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The NSL Neural Simulation Language provides a platform for building neural architectures (modeling) and for

executing them (simulation). NSL is based on object-oriented technology and provides modularity at all model

development levels. In this chapter we discuss these basic concepts and how NSL takes advantage of them. NSL,

now in its third major release, is a neural network simulator which is both general and powerful, designed for users

with diverse interests and programming abilities.

For novice users interested only in an introduction to neural networks, we provide user-friendly interfaces and a

set of predefined artificial and biological neural models. For more advanced users well acquainted with the area who

require more sophistication we provide evolved visualization tools together with extensibility and scalability. We

provide support for varying levels in neuron model detail, which is particularly important for biological neural

modeling. In artificial neural modeling the neuron model is very simple, with network models varying primarily in

their network architectures and learning paradigms. While NSL is not particularly intended to support detailed single

neuron modeling, as opposed to systems such as GENESIS and NEURON primarily designed for this task, NSL

does provide sufficient expressiveness to support this level of modeling.

The Neural Simulation Language (NSL) has evolved for over a decade. The original system was written in C

(NSL 1) in 1989, with a second version written in C++ (NSL 2) in 1991 and based on object-oriented technology.

Both versions were developed at USC by Alfredo Weitzenfeld, with Michael Arbib involved in the overall design.

The present version NSL 3 is a major release completely restructured over former versions both as a system as well

as the supported modeling and simulation, including modularity and concurrency. It provides a powerful neural

development environment supporting the efficient creation and execution of scalable neural networks, incorporating

a compiled language NSLM for model development, and a scripting language NSLS for model interaction and

simulation control. It offers rich graphics and a full mouse-driven window interface supporting creation of new

models as well as their control and visualization.

NSL 3 includes two different environments, one in Java (NSLJ, developed at USC by Amanda Alexander's

team) and the other in C++ (NSLC, developed at ITAM in Mexico by Alfredo Weitzenfeld's team), again with Arbib

involved in the overall design. Both environments support similar modeling and simulation and are described fully

in Weitzenfeld, Alexander and Arbib (2000). In the present chapter, we focus on NSLJ, the version developed by the

USC Brain Project team and available from our Website. We offer free download of the complete NSLJ system,

including full source code as well as forthcoming new versions. We also provide free and extensive support for

downloading new models from our Web sites, where users may contribute with their own models and may criticize

existing ones (see Chapter on "Brain Models on the Web"). (http://www-hbp.usc.edu/Thrusts/BMW.htm). The
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advantages with Java are portability, code written in Java runs without changes "everywhere"; maintainability, Java

code requires maintaining one single software version for different operating systems, compilers and platforms; and

it is web-oriented, Java code runs on the client side of the web, simplifying exchange of models without the owner

of the model having to provide a large server on which other people can run simulations.

In summary NSL is especially suitable for use in an academic environment where NSL simulation and model

development can complement theoretical courses in both biological and artificial neural networks; and for use in a

research environment where scientists require rapid model prototyping and efficient execution. NSL may easily be

linked to other software tools, such as additional numerical libraries, or hardware, such as robotics, by doing direct

programming in either Java or C++. NSL supports the design of modular neural networks which simplify modeling

and simulation while providing better model extensibility.

1. Modeling and Simulation of Neural Networks
Neural network simulation is an important research and development area extending from biological studies to

artificial applications. In this book, we stress biological neural networks designed to model the brain in a faithful

way at a level of detail appropriate to the data under analysis.

Modeling and Simulation

Modeling develops a neural architecture which can explain and reproduce anatomical and physiological

experimental data. It involves choosing appropriate data representations for neural components, neurons and their

interconnections, as well as network input, control parameters and network dynamics specified in terms of a set of

mathematical equations. The neuron model varies depending on the details being described. Neuron models can be

very sophisticated biophysical models, such as compartmental models based on the Hodgkin-Huxley model. When

behavioral analysis is desired, simpler neuron models such as the analog leaky integrator model may be appropriate.

The particular neuron model chosen defines the dynamics for each neuron, yet a complete network architecture also

involves specifying interconnections among neurons as well as specifying input to the network and choosing

appropriate parameters for different tasks using the neural model specified. Moreover, many models involve

learning, whose dynamics must be specified in the model architecture.

Simulation then consists of using the computer to see how the model behaves for a variety of input patterns and

parameter settings. A simulation may use values pre-specified in the original formulation of the model, but will in

general involve specifying one or more aspects of the neural architecture that may be modified by the user.

Simulation also involves analyzing the results, both visual and numerical, generated by the simulator; on the basis of

these results one can decide if any modifications are necessary in the network input or parameters. If changes are

required, these may be interactively specified and the model re-simulated, or the changes may require more

structural modifications at the neural architecture level and the model will have to be re-compiled. Simulation  also

involves selecting one of the many approximation methods used to solve neural dynamics specified through

differential equations.
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In addition, the simulation environment may need to change when moving a model from the development phase

to the test phase. When models are initially simulated, good interactivity is necessary to let the user modify inputs

and parameters as necessary. As the model becomes more stable, simulation efficiency is a primary concern where

model processing may take considerable time – possibly hours or even days for the largest networks to process.

In our system, modularity, object-oriented programming and concurrency play an important part in building

neural networks as well as in their execution. We briefly review these key ideas.

