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Abstract— A distributed mobile robot software applica-
tion infrastructure is developed, improving integration and
leverage between projects in a research environment. The
resulting design includes a three layer CORBA based, service
broker application architecture. A reference implementation
and tests on B21r, LEGO Mindstorm and Khepera robots
demonstrate the feasibility of the design.

I. I NTRODUCTION

Our distributed mobile robot software application in-
frastructure will improve the integration and leverage
between projects, particularly in a diverse university or
laboratory research environment with different robots, op-
erating systems, programming languages, and researchers.
It adopts a CORBA based application architecture com-
prising three layers: application, infrastructure services,
and middleware.

The application layer contains components developed
by researchers, which are registered as services. The
infrastructure services layer is a broker, following the
CORBA Trader specification. The broker provides the
protocol between services as well as query facilities for
clients. The middleware layer handles communications
between services. CORBA allows a diverse range of
languages and operating platforms. Our reference imple-
mentation includes robot services for the B21r, Khepera,
and LEGO Mindstorm robots, the service broker, a remote
robot control application, plus a web–enabled version.
Real–time facilities are not yet included. Although there
are issues to overcome, ORB compatibility and perfor-
mance in a busy network, the application infrastructure
provides a good framework for researchers.

A. Robot Programming Systems

Mobile robot researchers face difficulties developing
large software systems. Much of the software infras-
tructure is proprietary, much is necessarily targeted at
specific hardware, robot software development kits may be
limiting, and there is a lack of open standards to promote
collaboration, code reuse and integration.

There is much work on robot programming systems,
but little coherence and little focus on the underlying
architecture. Themes include client/server based tools
[1], specific methods for producing robot software, for

example graphically [2], reusable software architecture
[3], portable application programming interfaces [4, in
ADA], hierarchies of classes with attention to their inter-
faces [5], [6], fault tolerance [7], component interaction
via a blackboard [6], mission programming aimed at
end users [8, with three layers: dynamics, control and
planning], layer architectures [9, also expects to support
different paradigms depending on the application], real–
time object–oriented automation [10, a simulator is used to
check the behaviour and code is generated automatically],
component based systems for real time programming [11,
used for some commercial applications]. Many authors
propose simulation and virtual reality systems to support
the programming task.

A number of authors describe distributed robot pro-
gramming systems, including architectures for: the sep-
aration of cognitive from reactive robot components [12],
robot planning [13], components and patterns [14, in robot
workcell programming], distributed development in which
workflows are distinguished at three levels: user, system
and execution [15], hybrid models for integrating deci-
sion and reactive levels [16], a layered, object–oriented
client/server architecture for sensorimotor systems [17].
Orocos [18] focuses on object–oriented components and
patterns. There is little emphasis on the system archi-
tecture. CORBA inspires the distributed communications
and is used in some work, although there is concern
about its performance. Miro [19] is an object–oriented
robot middleware system based on ACE [20] and the
associated real–time CORBA ORB, TAO. Miro is a lay-
ered client/server architecture that provides frameworks
for common data structures, functionality, and commu-
nications, and has been implemented on a number of
robots. MCA2 [21] focuses on reusable modules all with
the same standardised interface, for robot control at the
sensor/actuator level. Claraty [22] provides an architecture
with functional and decision layers, and a set of functional
components for JPL’s mobile robot systems.

B. Objectives

Many authors describe systems with strong architectural
decisions, necessary in software production settings. Our
work focuses on reuse via an easily accessibleinfras-



tructure for researchers. Components are the eventual
goal, but we usually don’t know enough to create them
until the research has matured to standard forms. The
infrastructure must enable more experimentation with the
system architecture than in a production environment.

Our aim is to design an application infrastructure for
the development and operation of robot software, one that
is open to new research ideas for robot programming.
At the low level, the infrastructure should accommodate
different languages and platforms, and promote collabo-
ration, software reuse, and leverage between projects. At
a higher level the infrastructure services should ideally
be architecturally neutral so that we may experiment with
different architectural styles. An earlier project developed
an extendable framework for writing robot applications
in C++ in Microsoft Windows, including facilities for
distributing the application on more than one computer
[23]. A substantial redesign was needed in order to provide
full multithreading, to provide for other programming lan-
guages and platforms, to simplify distributed development,
and to provide a consistent and structured development
environment that would enable researchers to easily con-
tribute to the overall robot system.

