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Abstract 

Biology has been an important source of inspiration in building adaptive autonomous robotic 
systems. Through experimentation and simulation, scientists are better able to understand the 
underlying mechanisms, both structural and behavioral, involved in living organisms. 
Experimentation, in the form of data gathering (ethological, physiological and anatomical), 
feed theoretical models that, through simulation, generate predictions to be validated by 
further experimentation in both robots as well as living organisms. Due to the inherent 
complexity of these systems and the resulting architectures, most biologically inspired 
robotic systems are ethological, i.e. behavior is described by higher-level processes; as 
opposed to neuroethological, i.e. behavior mapped to underlying biological neural dynamics. 
Yet, neural mechanisms are crucial in modeling biological mechanisms such as adaptation 
and learning. The work presented here describes a multi-level schema and neural network 
based approach to modeling biomimetic robotic systems. 
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1. INTRODUCTION 
The study of biological systems comprises a cycle of biological experimentation, computational 
modeling and robotics experimentation as depicted in Figure 1. This cyc le serves as framework 
for the study of the underlying neural mechanisms responsible for animal behavior.  
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Figure 1. Framework for the study of living organisms through cycles of biological experimentation, computational 
modeling, and robotics experimentation.  
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While many living organisms have been studied as inspiration to robotic architectures, the 
most common approach involves ethological robotics [6], intended to imitate animal behavior 
without any linkage to neural structure. On the other hand, neuroethological architectures are 
intended to imitate both biological neural structure as well as behavior. To address the 
underlying complexity in simulating and building neuroethological robotics systems we usually 
distinguish between two different levels of modeling, behavior (schemas [3]) and structure 
(neural networks [2]). It is important to highlight that while many robot architectures do 
incorporate some kind of neural processing, most of these are of the artificial neural kind 
involving non-biological training algorithms, such as back-propagation or reinforcement 
learning [35]. 

2. BIOLOGICALLY-INSPIRED ROBOTICS: A MULTI-LEVEL APPROACH  
To address the underlying complexity in building biologically inspired robotic systems we have 
developed a multi-level ana lysis approach integrating across three primary modeling and 
simulation levels: (1) embodiment, (2) behavior, and (3) neural networks. 
 
1. At the highest level, embodiment is designed to provide robots with the ability to interact 

with the real world, mainly in the form of sensors and actuators. The types of sensors and 
actuators help define the arenas and tasks where the robot may perform. Biologically 
inspired robots are exemplified by the computational frog (rana computatrix) [1], the 
computational praying mantis [7][13], the computational cockroach [10], and the 
computational hoverfly [15]. 

2. At the behavioral level, neuroethological data from living animals is gathered to study the 
relationship between embodied entities and their environment, giving emphasis to aspects 
such as cooperation and competition between them.  Examples of ecological behaviors 
include the praying mantis Chantlitaxia ("search for a proper habitat") [8], and the frog and 
toad prey acquisition and predator avoidance models [16]. We describe behavior in terms of 
perceptual and motor schemas decomposed and refined in a recursive fashion in such a way 
that complex behaviors can be described as the composition of simpler ones. Behaviors and 
schemas can be modeled with the Abstract Simulation Language ASL [37]. 

3. At the neural network level, neuroanatomical and neuronphysiological data are used to 
generate perceptual and motor neural network models corresponding to schemas developed 
at the behavioral level. These models try to explain the underlying mechanisms for 
sensorimotor integration in, for example, visually guided animals [25][41]. Examples of 
neural network models are tectum and pretectum-thalamus responsible for discrimination 
among preys and predators [12], corresponding to behaviors such as prey acquisition and 
predator avoidance in toads [14][18] and higher-level models such as the monkey 
oculomotor system controlling eye saccades in monkeys [21]. Neural networks can be 
modeled with the Neural Simulation Language NSL [39].  

2.1 Embodiment: Animals and Robots 
To simplify the development process, models are first simulated in a virtual world and then 
embodied and executed in the real world. This process starts by specifying a set of sensors and 
actuators that should correspond as close as possible to those found in animals. For example, 
frogs and toads use vision and tact as primary sensors while legs and tongue are their primary 
actuators. In some cases actuators such as wheels can be used in building robots without 
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affecting the resulting behavioral interaction with the environment. In Figure 2 we show an 
illustration of a frog scene corresponding to a prey acquisition with detour behavior consisting 
of a frog and a prey (worm) interposed by a fencepost. 
 

