
NSL/ASL: Distributed Simulation of Modular Neural
Networks

Alfredo Weitzenfeld, Oscar Peguero, Sebastián Gutiérrez

Departmento Académico de Computación
Instituto Tecnológico Autónomo de México (ITAM)

Río Hondo #1, San Angel Tizapán, CP 01000
México DF, MEXICO

email: alfredo@lamport.rhon.itam.mx

Abstract. As neural systems become large and complex, sophisticated tools are needed to
support effective model development and efficient simulation processing. Initially, during
model development, rich graphical interfaces linked to powerful programming languages and
component libraries are the primary requirement. Later, during model simulation, processing
efficiency is the primary concern. Workstations and personal computers are quite effective
during model development, while parallel and distributed computation become necessary
during simulation processing. We give first an overview of modeling and simulation in NSL
together with a depth perception model example. We then discuss current and future work with
the NSL/ASL system in the development and simulation of modular neural systems executed in
a single computer or distributed computer network.

Keywords: Neural Networks, Simulation, Modular, Distributed

1 Introduction
The first task in modeling a neural system is creating a desired neural architecture.
Creating a neural architecture involves choosing appropriate data representations for
neural components while specifying their corresponding interconnections and full
network dynamics. Additionally, network input and control parameters are selected.
When modeling biological systems designed to reproduce anatomical and
physiological data in a faithful way, there are many ways to characterize a neuron.
The complexity of the neuron depends primarily on the accuracy needed. For
example, compartment models [1] are quite successful in modeling detailed electric
transmission in neurons. When behavioral analysis is desired, the neural network as a
whole may often be adequately analyzed using simpler neuron models such as the
analog leaky integrator model [2]. And sometimes even simpler neural models are
enough, as the discrete McCulloch-Pitts binary model [3] where a neuron is either on
or off during each time step. The last two neural models are quite appropriate when
modeling analog or binary artificial networks, respectively.

A large number of simulation systems have been developed to support different
types of neural modeling [4][5]. Among these, the most outstanding at the single
neuron level are GENESIS [6] and NEURON [7] specifically designed to model cells
taking into account their detailed morphology. For large-scale neural networks,
simulators such as Aspirin/MIGRAINES [8] and NSL - Neural Simulation Language
[9] have been developed to support both biological and artificial systems.

2 Neural Modeling
While neural modeling is carried out at many levels of granularity, we emphasize in
NSL modularity at each of these levels. In such a way, a neural architecture is
described at the highest level of abstraction in terms of multiple neural modules
representing the overall neural functionality in the model specified each in terms of
their underlying neural networks implementations. Thus, a complete neural
architecture would consist of (1) a set of interconnected neural modules and (2) a set
of interconnected neurons specifying each neural module.

2.1 Neural Modules
Neural modules in NSL are hierarchically organized in a tree structure where a root
module may be further refined into additional submodules as shown in Figure 1. The
hierarchical module decomposition results in module assemblages – a network of
submodules seen in their entirety in terms of a single higher-level neural module.
Modules (and submodules) may be implemented independently from each other in
both a top-down and bottom-up fashion, an important benefit of modular design.

data in
data outModule Level1

Module Level2

Fig. 1. NSL computational model is based on hierarchical interconnected modules. A module at
a higher level (level 1) is decomposed (dashed lines) into two interconnected (solid arrow)
submodules (level 2).

The actual module representation includes a set of unidirectional input and output
data ports supporting external communication between modules. These ports
represent module entry or exit points, used to receive or send data from or to other
modules, as shown in Figure 2.

......... ...

din1

dinn

dout1

doutm

Module

Fig. 2. Each Module may contain multiple input, din1,...,dinn, and output, dout1,...,doutm, data
ports for unidirectional communication.

2.2 Neural Networks
Each neural module is implemented by its underlying neural network and may recruit
any number of neurons for its implementation, as shown in Figure 3.

data in
data out

Module Level

Neural Network Level

Fig. 3. A module encapsulates a neural network. Although neurons could be treated themselves
as modules for further refinement, we treat them as separate entities, thus drawing them as
spheres instead of cubes.

