
Abstract- The problem of robot locomotion has 
historically been considered as a problem in 
control. Despite years of research by many labs, 
the best robots cannot match the general 
performance of a human child. 

Here we suggest that we re-examine the focus 
on control and consider locomotion from a new 
perspective, that of perception. 

This new perspective is suggested by recent 
results in the incorporation of visual information 
with walking and in the incorporation of reflexes 
during walking. 

It is suggested that a key role of the central 
pattern generator is to coordinate the fusion of 
the influence of perception on the step cycle. 

1. Introduction 
Walking machine research spans about 40 years.  
The Phoney Pony, built in the 1960’s at the 
University of Southern California [2], is 
considered the first computer controlled walking 
machine. Since then, the Leg Lab at MIT has 
given rise to machines that hop [3], perform 
gymnastics [4] and that walk using simplified 
control laws [5].   

Dynamical systems techniques have been 
exploited in real robots. Case Western Reserve 
University has produced a number of highly 
capable hexapod robots based on inspiration 
from insects [6]. Recently developed quadrupeds 
using dynamical coupling of the environment, 
the robot’s mechanics and its control system 
have been demonstrated [7, 8].  

We have investigated how to use adaptive 
techniques in the context of the dynamical 
systems approach including robots that learn 
how to walk [9, 10].  

Advances in the construction of robots and 
actuators has made significant progress recently. 
Researchers at Stanford have been highly 
innovative in fundamentally changing the way 
robots are constructed [11] and in  the realization 
of a hexapod with extremely high running 
frequency [12]. Exceptionally highly crafted 

commercial robots from Honda and Sony have 
been recently introduced.  The MIT leg lab has 
developed an innovative series of elastic actuator 
which is perhaps the first self-contained electric 
actuator suitable for systems that couple 
environment and robot dynamics [13].  

Finally, the problem of addressing coupling of 
the environment to the robot using long-range 
sensors (as opposed to joint sensors and contact 
sensors) has recently been addressed. The ambler 
at CMU was one of the first walking machines to 
effectively incorporate distal sensor information 
in the selection of gait [14]. Very recently, work 
has been done developing methods for smoothly 
modulating gait based on visual perception [15, 
16] in the context of dynamical systems 
techniques.   

However, given so much research effort, robot 
locomotion has not reached its potential. 
Humans, in contrast to walking robots, are 
capable of much more than slow, stable gaits (or 
even dynamic hopping). In normal situations, the 
human may change direction, avoid bumping 
into other people, step onto a moving platform, 
descend down a ladder, play a game of soccer,  
skip rope or stand on the deck of a rocking boat. 

Common to all of these tasks is swift, smooth 
coupling interaction with the environment.  

A common lament among researchers is that 
walking machines are difficult to control. There 
is often an assumption that the key difficulty in 
walking machines is the control problem. This 
belief may be a key unexamined assumption of 
walking machine research.  

It is evident that the gateway from the 
environment to the robot is via perception.  If the 
robot cannot perceive what the environment is 
‘suggesting’, then the robot would have a 
perceptual blindness that cannot be compensated 
by the most sophisticated control. Perhaps less 
emphasis should be placed on control and more 
on the problem of perception.  

 Here we examine the walking machine 
problem from the point of view of perception, 
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and propose that ‘control problems’ may be 
rooted in choosing the correct perceptual 
elements to extract from the world.  

The organization of this paper is as follows. 
(1) We will argue that the control of walking 

is intimately linked to perception. 
(2) We will recast the central pattern generator 

(CPG) system, found in the spinal cord of 
animals, as a structure for integration of 
perception.  

(3) We will discuss the problem of perceptual 
overload. We will outline a general strategy for 
sorting meaningful information from an 
enormous flow of perceptual information 
generated during walking. 

(4) We will discuss how to associate 
potentially meaningful percepts with motor 
actions. 

(5) We will discuss future challenges in 
walking machines and perception. 

2. The Locomotion/Perception link 
Walking machines feature an array of sensors: 
touch, force, vision, and vestibular. However, the 
control system of a walking machine requires 
more than sensory information. Walking 
machines require perception.   

For our purposes, let us define perception as 
the process of computing a percept, or an 
element of knowledge about the robot-
environment relationship. Percepts derive 
ultimately from sensor information. This 
perceptual computation extracts fundamental 
qualities from the sensory array that do not 
depend on the specifics of the data, but rather on 
the relationship between sensor elements.   

Once percepts are formed, the original sensor 
information is lost and cannot be recovered by an 
inverse computation. The construction of 
percepts is fundamental to the control of walking 
machines.  Many of the problems unique to 
walking machines are tied to the need to discover 
an appropriate set of percepts needed for control. 