Modularity

Modularity is today widely accepted as a requirement for structuring software systems. As software becomes

larger and more complex, being able to break a system into separate modules enables the software developer to

better manage the inherent complexity of the overall system. As neural networks become larger and more complex,

they too may become hard to read, modify, test and extend. Moreover, when building biological neural networks,

modularization is further motivated by taking into consideration the way we analyze the brain as a set of different

brain regions. The general methodology for making a complex neural model of brain function is to combine

different modules corresponding to different brain regions. To model a particular brain region, we divide it

anatomically or physiologically into different neural arrays. Each brain region is then modeled as a set of neuron

arrays, where each neuron is described for example by the leaky integrator, a single-compartment model of

membrane potential and firing rate. (However, one can implement other, possibly far more detailed, neural models.)

For example, Figure 1 shows the basic components in a model describing the interaction of the Superior Colliculus

(SC) and the saccade generator of the Brainstem involved in the control of eye movements. In this model, each

component or module represents a single brain region.

Figure 1: The diagram above shows two interconnected modules, the Superior Colliculus (SC) and the Brainstem.

Each module is decomposed into several submodules (not shown here) each implemented as an array of neurons

identified by their different physiological response when a monkey makes rapid eye movements.
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Figure 2 The diagram shows the SC and Brainstem modules from Figure 1 embedded in a much larger model of

interacting brain regions.

Structured models provide two benefits. The first is that it makes them easier to understand, and the second is

that modules can be reused in other models. For example, Figure 2 shows the two previous SC and Brainstem

modules embedded into a far more complex model, the Crowley-Arbib model of basal ganglia. Each of these

modules can be further broken down into submodules, eventually reaching modules that take the form of neural

arrays – Figure 3 shows how the single Prefrontal Cortex module (PFC) can be further broken down into four

submodules, each a crucial brain region involved in the control of movement.

There are, basically, two ways to understand a complex system. One is to focus in on some particular

subsystem, some module, and carry out studies of that in detail. The other is to step back and look at higher levels of

organization in which the details of particular modules are hidden. Full understanding comes as we cycle back and

forth between different levels of detail in analyzing different subsystems, sometimes simulating modules in

isolation, at other times designing computer experiments that help us follow the dynamics of the interactions

between the various modules.
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Thus, it is important for a neural network simulator to support modularization of models. This concept of

modularity is best supported today by object-oriented languages and the underlying modeling concepts described

next.

Figure 3 The Prefrontal Cortex (PFC) model is further decomposed into 4 submodules.

Object-Oriented Programming

Object-oriented technology has existed for more than thirty years. However, only in this past decade have we

seen it applied in so many industries. What makes this technology special is the concept of the object as the basic

modularization abstraction in a program. Prior to object-orientation, a complete application would be written at the

data and function level of abstraction. Data and functions would be global to a program and any changes to them

could potentially affect the complete system, an undesired effect when large and complex systems are being

modified. To avoid this problem an additional level of abstraction is added - the object. At the highest level,

programs are made exclusively out of objects interacting with each other through pre-defined object interfaces. At

the lowest level, objects are individually defined in terms of local data and functions, avoiding global conflicts that

make systems so hard to manage and understand. Changes inside objects do not affect other objects in the system so

long as the external behavior of the object remains the same. Since there is usually a smaller number of objects in a

program than the total number of data or functions, software development becomes more manageable. Objects also

provide abstraction and extensibility and contribute to modularity and code reuse. These seemingly simple concepts

have great repercussion in the quality of systems being built and its introduction as part of neural modeling reflects

this. Obviously, the use of object-orientation is only part of writing better software. How the user designs the

software or neural architectures with this technology has an important effect on the system, an aspect which

becomes more accessible by providing a simple to follow yet powerful modeling architecture such as that provided

by NSL.

Concurrency in Neural Networks

Concurrency can play an important role in neural network simulation, both in order to model neurons more

faithfully and to increase processing throughput (Weitzenfeld and Arbib 1991). We have incorporated concurrent
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processing capabilities in the general design of NSL for this purpose. The computational model on which NSL is

based has been inspired by the work on the Abstract Schema Language ASL (Weitzenfeld 1992), where schemas

(Arbib 1992) are active or concurrent objects (Yonezawa and Tokoro 1987) resulting in the ability to concurrently

process modules. NSL software is currently implemented on serial computers, emulating concurrency. Extensions to

NSL and its underlying software architecture will implement genuine concurrency to permit parallel and distributed

processing of modules in the near future.

2. NSL Modules and Simulation
As an object-oriented system, NSL is built with modularization in mind. As a neural network development

platform, NSL provides a modeling and simulation environment for large-scale general-purpose neural networks by

the use of modules that can be hierarchically interconnected to enable the construction of very complex models.

NSL provides a modeling language NSLM to build/code the model and a scripting language NSLS to specify how

the simulation is to be executed and controlled. Modeling in NSL is carried out at two levels of abstraction, modules

and neural networks, somewhat analogous to object-orientation in its different abstraction levels when building

applications. Modules define the top-level view of a model, hiding its internal complexity.. A complete model in

NSL requires the following components: (1) a set of modules defining the entire model; (2) neurons comprised in

each neural module; (3) neural interconnections; (4) neural dynamics; and (5) numerical methods to solve the

differential equations.

