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Abstract. The study of behavioral and neurophysiological mechanisms involved in rat spatial cognition provides a basis for the development of computational models and robotic experimentation of goal-oriented learning tasks. These models and robotics architectures offer neurobiologists and neuroethologists alternative platforms to study, analyze and predict spatial cognition based behaviors. In this paper we present a comparative study of spatial cognition in rats and robots by contrasting similar goal-oriented tasks where studies in rat spatial cognition are used to develop computational system-level models of hippocampus and striatum integrating kinesthetic and visual information to produce a cognitive map of the environment and drive robot experimentation. Hebbian learning and reinforcement learning, in the form of actor-critic architecture, enables robots to exploit maximum expectations of rewards during training. During testing, robots exploit the previously acquired cognitive map to reach a goal from different starting positions in a cyclical maze. A detailed discussion of comparative experiments in rats and robots is presented contrasting learning task latency while characterizing behavioral procedures and associated errors including, body rotations, and hesitations during navigation.
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Introduction

Our research group is involved in the study of spatial memory and learning in rats and its experimentation in robots by developing computational models addressing aspects related to cognitive map generation, adaptation, and exploitation during navigation. These maps code and store spatial information for successful orientation and movement toward specific goals in space (Roberts, 1998). Spatial cognition models developed by our group relate learning and memory processes by, (i) interaction of different brain structures to demonstrate skills associated with global and relative positioning in space, (ii) integration of traveled path, (iii) use of kinesthetic and visual cues during orientation, (iv) generation of topological-metric spatial representation of the environment, (iv) adaptation using Hebbian learning (Hebb, 1949), (v) representation of internal animal motivational states based on hunger and thirst drives, and (vi) management of rewards implemented by reinforcement learning using an Actor-Critic architecture (Barto, 1995). The learning architecture applies backward reinforcement to successful routes followed by the animal during training thus enabling both learning and unlearning of explored routes. After exploration, the model exploits maximum reward expectations to guide the animal towards the goal from any given departure location. Additionally, the model implements an on-line learning process to adapt the cognitive map to changes in the physical configuration of the environment. 

To evaluate the models we have developed both computer simulations and mobile robot experimentations. Tasks previously evaluated include learning and unlearning of classical spatial reversal behaviors with normal and hippocampus-lesioned rats in a T-maze and in an 8-arm radial maze as carried out by O’Keefe (1983). We describe corresponding results showing a behavioral similarity between robots and rats in (Barrera & Weitzenfeld, 2008). We also experimented with robots using a classical goal-oriented navigation experiment inspired in Morris (1981) where we employed multiple non-cyclical T-mazes surrounded by landmarks. We describe corresponding experiments and results in (Barrera & Weitzenfeld, 2007) including modification to landmark configurations after having trained the robot to find the goal. Our latest work goes beyond previously published work by developing new spatial tasks with robots and rats using a cyclic maze having external landmarks. Additionally, the current paper emphasizes place recognition and goal-oriented navigation results and contrasts learning results in both robots and rats. 
Beyond the validation of rat experiments against robot experimentation, the our work contributes to the study of spatial memory and learning in rats by developing a model based on recent physiological and behavioral data. Our robotic experiments also contribute to experimental neuroscience by providing a platform to test new hypotheses that might extend our latest understanding of learning and memory in rodents.

The rest of this section introduces relevant research background and the main distinctive aspects of our approach against other existing models. We then present the spatial cognition model with emphasis on functional modules representing hippocampus and striatum. A detailed explanation of spatial task experiments with rats and robots in the cyclic maze is provided in the following sections together with a comparative analysis of the obtained results.
Research Background

Research cycles involving animal studies, modeling, and robotic experimentation, have inspired for many years the understanding of the underlying neurophysiology and neuromechanics of biological systems while also inspiring new robotic architectures and applications (Arkin, 1998; Webb, 2000; Weitzenfeld, 2008a). For example, rat studies can serve as inspiration to the control of autonomous mobile robotic systems (Weitzenfeld, 2008b). In general, animal studies, in the form of data gathering, feed brain models that generate predictions to be validated by simulation and robotic experimentation, while inspiring new ideas and hypotheses from technology back to models and animal studies, as depicted in Figure 1.
Hippocampus – Place Cells

A decisive study in the understanding of brain mechanisms involved in the processing of spatial information was undoubtedly the analysis that O'Keefe and Nadel (1978) conducted on the neurophysiological and neuropsychological properties of the hippocampus. Their work discovered critical participation of the hippocampus in, (i) the development of high-level internal representations of allocentric spatial relations, i.e. representations of the full context and not just of the current position of the animal, and (ii) spatial learning allowing the animal to solve navigation problems that require memory of such representations.

The neural substrate of such internal spatial representations was the prior discovery made by O'Keefe and Dostrovsky (1971) from individual records of pyramidal cells found in hippocampal substructures CA3 and CA1. Such neurons were called place cells, due to their showing high correlation between firing rate and animal location in the environment. Specifically, each of these cells exhibits high rate activation patterns of Gaussian type when the animal is in a continuous and compact area, defined as the place field of the cell (O'Keefe and Dostrovsky, 1971). The activity derived from place cell population codifies the current location of the animal within a familiar environment. The overall activity is stored in the internal spatial representation referred to as cognitive map by Tolman (1948).

Place cell activity appears to be dependent on the location of visual cues in the environment, since rotation of such cues causes a corresponding rotation in place fields (McNaughton et al., 1994a). However, place cells maintain their fields when some of the visual cues are removed from the environment (O'Keefe and Conway, 1978), and even continue to respond in the dark (Quirk et al., 1990). It is assumed that the response of place cells is derived from combining kinesthetic and visual cues information (Jeffery and O'Keefe, 1999).

According to Poucet (1993), the cognitive map is generated by the acquisition of topological and metrical information from space. Topological information is related to the knowledge of the spatial relationships between places or objects, whereas metrical information is related to quantitative information about specific angular directions and distances between locations or objects. Poucet suggests that initial cognitive maps are basic topological maps that are refined as the animal explores the environment with the acquisition of metrical information provided by cells in the entorhinal cortex.

Motivation and Learning

The motivated behavior is usually oriented towards a goal that in animals may be associated with a drive such as hunger or thirst. However, motivation not only occurs in the presence of instinctive feeling, but can also be stimulated by external incentives such as food smell.