 
Figure 2. Computational frog in a prey and barrier setup. 

2.2 Behavior: Schemas and ASL 
There are a number of ways of describing animal behavior. In Figure 3 we show rana 
computatrix ethograms for mating, prey acquisition, predator and static object avoidance. 
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Figure 3. Rana Computatrix ethogram: Mating, Prey Acquisition and Predator Avoidance schemas (moving and non-
moving objects) [12]. The diagram shows feedback between perceptual schemas (triangles) and regular schemas 
(rectangles). Note the hierarchical schema organization. (Acronyms are as follows: PS - Perceptual Schema, MO - Moving 
Object, NMO - Non-Moving Object, S -Schemas)  

Behavior can also be described in terms of stimulus-response diagrams. In Figure 4 we show 
a typical frog prey acquisition behavior using a stimulus-response diagram. 
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Figure 4. Frog's prey acquisition behavior involving a worm as shown on the left -hand side. The right-hand side describes 
the frog's response in relation to the stimulus [24]. 

Schemas  
In order to model complex biological systems linking behavior with neural structure a schema 
computational model is defined in terms of schema hierarchies representing a distributed model 
for action-perception control [34][40]. For example, diagram in Figure 5 represents a schema 
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computational model for prey acquisition, predator and static object avoidance in frogs, where 
blocks correspond to schemas and arrows represent data flow between schemas.  
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Figure 5. The diagram shows a schema computational model for frog behavior, including prey acquisition, predator and 
static object avoidance. Each block in the diagram represents a schema, where arrows correspond to data flow between 
schemas. 

Communication between schemas can be of a cooperative or competitive nature and may 
involve data transmission as well as schema assertion [18], in other words, weighing schemas 
to discriminate between opposed behaviors, such as prey acquisition and predator avoidance. 
Schema assertion takes place when schema activity surpasses certain threshold hence indicating 
enough confidence on that particular schema in the particular context. Once asserted, schema 
output is produced. 
ASL – Abstract Schema Language  
The schema computational model is specified using the ASL – Abstract Schema Language 
defining a hierarchical distributed computational model, where each schema incorporates its 
own structure and control mechanisms, as shown in Figure 6. In the top portion of the diagram, 
a higher-level schema is decomposed into two lower level schemas where the three schemas 
together are known as a schema aggregate, or assemblage. When at the same level, schemas 
can be interconnected (solid arrows), or when at different levels, schemas can be relabeled 
having their task delegated (dashed arrows). 

Module Level 1 data in
data out

Module Level 2

 
Figure 6. The ASL computational model is based on hierarchical interconnected schemas. A schema at a higher level 
(level 1) is decomposed (dashed lines) into additional interconnected (solid arrow) subschemas (level 2).  

The schema computational model follows a tree-like structure (schemas may also 
communicate between layers making the structure a directed graph). At the higher abstraction 
levels, detailed schema implementations are left unspecified, only specifying what is to be 
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achieved by lower level schemas. The schema interface consists of multiple unidirectional 
control/data, input and output ports together with a schema implementation body, as shown in 
Figure 7. Schemas correspond formally to port automata with activity variables indicating the 
degree of confidence [1].  
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Module

 
Figure 7. Each schema may contain multiple input, din1,...,dinn, and output, dout1,...,doutm, ports for unidirectional 
communication. 

Communication is in the form of asynchronous message passing, hierarchically managed, 
internally, through anonymous port reading and writing, and externally, through dynamic port 
connections and relabelings. Schemas are interconnected by matching schema interfaces, in 
other words, connections are done by linking output ports from one schema to input ports in 
other schemas. On the other hand, relabelings are done by linking ports of similar type (input 
or output) among different schemas usually at different levels in the hierarchy. The hierarchical 
port management methodology enables the development of distributed architectures where 
schemas may be designed in a top-down and bottom-up fashion implemented independently 
and without prior knowledge of the complete model or their final execution environment, 
encouraging component reusability. In the top-down approach a complete system is first 
described at the schema level, as shown in Figure 5. In the bottom-up approach individual 
schema is first developed and then integrated in creating more complete schema systems.  