We first analyse the requirements for robot program-
ming systems, then compare a number of specific existing
systems. We then explain the preferred design based on a
CORBA trading service.

II. REQUIREMENTS

The analysis was based on the operational context,
concerned withsystem usage, and system capabilities such
asscalability, manageability, performance, reliability, se-
curity plus other observable system qualities, and the
developmental context, concerned with aspects of system
and application development, such asdesign, coding,
programming languages, development environment/tools,
software reuse.The resulting requirements are summarised
below. A key factor is providing the flexibility for new
researchers to easily develop and deploy useful software,
within the period of a typical short research project, and
for this the infrastructure must support a high level of
abstraction of robot hardware, and the flexibility to use dif-
ferent languages and platforms. This makes a distributed
infrastructure essential, and drives other requirements,
such as code reuse, so that a researcher does not spend a
significant time creating the infrastructure. For example,
the time consuming practice of porting software to a
special robot environment, should be avoided.

A. Operational context requirements:

RQ1: Distributed software environment.
RQ2: Application centric not robot centric— Hard-

ware diversity prevents standardising onboard

robot software; the architecture should standard-
ise software interfaces, so an application can be
assembled transparently.

RQ3: Support parallel and distributed processing for
any application components.

RQ4: Robot independence— an important conse-
quence of RQ2

RQ5: Support applications with multiple robots.
RQ6: Preserve system and application integrity—

conflicting commands need to be resolved

B. Developmental context requirements:

RQ7: Promote a high level of software reuse.
RQ8: Programming language independent.
RQ9: Platform independent.

C. Trends in Mobile Robot Applications

A number of other significant trends support these
requirements. There is much interest in the remote control
of physical devices over networks, including the use of
online teleoperated robots [24], [25], [26]. These require
an infrastructure to support a distributed architecture,
and solutions to time delays, limited sensory feedback,
user interface design, real-time problems with the HTTP
protocol, complex data communication, and dependencies
on diverse web server and middleware technologies. A
flexible and powerful distributed architecture is needed
to support development of multirobot applications, and
communications between robots. The use of disposable
robots in dangerous situations, such as bomb disposal,
demining, and chemical handling, requires a distributed
architecture to control and manage robots remotely.

D. Current Robot Software Systems

A detailed study was carried out on four systems avail-
able in our labs. MROS [23] provides a non–preemptive
architecture and communications across a dedicated se-
rial link to a robot. A messaging service abstraction
layer routes messages to the appropriate controller, hid-
ing details from the programmer. Only non–preemptive
multithreading is provided. The main controller cannot
be distributed and could be a bottleneck as additional
components are added. Only Windows 3.1 and C++ are
supported. The API is not clearly delineated.

The K–Team Khepera robot provides cross–compilation
tools, plugins for systems such as LabVIEW and Matlab,
and a serial communications protocol. It enables any lan-
guage to be used for remote control, but lacks debugging
facilities. The lack of a defined software framework for
remote application development limits code reuse.

The B21r has a substantial controller and networking
support. Its extendable CORBA Mobility system provides
for distributed applications, multiple robots and integra-
tion. Opportunity for reuse is provided by base framework
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THE APPLICATION INFRASTRUCTURE FACILITATES INTEGRATION

classes. A CORBA naming service is used to manage
distributed software components. A graphical tool helps
debug applications. The programming interface is defined
in a language independent manner using open CORBA
standards. The system is scalable, language and platform
independent for applications using the existing framework,
but extensions must be written in C++.

The LEGO Mindstorm provides for cross–compilation,
or remote control via an IR link. Physical flexibility is pro-
vided by modular LEGO components. It lacks a standard
software development toolkit, but users have developed
tools: NQC [27], LeJOS, a cut down Java Virtual Machine
[28], and LegOS, firmware for assembly language, C or
C++ [29]. Some examples of the remote control program
environments are pbFORTH [30] and Visual Basic [31].
Duplicated efforts are solving the same problem, and
solutions developed in one language are unlikely to work
with another environment. There are no standard ways of
developing applications.

The analysis shows that each of the mobile robots
surveyed uses different programming languages, tools,
communication protocols, and proprietary APIs. As a
result, little leverage and code reuse can be achieved.
Researchers are required to possess good knowledge of
robot hardware and operating system.