The hypothalamus is regarded as the main area of the brain where information about the internal state of the rat is combined with incentives (Risold et al., 1997). Specifically, it is assumed that food pursuit and intake are activities controlled by the lateral hypothalamus (Kelley, 2004), that determines the primary or immediate reward these activities produce in animals. In addition to the hypothalamus, the striatum, belonging to the basal ganglia, is also involved in the extraction of information related to rewards from environmental stimuli, and in the use of such information in the generation of goal-oriented behaviors (Schultz et al., 1998, 2000).

Reward information is processed in the basal ganglia by dopaminergic neurons responding to primary and secondary rewards. These responses can reflect “errors” in the prediction of rewards, thus constituting teaching signals for reinforcement learning. On the other hand, neurons in the ventral striatum (nucleus accumbens) are activated when animals predict rewards, and adapt expectation activity to new reward situations (Schultz et. al, 1998). Houk et al. (1995) suggested the striatum implements an Actor-Critic architecture (Barto, 1995), where an Adaptive Critic predicts expectations of reward values and produces an error signal to adapt reward expectations associated to different rat actions represented in this learning architecture by multiple Actor units.
In goal-oriented behaviors, it is assumed that rats are able to learn spatial tasks by associating rewards with locations in the environment (spatial learning), and rewards with procedures (procedural learning). Rats exhibit route or procedural learning strategies within environments with salient egocentric (local) cues but poor or inexistent salient allocentric (global) cues (Collett & Graham, 2004). When egocentric (local) cues are poor or inexistent, rats manifest a spatial learning strategy integrating egocentric information with the most salient and stable allocentric information in the environment. 
Neurophysiological studies and other functional neuroanatomical studies have shown that procedural learning relies on the striatal system, whereas spatial learning employs the hippocampal system (Hartley & Burgess, 2005).
Related Work

Taking inspiration from spatial cognition in rats, several robotic navigation models have been proposed such as Burgess et al. (1994), Redish and Touretzky (1997), Guazelli et al. (1998), Gaussier et al. (2002), Filliat and Meyer (2002), Arleo et al. (2004), and Milford & Wyeth. (2007). The main distinctive aspects of our approach in contrast to work done by these and other groups include: (i) generation of a holistic topological-metric map of distinctive places by considering activity patterns derived from the complete population of place units instead of determining spatial representation from isolated place fields, (ii) modeling of learning and unlearning abilities in rats, (iii) modeling of the interaction between the hippocampus and the striatum to exploit expectations of future reward during reinforced spatial tasks, (iv) map exploitation to enable goal-directed navigation, (v) map adaptation that permits on-line representations of changes in the physical configuration of the environment, and (vi) validation of our robotic architecture beyond well-known spatial tasks performed with rats, but also the design and implementation of experiments generating new behavioral data to be compared with similar experiments in robots. Refer to (Barrera & Weitzenfeld, 2008) for further detail on the comparative analysis between our model and the abovementioned approaches.

A Bio-inspired Robotic Model of Spatial Cognition

The robotic model comprises distinct functional modules shown in Figure 2 and described below that capture some properties of rat brain structures involved in learning and memory. A more detailed mathematical description of each module is presented in Barrera & Weitzenfeld (2008). 
Motivation
Motivation module relates to the rat’s lateral hypothalamus (LH) controlling food seeking and food intake. The module computes the value of “hunger drive” and produces the immediate or primary reward (r) the animal gets by the presence of “food”, corresponding to the navigational goal in the experiments. The reward r(t)  depends on the animal internal drive D(t) as described in Eq. (1).
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Kinesthetic Processing
Kinesthetic processing module obtains information from two systems: (i) vestibular organs in the semicircular canals of the inner ear, and (ii) feedback from muscles controlling movement. Information derived from these systems is used by rats to carry out path integration processes. The posterior parietal cortex (PPC), a sensory structure receiving multimodal information such as kinesthetic, visual, and relative to affordances, has been suggested to mediate path integration (Parron & Save, 2004) involving also the retrosplenial cortex (RC) (Cho & Sharp, 2001). In our model, we attribute to PPC and RC the updated animal position in relation to its point of departure (anchor). A dynamic remapping (DR) perceptual schema obtaining input signals from PPC is modulated by Hebbian learning (Hebb, 1949) to produce kinesthetic information patterns (PI) integrating past rotations and translations performed by the animal.
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Landmarks Processing
Landmark processing module computes landmark-related spatial positioning, i.e. distance and relative orientation of each landmark to the animal. According to Redish & Touretzky (1997), the entorhinal cortex (EC) is involved in landmarks processing by receiving spatial information about landmarks from PPC
. Spatial information about landmarks is encoded in a landmark perceptual schema (LPS) serving as input to a specific landmark feature detector layer (LFDL) that produces a landmark information pattern. Then, different LFDLs are combined into a single landmarks layer (LL), and Hebbian learning updates connection weights between layers LFDLs and LL producing groups of neurons in LL that respond to specific information patterns derived from the integration of all landmarks presented in the robot’s environment. In this way, any visual information pattern stored in the array referred to as LP represents an egocentric view from the robot as follows:
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where AL1, AL2, ALn are the activation values coming from neurons within layers LFDL1, LFDL2,…, LFDLn.


Affordances Processing
It has been suggested that preceding the rat’s motion, nearly half of the cells in PPC exhibit movement-related activity discriminating among basic modes of locomotion: left turns, right turns, and forward motion (McNaughton et al., 1994b). The affordances processing module represents PPC cell discrimination among different possible orientations for navigation by use of a affordances perceptual schema (APS) encoding possible egocentric turns from -180° to +180° in 45° intervals at any given time from any given animal location and orientation. Each egocentric turn or affordance is represented as a Gaussian distribution in APS, where the activation level of neuron i is computed as described by (3):
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where d is the width (variance) of the Gaussian, h is its height, and a is its medium position that depends on the particular affordance. Specifically, we employ a=4+9m with m an integer value between 0 and 8 corresponding to an affordance between -180° and +180° in 45° intervals. There is a Gaussian in APS representing each available affordance at any given time. For example, a robot oriented to north and located at the junction of a T-maze, senses the following affordances: -90°, +90° and +/-180°, i.e., the robot can turn 90° to the left, 90° to the right or return, and the perceptual schema APS generated by the model would 
have the form illustrated in Figure 3
.
Place Representation
Place representation module corresponds to the rat’s hippocampus. As shown in Figure 4(a), this module receives input from kinesthetic (PI), landmark (LP) and affordances (APS) modules in addition to its interaction with the learning module. 
PCL

The place representation module comprises a place cell layer (PCL
) and a world graph layer (WGL). PCL encompasses hippocampal regions CA3 and CA1, in addition to dentate gyrus (DG). Overlapping place fields in the collection of neurons in PCL are associated with a physical area in the environment that is identified directionally by the ensemble place cell activity pattern (PC), 
and whose extension is determined by affordance changes sensed by the animal during exploration. Specifically, neurons in the path integration feature detector layer (PIFDL) and in the landmarks layer (LL) of the model are connected to neurons in PCL. Connection weights between layers are randomly initialized and normalized between 0 and 1. The activation level Aj of a PCL unit j is computed according to (4):
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where PIi is the activation value coming from neuron i in the kinesthetic information pattern PI produced by PIFDL, LPq is the activation value coming from neuron q in the landmarks information pattern LP produced by LL, wij is the connection weight between input i from PIFDL and unit j in PCL, and wqj is the connection weight between input q from LL and unit j in PCL.

