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Abstract— Recent experimental results demonstrate that
flies posses a robust tendency to orient towards the frontally-
centered focus of the visual motion field that typically occurs
during upwind flight. In this paper we present a closed loop
flight model, with a control algorithm based on feedback of
the location of the visual focus of contraction, which is affected
by changes in wind direction. The feasibility of visually guided
upwind orientation is demonstrated with a model derived from
current understanding of the biomechanics and sensorimotor
computation of insects. The matched filter approach used to
model the visual system computations compares extremely well
with open-loop experimental data.

I. I NTRODUCTION

Flies have served as a model system for neurobiological
studies of vision and flight [1], [2], and therefore detailed
information is immediately available for biomimetic appli-
cations. In this paper we investigate the possibility of using
the fly’s vision system as the means of counteracting the
effect of wind disturbances during upwind flight. To estab-
lish the feasibility of visually-guided upwind orientation we
have constructed a detailed closed-loop flight simulation,
making use of current research in insect biomechanics and
neurophysiology.

There have been many efforts in the past to apply
mathematical models to the flight behavior of insects. Much
of the earlier work modelled the tracking behavior of flies
[3], [4], [5]. The most significant of these is the effort
by Reichardt and Poggio [6] to rigourously model the
orientation behavior of flies with a closed loop model. All
of these earlier models lumped the entire sensory-input
(visual) to motor-output (torque produced by the wings)
pathway of the fly in a single black box. In recent years
studies have focused on the visual processing of insects,
revealing simple algorithms for collision avoidance based
on estimating optic flow, a local measurement of intensity
motion across the retina [7], [8]. This has inspired several
robotic implementations of insect-based control systems [9],
[10], [11], [12].

The work we present here is very much in the tradition of
these earlier efforts to model tracking behavior in insects.
We have used the improved understanding of the aerody-
namics of insect flight [13], the force production of realistic
wing kinematics [14], and the higher-level processing in
the insect visual system, to ‘shrink’ the black boxes in
earlier models. We seek to demonstrate that through a
faithful model of the fly’s behavior, it is possible to provide
some context within which controlled behavioral assays can
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be interpreted. The results presented here demonstrate the
feasibility of visually-guided upwind orientation, and have
yielded strong agreement with experimental results.
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Fig. 1. Open loop visuo-
motor reflexes inDrosophila.
These data has been replot-
ted from Tammero et al.
[15]. The quantity plotted
on the vertical axis is the
difference between the right
and left wing beat amplitudes
measured by an optical sen-
sor. Each trace represents the
mean± S.D. (shaded area),
from 10 flies.

Fig. 1 shows the results of recent work [15]. In these
experiments large-field motion stimuli were presented in
open loop to tethered flies. Fig. 1 A–D shows the averaged
turning response of the flies measured from an optical
sensor that records wing activity. Fig. 1A corresponds to the
classic optomotor response [16], in which the fly responds
to coherent full field rotatory motion by turning to minimize
retinal slip. The plots in B and C show the mean response of
the fly to front and rear field rotatory motion. The response
in A is shown to be the sum of the responses in B and C (red
line). However, the response in C, clearly contradicts the
predictions of the optomotor response, since the attempted
turn is not in the direction that would minimize the rotatory
stimuli. The response in D shows that the strongest response
is obtained when the fly attempts to orient towards a con-
tracting focus of the motion stimulus. This shows that the
fly can detect the location of the visual focus of contraction
(or is doing something functionally equivalent). The focus
of contraction (expansion) is the point of no motion in a
velocity field induced by pure translation, that all motion
vectors point towards (away from). Hence, this suggests a
control algorithm based on feedback of the movement of
the visual focus of contraction could be used to detect wind
direction, since upwind flight induces a frontally-centered
focus of the visual motion field.
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Fig. 2. Closed loop model used for study of upwind flight.Vw is the
wind disturbance, a vector quantity.