III. D ISTRIBUTED SOFTWARE TECHNOLOGY

There are three classes of distributed service [32]: Dis-
tributed system servicesprovide critical communications
and data interchange services and are our focus in this
work; Application enabling servicesprovide applications
with access to distributed services;Middleware manage-
ment servicesprovide a controlled runtime environment.

For distributed system services Message Oriented Mid-
dleware uses message queues for communication (eg.
[33]), but does not remove integration, standardisation and
compatibility problems, and its asynchronous nature is ill–
suited to real time robotics. Distributed objects middle-
ware extends object oriented systems by allowing objects
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A LAYERING APPROACH TO THE MOBILE ROBOT APPLICATION

INFRASTRUCTURE DESIGN

to live across a heterogeneous network yet appear local.
It provides synchronous, direct communications between
objects, and so is more suited for programs that depend
on each other for their actions.

A. Design Considerations

The three popular distributed objects middleware
paradigms have similar approaches but different mecha-
nisms: OMG’s CORBA, Microsoft’s DCOM, and Sun’s
Java/RMI [34]. CORBA was chosen based on our require-
ments, since: a) it supports a wide range of programming
languages and platforms, b) there are many different
implementations available so developers are not dependent
on a single vendor’s products, c) most CORBA products
provide free academic licences, so it is particularly suited
for research and development use, and d) it provides a
richer set of auxiliary features.

IV. D ESIGN

Tests with an initial proof of concept LEGO Mindstorm
implementation confirmed that CORBA technology could
be applied effectively in our typical distributed robotics
scenario [35]. The middleware initialisation time lag from
client to server was 8mS for a local C++ client, 15 mS
for a remote C++ client (10mS and 20mS respectively
for a Java client). Method invocation between client and
server was 1mS locally and 2mS remotely for C++ and
Java clients. The components of a LEGO Robot Tank
Remote Control application were transparently distributed
(RQ1); the client and server components could be written
in different programming languages (RQ8), and it was not
reliant on a single operation platform (RQ9).

The goal of the second phase was to define a standard,
common approach for CORBA enabled components, so
the resulting architecture will satisfy the requirements.
Fig. 1 shows an example scenario.

The design includes the three layers in Fig.2. Appli-
cation layer services will be created by researchers. The



middleware layer contains the core CORBA subsystems.
The infrastructure services layer is the project emphasis.

A. Service Based Architecture (SBA)

Distributed architecture models include: client/server,
three tier, broker–based, and multiagent [36]. Strong cou-
pling between client and server is undesirable for ap-
plications with many components, especially when some
server components are dependent on other servers. As the
application is scaled up, changes are difficult to manage,
and performance bottlenecks may develop. Instead, clients
should seekservices. The details of where and how those
services are provided should be immaterial to the client.

Rather than defining a server as a set of services
behind a single, static interface, the design proposes a
broker–based approach. Shown in Fig.3, the broker has
two types of client: those offering service, and those
requesting service; a single client could both offer and
request services. Once the broker has found the requested
service, it returns the reference of the remote servant
object, for direct communication with the client.

To maintain an open architecture the design used the
CORBA Trading Service specification with a minimum
of added functionality. The Trading Service requires a
service typewhich includes theservice type name, the
IDL interface type, and a collection of additionalproperty
types. Each property type has a name, a value, and a mode
(which specifies whether the property is mandatory and
whether it is read–only). A service importer may specify
criteria based on the desired service properties, so that
the broker will return only the matching service offer(s).
The service type supports inheritance, sosuper typesmay
abstract common properties and functionalities.

A CORBA trader may create, modify and delete service
types. Service offers may be exported, imported, modified,
and withdrawn. The service type definition and offer
management functionality is defined as CORBA IDL in-
terfaces, and so are independent of the trading service im-
plementation. Generally, ORB vendors will provide IDLs
for accessing these functions, some provide a GUI tool
for administrators. Service exporters register services with
the broker, while service importers query the broker by a
service search criterion, which is a boolean expression,
and may include preferences and a policy.

The application infrastructure is summarised in Fig.4.
A researcher can create a mobile robot application using
existing components deployed as services. An application
component may query the service broker for a particular
service name and properties, rather than requiring prior
knowledge of the service implementation or deployment;
the components of an application thus have loose cou-
plings. Components can be “swapped” out without chang-
ing code or configurations. Furthermore, as this infrastruc-
ture promotes the separation of logic and physical robot
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COLLABORATION BETWEEN SERVICE BROKER, SERVICE EXPORTER,

AND SERVICE IMPORTER.