The synaptic efficacy between layers is maintained by Hebbian learning producing groups of neurons in PCL that respond to specific information patterns derived from kinesthetic and egocentric visual information sensed by the robot being at a certain location oriented to a given direction. In this way, the linear array PC constitutes the output of PCL storing the ensemble activity registered by the collection of its neurons as follows:
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where Aj is computed as indicated by (4), and N is the total amount of cells in PCL.


 WGL

Associations between overlapping place fields and physical areas are represented by WGL through a topological map enabling navigation between locations in the environment. Besides the mapping process, WGL also performs place recognition, and we assume that its functionality could correspond to the prelimbic cortex, that is involved in the control of goal-directed behaviors (Granon & Poucet, 2000). Actor units in WGL represent different directions for animal navigation corresponding to diverse orientations obtained from Place Cell 
(PC) activation patterns generated by PCL. These directions vary in our model from 0° to 315° in 45° intervals, according to an allocentric reference frame that is relative to the animal departure location in the exploration process as illustrated by Figure 4(b)
. Thus, every node in the map (a place) connects to a maximum of eight Actor units (eight possible orientations at each node). Every Actor connection is associated with a weight (representing the expectation of reward when orienting to a particular direction from the current location), and an eligibility trace (marking the connection eligible to be reinforced later in time). In this way, Actor units compete to select the next moving direction from the current location or node.
Place Recognition
To determine whether or not the animal recognizes a place, WGL searches the current activity pattern PC produced by PCL within all Actor units in the map. This search involves the computation of the similarity degree SD between PC and every stored pattern pat:


[image: image7.wmf]å

å

=

=

=

N

i

i

N

i

i

i

PC

PC

pat

SD

1

1

)

,

min(


(6)

where i is the neuron index, N is the total amount of cells in PC or any pat, and min is a function that computes the minimum value between its two arguments.

We distinguish among two cases: (a) if at least one SD exceeds certain threshold then the Actor unit storing the corresponding activation pattern is considered the winner
; (b) if there is no winner, WGL creates a new Actor unit storing pattern PC associated to the current animal orientation. Additionally, WGL node activation and creation also depends on the following considerations: (i) if affordances encoded by APS at time t are different from those at time t-1 and a new Actor unit was created, then a new node is created in WGL that is set as the new active node in the map; (ii) if affordances did not change and a new Actor unit was created, then WGL averages the activation pattern stored in the new Actor unit and the pattern stored in the Actor unit of the active map node that is associated to the current orientation
; (iii) if there was an Actor unit winner, an arc from the active node to the node connected to that Actor unit is created if necessary, and this node becomes the new active one
.

Map Creation and Adaptation
During animal exploration, an existing topological map may be adapted according to new kinesthetic and visual information perceived by the animal. In particular, if the robot is at a given place A, turns in the same place, and a node X different from the active one is activated, both nodes are integrated since they are representing the same place. This integration may or may not involve the creation of a new node. When the active node corresponding to place A has just been created, the arc pointing to this node is updated to point to node X, Actor units of the active node are linked to node X, the active node is eliminated from the map, and node X becomes the new active node. On the other hand, if the active node corresponding to place A is a preexisting one and the rat just visited it, then a new node is created integrating all input/output arcs to/from node X and the active one, as well as all Actor units connected to each node and associated to different directions. Merged nodes are removed from the map, and the new node becomes the active one.

Figure 5 illustrates the creation and adaptation processes of a cognitive map by using a fragment of the map for the cyclic maze shown in Figure 5(a). 
New Locations
The animal starts exploring the maze at location A being oriented towards B corresponding to allocentric direction 90° (see Figure 4(b)). As the map is empty, the model creates an Actor unit associated with direction 90° storing pattern PC derived from the current perception of kinesthetic and visual information. Then, the animal creates node 1 as illustrated in Figure 5(b), and links it to the new Actor unit 90° (not shown in the figure). The robot chooses to move forward reaching location B, and creates node 2 with its corresponding Actor unit 90° since affordances encoded in the current APS are different from those registered at location A. Affordances remain constant at location C, thus pattern PC generated there is averaged
 with the pattern stored in the Actor unit 90° of node 2. At location D, affordances change, hence the robot creates a new node 3 connected to a new Actor unit 90°. Progressively, the exploration of locations E, F and G in direction 90° leads to the creation of nodes 4 and 5. Then, when the robot turns left at location G orienting itself to 180°, a new Actor unit 180° is created to store the current PC and connected to node 5. Being oriented to 180°, the robot creates nodes 6 and 7. At location J, the robot turns left orienting itself to 270°, thus a new Actor unit 270° is created to store the current PC and connected to node 7. Nodes 8 and 9 are created while exploring the corridor in direction 270°. At location M, the robot turns left orienting itself to 0°, thus a new Actor unit 0° is created to store the current PC and connected to node 9. Nodes 10 and 11 are created while exploring the corridor in direction 0°. Even though nodes 11 and 3 are representing the same location D in the maze, the animal could not recognize node 3 when visiting location D in direction 0° since it was previously explored only in direction 90° and node 3 is only linked to Actor unit 90°. Being oriented to 0° at location D, the animal turns right in direction 270° creating a new Actor unit 270° and linking to node 11. Then, node 12 is created to represent locations C and B in direction 270°. 
Existing Locations
When the animal reaches location A oriented to 270° it does not recognize node 1 since it includes only the Actor unit 90°, thus the animal creates node 13 connecting it to a new Actor unit 270°. However, the animal decides to turn left creating a new Actor unit 0° and linking it to node 13, 
and then the animal chooses to turn left again orienting itself to 90°.
 At this time, Actor unit 90° connected to node 1 presents a SD value close to 1, hence node 1 is activated. As a result, node 13 is integrated to node 1, which involves connecting Actor units 270° and 0° of node 13 to node 1, linking node 12 to node 1 through a new arc in direction 270°, eliminating both the existing arc from node 12 to node 13 and node 13, and activating node 1. Soon after, the actor turns right orienting itself to 0° at location A and moves forward until the end of the corridor while creating nodes 13 and 14. Then, the animal turns left at location S pointing to direction 90°, moves forward creating nodes 15 and 16, turns left at location V pointing to direction 180°, and moves forward creating nodes 17 and 18. Node 18 and 3 are representing the same location D in the maze. Nevertheless, the animal could not recognize node 3 when visiting location D in direction 180° since it was previously explored only in direction 90°, but the animal decides to orient itself to 90° still being at location D thus recognizing node 3 and merging node 18 just created to existing node 3, which involves the connection of Actor unit 180° of node 18 to node 3 and the elimination of node 18 from the map. Still at location D, the robot turns left orienting itself to 180° again and moves forward until the end of the corridor creating nodes 18 and 19 and integrating node 19 to node 9 after having recognized its Actor unit 0°. Being at location M in direction 0°, the robot moves forward while recognizing nodes 10 and 11. At this time, node 11 is the active one and the animal chooses to turn left at location D orienting itself to 90°, thus Actor unit 90° in node 3 is activated promoting the integration of nodes 11 and 3, which involves the creation of a new node 19 (see Figure 5(c)), the reconnection to node 19 of all input/output arcs to/from nodes 11 and 3, the reconnection to node 19 of all Actor units belonging to nodes 11 and 3, the elimination of nodes 11 and 3 from the map, and the activation of the new node 19.
In order to anticipate the next direction the robot should orient to and get the greatest reward, WGL analyzes the weights of three nodes in sequence from the active node in the map to obtain the biggest weights EX and their corresponding directions DX. These values DX and EX are used by the action selection module to compute the global expectation of maximum reward. Refer to (Barrera & Weitzenfeld, 2008) for further detail on the computation of EX and DX.