2.3 Neural Networks: Neuroethology and NSL 
Biologically inspired neural networks are based on physiological and anatomical neural 
mappings. For example, Figure 8 shows a diagram of different neural areas involved in the 
frog's prey acquisition, predator avoidance and static object avoidance. 

 
Figure 8. The two illustrations show the most important areas in the frog's prey acquisition model. These are the Optic 
Tectum (O) (divided in four regions: Temporal (T), Dorsal (D), Nasal (N) and Ventral (V)), the Thalamic Pretectal 
Neuropil (P), together with other regions: Nucleus of Belonci (B), Lateral Geniculate Nucleus (C) and Basal Optic Root (X) 
[32]. 

Neuroethology 
In order to develop a multi-level neural schema model, it is necessary to have a correspondence 
in animal behavior to neural network structure. In Figure 9 a number of neural networks are 
incorporated: Retina [36], Stereo [29], Maximum Selector [20], Tectum and PreTectum-
Thalamus [12], together with neural motor heading maps. These neural schemas correspond 
each to a different higher-level schema, in particular, prey approach, predator avoidance and 
static object avoidance. Additional schemas in the model include visual and tactile input, depth 
and moving stimulus selector (when more than one prey exists), prey, predator and static object 
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recognizers together with the four types of motor actions: forward, orient, sidestep and 
backward. 
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Figure 9. Toad’s prey -predator visuomotor coordination model architecture with schema and neural level modules. The 
schema architecture consists of two levels: a schema level and a neural networks level. The schema level consists of 
Perceptual Schemas: Visual and Tactile, Prey Recognition, Static Object Recognition (SOR); Sensorimotor Schemas: Prey 
Approach and Static Object Avoidance; and Motor Schemas Orient, Forward, Sidestep and Backup. The neural level 
consists of four modules: Retina, T5_2layer, TH10layer and the Motor Heading Map (MHM). 

NSL – Neural Simulation Language 
The NSL – Neural Simulation Language is integrated as part of the ASL system with, where 

NSL is used to model individual neural schemas. Each schema in the ASL model may have its 
task delegated to a neural schema or other process, as shown in Figure 10. 
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Figure 10. The ASL/NSL computational model refines lower level schemas into neural networks corresponding to neural 
schemas or other processes. 

Each neural schema may be described at different levels of detail, from simpler neuron 
models to very detailed ones [38], as shown in Figure 11, such as electrochemical mechanisms 
responsible for phenomena such as synaptic plasticity, compartmental models where a single 
axon is divided in compartments [31], or ion kinetics model where chemical concentrations 
responsible for electric current are described [28]. These models are simulated with systems 
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such as GENESIS [11] and NEURON [27]. 
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Figure 10. Neural schema hierarchy showing task delegation to neural networks processing. 

Simpler neuron models, such as the leaky integrator neural model [2], are best suited for 
large-scale computation, where each neuron is defined by a membrane potential with value m 
representing its previous history, input sm  and output value M defined by a non-linear threshold 
function over its membrane potential, as shown in Figure 11.  

 
Figure 11. Simple neural element as basic component at the neural network level. 

For example, Figure 12 shows the MaxSelector [20] neural model described in terms of 
multiple leaky integrator neurons.  
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Figure 12. The neural network shown corresponds to the architecture of the Maximum Selector model, where ui and v 
represent neural membrane potentials, Ui and V represent neural firing rates, Si represent inputs to the network, and wi 
represent connection weights. The network is initialized with a number of positive inputs assigned to different cells. After 
multiple iterations the network stabilizes producing a single "winner", i.e. a single active cell.  

3. LEARNING TO DETOUR: A MULTI-LEVEL NEURAL-SCHEMA MODEL 
Anurans, such as frogs and toads, show quite flexible behavior when confronted with stationary 
objects on their way to prey or when escaping from a threat. Rana computatrix [1], a 
biomimetic system representing anuran visuomotor coordination, models complex behaviors 
such as detouring around a stationary barrier to get to a prey by appropriate barrier recognition, 
depth perception, and motor pattern generation mechanisms based on sensory perception [18]. 
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3.1 Model Background 
Ingle [30] and Collett [17] have observed that a frog or toad approaching a prey or avoiding a 
predator is affected by the stationary objects surrounding the animal.  A frog or toad, viewing a 
vertical fence barrier through which it can see a worm, may either approach directly to snap at 
the worm, or detour around the barrier. However, if no worm is visible, the animal does not 
move.  Thus, the worm triggers the animal's response but, when the barrier is present, the 
animal's trajectory to the worm changes in a way that reflects the relative spatial configuration 
of the worm and the barrier. Different behavioral responses to different barrier configurations 
described in [18] are shown in Figure 13.  