Let us consider certain examples. The Center 
of Pressure, CoP, (coincident with the Zero 
Moment Point) is where normal contact forces 
are balanced so as to produce no net tangential 
torque on the foot. It can be imaged that at the 
CoP, the robot could balance momentarily on the 
tip of pencil. The relationship between CoP and 
the center of gravity determines a moment acting 
on the robot’s body.  

From CoP, it is impossible to reconstruct the 
unique foot forces that gave rise to it. Therefore, 
we consider the knowledge of the CoP point as a 

percept.  In a similar way, FRI or Foot Rotator 
Index can be considered a percept. The reader is 
referred to Goswami’s work for a comparison 
between the CoP, ZMP and FRI concepts [17]. 

An open question in human perception is 
whether CoP or FRI or neither are perceived and 
used in the control of human locomotion.  

Now, even if FRI or CoP is a kind of 
perception, it may not be a particularly useful 
perception.  A useful perception might be one 
that indicated an impending fall which requires a 
certain kind of correction. Or, a perception that 
indicated that given the current state, new 
motions are now possible (such as a quick turn, 
or a jump or a braking motion).  CoP/ZMP or 
FRI, in themselves, would probably not be useful 
percepts. Rather, perception of the CoP/ZMP 
entering certain zones, at certain points of the 
step cycle, might form the basis of percepts 
which trigger stabilizing force application.  

Another example of perception, which 
explicitly connects to action, is the idea of an 
affordance.  The environment both assists and 
inhibits movement. J.J. Gibson made the 
hypothesis that animals can directly perceive this 
quality of the environment and called this 
percept an affordance [18]. Recent 
neurophysiological evidence has pointed to the 
idea that areas of the brain dealing with spatial 
perception may compute movement affordances 
[19].  

Reflexes in animals are a third example. In 
CPG based systems researchers have found the 
stumble correction reflex [20] important [8, 16]. 

In the animal world, if the top (dorsum) of a 
cat’s paw is touched while the limb is in swing 
phase, the animal will retract its limb in a 
stereotypical fashion. This behavior prevents the 
animal/robot from stumbling when contacting a 
low level obstacle. If the limb is in stance, the 
limb has a decrease in extension, followed by a 
large impulse which causes an extended flexion 
in the next swing phase [20].  

What is important here is that clearly the 
animal is forming the percept of ‘something that 
may cause it to trip.’ 

As before, information is thrown away. It is 
apparently not important which sensor elements 
are triggered, as the response is similar even if 
parts of the leg closer to the body are stimulated.  

This stumble correction is a very low level 
example. However, it is important because it also 
illustrates how the Central Pattern Generator 
integrates perceptual information into the step 
cycle. The response to the percept is clearly 
dependent on the phase of the step cycle.   



A fascinating percept, which is related to the 
stumble correction reflex, is a visual-tactile 
response reported by Graziano [21, 22]. 
Graziano describes neurons in the brain related 
to spatial awareness that respond not only to 
touch on the surface of the skin, but impending 
touch. That is, the cell responds to visual 
information, yet the frame of reference of the 
visual information is the surface of the skin. 

This kind of perception would be remarkably 
useful in controlling limb movement in cluttered 
environments. 

A final property of perception is that it 
appears to be used discontinuously. It can be 
experience sporadically [23]. A perception 
driven robot needs some autonomous center to 
generate a stream of commands, unlike a 
feedback control system. 

In summary, walking robots should be thought 
of as perception driven devices.  

3. The role of CPGs in Perceptual 
Integration 
If percepts are computed sporadically, another 
structure is needed which can generate smooth 
pattern movement in the moments between the 
arrival of new percepts.  In addition, this 
structure must be capable of fusing and 
arbitrating between many perceptual inputs. 
Further modulations suggested by percepts 
should be smoothly integrated into this system. 

In biological systems, the Central Pattern 
Generator circuits in the spinal cord and 
associated structures fill this role. 

CPGs have been well studied and applied to 
the control of simulated and real robots [8, 9, 24-
33].  

A central feature of the CPG is that in the 
absence of sensory of higher level input, these 
circuits will produced a pattern of rhythmic 
activity sufficient to generator locomotor like 
motion of limbs. 

In the example of the stumble correction 
reflex, we clearly see the so-called phase 
dependence of the response.  

Finally, due to the overall organization of the 
spinal cord, all higher level commands must be 
integrated in this region before proceeding to the 
muscles. Direct control of the limb and digits is 
an exceptional case seen in few species.  