Learning
This module is related to dopaminergic neurons in the ventral tegmental area and to ventral striatum, processing reward information as shown in Figure 6. The Adaptive Critic (AC) includes a Prediction Unit (PU) that estimates the future reward value of any particular place or location at a given time. To do this, every neuron in PCL is connected to PU, and every connection i 
is associated with a weight w and an eligibility trace e. At each time step t in a trial of an experiment, PU computes the future value P of the activity pattern PC generated by PCL according to (7):
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where N is the total amount of activation values in PC.

AC uses predictions computed at times t and t-1 to determine the secondary reinforcement, discounting the current prediction at a rate γ to get its present value. The addition of the secondary reinforcement with the primary reinforcement r computed by the motivation module of the model constitutes the effective reinforcement 
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The effective reinforcement is considered to update the connection weights w between PCL and AC (i.e., the reward expectation associated to a place), and also between Actor units and map nodes (i.e., reward expectations associated to different orientations). In the first case we used
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where β is the learning rate. In the second case we used
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where 
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 is the connection weight between node k and the Actor unit corresponding to direction d at time t+1, and 
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As shown in (9) and (10), both learning rules depend on the eligibility of the connections. At the beginning of any trial in a given experiment, eligibility traces in AC and in Actor units are initialized to 0. At each time step t in a trial, eligibility traces in AC are increased in the connections between PU and the most active neurons within PCL. If the action executed by the robot at time t-1 allowed it to perceive the goal, then eligibility traces are increased more than in the opposite case. The eligibility trace e of every connection i at time t is updated as shown in (11):
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where χ is the increment parameter, and PC is the linear array produced by PCL storing the activation values between 0 and 1 of its neurons. Also at time step t, the eligibility trace of the connection between the active node na in the map and the Actor unit corresponding to the current robot’s direction dir is increased by τ as described by (12):
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Finally, after updating the connection weights between PCL and AC, and between Actor units and map nodes at any time step t in the trial, all eligibilities decay at a certain rate λ as shown in (13):
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Recently, it has been suggested that rats with lesions of the hippocampal dentate gyrus (DG) are severely impaired in reinforced working memory tasks, and that the performance during these tasks is strongly correlated with cell density in DG but not with cell density in the CA1 and CA3 areas (Hernandez-Rabaza, et al., 2007). Hence, since those rats were specifically impaired in their ability to update spatial information essential to guide goal-oriented behaviors, we suppose that Actor units could be located in DG. In this way, we suggest that the striatum should influence the hippocampus through DG by sending the expectations of future reward corresponding to the animal’s actions that are exploited by DG to allow the appropriate performance of the animal during reinforced spatial tasks.

Action Selection
This module computes the motor outputs of the model consisting on the next animal direction (DIR), the required rotation to point to that direction (ROT), and the moving displacement (DIS). Motion is determined by considering all possible rotations to execute from current location and orientation, the curiosity to execute rotations not yet explored, and the expectations of maximum reward.

Reinforcement

To enable goal-directed navigation, the module implements a backward reinforcement method where the eligibility traces of the Actor units are updated in the direction of the arcs connecting the nodes in the path followed by the animal. The backwards reinforcement process is carried out after having concluded every successful training trial in the given experiment, and the strategy involved in this method is based on the existence of a factor referred to as goal gradient by Hull (1932), according to which the reinforcement effect is the most at the goal location and diminishes progressively as the animal moves backward through the maze. Specifically, in case the animal finds the goal at the end of the path, each eligibility trace is updated in a given amount of reinforcement divided by the amount of steps the animal performed to move from one node to the next one in the path. The reinforcement is initialized to a certain amount at the beginning of any training trial in the experiment, and this amount decreases as the distance from a node to the goal increases. Refer to (Barrera & Weitzenfeld, 2008) for further detail on the selection of the next animal motor action.

Animal Experimentation

We used a group of three male rats to carry out the experiment with a 95 x 105 cm2 maze having six internal corridors as shown in Figure 7. The maze was placed in a room illuminated using a tenuous light, and surrounded by a white curtain with four different colored geometrical figures representing salient and stable allocentric cues or landmarks.
In order to motivate the animals to learn the spatial task, the consumption of water was restricted during the previous week of the experiment, and absolutely prohibited during the prior 24 hours. The tip of a water dispenser was placed at the goal location indicated in Figure 7 to provide sweet water to rats when reaching this location at the end of any training trial. The solution used as reward consisted of 5 gr. of sucrose dissolved in 50 ml. of water, while the water dispenser was filled with 400 µl of the solution before beginning each trial.
During the experiment, rats pass through three phases: habituation, training, and testing, as described in the following subsections.