Modules and Interconnections

Figure 4. The NSL computational model is based on hierarchical modules. A module at a higher level (level 1), is

decomposed (dashed lines) into submodules (level 2). These submodules are themselves modules that may be further

decomposed. Solid arrows show data communication among modules. (There are also port inputs and outputs, not

shown,  at level 2 which correspond to the “data in” and “data out” ports at level 1.)
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At the highest-level model architectures are described in terms of modules and interconnections. We describe in

this section these concepts as well as the model, representing the main module in the architecture together with a

short overview of scheduling and buffering involved with modules.

Modules in NSL correspond to objects in object orientation in that they specify the underlying computational

model. These entities are hierarchically organized as shown in Figure 4. Thus a given module may either be

decomposed into a set of smaller modules or may be a "leaf module” that may be implemented in different ways,

where neural networks are of particular interest here. The hierarchical module decomposition results in what is

known as module assemblages – a network of submodules that can be seen in their entirety in terms of a single

higher-level module. These hierarchies enable the development of modular systems where modules may be designed

and implemented independently of each other following both top-down and bottom-up development.

Figure 5. A module in NSL implemented by neural networks made of multiple neurons. (There are port inputs and

outputs at the Neural Network level as well, not shown, which correspond to the “data in” and “data out” ports at the

Module Level.)

The module, the basic component in a model architecture, is somewhat analogous to the object in object-

oriented applications. The external portion of the module is the part of the module seen by other modules. The

internal portion is not seen by other modules – this makes it easier to create and modify modules independently from

each other – and defines the actual module behavior. This behavior need not be reducible to a neural network; it

could also be a module doing something else, e.g. providing inputs or monitoring behavior.

The most important task of a module's external interface is to permit communication between different modules.

As such, a module in NSL includes a set of input and output data ports (we shall call them simply ports). The port

represents an entry or exit point where data may be sent or received to or from other modules, as shown in Figure 6.

For example, the Maximum Selector model architecture incorporates a module having two input ports s_in and v_in

together with a single output port uf, as shown in Figure 7.
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Figure 6. The NSL computational model is based on the module concept. Each Module consists of multiple input,

din1,...,dinn, and output, dout1,...,doutm, data ports for unidirectional communication. The number of input ports does

not have to be the same as the number of output ports.

Figure 7. The ULayer module of the Maximum Selector model has two input ports s_in and v_in and a single output

port uf.

Data sent and received through ports is usually in the form of numerical values. These values may be of

different numerical types while varying in dimension. In the simplest form a numerical type may correspond to a

float, double, or integer. Dimensions correspond to a single scalar, a one-dimensional array (vector), a two-

dimensional array (matrix), or higher dimensional arrays. For example in the Ulayer module shown in Figure 7, v_in

is made to correspond to a scalar type while s_in and uf both correspond to vector arrays (the reason for this

selection will become clear very soon). In terms of implementation, the NSL module specification has been made as

similar as possible to a class specification in object-oriented languages such as Java and C++ in order to make the

learning curve as short as possible for those who already have a  programming background. The actual code for

specifying these constructs may be found in Chapter 3 of Weitzenfeld et al. (2000) or on our Website.

The general module definition includes the structure representing module attributes (data), and the behavior

representing module methods (operations). The former specifies the ports of the module, as well as the internal

variables of the module. The behavior spells out how values read in through the input ports and/or internal variables

may be operated upon both to update the internal variables and to provide values as appropriate  to the output ports.

The behavior of a module will include a number of specific methods called by the simulator during model

execution. These methods are used for different purposes, e.g. initialization, execution, termination.

Figure 8. Interconnections between modules Ulayer and Vlayer of the Maximum Selector model.
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Interconnections between modules are achieved by interconnecting output ports in one module to input ports in

another module. Communication is unidirectional, flowing from an output port to an input port. Figure 8 shows the

interconnections between the 2 modules of a simple model, the Maximum Selector model, which we will describe

below to introduce basic features of the NSL simulation system. In the example, a connection is made from output

port uf in Ulayer to input port v_in in Vlayer; additionally, output port vf in Vlayer is connected to input port v_in

in Ulayer.. In general, a single output port may be connected to any number of input ports, whereas the opposite is

not allowed, i.e., connecting multiple output ports to a single input port. The reason for this restriction is that the

input port could receive more than one communication at any given time, resulting in inconsistencies. Again, the

actual code for specifying these connections may be found in Chapter 3 of Weitzenfeld et al. (2000) or on our

Website.

The output to input port connection is considered “same level module connectivity”. By contrast, in "different

level module connectivity", an output port from a module at one level is relabeled (we use this term instead of

connected for semantic reasons) to an output port of a module at a different level. Alternatively, an input port at one

level module may be relabeled to an input port at a different level. For example, in Figure 9 we introduce the

MaxSelector module, containing an input port in and an output port out, encapsulating modules Ulayer and

Vlayer. MaxSelector is considered a higher level module to the other two since it contains - and instantiates - them.

In general, relabeling lets input and output ports forward their data between module levels. (This supports module

encapsulation in the sense that a module connected to MaxSelector should not connect to ports in either Ulayer or

Vlayer nor be able to get direct access to any of the modules private variables.) Relabelings, similar to connections,

are unidirectional, where an input port from one module may be relabeled when viewed as an input ports at different

levels.

