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Abstract – This paper presents the state of the art of robotic 
mapping and compares current approaches: metric, 
topological and biological. Navigation models inspired on the 
neurophysiology of rat’s hippocampus are described as a 
promising alternative to solve the problems found in metric 
and topological approaches. 
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I. INTRODUCTION 
A critical ability of autonomous mobile robots is 

navigation. The functions of navigation can be expressed by 
four questions: where am I going, which is the better way to 
get there, where have I been, and where am I? In order to 
solve these questions, the robot needs to know its 
environment. As the robot explores new environments, it 
may be part of its mission to map them.  The acquisition of 
spatial models of unknown environments is known as 
robotic mapping. 

In the 1980s and early 1990s, the field of robotic 
mapping was divided into metric and topological 
approaches. A metric map captures the geometric 
properties of the environment, while a topological map 
describes connectivity between different places. Besides 
those approaches, there exists a promising alternative 
inspired on the neurophysiological workings of the rat 
brain. 

This paper presents a general overview of the state 
of the art of robotic mapping, including metric, topological 
and biological approaches. The paper also compares them 
and describes the work that our research group is beginning 
to do for contributing to the field of robotic navigation. 

II. METRIC MAPPING 
Most of the algorithms for building metric maps 

have a common feature: they are probabilistic. This is 
because robotic mapping is characterized by uncertainty 
and sensor noise. Probabilistic techniques offer a 
mechanism to fuse sensor data, decreasing noise. 

The dominant schema to integrate sensor data and 
robot’s movements at different times is Bayes’ filter, which 
estimates the map of the environment and the robot’s 

position at time t based on the sensor measurements and the 
robot’s movements registered until time t. 

Some of the metric mapping algorithms commonly 
used are Kalman filters [15], the Expectation-Maximization 
algorithm (EM) [9], and occupancy grids [11]. 

In the Kalman filter approach, maps are 
represented by the cartesian coordinates of a group of 
features present in the environment, like landmarks, 
distinctive objects or shapes.  

An advantage of this approach is that the map is 
estimated on-line, i.e., while the robot explores the 
environment. Besides, it converges with probability one to 
the real map and robot’s position and it is able to map 
cyclic environments and dynamic ones.  However, it cannot 
cope with the correspondence problem, i.e., the problem of 
determining if similar sensor measurements taken at 
different points in time correspond to the same physical 
object in the world or not. 

An alternative to Kalman filters that solves the 
correspondence problem is the EM algorithm. EM 
generates consistent maps dealing with large scale cyclic 
environments even if all features look alike and cannot be 
distinguished perceptually. However, EM does not involve 
the notion of uncertainty; instead, it constructs several maps 
in order to find one that best corresponds to the 
environment. To do that, EM has to process data many 
times, so it cannot generate maps incrementally as Kalman 
filters do. 

EM exploits the fact that building a map when the 
robot’s path is known is relatively simple, as is the 
determination of a probabilistic estimate of the robot’s 
location when the map is known. To do this, EM iterates 
between two steps: an expectation step, where the robot’s 
position is calculated for a given map, and a maximization 
step, in which EM calculates the most likely map given the 
robot’s position expectation. The result is a series of maps, 
where the initial map is empty. The main disadvantage of 
the EM algorithm is that it executes off-line. 

The Kalman filter approach and the EM algorithm 
address the mapping problem with an unknown robot’s 
position. This is known as the simultaneous localization 
and mapping problem or SLAM. There exist also 
algorithms in which robot’s position is known. One of the 
most popular is occupancy grid maps, where the central 
problem is to generate a consistent map from noisy and 
incomplete sensor data. As the algorithm’s name suggests, 
maps are two-dimensional grids that represent a fixed area 

© 2004 IEEE  82 



in the absolute coordinate system. The grids have high 
resolution, in the order of 5-10 cm per cell. Bayes filters are 
used to predict the occupancy of each cell. The individual 
values of cells are refreshed incrementally as new sensor 
data arrive. The initial value of all cells is 0.5, indicating 
that it is unknown if they are occupied or free. 