Habituation Procedure

The task begins with a habituation session (pre-training), where the animal is placed in the maze and allowed to explore it freely from location TD (Figure 7) being oriented north (90° according to Figure 4(b)) until reaching the water dispenser. Water is not provided during the habituation session. 
Training Procedure

During training, the water dispenser provides sweet water as reward to rats. At the beginning of each training trial the rat is placed at location TD (Figure 7) oriented north (90°). Each trial consists on freely exploring the maze until reaching the goal location and drinking the sweet water. The rat is then removed from the maze. Each rat daily training session included 9 trials, with each trial ending with the rat reaching the target for a total of 17 sessions. Latencies and routes followed by the animals in locating the water were registered using the SMART computational system (San Diego Instruments). Figure 8 illustrates routes followed by different rats during three training sessions, with sessions selected from beginning (Session 1), middle (Session 7), and end (Session 17) of the procedure. It is notorious how the latency of routes decreases as training evolves until animals learn the shortest path to the goal.

Figure 9(a) shows the average latency of arrival per session for the 3 rats
, whereas Figure 9(b) illustrates the average latency of arrival per session considering the average performance of all rats 
and indicating the corresponding dispersion level.

The SMART computational system was also used during training to monitor rats’ hesitations expressed by walking stops followed by more than one head or body turn before restarting navigation. We will present the comparative analysis of this information in relation to the robot’s
 behavior in a posterior section.

Testing Procedure

In order to evaluate rats’ ability to reach the target after having concluded the training procedure, rats were separately tested during 12 trials starting three times from four different locations in the maze, D1, D2, D3, and D4 (see Figure 7), pointing in four different directions, north (90°), north (90°), east (0°), and south (270°), respectively (Figure 4(b)).
During each testing trial, the rat is placed at the corresponding initial location and orientation, and the trial consists on exploring the maze freely until reaching the goal location and drinking the sweet water. Then, the rat is removed from the maze. During tests, latencies and routes followed by the animals in locating the water were also registered by using the SMART computational system as depicted by Figure 10
. We monitored rat behavioral procedures such as body rotations during navigation in the maze, hesitations expressed by walking stops followed by more than one head or body turn before restarting navigation, and errors associated with following non-optimal paths to the goal location regardless possible hesitations. We will present the comparative analysis of this information in relation to the robot’s behavior in a posterior section.

Robot Experimentation

The rat cognitive model was designed and implemented using the NSL system (Weitzenfeld et al., 2002). The computational model interacts with a real robotic environment through an external visual processing module that takes as input three non-overlapping snapshots (0°, +90°, -90) taken by the robot at each step using its local camera, and a motor control module that executes rotations and translations on the robot. Refer to (Barrera & Weitzenfeld, 2008) for further detail on the robotic implementation of the model.

The AIBO robot experiment was done in a 180 x 210 cm2 maze having six internal corridors as shown in Figure 11. The maze is surrounded by four colored cylinders representing salient and stable allocentric cues or landmarks. During the experiment, similarly to rats, the robot passes through three phases: habituation, training, and testing, as described in the following subsections.

Habituation Procedure

As with rats, the experiment begins with a habituation procedure where the robot departs from location TD (Figure 11) oriented north (90° according to Figure 4(b)). The robot explores the maze freely until reaching location HE corresponding to the goal. No reinforcement is provided to the robot while exploring the maze, thus it does not carry out any learning process of goal locations, and its actions are determined just by curiosity and randomness. As a result of the habituation procedure, the robot builds a cognitive map of the maze including nodes to represent the explored locations, and Actor units associated with the different directions in which they were explored. Figure 12 illustrates spatial maps generated during habituation by four robots (considering that we executed our robotic model four times
).
Training Procedure

After habituation, reinforcement is introduced at location HE of the maze, the robot is placed at TD oriented north (90°), and the training procedure begins from the cognitive map previously generated.

The robot perceives the same visual and kinesthetic information sensed during habituation since the environmental configuration remains constant. The robot recognizes during training previously explored locations that were navigated in similar directions. On the other hand, when the robot visits unexplored locations or orientations, it adds new nodes and connections to the map. When experimenting with different orientations at any given location, the robot tries to merge possible redundant nodes by creating new ones and reconstructing links as necessary (as described above in Section Place Representation
). Figure 13 illustrates the spatial maps presented in Figure 12 including all modifications applied by robots during training.

In a typical training trial, the robot explores the maze from TD until finding the goal location. Exploration is interrupted if the robot spends more than 600 sec without reaching the goal. Depending on how exhaustively the robot explores the maze during habituation, its actions are less determined by the curiosity factor since it recognizes all visited maze locations, and more determined by the random factor, which promotes, at the beginning of training, that the robot follows indirect routes to the goal (i.e., routes that involve visiting places more than once), or direct but not optimal routes, while the robot’s reward expectations are not big enough to exceed the noise (i.e., the randomness).

The robot was trained to reach the goal during each trial
. Training phase consisted of 20 trials per robot. As with rats, latencies and routes followed by robots to reach the goal were recorded. Figure 14 illustrates routes registered during three training trials, at the beginning, in the middle, and at the end of the procedure
. It can be observed how the learning latency decreases until reaching the goal location by following more direct paths. 
Figure 15(a) shows the average latency of arrival to the goal for each robot, whereas Figure 15(b) depicts the average latency of arrival for all robots indicating the corresponding dispersion level.

During training, we also monitored the number of hesitations committed by robots (i.e., march stops followed by more than one body turn before restarting navigation). The comparative analysis of this information in relation to the rats’ behavior will be discussed in a posterior section.

Testing Procedure

In order to evaluate robots’ ability to reach the target after finishing the training procedure, we tested robot trajectories during 12 trials with robots liberated three times from the same initial locations and orientations as used to test rats. Figure 11 illustrates 
locations D1, D2, D3 and D4, from where robots depart with orientation north (90°), north (90°), east (0°) and south (270°), respectively.

During each testing trial, the robot is placed at the initial location and orientation, and the trial consists on exploring the maze freely until reaching the goal location. After reaching the goal the robot is removed from the maze. All tests were recorded, showing latencies and routes followed by robots to reach the target as shown by Figure 16. Each robot exploits the cognitive map built during habituation and adapted during training to reach the target successfully. During some of the testing trials, robots still modified their spatial maps by adding new nodes to represent unexplored locations and/or merging existent nodes. Figure 17 illustrates nodes recognized by robots within their spatial maps during tests, and new nodes derived from additions or integrations.