 
Figure 13. A.  Approach to prey with single 10cm barrier with immediate detour.  B.  Approach to prey with single 20 
cm barrier: first trial with frog in front of 20cm barrier (numbers indicate the succession of the movements). The toad 
directly approaches de center of the barrier requiring successive trials to manage the detour around it.  C.  Approach to 
prey with single 20cm barrier. After 3 trials the frog detours directly around the 20cm barrier.  Arrowheads indicate the 
position and orientation of the frog following a single continuous movement after which the frog pauses. 

The following experiments are performed [18]: 
• Experiment I: Barrier 10cm Wide. A 10cm wide barrier with the toad starting from a 

long enough distance (15-25cm) in front of the barrier and the worm 10cm behind the 
barrier. The experiment shows (in 95% of the trials) reliable detour behaviors from the first 
interaction with the 10cm barrier producing an immediate approach towards one of the 
edges of the barrier.   

• Experiment II: Barrier 20 cm wide . A 20cm wide barrier where the "naïve" toad (a toad 
that has not been yet exposed to the barrier) tends to go towards a fencepost gap in the 
direction of the prey (this was the case for 88% of the trials).  The toad initially approaches 
the fence trying to make its way through the gaps. During the first trials the toad goes 
straight towards the prey thus bumping into the barrier. Since the toad is not able to go 
through a gap it backs-up about 2cm and then reorients towards one of the neighboring 
gaps. 

• Experiment III: Barrier 20 cm wide . After learning. A 20cm wide barrier where the 
"trained" toad, after 2 (43%) or 3 (57%) trials, is already detouring around the barrier 
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without bumping into the barrier. The behavior involves a synergy of both forward and 
lateral body (sidestep) movements in a very smooth and continuous single movement. 

3.2 Model Architecture  
In order to define the model architecture it is necessary to define the robot-environment 
synergy. In our example, the robot embodiment consists of visual and tactile input in the form 
of a 2d visual field projected upon the retina of the robot.  

The detour model incorporates a number of schemas  and neural modules as implemented in 
NSL [19] and shown in Table 1, in correspondence to schemas previously shown in Figure 9.  

Function Schema Level Modules Neural Level Modules 
Perceptual Visual, Depth, Tactile, PreyRec, SoRec Retina, T5_2layer, TH10layer 
Sensorimotor PreyApproach, SoAvoid Motor Heading Map (MHM) 
Motor Forward, Orient, Sidestep, Backup  
Table 1. Frog schemas according to their functional and neural structure organization. 

Perceptual Schemas  
Perceptual schemas involve sensor and recognition components: 
• Visual. Obtains visual information from the environment in the form of single or multiple 

eyes or cameras. It performs basic visual field processing, discriminating between visual 
elements such as prey and barrier. Has linkage to the Retina neural schema. 

• Depth. Generates a depth map for objects of interest in the environment. Depth perception 
is important in avoiding hitting objects and generating appropriate responses according to 
their closeness. 

• Tactile. Gets triggered when robot hits an object, in particular, to detect bumping of the 
barrier.   

• PreyRec. The presence of a prey within the visual field of the animal produces a 2d pattern 
of activity in the prey recognition system, while absence of prey leaves the system at rest. 
The PreyRec schema uses feature detector s to approximate the functionality of a detailed 
neural network model for prey recognition in amphibia as described in [12], where cells in 
the toad's pretectum continuously discharge in the presence of large dark stationary objects 
[23]. Has linkage to the T5_2layer neural schema. 

• SoRec. The SorRec schema model for stationary object recognition in anurans is based on 
th10 cells [5]. Has linkage to the TH10layer neural schema. 

Sensorimotor Schemas  
Sensorimotor schemas integrate sensory perception and motor action: 
• Prey Approach. This schema involves a prey attractant field whose strength decays 

gradually with the distance from the prey [29], projecting this excitatory field onto the 
MHM (motor heading map). 