III. TOPOLOGICAL MAPPING 
Topological mapping represents an environment as 

a graph, where nodes correspond to distinct situations, 
places or landmarks, and the arcs indicate the existence of 
direct paths between nodes. The robot’s localization can be 
carried out in two ways. If mapping and localization are 
simultaneous, the robot perceives a place, situation or 
landmark and tries to find it in the next sensor data. If the 
robot has already built the topological map, it can localize 
itself in relation with places or landmarks included in the 
map; i.e., the robot can know by the map the next place it 
will reach if it moves in a certain direction from the current 
place. 

The topological approach has been addressed by 
many authors; e.g., [18], [17], [16], [22], [12], [21], [24], 
[10], [29]. In general, they apply their own algorithms to 
build the topological map, in some of which they include 
metric information of the environment, or they combine the 
construction of a topological map with a metric map. 

Kuipers and Byun [17], for example, proposed a 
hierarchical model of the environment, where the central 
element is a topological map. A place that corresponds to a 
node in the graph must be distinctive within its immediate 
neighborhood by some criterion definable in terms of 
sensory input. The authors introduce distinctiveness 
measures defined on a subset of the sensory features, by 
which some property can be maximized at a distinctive 
place. Travel paths that correspond to arcs in the graph are 
defined by control strategies, which describe how the robot 
can follow the link connecting two distinctive places. 

Each component in the model, places and paths, 
has also local geometric information, which constitutes the 
metric level of the model. This information can include the 
distance and directions towards nearby objects, their shape, 
and the length and width of the path. 

The robot’s current position is described at the 
topological and metric level. At the topological level, is 
described by a distinctive place or by a travel path and a 
direction. At the metric level, when the robot is at a 
distinctive place, its position is described by the current 
sensory information and its current orientation, and when 
the robot is on a path, its position is described by the place 
it is coming from, the distance it has traveled and its current 
orientation. 

Thrun et al. [24] addressed robotic mapping by 
integrating a representation based on an occupancy grid and 
a topological representation. In order to build the occupancy 
grid map, the authors trained an artificial neural network to 
map sonar measurements to occupancy values. They 
included a second source of occupancy information: a 
stereo camera system, which provides pairs of images 
recorded simultaneously from different spatial viewpoints. 

Stereo images were used to compute depth information, 
estimating the proximity of obstacles and projecting it onto 
the occupancy grid. 

Sensor interpretations were integrated over time to 
build a consistent map using a Bayes’ filter. 

On top of the grid-based maps, the authors built 
topological maps by the following algorithm. A Voronoi 
diagram is constructed over the occupancy grid map. This 
diagram is the union of the points in the free space that 
form an equidistant path to the closest occupied points 
called base points. Then, the critical points are found in the 
Voronoi diagram, which minimize locally the distance 
between the point (x, y) and the two base points. Critical 
lines are obtained by connecting each critical point with its 
base points. These lines partition the free space of the grid 
into regions which correspond to the nodes of a topological 
graph, where arcs correspond to the critical lines. 

Franz et al. [12] proposed a vision-based system to 
build a topological map of an open environment. They used 
only topological knowledge, not metric, so the graph stored 
relevant views of the environment and the adjacency 
between views, not the movement that conducts from one 
view to another. The only sensorial input to the robot was 
snapshots of the environment taken by the robot’s camera. 
The authors used the following algorithm to build the 
topological map. If the current view is sufficiently different 
from the views already stored in the graph, the robot takes a 
new snapshot and adds it to the graph as a new node 
connected with the last node stored; then, the system 
determines the next direction of exploration. If the current 
view is similar to some other view already stored in the 
graph, the robot localizes the corresponding node and 
connects it with the last stored node; then, exploration 
continues from there. 

The algorithm proposed by Duckett et al. [10] 
builds a geometrically consistent topological map, using 
metric information.  

The topological map is built during the 
incremental exploration of the environment. The map 
includes two types of places: predicted and confirmed. An 
artificial neural network is used to predict new places, 
classifying sonar measurements taken at all directions. A 
predicted place becomes confirmed when the traveled 
distance from the last confirmed place is one meter; 
otherwise, the predicted place is deleted from the map. 
When a confirmed node is added to the graph, the neural 
network is reused to predict more places, and connections 
are established between the new confirmed node and all 
confirmed places lying less than two meters from the added 
node. The construction of the map ends when all predicted 
places have been confirmed or deleted.  