While different neural models have been simulated with NSL, we consider at the
highest level a “simple” neuron having its internal state described by a single scalar
quantity or membrane potential mp, input s and output mf, specified by some
nonlinear function, as shown in Figure 4.

mp

neuron

s mf

input output

Fig. 4. Single compartment neural model represented by its membrane potential mp, and firing
mf. s represents the set of inputs to the neuron.

The neuron may receive input from many different neurons, with only a single
output branching to many other neurons. The choice of transformation from s to mp
defines the particular neural model utilized. The leaky integrator model is described
by

() () ()tstmp
dt

tdmp +−=τ
where the average firing rate or output of the neuron, mf, is obtained by applying
some "threshold function" to the neuron's membrane potential where σ is usually
described by a non-linear function also known as a threshold function, such as ramp,
step, saturation or sigmoid,

 () ()()tmptmf σ=
The neural network itself is made of any number of interconnected neurons,

where the most common formula for the input to a neuron is

()∑
−

=
=

1

0

n

i
iij tufwsv

where ufi(t) represents the firing of neuron ui whose output is connected to the jth
input line of the neuron vj, and wi is the weight on that link (up and vp are analogous
to mp, while uf and vf are analogous to mf).

2.3 Depth Perception Model
In depth perception, a three dimensional scene presented to the left eye differs from
that presented to the right eye. A single point projection on each retina corresponds to

a whole ray of points at different depths in space, but points on two retinae determine
a single depth point in space, the intersection of the corresponding projectors, as
shown in Figure 5.

C

L R

OA OA

-qmax

-qmax +qmax

+qmax

qRqL

q0 q0

qLC
qRC

Fig. 5. Target C in space is projected to the two retinae L and R at different disparity points,
qLC and qRC.

A particular problem in depth perception is that of ghost targets, where for
example as shown in Figure 6, the projections for targets A and B correspond to the
same projections from ghost targets C and D resulting in ambiguities.

C

A B

D

L R

OA OA

-qmax

-qmax +qmax

+qmax

qRqL

qLB, qLD

q0 q0

qLA, qLC qRB, qRC

qRA, qRD

Fig. 6. Targets A and B generate the same projections as ghost targets C and D in the two
retinae.

The depth perception model developed by House [10] uses two systems to build a
depth map, one driven by disparity cues while the other is driven by accommodation
cues. The accommodation driven field receives information about focal length and -
left to its own devices - sharpens up that information to yield depth estimates. The
disparity driven-field receives difference in retina projection to suppress ghost targets.

Both accommodation and disparity depth maps are described by a similar neural
network as shown in Figure 7.

m

u

s

Fig. 7. Depth map neural network made of three layers s, m and u, where each layer is made of
a set of homogeneous neurons spatially organized as shown.

The equations for the network are as follows:

() () ijmjuijmij
ij

m shugwmfwm
t

m
+−∗−∗+−=

∂
∂

τ

() u
i

ijj
j

u hmfu
t

u
−+−=

∂
∂ ∑τ

() ()kmstepmf ijij ,=
() ()jj urampug =

At the highest level each neural network corresponds to a single neural module as
shown in Figure 8.

Depth

s m

Fig. 8. Each depth map neural network is stored as a single neural module with input s and
output m.

The two depth systems are intercoupled so that a point in the accommodation
field excites the corresponding point in the disparity field, and viceversa. This
intercoupling is shown at the neural network level in Figure 9.

m

u

a

s

v

d

Fig. 9. Intercoupled accommodation and disparity depth maps made of layers a, m and u, and
layers d, s and v, respectively.