• Static Object Avoid. The model includes a repellent vector field associated with each 
fence post.  Its effect is more localized to its point of origin than that of the prey. It projects 
this inhibitory field onto the MHM (motor heading map). 

• Bump Avoid. The BumpAvoid schema produces a reorientation that triggers the projection 
of an activity pattern to the MHM. This field gives rise to excitation on neighbor regions 
resulting in reorientation under bumping.  

• Motor Heading Map. The motor heading map (MHM) determines the direction to jump 
[16]. Projections to the MHM must differ depending on whether a visual stimulus is 
identified as prey, predator or obstacle. In the latter, the sensory map and the motor map 
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must be distinguished, in other words, direction of a prey and prey catching are the same, 
but directions of a predator and escape are different. Winner-take-all dynamics over MHM 
assure the selection of the strongest target angle, upon which a transformation from 
retinotopic to motor coordinates takes place.  This is the input to the different motor 
schemas [18][20]. 

Motor Schemas  
In the model, motor schemas (sidestep, orient, approach, snap, etc.) are implemented as 
functional components schematizing the neural interactions underlying behavior.  The intrinsic 
motor patterns or muscle activations are not simulated. Detour behavior can be seen as the 
coordination of motor schemas. Ingle [30] offered some clues as to possible neural correlates of 
the various schemas.  Apparently, thalamic and tectal visual mechanism can operate somewhat 
independently.  Monocular frogs without a contralateral optic tectum can quite accurately 
localize barriers, and while visual input to the pretectal region of the caudal thalamus mediates 
barrier avoidance behavior, caudal thalamic lesions produce an inability to sidestep stationary 
barriers set in the frog's path during pursuit of prey. The motor pattern selection is obtained 
from the interaction of motor schemas[16].  MHM contains target location but motor schema 
selection is the result of competition of many maps. 

3.3 Model Simulation 
The following experiments were simulated varying the barrier size (10cm and 20cm) as well as 
applying learning to the 20cm barrier experiment. 
Experiment I 
A number of internal fields are shown in Figure 14 for experiment I, consisting of a 10 cm wide 
barrier.  
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Figure 14. Different activity fields for the 10cm barrier experiment  due to visual_field  processing in the frog with the 
exception of the bottom one processed after the tactile field. The top display (gaps) shows the repulsive field generated from 
the barrier (note that it is negative). The next display down (prey_hor) represents the attraction field generated from the prey 
(note that it is positive). The next display down (mhm) represents the combined gaps and prey_hor fields. The next display 
down (wta) represents the winner-take-all element from the above mhm field. This winning element results in the heading or 
frog's orientation when moving forwards. The last display (baf) is currently empty and represents activity due to bumping 
against the barrier. 

The movement direction results from the combination of the prey attraction and barrier 
repulsion fields. In this experiment the direction of movement is towards the side of the barrier, 
heading towards the right since the frog was positioned just a bit to the right from the axis 
joining the center of the prey and barrier. The resulting path motion is shown in Figure 15. 

 
Figure 15. Rana Computatrix interacting with the 10 cm wide barrier. The different dots correspond to the frog's trajectory 
from its initial location as it finally reaches the prey. Note how the frog heads itself towards the side of the barrier. 
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Experiment II 
A number of internal fields are shown in Figure 16 for experiment II, consisting of a 20 cm 
wide barrier.  

 
Figure 16. Different activity fields for the 20cm barrier experiment before bumping due to visual_field processing in the frog 
with the exception of the bottom one processed after the tactile field. The top display (gaps) shows the repulsive field 
generated from the barrier (note that it is negative). The next display down (prey_hor) represents the attraction field 
generated from the prey (note that it is positive). The next display down (mhm) represents the combined gaps and prey_hor 
fields. The next display down (wta) represents the winner-take-all element from the above mhm field. This winning element 
results in the heading or frog's orientation when moving forwards. The last display (baf) is currently empty and represents 
activity due to bumping against the barrier. 