II. CLOSED LOOPMODEL OF UPWIND FLIGHT

A closed loop representation of the fly’s control system
(Fig. 2) is divided into several blocks including body
dynamics and body aerodynamics (plant), the wing aero-
dynamics (actuator), the vision system (sensor) and the
sensorimotor system (controller). The function of the body
dynamics block is to take as inputs the forces and torques
from the wing and body aerodynamics blocks and produce
the resultant translational and rotational motion of the insect
body. In the body aerodynamics block the inputs are the
wind velocity magnitude and direction, the body velocity
and the body rotational position, and the outputs are the
resultant aerodynamic forces on the body. The left and right
wing kinematics are the inputs to the wing aerodynamics
block, which outputs the resultant aerodynamic forces on
the body due to wing motion. The function of the vision
system block is to take as inputs the inertial translationaland
rotational velocity and output an estimate of the visual focus
of contraction location (error). The loop is closed through
the sensorimotor block, which generates parameterized val-
ues for controlled wing kinematics from the estimate of the
visual focus of contraction location.

III. B ODY DYNAMICS

We close the loop in our model around a single axis of
rotation. Therefore, we have restricted the dynamics of the
insect body to planar translatory motion along a single axis
of rotary motion (Fig. 3A). In our simulation we ignore
out-of-plane forces, however the forces generated from our
wing kinematic model are of the order required to balance

the weight of the insect. The translational,r, and rotational,
φ, positions are defined byr = xêx + yêy andφ = φêz,
whereêzb

= êxb
× êyb

. The map from inertial coordinates,
r, to body fixed coordinates,rb, is given by:

rb =

(

cos φ sinφ
− sin φ cos φ

)

r.

We assume the the insect has mass,m, rotational inertia
about theφ axis, J , and experiences applied forceF=
Fxb

(t) êxb
+ Fyb

(t) êyb
, and torqueT= Tφ(t) êzb

. The
equations of motion under these assumptions are given by
Newton’s second law:





mẍ
mÿ

Jφ̈



 =





Fxb
cos φ − Fyb

sin φ
Fxb

sinφ + Fyb
cos φ

Tφ



 .

The resultant applied forceF and torqueT are due to
the aerodynamic forces on the wings and body (Section
V). Wing motion generates unsteady lift and drag, which
is well-approximated with a quasi-steady model. The body
aerodynamic forces result from the relative velocity of the
body with respect to the free stream (wind), and the drag
associated with rotation of the body about thez axis:

Fxb
(t) = FAero,xb

(t) + FWind,xb
(t)

Fyb
(t) = FAero,yb

(t) + FWind,yb
(t)

Tφ(t) = TAero(t) − Cφ̇(t).

Fry and coworkers (2003) measured the rotational inertia,
J , and damping,C, about the morphological yaw axis
(normal to the insect body). As we intend to use the
functional axis of rotation (Fig. 3A) for this simulation,
we assume that the differences in these constants about the
two axes are negligible.

In order to characterize the aerodynamic forces on the
insect body during flight, we analyzed data from experi-
ments performed with Robofly, a dynamically-scaled phys-
ical model of a flapping insect. An insect-shaped body was
subjected to a range of forward velocities in an oil tank at
various angles of attack, with the resultant forces recorded
and reduced to parallel and normal force coefficients (Fig.
3C). The size of the body was scaled so that the Reynolds
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Fig. 3. (A) Insect coordinate frames showing body forces and torques; (B) Force directions acting on the insect body; (C) Force coefficients for parallel
and normal aerodynamic forces.
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Fig. 4. Two representations of the visual system modelling. Fig. (A) shows a schematic diagram of the retina and the motion processing and matched
filter circuitry. A typical EMD response is also shown. Fig. (B) shows the operations of the matched filter on the velocity field vector. The filter is
minimally responsive to the upwind flight profile of local velocities. The filtering process is a projection (dot product). The data superimposed on the
filter result is excerpted from Tammeroet al. [15], showing the open loop turning response ofDrosophila to the location of the focus of expansion.
This simple model of open-loop visual response agrees well with data from tetheredDrosophila.

number (Re ≈ 200) matches what a typical insect sees
during nominal flight(0.1 − 0.3 m/s).