Thus, while this center has been modeled as a 
rather simple group of coupled oscillators, fully 
explaining the mechanism within the spinal cord 
of animal may shed light on how to fuse 
perceptually triggered commands. 

4. Perceptual Overload 
A robot/animal’s sensory array is continuously 
stimulated during movement. Because 
locomotion is largely periodic, much of this 
sensory data is repetitive, predictable, and can 
therefore be separated and filtered out from the 
rest of the incoming data. 

All animals have this ability to separate the 
perceptual consequence of self-generated 
movement from that of their environment. For 
example, certain fish hunt prey using an 
electrosense sense system. Movement of the 
body can activate this system. These fish are able 
to cancel out this self-generated stimuli by 
predicting the consequences of self-generated 
movement [34]. This ability involves a 
cerebellar-like structure. 

Movement stimulates most sensor modalities 
and results in systematic changes in the 
perceptual stream. For example, optic flow, 
stereo perception, tactile stimuli all changes 
during locomotion. How can the robot (or 
animal) distinguish self-generated stimuli from 
that generated by the environment? 

A simple structure for accomplishing that is 
given shown for the case of Optic flow in Fig 2. 
In this case, computation is applied to the visual 
stream to create perceptual elements indicating 
‘optic flow’ (or more correctly normal flow) in 
the image.   

At the same time, CPG phase information is 
presented to a Neural Network Predictor. The 
phase information uses interval coding. At each 
instant in time, a subpopulation of neurons 
within the neural network predictor are activated 
by this phase signal.  

The activated subpopulation can then learn an 
association between OF events and joint position 
information. 

As a result, a prediction can be made of what 
OF events should be experienced by the robot at 
a particular time. This expectancy reflects the 
flowfield generated by self-movement. 

By comparing the expected versus the actual 
OF field, it is possible to tease out fine variations 
in the environment. 

Using this approach, we could find a 1 cm 
high surface variation while walking [15], see 
Figure 2.  

The identical structure is not dependent on the 
perceptual type. We can identify anomalies in 
tactile foot patterns and stereo information as 
well [16]. For example, as the robot is walking, a 
very tiny push on the robot’s body is easily 
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Figure 2. Obstacle detection success rate. The light gray 
line indicates success rate when no phase dependent 
prediction is used. As can be seen, objects must be about 
4 cm or taller to be reliably detected. In contrast, the 
dark line shows the success rate with prediction.  The 
results are much better, particularly for small feature 
size. See [1] for a full description of the experimental 
setup.

extracted in the sensory pattern of tactile foot 
falls. 

5. Associating Novel Precepts 
with Action 
Using the prediction system described above, we 
can tease out anomalies in the perceptual stream. 
What remains is to produce some action based 
on these anomalies.  This forms an association 
between an perceptual anomaly and action. 

In order to form an association, we must 
determine which events are meaningful. To do 
this, we must identify events which have motor 
consequences. 

In [16]we used the occurrence of a stumble 
reflex as an indication that something is wrong. 
Kimura and colleques [35] have  illustrated 
nicely how various reflexes can be used to 
quickly correct gait before the robot falls over by 
use of a reflex interacting with the pattern 
generator circuits. 

We used a similar reflex as an indication that 
a destabilizing event occurred. 

Then, by the use of reinforcement learning 
techniques, we formed an association between 
novel stimuli and the reflex in question. 

Once this association was learned, the next 
time the robot encountered the same anomalous 
stimuli pattern, the appropriate reflex was 
triggered before the robot reached the obstacle.  
As a result the robot stepped smoothly over 
obstacles. See Figure 3. 

6. Future Challenges 
The initial work has yielded very encouraging 
results. Under the paradigm that we have 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1. Prediction of Optic Flow Processing.
Based on Gait phase and joint angle, a Neural
network predicts possible OF events in the image.
Simultaneously, a visual stream is processed and
optic flow events are generated from real data.  The
Neural Predictor updates its estimates. A
comparison module computes the difference
between the actual and expected optic flow events.
The comparator adjusts its sensitivity based on
statistical assumption about the frequency of ‘novel
stimuli’ in the environment.  If the rate of novel
stimuli reaches a predefined threshold. The robot
stops, having detected an environmental anomaly.
In future implementation, this anomaly detection
may be used to adjust foot placement and trigger
the robot to step over the obstacles. See a
description of how this was done using another
visual cue, stereopsis, in. 
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outlined, the following questions must be 
answered: 

What is the appropriate set of percept 
necessary to guide locomotion? These will 
include visual, vestibular, and contact pressure 
cues etc.  