Again, the most important factor in the frog movement direction results from the combination 
of the prey attraction and barrier repulsion fields. In this experiment the direction of movement 
before bumping into the barrier is towards the middle of the barrier. Once the frog hits the 
barrier a bumping field is generated. The purpose of this field is to redirect the movement 
towards a different heading. Before that occurs the frog will backup. The resulting field after 
bumping is shown in Figure 17. 
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Figure 17. Different activity fields for the 20cm barrier experiment after bumping due to visual_field processing in the frog 
with the exception of the bottom one processed after the tactile field. The top display (gaps) shows the repulsive field 
generated from the barrier (note that it is negative). The next display down (prey_hor) represents the attraction field 
generated from the prey (note that it is positive). The next display down (mhm) represents the combined gaps and prey_hor 
fields. The next display down (wta) represents the winner-take-all element from the above mhm field. This winning element 
results in the heading or frog's orientation when moving forwards. The last display (baf) is represents activity due to bumping 
against the barrier. 

The resulting path motion after hitting the barrier several times is shown in Figure 18.  
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Figure 18. Rana Computatrix interacting with the 20 cm barrier before learning. The different dots correspond to the frog's 
trajectory from its initial location as it finally reaches the prey. We have added numbers corresponding to the frog's position 
in time. In this experiment the frog hits the barrier three times before perceiving the side of the barrier. 
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Experiment III 
A number of internal fields are shown in Figure 19 for experiment III, consisting of a 20 cm 
wide barrie. after learning.  

 
Figure 19. Different activity fields for the 20cm barrier experiment after learning due to visual_field processing in the frog 
with the exception of the bottom one processed after the tactile field. The top display (gaps) shows the repulsive field 
generated from the barrier (note that it is negative). The next display down (prey_hor) represents the attraction field 
generated from the prey (note that it is positive). The next display down (mhm) represents the combined gaps and prey_hor 
fields. The next display down (wta) represents the winner-take-all element from the above mhm field. This winning element 
results in the heading or frog's orientation when moving forwards. The last display (baf) is currently empty and represents 
activity due to bumping against the barrier. 

Note that although no bumping occurs, the mhm field involves a similar integration where 
heading is explicitly generated, in this case by learning. The resulting behavior is shown in 
Figure 20. 
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Figure 20. Rana Computatrix interacting with the 20 cm wide barrier after learning. 

3.4 Robot Embodiment 
The experimental setup consists of a mobile robot with wireless trans mission to a remote 
computer where model computation takes place. The system itself is completely autonomous, 
although physically distributed to restrict robot size, power consumption and hardware 
capabilities, making it simpler to move between simulated or embodied systems. The 
distributed Internet-based robot architecture, known as MIRO - Mobile Internet Robots [43], is 
shown in Figure 21. Note that multiple robots can execute concurrently, although no sharing of 
information is allowed between remote computer systems. 
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Figure 21. MIRO [43] embedded robotic architecture consisting of multiple autonomous robots linked to their 
own instance of the distributed neural computational system. All such instances are connected to Internet for 
remote monitoring alt hough no sharing of information is allowed between systems. 

The distributed architecture consists of a remote computational system linked to a PC and a 
robot having a wireless camera transmitting video to the remote frame grabber in the computer 
where the model executes. The robot incorporates a separate transceiver for sensor reading and 
motor control controlled by a local OOPIC processor doing very limited computation. The 
architecture is shown in Figure 22. 
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Figure 22. Distributed robot architecture consisting of a PC-based frame grabber and transceiver and a wireless mobile 
robot incorporating a wireless video camera and separate transceiver for sensor reading and motor control being managed 
by an OOPIC processor.  

Two robot configurations were developed, initially a Lego-based configuration and later an 
OOPIC based robot were used, as shown in Figures 23. 

LEGO OOPIC  
Figure 23. Two different robot configurations were used for these experiments, one Lego-based and later an OOPIC based. 

In Figure 24, we show a sample display of how scenes are visualized directly from Internet, in 
this case consisting of an aerial camera and local robot camera. User interaction includes real-
time graphic displays corresponding to the different neural schemas in the model. 
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Figure 24. Internet aerial view of autonomous robot and robot’s camera view of “blue” prey -like stimulus with NSL/ASL 
frames showing results from different visual and neural modules in a basic prey acquisition robot experiment. 

In Figure 25, we show a sample cycle of computation where objects are recognized by color, 
where blue corresponds to a prey and red to a fencepost. 