The relative velocity of the insect with respect to the air
(Fig. 3B) is determined by the wind direction and magni-
tude, the body velocity, and the orientation (all specified
in inertial coordinates):V rel = V wind − ṙ. Since the
aerodynamic forces will be computed in the body frame,
we need the relative velocity in body coordinates:

(

Vrel,xb

Vrel,yb

)

=

(

cos φ sin φ
− sin φ cos φ

) (

Vrel,x

Vrel,y

)

.

The magnitude and phase in body coordinates is then

| Vrelb
| =

√

V 2
rel,xb

+ V 2
rel,yb

∠Vrelb
= atan2 (Vrel,yb

, Vrel,xb
) .

Now we can compute the resultant aerodynamic forces:

FWind,xb
=

1

2
ρA | Vrelb

|2 CP (∠Vrelb
)

FWind,yb
=

1

2
ρA | Vrelb

|2 CN (∠Vrelb
),

where ρ is the density of air,A is the projected cross-
sectional area of the insect,| Vrelb

| and ∠Vrelb
are

the magnitude and phase of the relative velocity in body
coordinates, andCN , CP are the normal and parallel force
coefficients that have been reduced from the experimental
force data.

IV. V ISION SYSTEM

Each compound eye of theDrosophila melanogaster con-
sists of approximately 700 units, called ommatidia, arranged
in a hexagonal array. Each ommatidium samples a round
patch of about5◦ of the visual world. The 1400 ommatidia
can sample roughly 85% of the visual space [17]. To
account for the experimentally observed optomotor response
in insects, Hassenstein and Reichardt proposed a model of
visual motion detection based on arrays of spatiotemporal
correlation elements [18]. A local motion detector must

theoretically consist of at least two inputs passing through
asymmetrical channels and combined via a nonlinear el-
ement [19]. Two of these half-detectors are combined
(with mirror-symmetry) to form a directionally-selective
Elementary Motion Detector (EMD). In the Hassenstein-
Reichardt model, a temporal delay provides the asymmetry
and multiplication is the nonlinear interaction. In the sim-
ulation presented, the fly’s retina is modelled as a circular
array of 90 receptor/EMD units, with4o spacing between
receptors. In general, the response of an EMD is dependent
on the visual system structure, i.e. the time delay and the
spacing of the receptors in the retina, and also on properties
of the visual input, such as image contrast and spatial
frequency content. Fig. 4A shows an EMD array, as well
as a typical response curve for an EMD corresponding to
the environment statistics used in the presented simulations.
It is important to note the distinction between the velocity
field, a purely geometric object, and the optic flow field,
which is the estimate of the velocity field experienced by a
moving fly, as computed by the EMDs.

Krapp and Hengstenberg [20] show that the tangential
neurons of the lobula plate in the blowfly,Calliphora,
show strong preference to certain directions of local motion.
Individual tangential cells receive inputs from many EMDs
and output signals that appear tuned to estimate a particular
feature of the optic flow field that the fly would experience
by self-motion during flight [21], [20]. This observation
has given rise to the idea that certain cells function as
‘matched filters’ to patterns of optic flow that could di-
rectly drive the flight control muscles. Applying these
ideas to our simulated planar world, the optic flow field
is a vector spanning the field of view. For flight oriented
in the direction of the wind, there cannot be a sideslip
component to the local velocities measured by the EMDs.
Flies exhibit a preference for orienting towards the focus
of contraction of the velocity field, which means they can
only orient upwind if they are flying slower than the wind.
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Fig. 5. The sensorimotor control system interpolates between captured wing kinematics to generate yaw torques. (A) Wing angle parameterizations for
the robotic apparatus used to measure aerodynamic forces. (B)Two wing strokes captured fromDrosophila in free flight and the corresponding flight
forces measured on the robot and computed via a quasi-steady model. (C) Torque about the fly’s yaw axis produced by one wing as afunction of the
control parameter.