Equivalent behavioral procedures monitored during rats’ tests were analyzed for robots, i.e. body rotations at decision points in the maze, hesitations during navigation, and errors associated with following non-optimal paths to the goal location regardless possible hesitations. We will present the comparative analysis of this information in relation to the rat behavior in the next section.

Comparative Results

As a result of training, the latency of arrival to the target location decreases progressively until stabilizing both in rats and robots as shown in Figures 9 and 15. Thus, both subjects were able to learn the shorter routes leading to the goal from the initial fixed location. In Figure 18 we include a comparison between number of hesitations, i.e., movement stops or motion turns, monitored during training for both rats and robots. 
It can be observed that both subjects reported a decreasing number of hesitations. Rats showed less than one hesitation during the last training session, whereas the robots’ average performance indicates that they stop hesitating in their navigation decisions once they have learnt the shortest path to the goal, i.e., around trial 13.
It is possible to characterize comparatively the performance of rats and robots during tests by analyzing behavioral procedures such as errors associated with the selection of a non-optimal route, body rotations, and hesitations during navigation. Figure 19 illustrates the comparison of these behavioral procedures in a graphical manner.

As depicted in Figure 19(a), the average number of errors committed by rats and robots departing from test locations and following non-optimal paths to the goal is less than one. 
All robots followed optimal routes to the goal from locations D1 and D2, and some of the robots selected direct routes (i.e., non-optimal paths that do not involve visiting places of the maze more than once) or indirect routes (i.e., non-optimal paths that do involve visiting places of the maze more than once) when departing from D3 and D4, since these locations were unexplored or barely explored during training as shown in the spatial maps of Figure 13. Therefore, those robots navigated randomly until recognizing a place previously learned, typically belonging to the shortest path to the goal, and followed the rest of that route.
On the other hand, as it was not informative to compare the latencies of arrival to the target location since robots spent around 8 sec at each step in taking pictures of the environment, deciding their next motor action and executing it, we monitored instead the number of body rotations performed independently by both subjects. 
As shown in Figure 19(b), the average number of body rotations in rats when departing from any given test location exceeds substantially robot body rotations partially explaining why rats took longer to reach the target in contrast to robots. 
Even though rats and robots had few hesitations during tests, rats hesitated more than robots during navigation to the goal location from any point of departure according to the results presented in Figure 19(c). Particularly, in contrast with rats, robots did not hesitat when departing from location D2 since this place belongs to the optimal route learnt during training.
Conclusions and Discussion

According to (Webb, 2001), robots can be “biological models” in several different senses: (i) they can be modeled on animals by using the biology as a source of ideas when attempting to build a robot with some target capability; (ii) they can be models for animals by employing robotic theory/technology as a source of explanatory mechanisms in biology; and (iii) they can be models of animals by using robots as a simulation technology to test biological hypotheses.

The work presented in this paper exemplifies in particular this last kind of “biorobot”. Indeed, our aim is to provide the robotic model of spatial cognition in rats to neurobiologists/neuroethologists as a technological platform to test with robots biological experiments whose results can predict rodents’ spatial behavior. In this way, experimentalists could test neuroscientific hypothesis in the robotic model and obtain results in less than two hours instead of spending two or three weeks experimenting directly with animals.
Webb (2001) describes several dimensions on which robotic models of biological systems can differ, such as (i) performance match; i.e. to what extent the model behavior matches the target behavior; (ii) abstraction, i.e. the amount of detail included in the model; and (iii) structural accuracy, i.e. how well the model represents the actual mechanisms underlying the behavior.
Results derived from the comparative experimental study with rats and robots discussed throughout the paper allow us to validate our robotic model in terms of performance match. Both, rats and robots, reached successfully the learning criterion during the training process of the spatial task within the cyclic maze. When rats were tested to find the goal location in this relatively complex maze departing from different locations, they did not always show an optimal performance following the shortest route, and this behavior was also exhibited by robots during tests. Allocentric information derived from global cues or landmarks was used by robots firstly to build the cognitive map and then to recognize within it maze locations previously explored. This is the function of the hippocampus module of our model. The striatum module, on the other hand, allows the robot to learn routes that lead to goals by reinforcing motor actions executed at every place belonging to those routes, which are represented by chains of nodes in the spatial map. Therefore, in locating the goal from any given departure location, the robot navigates randomly until recognizing a place belonging to a route previously learnt, and exploits properly the information stored in Actor units to reach the goal location by executing rotations associated with maximum reward expectations. In this way, an efficient performance during tests depends on how exhaustively the robot explores the environment during training visiting all possible direct routes from the fixed departure location to the goal.

As mentioned in the beginning of this paper, our research group has been studying brain areas involved in spatial memory and learning in rodents, especially the hippocampus and the striatum, and we have modeled the underlying mechanisms of these structures through different functional modules that incorporate neuroscientific hypotheses. Even though our robotic model has reached a good level of abstraction and structural accuracy, it still needs to incorporate some of the latest findings relative to the following aspects:

· The function of head-direction cells providing information on the rats’ rotation magnitude and movement direction. Extending our affordances processing module by modeling the function of these cells and supplying their activation as input to the place representation module, will allow the robot to navigate in different spatial contexts (i.e., mazes with corridors as well as open field environments).

· The manner in which receptive fields of hippocampal place cells adapt their distribution by increasing their density in the presence of relevant elements in a given navigational task (e.g., walls, corners, or doors), obstacles, and the perception of goals.
· The functional differences between hippocampal substructures CA1, CA3 and DG relative to their capabilities of pattern completion and pattern separation (Leutgeb & Leutgeb, 2007; Ramirez-Amaya et al., 2006; Guzowski et al., 2004) in conditions where environmental changes promote new navigational behaviors.
We plan to extend the model in those directions to provide the robot with enhanced adaptive capabilities, that will be demonstrated through the comparative implementation of several reinforced navigational experimental tasks with rats and robots to evaluate (i) adaptation to internal changes in the maze such as closing of existing corridors or opening of new ones, as well as (ii) navigational routes and the latency of arrival to the target location in an open field arena where an obstacle is introduced after the training process.

