an approachreducesthe robot’s physical size, power
requirementsaswell ascost.A numberof roboticarchitectures
embeddedinto the Internet have alreadybeenproposed[3]
involving a large numberof applications[4]. Theseefforts,
most of them involving teleoperation,have highlighted the
potentialof the Internetwhen linking remoterobotic devices
to humansor other computationalresourcesin a distributed
fashion.Yet, to take advantageof such embeddedarchitec-
turesit is first necessaryto overcomerestrictionsin wireless
transmissionbandwidth, unreliable communicationor even
completefailures.

In this paper we discussour current work on embedded
robotics, where (1) at the application level biologically in-
spiredneuralbasedbehaviors make it possibleto experiment
with neuroethologicalrobot architectures,while, (2) at the
systems level adaptive middleware support the embedded
robotic systemin a transparentfashion.

I I . BIOLOGICALLY INSPIRED MOBILE ROBOTS

Throughexperimentationandsimulationscientistsareable
to get an understandingof the underlying biological mech-
anisms involved in living organisms. These mechanisms,
both behavioral and structural, serve as inspiration in the
developmentof neural-basedautonomousrobot architectures.
Someexamplesof animalshaving inspired robotic systems
are frogs and toads[5], praying mantis [6], cockroaches[7],
and hoverflies [8] amongothers.To addressthe underlying
complexity in building suchbiologically inspiredneuralbased
roboticssystemswe usually distinguishamongtwo different
levels of modeling,behavior andneuralnetworks [9].



At the behavioral level, neuroethologicaldata from liv-
ing animals is gatheredto generatesingle and multi-animal
systemsto study the relationship betweena living organ-
ism and its environment, giving emphasisto aspectssuch
as cooperationand competitionbetweenthem. Examplesof
behavioral models include the praying mantis Chantlitaxia
(”search for a proper habitat”) [10] and the frog and toad
(rana computatrix) prey acquisition and predatoravoidance
models[11]. We describebehavior in termsof perceptualand
motor schemas[12] decomposedand refined in a recursive
fashion.Schemahierarchiesrepresenta distributedmodel for
action-perceptioncontrol. Behaviors, and their corresponding
schemas,areprocessedvia the AbstractSimulationLanguage
ASL [13]. For example, in Arkin et al. [14] we describea
praying mantisprey-predatormodel as a basisfor ecological
robotics,designedandimplementedexclusively at the behav-
ior level usingfinite stateautomata[15].

At the structural level, neuroanatomicaland neurophysio-
logical dataareusedto generateperceptualandmotor neural
network modelscorrespondingto schemasdevelopedat the
behavioral level. Thesemodelstry to explain the underlying
mechanismsfor sensorimotorintegration.Examplesof neural
network modelsaretectumandpretectum-thalamusresponsi-
ble for discriminationamongpreysandpredators[10], theprey
acquisitionandpredatoravoidanceneuralmodels[16] andthe
toad prey acquisitionwith detour behavior model involving
adaptationand learning [17]. Neural networks are processed
via the Neural SimulationLanguageNSL [18]. Models that
involve neural networks are usually limited in scopeas in
[19], while morecomplex models[20] aresimplified in terms
of their inherentneuralcomplexity. For example,let us con-
siderthetoads”prey-predator”visuomotorcoordinationmodel
describedin [21], with schemaand neural level components
shown in Figure1. Thediagramshows two levelsof modeling
granularity. At theschemalevel, blockscorrespondto schemas
or behavior agents representinganimal or robot behavior.
At the neural level, blocks representneural networks, some
having a direct correspondenceto brain regions [22]. One of
themainconcernswith neuralnetworkshasbeentheexpensive
natureof computation.For example,a ”typical” retinamodel
[23] may consistof more than 100,000neuronsand half a
million interconnectionsrequiring many hoursof simulation.
This has lead to a number of distributed neural processing
architectures[24].