Each node in the graph is associated with a local 
occupancy grid which represents the signature of the place 
and is used to recognize it. Each link between nodes is 
labeled with metric information estimated by the robot: the 
distance and the absolute angle between the places 
connected. As this information is not precise, the authors 
assign to different places of the topological map globally 
consistent cartesian coordinates. This is done by using an 
algorithm that minimizes an energy function. Each link 
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minimizes its energy when the relative displacement from 
node i to j equals the vector (distance, angle) estimated by 
the robot. Equilibrium is reached in the whole map when all 
links minimize their energy. 

IV. BIOLOGICALLY-INSPIRED MAPPING 
A promising alternative to classical robotic 

mapping is based on the workings of the rat’s brain. 
Experimentation has shown that rats are able to 

solve spatial problems, to navigate by near or far visual 
landmarks, and to use spatial information creatively, finding 
shortcuts to reach a goal.  

To explain the ability to process the spatial 
information, Tolman [26] argued in 1948 that animals 
should have a cognitive map in some part of the brain, and 
in 1978, O’Keefe y Nadel [20] argued that the map was in 
the hippocampus. 

According to Hölscher [14], experimental work 
has shown that there exist at least two distinct populations 
of neurons in the rat hippocampus known as place cells and 
head-direction cells. Place cells codify information about 
physical locations of the animal. The areas of the 
environment where place cells respond are known as place 
fields. Head-direction cells, on the other hand, codify 
orientations of the animal’s head. 

There exist many navigation models inspired on 
the hippocampus’ neurophysiology. Some of them are 
proposed by Burgess and O’Keefe [4, 5, 6, 7, 8], Touretzky 
and Redish [27], Balakrishnan, Bhatt and Hanovar [2], 
Trullier and Meyer [28], Arleo and Gerstner [1], Gaussier, 
Revel, Banquet and Babeau [13], and recently Milford and 
Wyeth [19]. 

The model proposed by Burgess et al [6] consists 
of a neural network composed by four layers of cells: 
sensory cells, entorhinal cells, place cells and goal cells. 
Sensor data activate sensory cells; the activation propagates 
to build a spatial representation in the layer of place cells. 
Connections to the goal cells are learned when the robot is 
at the goal place. These cells codify the direction and 
proximity of the goal during subsequent movement. 

The model was implemented on a Khepera robot, 
which included a video-camera and infrared proximity 
sensors. The robot was tested on a rectangular environment 
of 50 x 50 cm with white walls and dark floor. Visual 
estimations of the distance from the robot to the walls were 
used to activate sensory cells, entorhinal cells and, then, 
place cells. 

When the robot finds the goal, a reinforcement 
signal causes a one-shot Hebbian increment in the synaptic 
connections to the goal cell from the place cells that are 
active at that location. Thus the activation of each goal cell 
represents the proximity of a goal location, allowing 
navigation, and the neural network can be used to guide the 
robot’s motion back to the goal location from different 
places in the environment [7, 8]. 

Arleo et al. [1] proposed a model which integrates 
in time visual data taken from the environment and internal 

data generated by the robot (proprioceptive1 and vestibular2 
stimuli referred as path integration), in order to create a 
spatial representation at the hippocampus.  

The model consists of a multi-layer neural 
network. Visual stimuli are interpreted by a layer of cells 
that are activated according to specific properties, like the 
distance between a landmark and the robot and the 
egocentric orientation of the robot relative to landmarks. 
There exists a second layer which codifies spatial 
representation, i.e., a layer of place cells. Every time the 
robot is at a new place, all active cells in the first layer are 
connected with a new place cell. Initially, the connection 
weight is random between 0 and 1; then, it is modified 
according to the Hebbian learning rule. 

There exists also a layer of path integration cells 
which codifies proprioceptive and vestibular stimuli. 

Place cells are projected to another layer of CA3-
CA1 cells created progressively. Synapses between this 
layer and path integration cells are also learned by the 
Hebbian rule.  

Finally, the model includes a layer of action cells 
whose activity represents direction of movement 
commands. Reinforcement learning is used to modify 
synapses between the layer of CA3-CA1 cells and action 
cells in order to map spatial locations to movement 
commands. 

A Khepera robot was used to test the model in a 60 
x 60 cm environment, where walls were covered by random 
sequences of white and black bars with different widths. 
Combinations of those bars are the input patterns for the 
layer of cells which represents the vision system. 