This suggests a simple strategy for visual wind detection—
fly slowly and seek out foci of contraction. We designed a
filter that is minimally responsive to the desired profile of
local velocities (the equilibrium condition). Because these
responses are (roughly) sinusoids, the reasonable filter is
simply the profile itself but phase shifted by90◦, and
the filtering process is the dot product of the two curves.
This interpretation of matched filters agrees with some of
the Lobula Plate Tangential Cells, which give cosine-like
response to stimulation in various directions (with a peak
in the so-called locally-preferred direction). An exampleof
the filtering process and some typical velocity field vectors
are shown in Fig. 4B. Since the EMD array produces an
estimate of the velocity field, it is instructive to analyze the
filtering process on the velocity field (true optic flow):

ωlocal = ωo −
| V b |

R
sin (θ − ∠V b),

where ωo is the instantaneous rotation,Vb is the instan-
taneous absolute velocity in body coordinates,θ is the
angular coordinate in the body frame, and R is an arbitrary
fixed distance to the environment. The matched filter is
ωfilt = cos θ, and the filtering operation is a dot product,

ev = 〈ωlocal(θ), ωfilt(θ)〉

=
1

2π

∫ 2π

0

ωlocal · ωfilt dθ

= −Kv sin (∠V b),

where Kv is the gain used in the visual system. As we
can see in Fig. 4B, this open loop result agrees well with
the experimental data from Tammeroet al. [15]. In our
simulation we use the EMD array’s estimate of the velocity

fields, which does not alter the fundamental shape of this
response curve, but is not amenable to simple analysis.

V. W ING AERODYNAMICS AND SENSORIMOTOR

CONTROL

The flight forces generated by the simulated fly’s wings
are implemented as a quasi-steady, semi-empirical model
(details of this model are given in Sane and Dickinson [14]).
In general, the instantaneous force produced by a wing is the
sum of several effects: translation, rotation, added mass,and
other unsteady effects. All of these forces act normal to the
wing, which rotates, translates, and deviates continuously
throughout a single wing stroke (the parameterization of
the wing kinematics is shown in Fig. 5A). The translational
force is the dominant term, accounting for roughly 90% of
the force generated by the wing. In our simulations, we
only use the translational component of the aerodynamic
forces. To further simplify matters, the fly is assumed to
hover, thus operating at an advance ratio of zero. Although
not strictly valid, the hovering model provides a reasonable
force estimate for a fly moving slowly (advance ratios under
0.3). Fig. 5B shows the performance of this simplified
model in comparison to the forces measured when the
same wing kinematics are run on the robotic model. The
torque produced by each wing about the fly’s yaw axis is
determined directly from the force vector predicted by the
aerodynamic model. The right and left wings often take on
distinct wing kinematics. The net force and torque generated
by the wings combines the contributions from right and
left wings appropriately:FAero,xb

= Fx,left + Fx,right;
FAero,yb

= Fy,left − Fy,right; TAero = Tyaw,left −
Tyaw,right.

Wing kinematics were selected from an existing database
of wing stroke patterns that correspond to actual insect
kinematics (the collection of these data is detailed in Fryet
al. [13]). We choose wing kinematics using two selection
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Fig. 6. Two equivalent representations of responses to stepchanges in wind direction are shown: (A) simulated 20 second flight trajectories, with fly
positions plotted every 1.5 seconds. All trajectories start at the origin, and the wind direction is shown in the compass.(B) Step responses in wind
direction, showing zero steady-state error. The high frequency oscillations shown correspond to the subtle perturbations on the fly’s instantaneous velocity
induced by the wing stroke cycle. All measurements are in radians.

criteria: the force in thex direction should result in forward
flight not exceeding velocities of 30 cm/s (advance ratio
of approximately 0.3) and torques in yaw must correspond
to realistic angular rotations. Since the model uses only
the relatively slow visual system, it is necessary to limit
torque in the yaw direction, effectively limiting the rate
of angular rotation the insect experiences. The yaw torque
requirement stipulates that the difference in torque between
the right and left wing should be on the order of10−11