Certainly, our “biorobot” model, as discussed by Webb (2001), offers an alternative experimental platform to address specific biological questions in an attempt to provide a finer understanding about spatial memory and learning in rodents.
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Figure 1. Framework for the study of animal behavior through cycles of neuroscientific experimentation, theoretical modeling, and physical robotics experimentation. Data and hypotheses obtained from neuroscientific experimentation are the basis for theoretical modeling. Resulting formal models are tested under real robotic environments. The cycle provides a general methodology where new hypotheses can be proposed in response to knowledge gaps impacting both robotics and biology.
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Figure 2. The modules of the spatial cognition model and their interaction. Glossary: LH – Lateral Hypothalamus; RC – Retrosplenial Cortex; EC – Entorhinal Cortex; VTA – Ventral Tegmental Area; VS – Ventral Striatum; NA – Nucleus Accumbens; PLC – Prelimbic Cortex. Inputs/Outputs: r= primary reinforcement; sr= secondary reinforcement; 
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 = effective reinforcement; DR= dynamic remapping perceptual schema; LPS= landmark perceptual schema; APS= affordances perceptual schema; PI= kinesthetic information pattern; LP= landmarks information pattern; PC= place information pattern; EX= expectations of maximum reward and their corresponding directions (DX); DIR= next robot direction; ROT= robot rotation; DIS= next robot moving displacement.
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Figure 3. The affordances perceptual schema APS (see (b)) generated by the affordances processing module of the model when the robot (represented as a rat in drawing (a)) is oriented to north in the junction of a T-maze (see (a)). The medium position a of each Gaussian in APS is indicated in diagram (b) together with the integer value m used to compute a in equation (3).
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Figure 4. (a) The place representation module of the spatial cognition model. Glossary: PCL= place cell layer; WGL= world graph layer; PI= kinesthetic information pattern; LP= landmarks information pattern; w= connection weights; PC= place information pattern; APS= affordances perceptual schema; 
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= effective reinforcement signal; EX= expectations of maximum reward over a sequence of map nodes and their corresponding directions (DX). (b) Allocentric reference frame representing possible directions from 0° to 315° in 45° intervals to be adopted by the robot (drawn as a rat in the figure). This reference frame is relative to the robot’s departure location (TD) in the exploration process of a given maze (illustrated as a cyclic maze in the figure).
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Figure 5. The processes of creation and maintenance of a cognitive map. (a) A cyclic maze being explored by the robot. The maze is surrounded by four landmarks (L1, L2, L3, L4). Different visited locations are labeled with letters from A to Y in order of exploration. (b-c) The cognitive map built by the robot during the exploration process, illustrating the integration of nodes that represent twice specific locations in different directions. Nodes are numbered in order of creation, and arcs connecting nodes are labeled with the allocentric direction of the robot when it moved from one node to the next one. Removed nodes/arcs are marked by dotted lines.
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Figure 6. The learning module of the spatial cognition model. Glossary: PC= current activation pattern in the PCL layer; e= connection eligibility traces; w= connection weights. P(t) and P(t-1) correspond to predictions of the future value of the activity pattern PC at time t and t-1 respectively.
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Figure 7. Top view of the cyclic maze employed in the experiment with rats. Landmarks L1, L2, L3 and L4 are illustrated, as well as locations TD, D1, D2, D3, D4, and the goal location.
	
	Session 1
	Session 7
	Session 17

	Rat 502
	[image: image27.jpg]



	[image: image28.jpg]



	[image: image29.jpg]




	
	45.21 sec
	21.04 sec
	6.57 sec

	Rat 503
	[image: image30.jpg]



	[image: image31.jpg]



	[image: image32.jpg]




	
	64.70 sec
	10.39 sec
	4.65 sec

	Rat 504
	[image: image33.jpg]



	[image: image34.jpg]



	[image: image35.jpg]




	
	64.70 sec
	17.66 sec
	4.65 sec


Figure 8. Routes followed by three animals (502, 503, 504) in locating the water during three training sessions (1, 7 and 17) from a fixed departure location in the cyclic maze. Each box contains the representation of the maze rotated 90° to the left, where the small circle designates the goal location and the departure position is indicated through an arrow showing the rat orientation. Colored lines inside each maze illustrate 9 different routes, and the average latency of arrival to the target is shown below every maze.
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Figure 9. (a) Average latency of arrival to the goal location per training session considering the performance of each rat (502, 503, 504) during the spatial task in the cyclic maze. (b) Average latency of arrival to the goal location per training session considering the average performance of all rats and indicating the corresponding dispersion level during the spatial task in the cyclic maze.
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Figure 10. Routes followed by rats (502, 503, 504) in locating the water during tests from different departure locations (D1, D2, D3, D4) in the cyclic maze. Each box contains the representation of the maze rotated 90° to the left, where the small circle designates the goal location and the departure position is indicated through an arrow showing the rat orientation. Colored lines inside each maze illustrate three different routes, and the average latency in seconds is shown below every maze.
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Figure 11. Top view of the cyclic maze employed in the experiment with AIBO robots. Landmarks L1, L2, L3 and L4 are illustrated, as well as locations TD, D1, D2, D3, D4, and the goal location HE.
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Figure 12. Spatial maps generated by four robots (a, b, c, d) during the habituation procedure of the spatial task carried out in the cyclic maze. Nodes are numbered in order of creation, and arcs between nodes are labeled with the allocentric robot’s direction (see Figure 4(b)) when it moved from one node to the next one.
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Figure 13. Spatial maps adapted by four robots (a, b, c, d) as a result of the training process in the spatial task within the cyclic maze. White nodes were created during the habituation procedure, whereas black nodes were added by robots during training. Nodes are numbered in order of creation, and arcs between nodes are labeled with the allocentric robot’s direction (see Figure 4(b)) when it moved from one node to the next one. All missed numbers within the sequence of nodes in each map correspond to nodes that were merged with others when robots identified them as duplicates representing one same place in the environment.
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Figure 14. Routes followed by four robots (a, b, c, d) in locating the goal during three training trials from a fixed departure location (TD) being oriented to north (90°) in the cyclic maze. Illustrated trials were taken from the beginning (left), from the middle (center), and at the end (right) of the learning process. The line inside each maze represents the route followed by the robot. The small arrow placed at location TD indicates the robot orientation, and all other small arrows over the line represent locations where the robot hesitated while taking its next motor action. The average latency of arrival to the target in those three training trials is shown below every maze.
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Figure 15. (a) Average latency of arrival to the goal per training trial considering the performance of each robot during the spatial task in the cyclic maze. (b) Average latency of arrival per training trial considering the average performance of all robots and indicating the corresponding dispersion level.
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Figure 16. Routes followed by four robots (a, b, c, d) while locating the goal during tests departing from locations D1 to north (90°), D2 to north (90°), D3 to east (0°), and D4 to south (270°) within the cyclic maze. Each box contains the representation of the maze designating the goal and departure locations. Lines inside each maze illustrate routes recorded from three trials. When the robot followed the same route in those three trails, the corresponding maze shows only one line. Small arrows over the routes represent hesitations executed by the robot in deciding its next motor action. The average latency of arrival to the goal location in three trials per departure point is shown below every maze.
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Figure 17. Spatial maps adapted by four robots (a, b, c, d) as a result of tests carried out in the spatial task within the cyclic maze. Black nodes indicate existing nodes recognized by robots, or new nodes created by them as a result of visiting unexplored places or integrating duplicate nodes that correspond to same places. Information related to maximum reward expectations stored in Actor units of recognized nodes was exploited by robots to reach the goal location successfully regardless the point of departure within the maze. White nodes are existing nodes not employed by robots during tests. Nodes are numbered in order of creation, and arcs between nodes are labeled with the allocentric robot’s direction (see Figure 4(b)) when it moved from one node to the next one.
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(b)