Figure 9. Maximum Selector model architecture contains a MaxSelector module with two interconnected modules

Ulayer and Vlayer.

We close this section with a brief mention of Scheduling and Buffering: Scheduling specifies the order in which

modules and their corresponding methods are executed while buffering specifies how often ports read and write data

in and out of the module. NSL uses a multi-clock-scheduling algorithm where each module clock may have a

different time step although synchronizing between modules during similar time steps. During each cycle, NSL
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executes the corresponding simulation methods implemented by the user. Buffering relates to the way output ports

handle communication. Since models may simulate concurrency, such as with neural network processing, we have

provided immediate (no buffer) and buffered port modes. In the immediate mode (sequential simulation), output

ports immediately send their data to the connecting modules. In the buffered mode (pseudo-concurrent simulation),

output ports do not send their data to the connecting modules until the following simulated clock cycle. In buffered

mode, output ports are double buffered. One buffer contains the data that can be seen by the connecting modules

during the current clock cycle, while the other buffer contains the data being currently generated that will only be

seen by the connected modules during the next clock cycle.

Modules and Neural Networks

Some modules will be implemented as neural networks where every neuron becomes an element or attribute of

a module, as shown in Figure 10. (Note that although neurons also may be treated as modules, they are often treated

as elements inside a single module – e.g., one representing an array of neurons – in NSL. We thus draw neurons as

spheres instead of cubes to highlight the latter possibility.)

There are many ways to characterize a neuron. The complexity of the neuron depends on the accuracy needed

by the larger model network and on the computational power of the computer being used. The GENESIS (Bower

and Beeman 1997) and NEURON (Hines & Carnevale, 1997) systems were designed specifically to support the type

of modeling of a single neuron which takes account of the detailed morphology of the neuron in relation to different

types of input.  The NSL system was designed to let the user represent neurons at any level of desired detail;

however, we will focus here on the simulation of large-scale properties of neural networks modeled with relatively

simple neurons.

Figure 10. Single compartment neural model represented by a value mp corresponding to its membrane potential, and

a value mf corresponding to its firing, the only output from the neuron. S represents the set of inputs to the neuron.

We consider the neuron shown in Figure 10  to be “simple” since its internal state is described by a single scalar

quantity, membrane potential mp, its input is S and its output is mf, specified by some nonlinear function of mf.

The neuron may receive input from many different neurons, while it has only a single output (which may

"branch" to affect many other neurons or drive the network’s outputs). The choice of transformation from S to mp

defines the particular neural model utilized, including the dependence of mp on the neuron's previous history. The

membrane potential mp is described by a simple first-order differential equation,
( ) ( )tmpSf

dt
tdmp ,,=τ
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depending on its input s. The choice of f defines the particular neural model utilized, including the dependence of mp

on the neuron's previous history. For example, the leaky integrator model defines the membrane potential mp with

the first-order differential equation

smp
dt

dmp +−=τ

While neural networks are continuous in their nature, their simulated state is approximated by discrete time

computations. For this reason the NSL code for updating the membrane potentials of neurons will include the choice

of an integration or approximation method to approximate the solution of differential equations.

Figure 11. Common Threshold Functions.

The average firing rate or output of the neuron mf is obtained by applying some "threshold function" to the

neuron's membrane potential,
 ( )mpmf σ=

where σ  usually is described by a non-linear function. Basic threshold functions defined in NSL include step, ramp,

saturation and sigmoid, whose behaviors are plotted in Figure 11.

Synapses, the links among neurons, are – in biological systems – complex electrochemical systems and may be

modeled in exquisite detail (see the Chapter on EONS). However, many models have succeeded with a very simple

synaptic model: with each synapse carrying a connection weight that describes how neurons affect each other. The

most common formula for the input to a neuron is given by

∑
−

=
=

1

0

n

i
ijij ufwsv
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where ufi is the firing of neuron ui whose output is connected to the jth input line of neuron vj, and wji is the weight

for that link (up and vp are analogous to mp, while uf and vf are analogous to mf).

While module interconnections are specified in NSLM via a nslConnect method call, doing this with neurons

would in general be prohibitively expensive considering that there may be thousands or millions of neurons in a

single neural network. Instead we use mathematical expressions similar to those used for their representation.

Instead of describing neurons and links on a one by one basis, we extend the basic neuron abstraction into neuron

arrays and connection masks describing spatial arrangements among homogeneous neurons and their connections,

respectively. We consider ufi the output from a single neuron in an array of neurons and svj the input to a single

neuron in another array of neurons. If mask wjk (for -d≤k≤d) represents the synaptic weights from the ufj+k (for -

d≤k≤d) elements to svj, for each j, we then have

∑
−=

+=
d

dk
kjjkj ufwsv

where the same mask w is applied to the output of each neuron ufi+k to obtain input svj. In NSLM, the equation is

described by a single array convolution operation (operator "@")

sv = w@uf

This kind of representation results in great conciseness, an important concern when working with a large

number of interconnected neurons. Note that this is possible as long as connections are regular. Otherwise, single

neurons would still need to be connected separately on a one by one basis. This also suggests that the operation is

best defined when the number of v and u neurons is the same, although a non-matching number of units can be

processed using a more complex notation. There are special considerations with convolutions regarding edge effects

- a mask centered on an element at the edge of the arrays extends beyond the edge of the array - depending on how

out of bound array elements are treated. The most important alternatives are to treat edges as zero, wrap around

array elements such as if the array was continuous at the edges, or replicate boundary array elements.