Nm. Two sets of wing kinematics were selected that met the
criteria discussed above, one corresponding to low torque
kinematics and the second to kinematics generating higher
torque. We define a parameter,λ, to span the range of
wing stroke kinematics between the low and high torque
patterns.λ ranges smoothly between 0 and 1, defining a
linear weighting between the two endpoint kinematics. Fig.
5C shows the torque about the fly’s yaw axis produced
by one wing as a function ofλ. We have found that
linearly interpolating between two sets of kinematics gives
a smooth transition between the forces produced by these
endpoint kinematics. In our simulation we refer to the
sensorimotor block as the control system that couples the
sensory information from the visual system to the flight
muscles. This system takes the error from the visual system
as an input and generates the control values for each wing:
λR = 1− k|ev|I[0,∞)(ev), andλL = 1− k|ev|I(−∞,0](ev),
wherek is the control system gain, andI(−∞,0](ev) is an
indicator function whose value is 1 whenev ∈ (−∞, 0],
and 0 otherwise. Furthermore,ev is restricted to the range
[-1 , 1] to ensure thatλR andλL are in the range [0 , 1].

VI. RESULTS

The stated goal of the project is to modulate upwind
flight, and so our controller sets the torque about the fly’s
yaw axis. To test the ability of the closed loop system to
orient the fly in the upwind direction, we presented ‘step
inputs’ to the control system, where the fly was given an
initial velocity and orientation and the wind was set at a
fixed magnitude and direction. In the experiments presented,
the fly’s initial orientation is set in the positivex (forward)
direction, with some small (0.1 m/s) velocity in the same
direction. The wind magnitude is set at 0.4 m/s, which
is always faster than anything the fly could achieve. Five
different wind directions are then introduced.

Two equivalent ways of displaying the results are shown
in Fig. 6. In each plot of Fig. 6B, the dashed horizontal line
shows the wind direction set point; the solid horizontal line
shows the desired body orientation angle for upwind flight;
the solid trace corresponds to the orientation of the inertial
reference frame velocity; the dashed trace corresponds to
the body orientation angle. The numbered markers on the
right side of each response plot correspond to the numbered
trajectories and wind directions in Fig. 6A. It is clear from
both representations of the step responses that the tracking
works, in the sense that the steady state error is driven to
zero, resulting in upwind orientation.

From the step response and frequency response data (Fig.
7) it is clear that the closed loop system is stable. Stability
of this system corresponds to orientation upwind, evidenced
by the zero steady state error in the step response plots. Cast
as a tracking problem, the tracking error is the amount of
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sideslip the fly experiences, which is the difference between
the inertial velocity orientation and the orientation of the
fly’s body (these are the two step responses plotted in Fig.
6). For (backwards) upwind flight this difference should be
π, which is achieved at steady state, so the tracking error
is zero. Interpreting the frequency response data shown in
Fig. 7 in terms of tracking the mean wind direction, we
can see the system is insensitive to disturbances, except at
very low (less than 0.01 Hz) frequencies. Furthermore, the
frequency response is not significantly effected by changing
wind speeds.

VII. C ONCLUSIONS

In this project we have investigated the use of the fly’s
vision system as a sensory modality to counteract the effect
of wind disturbances during upwind flight. A closed loop
insect flight simulation was constructed based on realistic
models of the physics and biology, demonstrating the fea-
sibility of visually guided upwind orientation.

Closed loop simulations show stable upwind orienta-
tion behavior over the range of behaviorally-relevant wind
speeds (0.4 to 1.2 m/s) and sensitivity only to very low
frequency disturbances (0.01 Hz). The resulting open loop
response of the visual sensory system, based on a matched
filter approach used to model the computations performed in
insects, agrees extremely well with open loop experimental
data gathered from real animals [15].

In future work we expect to extend this simulation to
three dimensions and six degrees of freedom, and in-
vestigate vision algorithms that take advantage of global
optic flow cues. Also of immediate interest is the velocity
control problem associated with transition from backwards
to forward flight in the upwind direction.
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