The model of Gaussier [13] is also a multi-layer 
neural architecture. When the robot recognizes a place in 
the environment, that place is represented by a place cell; 
when a new place appears, other place cell represents it. 
The Hebbian rule is used to learn the time relation and the 
topological relation between the two situations. When this 
mechanism is generalized, a graph is built to represent 
spatial relationships between the places of the environment. 

When the robot reaches the goal place, a 
motivational neuron is activated by the associated place 
cell. Synapses between these neurons are reinforced by the 
Hebbian learning rule; then, during path planning process, 
the motivational activity propagates backwards in the 
graph. The activity of any neuron in the map is a function of 
its topological distance to the goal place. 

Path planning implies to determine the current 
location of the robot; i.e., the place cell with the highest 
activity. Then, the robot selects the next node to visit, which 
must be linked with the current node and must have the 
highest activity. When the robot reaches that place, the 
process repeats until the goal is reached. 

The model was tested on a mobile robot in an open 
environment, but it was impossible for it to distinguish 
between visually similar places. 

                                                           
1 Internal stimuli that give information about body’s position and 
orientation. 
2 Internal stimuli caused by body’s motion.  
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Recently, Milford and Wyeth [19] proposed a 
model called RatSLAM that uses competitive attractor 
networks to carry out SLAM. 

The general model consists of two competitive 
attractor networks, one for representing the population of 
head-direction cells and the other for the population of 
place cells. The activity of both networks represents the 
robot’s location in the environment and its head’s 
orientation. 

Wheel encoder information is used to perform path 
integration by injecting activity into both networks. Vision 
information is converted into a local view matrix 
representation that feeds also both networks. When a local 
view is familiar to the robot, activity is injected to the head-
direction and place cells associated to that view. 

The robot’s camera can see colored cylinders 
perceived as rectangles. A local view matrix codifies the 
cylinder’s color, the distance and orientation of the robot 
relative to the cylinder. 

Generally, in competitive attractor networks, 
neurons are fully connected; each unit will excite units 
close to itself and inhibit those further away, which leads to 
a clump of activity known as an activity packet eventually 
dominating. Activity injected into the network near the 
winning packet will tend to move that packet towards it. 
Activity injected far away from it will create another packet 
that competes with the original. If enough activity is 
injected, the new packet can win and the old packet 
disappears. 

Neurons with the highest activity in both 
competitive networks represent the head’s orientation and 
the physical position of the robot. 

The robot’s orientation is estimated by path 
integration, measuring the robot’s rotation. Inherent errors 
in that measurement make necessary the use of visual 
information to calibrate orientation. The authors do not 
apply this calibration to the robot’s position. 

The model was simulated and tested on a 
Pioneer2-DXE robot in a 2 x 2 m environment. Just outside 
the arena, colored cylinders were placed. The system 
RatSLAM was able to keep the robot localized just for 
small periods of time. When the robot auto-localized on a 
familiar scene, its orientation was not updated; and when it 
could orient itself, its localization was not updated. That 
happened because of the independence of orientation and 
position systems. Besides, RatSLAM was unable to 
maintain multiple hypotheses about the orientation and 
position of the robot. Although the system could maintain 
multiple position hypotheses, all activity packets were 
associated with the same orientation. If ambiguous visual 
input suggests two possible positions and orientations, it 
was impossible to verify or deny one. 

V. WHICH IS BETTER: METRIC OR TOPOLOGICAL MAPPING? 
As we said before, generally, in the metric 

approach, robotic mapping consists in determining free and 
occupied places of the environment using probabilistic 
techniques. In the topological approach, on the other hand, 
the central problem is to identify distinguishable places, 

situations or landmarks in the environment, and the 
topographic relations between them. The construction of the 
map in the first case can be solved by proximity sensors 
which indicate the presence of obstacles. In the topological 
case, it is very convenient to have a vision of the scenes 
where the robot has passed in order to define 
distinguishable places. 

Many proposed topological navigation algorithms 
show that the topological and metric mappings are not 
clearly divided. Links between places in a topological graph 
are usually associated with metric characteristics like 
distance or angle between places connected. That is the case 
of the models proposed by Kuipers [17] and Duckett [10]. 