Simulation

Simulation involves interactively specifying aspects of the model that tend to change often, in particular

parameter values and input patterns. Also, this process involves specifying simulation control and visualization

aspects. For example, Figure 12 shows five snapshots of the Buildup Cell activity after the simulation of one of the

submodules in the Superior Colliculus of the Crowley and Arbib model shown in Figure 1. We observe the activity

of single neurons, classes of neurons or outputs in response to different input patterns as the cortical command

triggers a movement up and to the right. We see that the cortical command builds up a peak of activity on the

Buildup Cell array. This peak moves towards the center of the array where it then disappears (this corresponds to the

command for the eye moving towards the target, after which the command is no longer required).
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Figure 12. An example of Buildup Cell activity in the Superior Colliculus model of Figure 1.
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Figure 13. Cutting dopamine in half caused the second saccade not to be generated in response to a double saccade

stimulus.

 It is not only important to design a good model, it is also important to design different kinds of graphical output

to make clear how the model behaves. Additionally, an experiment may examine the effects of changing parameters

in a model, just as much as changing the inputs. One of the reasons for studying the basal ganglia is to understand

Parkinson's disease, in which the basal ganglia are depleted of a substance called dopamine, whose depletion is a

prime correlate of Parkinson's disease. The model of Figure 2 (at a level of detail not shown) includes a parameter

that represents the level of dopamine. Figure 13 shows the response - saccade velocity, the behavior of a single cell

and the behavior of another single cell - to the brief presentation of a pair of targets. The "normal" model, yields two

saccades, one each in turn to the positions at which the two targets appeared; the "low-dopamine" model only shows

a response to the first target, a result which gives insight into some of the motor disorders of Parkinson's disease

patients.

Visualizing Model Architectures with the Schematic Capture System

There are two ways to develop a model architecture: by direct programming in NSLM or by using the

Schematic Capture System (SCS), a visual programming interface to NSLM. SCS provides graphical tools to build
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hierarchical models. In SCS the user graphically connects icons representing modules, into what we call a

schematic. Each icon can then be decomposed further into a schematic of its own. The benefit of having a schematic

capture system is that modules can be stored in libraries and easily accessed by the schematic capture system. As

more modules are added to the NSL model library, users will benefit by being able to create a rich variety of new

models without having to write new code. When coming to view an existing model, the schematics make the

relationship between modules much easier to visualize; besides simplifying the model creation process.. As modules

are summoned to the screen and interconnected, the system automatically generates the corresponding NSL module

code. The success of this will obviously depend on having good modules and documentation.

Figure 14. Schematic Editor showing the Motor Module for the Dominey and Arbib model. Pentagons in the shape of
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arrows show the input and output ports of the module..

Figure 14 shows an example of model schematics. The complete schematic describes a single higher-level

module, where rectangular boxes represent lower-level modules or sub-modules. These modules can be newly

defined modules or already existing ones. The lines describe connections among sub-modules while  small arrows

describe input ports (with arrows) and output ports of modules. Pentagon shaped boxes represent input (when lines

come out from a vertex) and output (when lines point to a side) for the higher-level module whose schematics is

being described.

To select a model from those already existing in the NSL Model Library, we must first open the library by

calling the Schematic Capture System. The system initially presents the Schematic Editor (SE) window. To execute

an existing model we select “Simulate Using Java” (or “Simulate Using C++”) from the “Tools” menu. SCS then

presents a list of available models. Once we chose the particular model, the system brings up the NSL Executive

window presented in Figure 15 together with an additional visualization window particular to this model shown in

Figure 16. At this point we are ready to simulate the selected model. Yet, before we do that, we will quickly

introduce the NSL Simulation Interface.

Figure 15.  The NSL Executive window. The top part of the window contains the title and underneath the title is

the Executive Menu Bar. The larger section of the window contains the Script Window.

The NSL Executive window, shown in Figure 15 is used to control the complete simulation process such as

visualization of model behavior. Control is handled either via mouse-driven menu selections or by explicitly typing

textual commands in the "nsls" shell. Since not all possible commands are available from the menus, the "nsls" shell

is offered for more elaborate scripts.

The top part of the window (or header) contains the window name, NSL Executive, and the Window Control

(right upper corner) used for iconizing, enlarging and closing the window. Underneath the header immediately

follows the Executive Menu Bar, containing the menus for controlling the different aspects involved in a

simulation. The lower portion of the window contains the Script Window, a scrollable window used for script

command entry, recording and editing. The Script Window is a superset of the pull down menus in that any
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command that can be executed from one of the pull-down menus can also be typed in the Script window, while the

opposite is not necessarily so. Furthermore, commands can also be stored in files and then loaded into the Script

window at a later time. The Script window supports two levels of commands. The basic level allows Tool Command

Language commands (TCL) [Ousterhout 94] while the second level allows NSLS commands. The NSLS commands

have a special "nsl" prefix keyword to distinguish them from TCL commands. While there is a single NSL

Executive window per simulation there may be any number of additional output windows containing different

displays. For example, the Maximum Selector model brings up the additional frame shown in Figure 16.