Second, how do we form perceptual 
expectancy caused by self generated movement 
under every possible configuration a robot may 
get into. Humans take a very long time to learn 
complex locomotive tasks. Perhaps this time is 
being used to learn new perceptual structures. 
We speculat that once a robot does evolve this 
capability, it may experience some of the same 
maladies of humans including motion sickness, 
nausea, and possibly dizziness.  

Third, a problem not mentioned here is that in 
order for a system to learn what is expected, it 
must be able to generate a nominal gait on its 
own, and within the context of CPGs. Recent 
work [10] illustrates how a CPG can be tuned 
automatically to generate walking in a quadruped 
over a range of initial condition. A similar 
strategy should be developed for bipeds if 
possible. 

Fourth, we must consider the problem of 
voluntary changes in movement. Certainly, a 
robot one day be able to ‘dance’ with the 
environment and interact smoothly with it. Yet it 
must also be able to choose between alternatives 
in order to truly duplicate human locomotor 
capability. 

 
 
 
 

1. Andersen, R., Multimodal integration for the 
representation of space in the posterior 
parietal cortex. Philos Trans R Soc Lond B 
Biol Sci, 1997. 352: p. 1421-8. 

2. Frank, A.A., Automatic Control Systems for 
Legged Locomootion. 1968, University of 
Southern California, Los Angeles. 

3. Raibert, M.H., Legged Robots that Balance. 
1986, Cambridge: MIT Press. 

4. Playter, R.R. and M.H. Raibert. Control off 
a biped somersault in 3D. in International 
Conference on Intelligent Robots and 
Systems. 1992. Raliegh, NC: IEEE. 

5. Pratt, J. and G. Pratt. Exploiting Natural 
Dynamics in the Control of a 3D Bipedal 
Walking Simulation. in Proceedings of the 
International Conference on Climbing and 
Walking Robots (CLAWAR99). 1999. 
Portsmouth, UK. 

6. Beer, R.D., Q. R.D., H.J. Chiel, and R.E. 
Ritzmann, Biologically-Inspired Approaches 
to Robotics. Communication of the ACM, 
1997. 40(3). 

7. Kimura, H., Y. Fukuoka, K. Konaga, Y. 
Hada, and K. Takase. Towards 3D Adaptive 
Dynamic Walking of a Quadruped Robot on 
Irregular Terrain by Using Neural System 
Model. in IEEE&RSJ IROS 2001. 2001. 
Hawaii: IEEE. 

8. Kimura, H., Y. Fukuoka, Y. Hada, and K. 
Takase. Adaptive Dynamic Walking of a 
Quadruped Robot on Irregular Terrain 
Using a Neural System Model. in ISRR. 
2001. Lorne, Australia. 

9. Lewis, M.A., A.H. Fagg, and A. Solidium. 
Genetic Programming Approach to the 
construction of a neural network for control 
of a walking robot. in 1992 IEEE 
International Conference on Robotics and 
Automation. 1992. Nice, France. 

10. Lewis, M.A., Gait Adaptation in a 
Quadruped Robot. Autonomous Robots In 
Press, 2002. 

11. Bailey, S.A., C.J. G., M.R. Cutkosky, and 
R.J. Full. Biomimetic Robotic Mechanisms 
via  Shape Deposition Manufacturing. in 
Robotics Research: the Ninth International 
Symposium. 2000. London: Springer-Verlag. 

12. Bailey, S.A., J.G. Cham, M.R. Cutkosky, 
and R.J. Full. "Comparing the Locomotion 
Dynamics of a Cockroach and a Shape 
Deposition Manufactured Biomimetic 
Hexapod". in International Symposium on 
Experimental Robotics (ISER2000). 2000. 
Honolulu, HI. 

 
Figure 3. From video data of the real robot while
stepping over an obstacle. Kinematic diagram of the
right leg of the robot stepping over an obstacle under
automatic control of the learning algorithm here.   



13. Robinson, D.W., J.E. Pratt, D.J. Paluska, 
and G.A. Pratt. Series Elastic Actuator 
Development for a Biomimetic Walking 
Robot. in IEEE/ASME INT'L Conf on Adv. 
Intell. Mechatronics. 1999: IEEE. 

14. Krotkov, E. and R. Simmons, Perception, 
planning and control for autonomous 
walking with the ambler planetary rover. 
IEEE Transactions on Robotics and 
Automation, . 1996. 15: p. 155-180. 

15. Lewis, M.A. Detecting Surface Features 
During Locomotion Using Optic Flow. in 
IEEE International Conference on Robotics 
and Automation. 2002. Washington, D.C.: 
IEEE. 