An advantage of metric mapping is the possibility 
to know the absolute or allocentric localization of any place 
in the environment and of the robot. Therefore, during path 
planning or navigation, the robot could find a specific 
“address” through the map. Nevertheless, metric mapping 
has the following disadvantages: 

• The techniques used are computationally 
expensive considering big environments; 
particularly those techniques which are based on a 
fine occupancy grid because they imply the 
computation and storage of many probabilistic 
estimations, one per each cell in the grid. 

• Some of the algorithms cannot be executed in real 
time because they need to compare different 
possible maps in order to obtain one that 
corresponds to the real environment. 

• Some of the algorithms that can be executed in real 
time require knowing the environment’s 
dimensions in order to define the grid’s 
dimensions. 
Considering topological mapping, some of its 

advantages are: 
• There is no need to map the whole environment, 

only the distinguishable places, views or 
landmarks, and the adjacency relations between 
them. This can lead to a lower computational cost. 

• The construction of the map is carried out in real 
time as the robot explores the environment. Then, 
path planning or navigation can be done through 
classical graph search algorithms. 
However, an evident disadvantage of the 

topological approach is the mentioned correspondence 
problem, in which two places could seem similar to the 
robot when they are different. The result is a map that does 
not include all relevant situations of the environment, so the 
robot could have trouble localizing itself. 

In general, choosing an approach implies 
considering the problem to solve. If the environment’s 
dimensions are known and the map must specify occupied 
spaces geometrically without the need to be built in real 
time, metric mapping could be used. But, if there is a large-
scale environment, its precise dimension is not known a 
priori and the map must be built on-line, topological 
mapping could be used. 
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VI. OUR WORK: BIOLOGICALLY-INSPIRED TOPOLOGICAL 
NAVIGATION MODEL FOR MULTIPLE ROBOTS 

Metric and topological robotic mapping 
approaches have existed since more than two decades ago 
with their corresponding evolution, but their main 
disadvantages have not been completely solved: the 
correspondence problem, the construction of the map off-
line, and the exploration of unknown large-scale 
environments. 

Biologically-inspired robotic mapping offers a 
very promising alternative to propose better navigation 
models. The inspiration on neurophysiology of animals that 
are able to solve spatial problems efficiently must lead to 
find a better way for mapping an environment. 

As we described in this paper, many of the current 
models of biological mapping are based on a topological 
approach, which is perfectly understandable since 
experimental workings on the rat’s hippocampus have 
shown that recognizing places implies activity in neurons 
associated with these places and with particular head 
orientations. 

We are working on proposing a biologically-
inspired topological robotic navigation model, which will 
offer solutions to some of the problems presented by current 
models like [1] and [19]. In particular, we are interested in 
exploring and mapping less-structured environments, 
solving the correspondence problem and eliminating 
odometry errors. 

We will implement our model on individual and 
multiple robots. We will propose and test different 
strategies to explore and learn the environment in a 
distributed manner. We will also propose strategies for 
integrating partial maps obtained by individual robots in a 
global map of the environment. There are some current 
studies that have addressed multi-robot exploration and 
integration of partial maps [25, 3, 23], but they are based on 
the metric approach and ours will be a biologically-inspired 
model. 

VII. SUMMARY AND CONCLUSIONS  
The navigation of an autonomous mobile robot in 

an environment includes four interrelated activities: 
exploration, which is the strategy that guides the robot to 
select the next direction to go; mapping, which implies the 
construction of a spatial representation of the environment; 
localization, which is the strategy for determining the 
robot’s position in the map; and path planning, also called 
navigation, which is the strategy the robot follows to find a 
path to the goal place, where that path could be optimal or 
not. 

This paper has focused on mapping activity. The 
differences between metric and topological mapping have 
been explained. Biologically-inspired mapping has been 
described as a promising alternative to solve some of the 
problems presented by the other approaches. 

The paper discussed also the state of the art in the 
algorithms and models proposed by metric, topological and 
biological approaches. 

Finally, the paper described our work: to propose a 
topological navigation model inspired on the workings of 
the neurophysiology of the rat’s hippocampus. This model 
will control the exploration and mapping of the 
environment and the localization of the robot. The model 
will be implemented on multiple robots in order to explore 
the environment in a distributed manner and build local 
maps which will be integrated to compose the global map 
of an unknown and less-structured environment. 

We hope to contribute to a fundamental field in 
robotics which allows us to talk about really autonomous 
mobile robots: navigation. 
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