Video capture

Video processing

Model simulation

Model output

Navigation control

(d , θr , θc)

Processing Cycle

 
Figure 25. Cycle of computation for the different experiments where a blue object represents a prey and a red object 
represents a fencepost. The model output consists of a distance d  to move, a robot orientation θr and a camera orientation 
θc. 
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Experiment I 
In Figure 26, a sequence of pictures is shown for experiment I. Note how the camera rotates 
independently from the robot body in keeping a view of the prey at all times. 

(A) (B)

(C) (D)  
Figure 26. Results from prey acquisition experiment for 10cm barrier with direct detour around barrier. 

Experiment II 
In Figure 27, a sequence of pictures is shown for experiment II. Again, note how the camera 
rotates independently from the robot body in keeping a view of the prey at all times. In this 
experiment the robot bumps into the barrier a couple of times before being able to circle around 
the barrier. 

(A) (B) (C) (D)

(E) (F) (G) (H)  
Figure 27. Results from prey acquisition experiment for 20cm barrier with direct detour around barrier. 

4. CONCLUSIONS AND DISCUSSION  
The work presented in this paper overviews the challenges and complexity in modeling robotic 
systems inspired by neuroethological animal models. The motivation behind this work has been 
to provide neuroscientists a testbed for robotic experimentation and to provide roboticists with 
new tools and architectures in the development of biologically inspired systems.  
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• Neuroethological modeling. In terms of neuroethological modeling, complexity is 
managed by taking a multi-level approach emphasizing both top-town and bottom-up 
designs through different levels of granularity. At the top-level a robot is defined in terms 
of sensors and actuators in defining the robot interaction environment. Next level down, 
behaviors are described in terms of schema models such as the frog's prey acquisitions, 
predator and static object avoidance. Schemas may be refined in a hierarchical manner until 
reaching lower-level neural networks representing schema implementations. Neural 
implementation may include simpler or more detailed neuron models, such as those 
requiring synaptic plasticity. The main challenge with neural schemas is the need to link 
independently developed neural models, such as those shown in Figure 9, where input and 
output specifications do not necessarily match. For example, the original neural models for 
Retina, Tectum and Pretectum incorporated coarse visual input instead of more faithful R2, 
R3 , and R4 retina class cells. This was done in order to obtain quicker results and make 
them more independent from other neural models. At this time we are reexamining the 
different neural models in order to: (1) separate what relates to actual visual input from 
specialized module processing and (2) modify these models to accept R2, R3, and R4 
output coming from actual retinal visual input. To complicate matters further, the logic of 
one module may be based on different assumptions different from those of other modules, 
e.g. different experiments, parameters or time frequencies. Yet, if we do not manage this 
integration, it will not be possible to “reuse” neural modules in more comprehensive 
neuroethological based robotic architectures [25].  

• Prey acquisition with detour. The toad prey acquisition with static object avoidance 
model presented in this paper explains basic facts about detour behavior. In experiment I, if 
the retinotopic  representation of the edge of the barrier falls within the prey-attractant-field, 
then the summation of activity from the prey-attractant-field and the barrier -repellent map 
at the retinotopic position just beyond the barrier's edge is stronger then the summation at 
the center of the barrier where the prey is located. Hence, the winner-take-all dynamics will 
select the cluster of activity corresponding to the retinotopic position at the edge of the 
barrier, resulting in a detour of the frog around narrow barriers. In experiment II, in the case 
of wide barriers, the prey-attractant-field extent falls within a much wider barrier field. 
Hence, at the retinotopic position corresponding to the barrier's edge there will be no input 
activity from the prey map. On the other hand, there will be a great projection of activity at 
the retinotopic position of the prey, thus triggering an approach to a point within the barrier 
map so long as the peak of prey attraction exceeds the barrier inhibition. Thus, the model 
predicts that the naive frog would approach wide barriers rather tha n detour around them. I 
nexperiment III, an artificial detouring field is added at the edge of the barrier to make the 
frog move around the barrier without the need to perceive the actual edge. 