Figure 16. MaxSelectorModel NslOutFrame. The first canvas displays an area-level graph for the input variable s_out.

The second canvas displays a temporal graph for the internal variable up. And the third canvas displays an area-level

graph for the output variable uf.

The top part of the window contains the title or frame name and the very bottom of the frame contains the

Status line or Error message line. When there are no errors or warnings, the status line displays the current

simulation time. In the middle, the frame contains the NslDrawingArea. In this example, the drawing area contains

three NslOutCanvases: the first and third corresponds to Area graphs while the second corresponds to a Temporal

graph.

3. The NSL System
The complete NSL system is made of three components: the Main System, the Schematic Capture System

and the Model/Module Library, as shown in Figure 17. Three file types are used as communication between the

three modules:
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nslm files describing NSL models, executed by the Main System, stored in the Model Library and optionally

generated from SCS,

nsls files describing NSL model simulation, executed by the Main System and stored in the Model Library,

sif files storing schematics information about the model stored in the Model Library as well.

The Figure also shows BMW (Brain Models on the Web). This is not part of NSL, but is a model repository

under development by the USC Brain Project in which model assumptions and simulation results can be explicitly

compared with the empirical data gathered by neuroscientists.

Figure 17. Schematic Capture System and its relation to the NSL System.

Main System

The NSL Main System comprises several subsystems: the Simulation subsystem where model interaction and

processing takes place and the Window Interface subsystem where all graphics interaction takes place, as shown in

Figure 18. Note that we are now discussing the subsystems or modules that comprise the overall simulation system,

not the modules of a specific neural model programmed with NSL. But in either case, we take advantage of the

methodology of object-oriented programming.

The Simulation subsystem is composed of:

Ι/Ο  Control where external aspects of the simulation are controlled by the Script Interpreter and the Window

Interface;

Scheduler where the model specified in Model Files gets executed.

Model Compiler where NSLM code is compiled and linked with NSL libraries to generate an executable file;

Script Interpreter where the simulation gets specified and controlled using NSLS, the script language.

The Window Interface subsystem is composed of:

Graphics Output, consists of all NSL graphic libraries for instantiating display frames, canvases and graphs;
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Graphics Input, consists of NSL window controllers to interact with the simulation and control its execution

and parameters.

Figure 18. NSL’s Main System composed of the Simulation and Window Interface subsystems.

Model/Module Library

 NSL developed models and modules are hierarchically organized in libraries. NSL supports two library

structures. The first is called the legacy or simple structure as shown in Table 1.1. The second structure is one that

the Schematic Capture System (SCS) builds and maintains. It is pictured in Table 1.2. The difference between the

two is in how they manage modules. The legacy system gives a version number only to models, not modules. The

SCS system versions both models and modules, and contains an extra directory, called the exe directory, for

executables specific to different operating systems for the C++ version of the software.

Model/Module Library Hierarchy

nsl3_0

 Library Name

Model Name

Version Number

io src doc

Table 1.1. NSL model library hierarchy organization for the Legacy System

Model/Module Library Hierarchy



©Academic Press Alexander and Arbib – 2.2. NSL Neural Simulation Language February 9, 2000 2020

nsl3_0

 Library Name

Model or Module Name

Version Number

io src exe doc

Table 1.2. NSL model and module library hierarchy organization for the SCS System

There are several reasons for maintaining both systems. For the SCS system, it is better to version the modules

so that the user can try different versions of a module in his/her model and so that the modules can be shared more

easily between models. Larger models will typically share modules and thus need the SCS management system. For

the legacy/simple system, if you are not using SCS, it is easier to manage the all of the module files in one directory,

src. Second, if the modules are not intended to be shared or contributed to Brain Models on the Web (BMW), then

they do not necessarily need to be versioned.

The general organization of Legacy architecture is shown in Table 1.1 where the levels correspond to

directories. The root of the hierarchy is "nsl3_0", the current system version. A library name is defined to distinguish

between libraries. Obviously there may be multiple model libraries. Each library may contain multiple models

identified by their corresponding name. Each model is then associated with different implementations identified

each by its corresponding version number (version numbers start at 1_1_1). The bottom level of the directory

hierarchy contains the directories where the actual model or module files are stored: The io directory stores input

and output files, usually in the form of NSLS script files. The src directory contains source code that needs to be

compiled, written in the NSLM modeling language; this directory also includes files produced from the compilation

including executables. The doc directory contains any documentation relevant to the model including theoretical

background, why certain values were chosen for certain parameters, what is special about each of the protocols, how

to perform more sophisticated experiments, relevant papers, etc. All models given in the NSL book (Weitzenfeld et

al., 2000) were originally developed using the legacy system; and thus, as of early 2000, is what will be found at our

website: http://www-hbp.usc.edu/Projects/nsl.htm.

Alternatively, SCS provides a facility for uploading an SCS model, module, or library to Brain Models on the

Web, as well as, vice versa. For more information, see our website at http://www-hbp.usc.edu/Projects/NSL.htm and

http://www-hbp.usc.edu/Projects/bmw.htm. SCS allows the user to create new libraries as well as add new revisions

to existing models and modules. The user can browse and search the libraries for particular models or modules.