I I I . EMBEDDED DISTRIBUTED ARCHITECTURE

As part of our current work in the design of embedded
distributedarchitecturewe have developedtheMIRO (Mobile
InternetRobotics)systemasshown in Figure2. The architec-
tureconsistsof multiple robots,eachoneconnectedto its own
particularcopy or instanceof theneuralcomputationalsystem
wherecommunicationis donein awirelessfashion.Processing
is distributed among the actual robotic hardware and the
remotecomputationalsystem.Althoughit wouldbepossiblein
principle to sharerobot ”intelligence” amongmultiple robots,
we keepa fully autonomousrobot architecturein providing

Fig. 1. Toad’s prey-predatorvisuomotorcoordinationmodel archi-
tecturewith schemaandneurallevel modules

with truly neuroethologicalexperimentation.Otherapplication
could easily take advantageof information sharing(see[25]
for a discussionon distributed versus centralized robotic
systems).Under our MIRO architecture:(i) time-consuming
processesarecarriedout in the(neural)computationalsystem,
implementedusingthedistributedNSL/ASL systemwhile (ii)
sensoryinput, motoroutputandotherlimited tasksarecarried
out in the robot hardware.

A typical computationcycle involves the robot initially
sendingsensoryinput (visual and tactile) data to the neu-
ral computationalsystem.The neural computationalsystem
would then processthe sensory input cycling through its
neural moduleswhile finally sendingmotor output back to
the robot. Thesecycles continue indefinitely or until some
specifictask is completed.In sucha way, the computational
systemprovides the robot’s ”intelligence”, while the robot
doeslimited processing.Themajorchallengein thedistributed
architecturerelatesto the always-changingnetwork andenvi-
ronmentconditions(suchastransientfailures,disconnections,
or reducedconnectivity). For suchpurposewe have developed
anAdaptiveRoboticMiddleware(ARM) framework managing
communicationbetweenthe robot and neural computational
systemin adaptingto changingconditions,primarily that of
communication,a major concernwhenvideo is involved.

The great advantageof a middleware approachis that it
provideswith transparentmechanismsin enhanceapplication
responseat run-time [26] [27] [28]. Most current middle-
ware frameworks dynamically add and remove components
at run time without interruptingsystemoperationwith com-
municationservicesusually tailored to static conditions[29]
[30] [31] [32]. This approachis not well suited for highly
mobile environments,where resourceand power constraints,
togetherwith securityissues(authentication,authorizationand
communicationsecrecy or integrity) pervadethe application.
In suchenvironments,the communicationframework mustbe
able to automaticallyreconfigureitself in order to respondto
changesin the communicationenvironment,a critical aspect
in an embeddedreal-timearchitecture.



In sucha way, the middleware architectureallows specifi-
cationof communicationrequirementsin a high level manner
thatcanbelaterassociatedwith low-level specificarchitectural
implementationsusinga comprehensivesetof basiccommuni-
cationprotocols.Themiddlewareis responsiblein determining
how, whenandwhat informationshouldbe modifiedin order
to matchcommunicationfluctuations.For example,bandwidth
adaptationenablesinformationdelivery in a mannersensitive
to theresourcesavailable,andmayentail theuseof techniques
such as media conversion and compressionto achieve the
desiredresults.

Fig. 2. MIRO embeddedrobotic architectureconsistingof multiple
autonomousrobots linked to their own instanceof the distributed
neural computationalsystem.All such instancesare connectedto
Internetfor remotemonitoring

IV. EXPERIMENTS AND RESULTS

We have prototypedthe MIRO robot architecturewith a
number of experimentsinvolving prey acquisition predator
avoidance.For example,in Figure 3 we show threedifferent
experimentsinvolving a toadanda barrier in front of a prey,
wherefencepostgapsinterposed[33] togetherwith simulation
results (Figure 4 for the correspondingexperiments. The
original simulationswere developedin the NSL C++ system
andthenportedto thenewerNSL Javasystem,currentlylinked
to the MIRO robotic architecture.To monitor systemresults,
Internet-linked aerial camerasas well as the robot cameras
were included,as show in Figure 5 (top). Note that one of
the key advantagesof the MIRO distributed architectureis
that neural behaviors can be visualizedat the sametime as
the actual experimentsit performing, as shown in Figure 5
(down). Obviously there is an additional penalty to pay in
performancebut it is well worth during model development
or fine-tunning.In Figure 6 we show sampleoutput for one
of the experiments,involving prey acquisitionwith a 10cm
barriershowing direct detour. The experimentwascarriedout
on a singleLego-basedrobot connectedin a wirelessfashion
to the MIRO system.A wirelesscamerawasaddedon top of
the robot transmittingvideo in a wirelessfashionto remote
video capturedevices. Initial experimentcontrol, experiment
monitoring and model visualizationwe all carried out from