• Simulation versus robot embodiment. Historically, most brain model development has 
been accomplished through simulation, but simulation is not quite the same as real-world 
robotic experimentation. In particular, many shortcuts are taken in simulation. For example, 
simulated cameras and world objects are made quite ideal, where cameras have large visual 
fields with “perfect” images and object sizes. Once models are experimented under real 
world conditions objects become less “perfect” harder to recognize. As part of our model 
experimentation with real robots, an interesting problem appeared in our prey acquisition 
with detour experiment, the problem of “losing” the prey once the robot orients towards one 
of the edges of the barrier. In the simulated version the robot always perceived the prey as 
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well as barrier by adjusting the size of the visual field. While toads do take care of this 
problem the actual model had to be modified in dealing with such issues. This is an 
example where simulated models may do fine under simulated environments but do not 
address specific issues originating from actual embodied robot experimentation. A simple 
solution to this problem was to add a new motor to control the camera independently from 
robot movement. Another alternative we are starting to explore gets its inspiration from 
other neurobiological models, in particular the oculomotor system in monkeys [21]. An 
interesting function of the oculomotor system is the control of “memory” saccades where 
the eye’s fovea redirects itself to a stimulus from information previously recorded, 
something of particular interest to the prey acquisition and predator avoidance models. Yet, 
it is not simply a matter of integrating across the two models. The prey acquisition and 
predator avoidance models are based on toad and frog studies, while the oculomotor system 
previously mentioned is based on monkey studies, varying quite a bit in terms of the 
involved neurobiological systems. To neurobiologist this is quite significant. On the other 
hand, to robotic designers this is not necessarily important. 

• Distributed Neural Processing. Large neural network models produce and consume great 
amounts of data and take a very large number of processing cycles to obtain meaningful 
results. A typical computation cycle starts by obtaining sensory input (visual and tactile) 
and ends by producing motor output.  In between, schemas process sensory data in order to 
produce motor behavior. Cycles continue indefinitely or until some specific task is 
completed, such as reaching the prey. For example, a “typical” retina model [36] may 
consist of more than 100,000 neurons and half a million interconnections requiring many 
hours of simulation to complete these cycles. The expensive nature of neural computation is 
further exacerbated by the fact that a comprehensive schema-neural model includes 
multiple neural networks. This becomes even worse in the case of higher-level animals 
involving extensive behaviors and other brain regions [4]. By taking advantage of the 
parallel and distributed nature of neural network computation [38], we have  extended the 
original NSL/ASL simulation system into a distributed architecture [42]. 

• Distributed Robot Architecture. In recent years a number of research efforts have been 
carried out to embed mobile robotic systems into computer networks via wireless 
communication [22]. This approach makes it possible not only to control and monitor 
remote robots, such as with the Mars explorers, but also enhance its capabilities by linking 
the robot to remote computational resources, such as image processing or neural processing. 
These efforts have highlighted the benefits of embedded systems in robotics via Internet 
[26][33]. As part of our current work in the design of embedded robotic systems we have 
developed the MIRO (Mobile Internet Robotics) architecture shown in Figure 21. The 
architecture consists of multiple robots each one connected to its own particular instance of 
the neural computational system. In such a way, processing is distributed among the robotic 
hardware and the remote computational system. Although it is possible to share robot 
“intelligence” among multiple robots where applications could easily take advantage of 
information sharing (see [9] for a discussion on distributed versus centralized robotic 
systems), we are particularly interested in keeping a truly autonomous robot architecture 
where neuroethological experimentation can be conducted. Under the MIRO architecture: 
(i) time-consuming processes are carried out in the (neural) computational system, 
implemented using the NSL/ASL system while (ii) sensory input, motor output and other 
limited tasks are carried out in the robot hardware. In such a way, the computational system 
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provides the robot’s “intelligence”, while the robot does limited processing. The most 
important challenge in this type of architectures is how to achieve real-time performance. 
We are at this time assessing the efficiency of the MIRO embedded architecture. A number 
of interesting questions have arised, for example, what happens when communication 
between the robot and computational system actually fails or becomes extremely slow or 
unreliable. When such situation arises, the robot can respond in a number of ways, do 
nothing until communication is restored, end its mission, or perform limited tasks that may 
put it back in action such as actively searching for a location where communication can be 
reestablished.  

• Multi-robot systems. Additionally, most of our experiments until now have involved 
single robots. The reason for this has been mostly due to the underlying complexity of 
neuroethological models. Our next goal is to experiment with multiple robots, where each 
robot will represent a different animal, such as a prey, toad or predator. 
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