When building a schematic, the user has the choice of choosing the most recent modification of a model or module,

or sticking with a fixed version of that model or module. If the user chooses a specific version, this is called “using

the fixed version”. If the user specifies “0_0_0” then the most current version of the module would be used instead

and whenever there is a more recent version of the module, that version will be used. This is called “using the

floating version”. Each individual library file stores metadata describing the software used to create the

corresponding model/module. Since SCS generates and manages the NSLM source code files, it also provides a

utility for generating the compilation scripts necessary to build the model
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4. Simulating a Model – The Maximum Selector Model
If a model is a discrete-event or discrete-time model, the model equations explicitly describe how to go from the

state and input of the network at time t to the state and output after the event following t is completed, or at time t+1

on the discrete time scale, respectively. However, if the model is continuous-time, described by differential

equations, then simulation of the model requires that we must replace the differential equation by some discrete-time

numerical method (e.g., Euler or Runge-Kutta) and choose a simulation time step ∆ t so that the computer can go

from state and input at time t to an approximation of the state and output at time t+∆ t. In each case, the simulation of

the system proceeds in steps, where each simulation cycle provides the updating for one time step of the chosen

type. Simulation involves the following aspects of model interaction: (1) simulation control, (2) visualization, (3)

input assignment and (4) parameter assignment.

• Simulation Control - Simulation control involves the execution of a model. The Executive window’s

“Simulation”, “Train” and “Run” menus contain options for starting, stopping, continuing and ending a

simulation during its training and running phase, respectively.

• Visualization - Model behavior is visualized via a number of graphics displays. These displays are drawn on

canvases, NslOutCanvas, each belonging to a NslOutFrame output frame. Each NslOutFrame represents an

independent window on the screen containing any number of NslOutCanvas for interactively plotting neural

behavior or variables in general. NSL canvases can display many different graph types that display NSL

numeric objects - objects containing numeric arrays of varying dimensions. For example the Area graph shown

in Figure 16 displays the activity of a one-dimensional object at every simulation cycle. the size of the dark

rectangle represents a corresponding activity level. On the other hand, the Temporal graph shown displays the

activity of a one-dimensional objects as a function of time (in other words, it keeps a history).

• Input Assignment - Input to a model varies both in terms of the particular model but also in terms of how it is

specified. NSL supports input as script commands in the NSLS language using the Script Window, by loading

script files, as well as by custom-designed input windows.

• Parameter Assignment - Simulation and model parameters can be interactively assigned by the user.

Simulation parameters can be modified via the "Options" menu while model parameters are modified via the

Script Window. Additionally, some models may have their own custom-designed window interfaces for

parameter modification.

The remaining sections of this chapter illustrate model simulation using the Maximum Selector model. It is a

very simple model, but allows us to briefly present a number of key features of the NSL environment. The models

described in the previous Chapter offer far fuller use of the NSL system, or of related approaches to modular

architecture of large-scale neural systems. To get one of the models we have discussed, just visit our website at

http://www-hbp.usc.edu/Projects/nsl.htm. From that page, a list of models executable from NSL will be displayed

and you can pick and choose which one you wish to download. Note, you must have software on your machine that

can unzip a file. If not, you can also download that from the internet.
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Figure 19. The neural network architecture for the Maximum Selector [Didday 1976; Amari and Arbib 1977] where si

represents input to the network, upi and vp represent membrane potentials while ufi and vf represent firing rates. wm,

wui, and wi correspond to connection weights.

The Maximum Selector neural model [Amari and Arbib 1977] is an example of a biologically inspired neural

network and is shown in Figure 19. The network is based on the Didday model for prey selection [Didday 1976] and

is more generally known as a Winner Take All (WTA) neural network. The model uses competition mechanisms to

obtain, in many cases, a single winner in the network where the input signal with the greatest strength is propagated

along to the output of the network. External input to the network is represented by si (for 0 ≤ i ≤ n-1). The input is

fed into neuron u, with upi representing the membrane potential of neuron u while ufi represents its output. ufi is fed

into neuron v as well as back into its own neuron. vp represents the membrane potential of neuron v which plays the

role of inhibitor in the network. wm, wui, and wi represent connection weights, whose values are not necessarily equal.

The neural network is described by the following set of equations,

 ( ) ( ) ( ) imiui
i

u shvgwufwu
dt

tdu +−−+−= 1τ
(2.1)

 τ v

dv
dt

= − v + wn f ui( )
i = 1

n

∑ − h2

where wu is the self-connection weight for each ui, wm is the weight for each ui for feedback from v, and each

input si acts with unit weight. wn is the weight for input from each ui to v. The threshold functions involve a step for

f(ui)
 f (ui ) =

1 ui > 0
0 ui ≤ 0

 
 
 (2.2)

and a ramp for g(v)
 g(v) =

v v > 0
0 v ≤ 0

 
 
 (2.3)

Again, the range of i is 0 ≤ i ≤ n-1 where n corresponds to the number of neurons in the neural array u.
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Note that the actual simulation will use some numerical method to transform each differential equation of the

form τ dm/dt = f(m,s,t) into some approximating difference equation m(t+∆ t) = F(m(t), s(t), t) which transforms

state m(t) and input s(t) at time t into the state m(t+∆ t) of the neuron one “simulation time step” later.