Figure 18. Average number of hesitations (i.e., march stops followed by more than one body turn before restarting navigation) committed by (a) rats and (b) robots during training from the same fixed designated location in the cyclic maze.
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(a)
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(c)
Figure 19. Graphical comparison between behavioral procedures monitored from rats and robots during tests departing from locations D1, D2, D3 and D4 in the cyclic maze. (a) Average number of errors associated with following non-optimal paths to the goal location. (b) Average body rotations during navigation within the maze. (c) Average number of hesitations expressed by march stops followed by more than one body turn before restarting navigation.
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�Que pasa si tanto local como global cues son buenos. Se usa una combinación de ambas estrategias? Explica.


�He quitado en esta seccion las referencias al “robot” y dejado en termino de “animal” ya que se supone que el modelo describe el comportamiento del animal y recien luego haremos los experimentos con el robot.


�Debemos describir mejor esto basado en el modulo de kinesthetic processing de la Fig 2. Quizas valga la pena modificar un poco los diagramas para incluir mas detalel como w y PIFDL ya que si no aparecen no tiene mucho caso describirlos en las ecuaciones.


�Es correcto esto?


�Mismo comentario de kinesthetic processing. Todo los layers o variables que describas deberían aparecer en los modulos de la figura 2.


�Mismo comentario que en los modulos anteriores. En realidad no se necesita la ecuación Gaussiana, debemos describir a mas alto nivel pero integrando diferents subcapas del modulo.


�Deberiamos en todo caso incluir figures tambien para los demas modulos (kinesthetic y landmark) mostrando ejemplos de salida como aqui. Deberias incluir las flechas y cambiar la T al nuevo maze mostrando las diferentes direcciones en un par de lugares con diferente orientación para enfatizar el aspecto local del sistema de coordenadas.


�Agregue subsecciones ya que esta seccion es demasiado extensa


�En la figura 2 aparece como PLC


�Te refieres a Place Cells aqui (PC)?


�Hay que revisar las ecuaciones y descripciones en relacion a modificaciones en descripciones de los modulos anteriores. Puedes describir mediante matrices en lugar de “sigmas”?


�Comentario similar al anterior


�Agregue subsecciones ya que esta seccion es demasiado extensa


�Cambie de “activation patterns (PC)” a “Place Cell activation patterns (PC)”


�Deberias quitar la imagen de la rata para que quede claro que no tiene nada que ver el sistema de coordinadas con la rata.


�Esto deberia ser algo como SD = SIMILARITY(PAT,PC) y debes definir PAT = matriz de Actores (8 por node, para n nodos) y PC se supone que ya lo explicaste.Existe un máximo de nodos posibles?


�Que pasa si tienes mas de uno? Se usa el mayor? Como defines similarity? (Este es un tema que no has explciado aun)


�No esta claro


�No esta claro


�Esto es muy dificil de seguir (Me imagino que no te refieres a A y X de la figura 5a). Explica únicamente en relación al diagrama. Explica que las letras son posiciones en el tiempo/espacio y que los números son nodos que pueden corresponder a varias letras. Incluye una nueva figura 5 (Anterior a la actual) mostrando una trayectoria sin ciclos y explica todo lo básico. Incluye en esta y las siguientes figura un diagrama similar a “(a)” pero que muestre la trayectoria y luego relaciona los diagramas con letras y números a la verdadera trayectoria.


�Esto en el future debe cambiar ya que deberiamso incluir “un nodo por ubicaciones” independiente de APS anterior. 


�Esto no esta claro. Como se reconoce el nodo 13 como mismo nodo 1 con la liga de 270 grados desde el nodo 12?


�Que pasa si no voltea hacia la izquierda? Debes simplificar la trayectoria para no complicar la explicación…


�Trata de compacta lo anterior y no explicar aspectos que confundan, como el tema de los “3 nodos” a menos que puedas justificarlos claramente. Debes definir EX y DX.


�A cual conexion I te refieres? Actor connection?


�Escribe como ecuacion de matrices.al igual que las ecuaciones que siguen.


�Se experiment con solo 3 ratas o estas produjeron los mejores resutlados de un grupo mayor de ratas?


�Comentario anterior


�Robot o rat?


�Esto debe moverse a la seccion donde se muestra los resultados correspondientes


�Mejora la latencia con cada nueva session de la misma rata ya que no parecen rutas optimas? Que se concluye de esta grafica? Puedes incluir varias sesiones de una misma rata para ver mejores resultados en lugar de una sola sesión de multipels ratas?


�Mismo comentario de la seccion anterior. Esto se debe mencionar junto con los resultados.


�A que te refieres, a que ejecutaste la habituacion 1 ver por robot, o cuatro veces para un solo robot? Explica la diferencia entre diagramas. Por que difieren? Muestra la trayectoria que siguió el robot en cada caso (con flechas, no con letras)


�Actualize la ref a esta seccion?


�Agrega una explicacion de lo que ha ocurrido.


�Explica major esto comenzando de la razon que mas usa para explorer y solo al final en lo que menos se basa…


�Cuantas sesiones?


�Puedes mencionar que numero de session fue c/u al igual que con las ratas? Incluye a la izquierda el numero de id del robot análogo a las ratas.


�Cuantos robots?


�Nuevamente, no menciones algo que no describes….


�Incluye el numero id del robot. Analogo a las ratas, puedes comparar tiempo entre sesiones de un mismo robot en lguar de mostrar a lso 4 robots?


�Se mas explicita, a cuales te refieres y como han mejorado. Relacionalo con la figura 16 donde muestras diferentes trayectorias seguidas.


�Otra vez, no menciones aspectos que aun no describes.


�Revisa esta oracion.


�No esta claro. A que terefieres con “errors”?


�No esta claro


�Debemos ser cuidadosos con estas conclusions. Le esto de nuevo a ver si tiene sentido y esta bien justificado
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