Fig. 4

THREE TIER ARCHITECTURE.

control interfaces, (the latter as services), the infrastructure
enables a robotic application to be independent from the
make, model, and type of robot.

B. Design Realization

The implementation included the service broker, the
robot interface service type definitions for the LEGO
Mindstorm, Khepera, and B21r, and interface services.
Also, a sample web based robot control application was
created. A super service type is defined for the three
robots, assuming that a basic mobile robot has two primary
motors, connected to two wheels or caterpillars. This super
service type contains IDL interface methods for control-
ling the motors and reading the sensors. The properties
defined include whether the robot supports collision de-
tection, how many horizontal layers of proximity sensors
there are, the number of sensors per horizontal layer, the
type of sensor at each horizontal layer, and the class of
robot. An AccessControl service type is used to prevent
conflicting robot commands [RQ6]; it has a method to



lock a service and one to unlock a service.
The B21r robot interface service makes Mobility objects

available to clients. The Khepera robot depends on a serial
port interface and it is not possible to implement the
interface service onboard. The interface service runs on an
external computer to encapsulate the serial link and im-
plement the necessary methods for the Khepera Interface
service type, in this case in Java. The LEGO Mindstorm
uses an infrared serial port link and its interface service
was implemented with a similar class structure as the
Khepera robot.

The ORBacus Trading Service was used as the service
broker, as it is a full service trader. Additionally ORBacus
provides source code as part of an academic license.

A sample application written in Java demonstrates the
benefits of the distributed application infrastructure. It
allows a user to control a mobile robot from a computer
on the network. It can interact with any robots that
implement the Basic Mobile Robot Interface service type,
so that makes it compatible with the B21r, Khepera,
and LEGO Mindstorm robots. The application provides
a service query screen, and a control panel screen, with 8
directions and speed controls for any selected robot. The
application demonstrates that the distributed infrastructure
is application centric rather than robot centric [RQ3], and
is independent of specific robots [RQ4]. The infrastruc-
ture also promotes software reuse since the three robot
interface services can be reused. A web based version of
this sample application was created using JSP and Servlet
technology. Its user interface and deployment diagram are
shown in Fig.5. The user chooses from a list of mobile
robots to control remotely, with a panel of navigation
buttons. A user can simultaneously control the movement
of the selected robots.

V. EVALUATION

In terms of the software development context, the
distributed application infrastructure [RQ1] supports and
promotes a high level of software reuse [RQ7] because
it allows the collaborating application services to be de-
veloped independently of programming language [RQ8]
and operating platform [RQ9]. However, potential com-
patibility issues concerning different versions of CORBA
specification and the relatively high learning curve asso-
ciated with CORBA, could affect the reusability level and
uptake of the infrastructure.

In the operational context, the design and implemen-
tation highlight the application centric nature [RQ2]; it
is possible to create applications that are independent of
the mobile robots’ make and type [RQ4]. Service type
inheritance increases reusability and robot independence,
however more in–depth research and analysis are required
to identify common services for most mobile robot pro-
grams. The example web based controller demonstrates
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EXAMPLE APPLICATION: A . DEPLOYMENT DIAGRAM OF SERVICES,

WEB COMPONENTS AND HARDWARE; B. WEB INTERFACE.

the support for multiple robot applications [RQ5]. Further
work is needed on integrity [RQ6]. The performance of
CORBA was evaluated to help developers and researchers
evaluate the impact on application performance when large
amounts of data are passed between services. The time
lags introduced by remote CORBA calls with parameter
sizes of less than 1KB are less than 2ms, which is
acceptable for distributed robot control [RQ3].

VI. CONCLUSION

Problems in mobile robot software development and
operation are addressed in the context of a research
environment. A design and implementation of a distributed
software infrastructure are presented. The approach was
to create an infrastructure specification for collabora-
tion between components developed in different research
projects, for different robots, including different languages
for different operating environments; the architecture is
inherently distributed. The design contains three layers:
the application layer, infrastructure services layer, and
middleware layer. A CORBA based trading service is used
for the infrastructure services layer, to provide more flex-
ibility for researchers and research implementations. This
distributed software infrastructure provides a backbone for



a broader robot programming environment. Although the
infrastructure is in early development, our current robot
visualisation tool project uses it to interface with robot
services to graphically simulate robots’ behavior [37].
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