The equations for the disparity depth map are as follows:

() () () ijsjvijtijsij
ij

s dhvgwtfwsfws
t

s
+−∗−∗+∗+−=

∂
∂

τ

() v
i

ijj
j

v hsfv
t

v
−+−=

∂
∂ ∑τ

() ()ijij ssigmasf =
() ()jj vrampvg =

The equations for the accommodation depth map are as follows:

() () () ijmjuijtijmij
ij

m ahugwtfwmfwm
t

m
+−∗−∗+∗+−=

∂
∂

τ

() u
i

ijj
j

u hmfu
t

u
−+−=

∂
∂ ∑τ

() ()ijij msigmamf =
() ()jj urampug =

The corresponding NSL model consists of three interconnected modules: Retina
r, Depth (accommodation) m and (disparity) s, as shown in Figure 10. (Note that
Retina and Depth correspond to module types, while r, m and s represent module
instantiations, where m and s have similar type definition).

Depth m
Retina r

m
s

a

Depth s

m
s

d

t

t

Fig.10. The Retina module contains two output ports, dp and ap, for disparity and
accommodation, respectively. The Depth module consists of an input port sp, receiving data
from the Retina, a second input port tp, receiving input from the other Depth module, and an
output port mp.

3 Neural Simulation
Simulation of neural networks varies depending on whether it relates to artificial or
biological systems. Artificial neural networks particularly those involving learning
usually require a two-stage simulation process, (1) an initial training phase and (2) a
subsequent processing or running phase. On the other hand, biological networks
usually require a single running phase. The simulation process involves interactively
specifying aspects of the model that tend to change, such as network input and
parameter values, as well as simulation control and visualization. In general, the user
analyzes output generated by the simulation, both visual and numerical, deciding if
any modifications are necessary. If network input or parameter changes are necessary,
these may be interactively specified, and the model is simulated again with the newly
specified changes. On the other hand, if structural modifications in the neural
architecture are required, then the developer must go back to the modeling phase.

In terms of execution, concurrency plays an important role in neural network
simulation, not only as a way to increase processing performance but also to model
neurons more faithfully [11]. Yet, most simulation systems execute sequentially due to
lower complexity in their underlying hardware and software. On the other hand,
distributed processing can be a more effective solution to parallel processing requiring
the use of more sophisticated and expensive multiprocessor computers as opposed to a
network of "standard" computers in the former case. The NSL computational model
enables both sequential and distributed processing (as well as parallel processing)
with very limited overhead from the user's side.

3.1 Sequential Simulation
Under sequential neural network simulation, neural dynamics are executed one
equation at the time where the output from one neuron is immediately fed as input to
the next one. In NSL, the same procedure is applied to modules where each module
would get executed in a predetermined order sending newly generated output port
values immediately to their corresponding interconnected input ports. This approach
simplifies simulation results in that the order of computation depends directly from
the order of computation. To further simulate brain-like concurrent behavior while
doing sequential processing, NSL interleaves module execution while buffering output

from one module to the next one, making processing order unimportant. Yet, this
approach does not improve processing efficiency.

3.2 Distributed Simulation
The ASL - Abstract Schema Language [12] is a distributed architecture integrating
with the NSL simulation system to support both single processor and multiprocessor
distributed computation. (The term schema [13] in ASL corresponds to active or
concurrent objects [14] with the ability to process concurrently.) ASL extends the NSL
module and port interconnection model adding asynchronous inter-process
communication, especially suitable to optimize communication performance. In such
an environment, all simulation control as well as graphical displays take place in the
console in one of the machines responsible for distributing processing among local
and/or remote machines. The actual distribution is specified by the user or
automatically generated by the system depending on the available machines in the
network. In ASL, module execution is managed by a Thread Manager in each
process, while the IPC (Inter-Process Communication) Manager is responsible for
external data communication. The current implementation of ASL is in C++ using
PVM [15] as the IPC Manager and PThreads [16] as the Thread Manager.

3.3 Depth Perception Simulation
Under both sequential and distributed environments, simulation of the depth
perception model generates similar results although with different efficiency. In
Figure 11 we show the initial input to the model. Figure 12 shows two different
targets with the corresponding initial accommodation (top right) and disparity
(bottom right) depth maps.

Fig. 11. The Retina module contains two output ports, dp and ap, for disparity and
accommodation, respectively. The Depth module consists of an input port sp, receiving data
from the Retina, a second input port tp, receiving input from the other Depth module, and an
output port mp.