As the model equations get repeatedly executed, with the right parameter values, ui values receive positive input

from both their corresponding external input and local feedback. At the same time negative feedback is received

from v. Since the strength of the negative feedback corresponds to the summation of all neuron output, as execution

proceeds only the strongest activity will be preserved, resulting in many cases in a "single winner" in the network.

To execute the simulation, having chosen a differential equation solver and a simulation time step (or having

accepted the default values), the user would simply select “Run” from the NSL Executive’s Run menu as shown in

Figure 20. We abbreviate this as RunàRun.

Figure 20. The “Run à Run” menu command.

The output of the simulation would be that as shown in Figure 21.



©Academic Press Alexander and Arbib – 2.2. NSL Neural Simulation Language February 9, 2000 2424

Figure 21. Output of the MaxSelectorModel. Notice that the second and fourth elements in the “maxselector.u1.up”

membrane potential layer are affected by the input stimuli; however, the “winner take all” circuit causes the fourth

element to dominate the output, as seen in the firing rate, “maxselector.u1.uf”.

 The resulting statistics on how long the simulation took to run are displayed in the Executive window's shell, as

shown in Figure 22.

Figure 22. Executive window output from Maximum Selector model run.

Recall that NSLS is the NSL scripting language in which one may write a script file specifying, e.g., how to run

the model and graph the results. The user may thus choose to create a new script, or retrieve an existing one. In the

present example, the user gets the system to load the NSLS script file containing preset graphics, parameters, input

and simulation time steps by selecting "SystemàNsls file … ", as shown in Figure 23.
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Figure 23. Loading a "nsls" script file into the Executive.

 From the file selection pop-up window we first choose the "nsl" directory and then MaxSelectorModel, as

shown in Figure 24. Alternatively, the commands found in the file could have been written directly into the Script

Window but it is more convenient the previous way.

Figure 24. The MaxSelectorModel script loaded into the Executive.

Simulation control involves setting the duration of the model execution cycle (also known as the delta-t or

simulation time step). In all of the models we will present, we will preset the simulation control parameters within

the model. However, to override these settings the user can select from SystemàSetàRunEndTime and Systemà

SetàRunDelta as shown in Figure 25 .
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Figure 25. Setting system control parameters.

A pop-up window appears showing the current parameter value that may be modified by the user. In this model

we have set the runEndTime to 10.0, as shown in Figure 26, and runDelta to 0.1 giving a total of 100 execution

iterations. These values are long enough for the model to stabilize on a solution.

Figure 26. RunEndTime parameter setting.

To execute the actual simulation we select “Run” from the “Run” menu, as we did in Figure 20.

The user may stop the simulation at any time by selecting the "Run" menu and then selecting "break". We

abbreviate this as RunàBreak. To resume the simulation from the interrupt point select RunàContinue.

The model output at the end of the simulation is shown in Figure 21. The display shows input array s_out with

an Area type graph, i.e., the area of the black rectangle codes the size of the corresponding input, while array up,

with a Temporal type graph, shows the time course for up. The last canvas shows another Area type graph for uf at

the end of the simulation. The largest input in s_out determines the only element of s_out whose activity is still

positive at the end of the simulation as seen in uf – the network indeed acts as a maximum selector.

The Maximum Selector model example is quite simple in that the input s_out is constant. In the example chosen,

is consists of only two different positive values (set to 0.5 and 1.0) while the rest are set to zero (total of 10 elements

in the vector). In general, input varies with time. Since input is constant in the present case, it may be set similarly to

any model parameter. To assign values to parameters, we use the "nsl set" command followed by the variable and

value involved. In general, input varies with time. If we are dealing with dynamic input we have different

alternatives for setting input. One is to specify a "nsl set" command with appropriate input values every time input

changes. Another alternative is to specify the input directly inside the model description or through a custom

interface.

Parameters whose values were not originally assigned in the model description, or that we may want to modify,

are specified interactively. Two parameters of special interest in the model are the two thresholds, hu and hv. These

two parameters are restricted as follows, 0 ≤ hu, and 0 ≤ hv < 1. (For the theory behind these restrictions, see Arbib,
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1989, Sec.4.4.) Their initial values are set to 0.1 and 0.5 respectively. To exercise this model the user can change

both the input and parameter values to see different responses from the model. We suggest trying different

combinations of input values, specifying different number of array elements receiving these values. In terms of

parameters we suggest changing values for hu and hv, including setting them beyond the mentioned restrictions.

Every time parameters or input changes the model should be reinitialized and executed by selecting the "run" menu

option.

5. Available Resources
As mentioned in this chapter, the USCBP web site contains the links to the NSL, SCS, and BMW home pages.

The NSL software, documentation, and an exemplary set of models written in NSL can be found from the page:

http://www-hbp.usc.edu/Projects/nsl.htm. The SCS software, documentation, and models can be found from the

main NSL home page. The models that have been formatted and annotated for BMW can be found from

http://www-hbp.usc.edu/Projects/bmw.htm. In addition, the USCBP web site contains a general modeling page that

contains some models that are neither in the NSL flat file repository nor the BMW repository. These models can be

found from the page: http://www-hbp.usc.edu/Thrusts/modeling.htm.

This research was supported in part by P20 Program Project grant 5-P20-52194 from the Human Brain Project

(NIMH, NIDA and NASA), and in part by a grant from NSF-CONACyT.
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