Internetvia a client-server architectureinvolving appletsand
servlets.

Fig. 3. A. Approachto prey with single10cmbarrierwith immediate
detour. B. Approach to prey with single 20cm barrier: first trial
with toad in front of 20cmbarrier (numbersindicatethe succession
of the movements).The toad directly approachesde centerof the
barrier requiringsuccessive trials to managethe detouraroundit. C.
Approachto prey with single 20cm barrier. After 3 trials the toad
detoursdirectly aroundthe 20cm barrier. Arrowheadsindicate the
position and orientationof the toad following a single continuous
movementafter which the toadpauses.

Fig. 4. In diagramsD-F we seecorrespondingsimulatedresultsof
the experiment.

V. DISCUSSION

The work presentedin the paperoverviews the challenges
and complexity in modeling autonomousrobots inspired by
biological systems in terms of both behavior and neural
structure.Oneof themotivationsbehindthiswork is to provide
neuroscientistswith robotic experimentationcapabilities as
well as prototyping new robotic architectures.One primary
concernwith neuralprocessingis theextensive natureof com-
putation,a crucialconcernwith real time robotics.To improve
onperformanceandreducethesizeandcostof robots,wehave
developed an embeddeddistributed robot architecturesup-
portedby adaptive middlewaremanagingoverall architecture
and communication.While most time-consumingtasks can
take advantageof thedistributedroboticsystemby processing



Fig. 5. Top: Internetaerial view of autonomousrobot and robot’s
cameraview of ”blue” prey-like stimulus.Down: NSL framesshow-
ing resultsfrom different visual andneuralmodulesin a basicprey
acquisitionrobot experiment(without barrier).

Fig. 6. Resultsfrom prey acquisitionexperimentfor 10cm barrier
with direct detouraroundbarrier.

them remotely, there are a numberof issuesthat arise from
such a distributed architecture,such as what happenswhen
communicationbetweenthe robot and computationalsystem
actually fails or becomesextremely slow or unreliable.The
robot could respondin many ways, simply waiting without
doing anything until communicationis restored,ending its
mission,or performingothermorelimited tasksthatmayput it
backin action.Additionally therobotcouldactively searchfor
a locationwherecommunicationcanbereestablished.As part
of theprocessof robotexperimentationwe have takenmodels
previously simulatedunder NSL where their correctnessis
first tested.After that, the modelsare prototypedunder the
MIRO robotarchitectureto testtheir behavior underrealworld
conditions.TheMIRO architecturehasprovenquitebeneficial
providing real-time monitoring capabilitiesof both external
as well as internal robot behavior. Among the interesting
aspectsthat have emerged from the robot experimentsis the

problem of ”losing” the prey once the robot directs itself
around the barrier. While this can be solved by a ”pan”
control on the camera,where the cameracan always ”look”
into the prey, it raisesan interestingnumberof issuessucha
recalling prey positionsfrom memorysuch as with memory
saccademodels[34]. Until now we have experimentedwith
singlerobotneuroethologicalmodels,suchasprey acquisition
and predatoravoidance.We are currently working on multi-
robotexperimentationwith self-maderobots,whereeachrobot
instantiatesits own prey, robotor predatorbehavior. In general,
the MIRO architectureand the Adaptive RoboticMiddleware
are currently at the prototype stageand have not yet been
completed.We expect that once we completeand integrate
thesetwo architectureswe will be able to incorporatemore
complex neuroethologicalmodelsascurrentlydone.
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