Fig. 12. The Retina module contains two output ports, dp and ap, for disparity and
accommodation, respectively. The Depth module consists of an input port sp, receiving data
from the Retina, a second input port tp, receiving input from the other Depth module, and an
output port mp.

Two snapshots taken during model simulation are shown in Figure 13, for t=0.50
at the beginning of the simulation and Figure 14, for t=1.75 at the end. The top
portions of the figures represent accommodation modules while the bottom portions
represent disparity modules. As time progresses, target ghost start to disappear and
only real activity common to both accommodation and disparity stay active.

Fig. 13. Disparity s and accommodation m modules during simulation time 0.50.

Fig. 14. Disparity s and accommodation m modules during simulation time 1.75.

For this particular simulation, the distribution architecture for the depth
perception model consisted of three Unix workstations, one used as console displaying
graphics and providing user interactivity while the other two processed the actual
modules, as shown in Figure 15.

Console (machine1)

Display Graphics

SPAWN SPAWN

IPC Manager

Thread Scheduler

Depth m
spap

IPC Manager

Thread Scheduler

Depth s

dp sp
mp

mp tp

tp

(machine3) (machine2)

Graph Data Graph Data

Retina r

Fig. 15. Distributed simulation of the depth perception model under NSL/ASL.

Current benchmarks have shown that the distributed simulation of the Depth
Perception model may run between 5 to 10 times as fast as the sequential one
depending on overall machine and network load.

5 Conclusions
This paper has shown the basic concepts involved in modular neural network
development and distributed simulation in NSL/ASL. While a large number of neural
models have been developed throughout the years in NSL, we are in the process of
testing them under the NSL/ASL distributed architecture. Distributed simulation
performance, to be made more precise as further benchmarks are carried out, should
reflect good processing improvement not only in smaller models but especially in
larger models as well. Additionally, we are in the process of putting together
independently developed modules as part of more complex models involving a large
number of modules. Previously, this was prohibitively expensive to either model or
simulate, particularly with workstations. For example, the depth perception model
becomes just one component in the Frog's Learning to Detour model [17].

Other simulation systems have taken "parallel" approaches to deal with complex
simulation, such as PGENESIS, NEURON1, as well as previous versions of NSL.
These versions tended not to be too "friendly" in their usage requiring special effort in

1 These two implementations are accessible from the Pittsburgh Supercomputer Center.

the part of the modeler to adapt to the programming environment. On the other hand,
the distributed NSL/ASL architecture provides a more accessible alternative to
standalone parallel computation. Furthermore, in more sophisticated distributed
environments a supercomputer can play a key role intensive module processing with
graphics and command interaction taking place in a workstation.

Future extensions to the NSL/ASL distributed system involve how to troubleshoot
it as well as optimize it. A reflective meta-level architecture [18] is being added to
ASL providing monitoring capabilities [19] at the module and port communication
level to improve overall simulation performance, e.g. scheduling, deadlocks, load
balancing, communication, etc. Other extensions to NSL/ASL include linkage to the
NSL Java version in a single heterogeneous Java/C++ distributed environment where
we are considering other alternatives to PVM (as well as Pthreads) for inter-process
communication particularly CORBA [20]. And while distributed computation is quite
useful in improving processing performance, applications such as the control of
remote robots [21] or the Web itself, have distribution as a primary requirement [22]2.

Ackowledgments
We thank the NSF-CONACyT collaboration grant (#IRI-9522999 in the US and
#546500-5-C018-A in Mexico), the CONACyT REDII grant in Mexico, as well as the
"Asociación Mexicana de Cultura, A.C.". Additionally we want to thank all students
previously involved in the project in particular Salvador Mármol and Claudia
Calderas.

References
1. Rall, W., Branching dendritic trees and motoneuron membrane resistivity, Exp.