16. Lewis, M.A. and L.S. Simó, Certain 
Principles of Biomorphic Robots. 
Autonomous Robots, 2001. 11(3): p. 221-
226. 

17. Goswami, A., Postrual Stability of Biped 
Robots and the Foot Rotation Indicator. 
International Journal of Robotics Research, 
1999. In Press. 

18. Gibson, J.J., The Ecological Approach to 
Visual Perception. 1979, London: Lawrence 
Erlbaum Assoc. 

19. Arbib, M.A., From visual affordances in 
monkey parietal cortex to hippocampo-
parietal interactions underlying rat 
navigation. Philos Trans R Soc Lond B Biol 
Sci, 1997. 352: p. 1429-36. 

20. Forssberg, H., Stumbling Corrective 
Reaction: A Phase-Dependent 
Compensatory Reaction During 
Locomotion. J. of Neurophysiol., 1979. 
42(4): p. 936-953. 

21. Graziano, M.S.A., X.T. Hu, and C.G. Gross, 
Visuospatial Properties of Ventral Premotor 
Cortex. J. Neurophysiol, 1997. 77: p. 
22682292. 

22. Graziano, M.S.A. and C.G. Gross, Spatial 
maps for the control of movement. Current 
Opinion in Neurobiology, 1998. 8: p. 195-
201. 

23. Patla, A.E., A. Adkin, C. Martin, R. Holden, 
and S.D. Prentice, Characteristics of 
voluntary visual sampling of the 
environment for safe locomotion over 
different terrains. Experimental Brain 
Research, 1996. 112(3): p. 513-522. 

24. Cohen, A.H., P.J. Holmes, and R.H. Rand, 
The nature of the coupling between 
segmental oscillators of the lamprey spinal 
generator for locomotion: A mathematical 
model. J. Math. Biol., 1982. 13: p. 345-369. 

25. Bay, J.S. and H. Hemami, Modeling of a 
neural pattern generator with coupled 
nonlinear oscillators. IEEE Trans. on 
Biomedical Engineering,, 1987. BME-
34(4): p. 297-306. 

26. Matsuoka, K., Mechanisms of Frequency 
and Pattern Control in the Neural Rhythm 
Generators. Biol. Cybern, 1987. 56: p. 345-
353. 

27. Rand, R.H., A.H. Cohen, and P.J. Holmes, 
Systems of Coupled Oscillators as Models of 
Central Pattern Generators, in Neural 
Control of Rhythmic Movement in 
Vertebrates, A.H. Cohen, S. Rossignol, and 
S. Grillner, Editors. 1988, Wiley: New 
York. 

28. Taga, G., Y. Yamaguchi, and H. Shimizu, 
Self-Organized Control of Bipedal 
Locomotion by Neural Oscillators in 
Unpredictable Environment. Biol. Cybern., 
1991. 65: p. 147-159. 

29. Collins, J.J. and I.N. Stewart, Coupled 
Nonlinear Oscillators and the Symmetries of 
Animal Gaits. J. Nonlinear Sci, 1993. 3: p. 
349-392. 

30. Zielinska, T., Coupled oscillators utilised as 
gait rhythm generators. Biol. Cybern., 1996. 
74: p. 263-273. 

31. Jalics, L., H. Hemami, and Y.F. Zheng. 
Pattern generation using coupled oscillators 
for robotic and biorobotic  adaptive periodic 
movement. in 1997 IEEE International 
Conference on Robotics and Automation. 
1997: IEEE. 

32. Lewis, M.A., Self-organization of 
Locomotory Controllers in Robots and 
Animals, Ph.D. Dissertation, in Department 
of Electrical Engineering. 1996, University 
of Southern California: Los Angeles. 

33. Lewis, M.A., R. Etienne-Cummings, M. 
Hartmann, A.H. Cohen, and Z.R. Xu, An In 
Silico Central  Pattern Generator: 
Oscillator, Entrainment, Motor Neuron 
Adaptation & Biped Mechanism Control. in 
submission, 2002. 

34. Bastian, J., Modulation of Calcium-
Dependent Postsynaptic Depression 
Contributes to an Adaptive Sensory Filter. J. 
Neurophysiol, 1998. 80(6): p. 3352-3355. 

35. Kimura, H., Y. Fukuoka, Y. Hada, and K. 
Takase. 3D Adaptive Dynamic Walking of a 
Quadruped Robot by Using Neural System 
Model. in Proc. of 4th Int. Conf. on 
Climbing and Walking Robots 
(CLAWAR2001). 2001. Karlsruhe. 

 