Neurol., 2:503-532, 1959.
2. Arbib, M.A., The Metaphorical Brain 2: Neural Networks and Beyond, pp. 124-

126. Wiley Interscience, 1989.
3. McCulloch, W.S. & Pitts, W.H., A Logical Calculus of the Ideas Immanent in

Nervous Activity. Bull. Math. Biophys. 5:115-133, 1943.
4. De Schutter, E., A Consumer Guide to Neuronal Modeling Software. Trends in

Neuroscience. 15:462-464, 1992.
5. Murre, J., Neurosimulators, in Michael Arbib (ed.) The Handbook of Brain

Theory and Neural Networks, pp. 634-639, MIT Press, 1995.
6. Bower, J.M. & Beeman, D., The Book of GENESIS: Exploring Realistic Neural

Models with the GEneral NEural SImulation System, TELOS/Springer-Verlag,
1998.

7. Hines, M.L. & Carnevale N.T., The NEURON simulation environment. Neural
Computation, 9:1179-1209, 1997.

2 All information regarding NSL and ASL as well as C++ downloads are available from
"http://cannes.rhon.itam.mx" while the NSL Java version is obtainable from "http://www-
hbp.usc.edu".

8. Leigthon, R.R. & Wieland, A.P. , The Aspirin/Migraines Software Package, in J.
Skrzypek (ed.) Neural Network Simulation Environments, pp. 209-227, Kluwer,
1994.

9. Weitzenfeld, A., Alexander, A. & Arbib, M.A., The Neural Simulation Language
NSL, Theory and Applications, MIT Press, 2000.

10. House, D., Depth Perception in Frogs and Toads: A study in Neural Computing,
Lecture Notes in Biomathematics 80, Springer-Verlag, 1985.

11. Weitzenfeld, A. & Arbib, M., A Concurrent Object-Oriented Framework for the
Simulation of Neural Networks, in Proc. of ECOOP/OOPSLA '90 Workshop on
Object-Based Concurrent Programming, OOPS Messenger, 2(2):120-124, April,
1991.

12. Weitzenfeld, A., ASL: Hierarchy, Composition, Heterogeneity, and Multi-
Granularity in Concurrent Object-Oriented Programming, Proc. Workshop on
Neural Architectures and Distributed AI: From Schema Assemblages to Neural
Networks, Oct 19-20, USC, October 19-20, 1993.

13. Arbib, M.A., Schema Theory. In Stuart Shapiro (ed.), The Encyclopedia of
Artificial Intelligence, 2nd. Edition, 2:1427-1443, Wiley, 1992.

14. Yonezawa, A. & Tokoro, M., Object-oriented concurrent programming, MIT
Press, 1987.

15. Geist, A., Beguelin, A., Dongarra J., Jiang, W., Mancheck, R. & Sunderam, V.,
PVM: Parallel Virtual Machine, A User's Guide and Tutorial for Networked
Parallel Computing, MIT Press, 1994.

16. Lewis B. & Berg D.J., Multithreaded Programming with Pthreads, Sun
Microsystems Press - Prentice Hall, 1998.

17. Corbacho, F. & Arbib, M.A., Learning Internal Models to Detour, Society for
Neuroscience. Abs. 624.7, 1997.

18. Kiczales, G. & Paepcke, A., Open Implementations and Metaobject Protocols,
Palo Alto Research Center, Xerox Corporation, 1996.

19. Gutiérrez, S. Design of a Reflective Meta-level Architecture for NSL/ASL, TR-
99-01, Dept. Comp Eng, ITAM, Sept., 1999.

20. Mowbray, T. & Ruh, W., Inside CORBA: Distributed Object Standards and
Applications, Addison-Wesley, 1998.

21. Weitzenfeld, A., Arkin, R.C., Cervantes-Perez, F., Olivares, R., & Corbacho, F.,
A Neural Schema Architecture for Autonomous Robots, Proc. 1998 Int.
Symposium on Robotics and Automation, Dec. 12-14, Saltillo, Coahuila, Mexico,
1998.

22. Alexander, A., Arbib, M.A. & Weitzenfeld, A., Web Simulation of Brain Model,
in A. Bruzzone, A. Uhrmacher and E. Page (eds.) Proc. 1999 Int. Conf. On Web-
Based Modeling and Simulation , pp. 124-126. 31(3):29-33, Soc. Comp Sim,
1999.

