
 
 

 

  

Abstract—In this paper we present a model designed on the 
basis of the rat’s brain neurophysiology to provide a robot with 
spatial cognition and goal-oriented navigation capabilities. We 
describe place representation and recognition processes in rats 
as the basis for topological map building and exploitation by 
robots. We experiment with the model by training a robot to 
find the goal in a maze starting from a fixed location, and by 
testing it to reach the same target from new different starting 
locations. 

I. INTRODUCTION 
IMULTANEOUS localization and mapping (SLAM) 
addresses the problem of a mobile robot acquiring a map 
of its environment while simultaneously localizing itself 

within this map [1]. The past decade has seen extensive work 
in SLAM related problems. Different approaches to map 
building have been proposed, such as topological [2], metric 
[3], and hybrid maps combining these two approaches [4]-[6]. 
Additionally, many different issues have arisen as critical to 
practical and robust SLAM implementations. Among these, 
data association [7] and perceptual ambiguity [8] are crucial 
issues in recognizing paths and locations having been already 
traveled. 

Data association relates to whether or not two features 
observed at different points in time correspond to one and the 
same object or place in the physical world [1]. On the other 
hand, perceptual ambiguity arises when trying to distinguish 
between places in the environment that may provide 
equivalent visual patterns [5]. Either, incorrect associations 
between new sensory data and previously mapped places or 
incorrect distinctions between perceptually similar places, 
can lead to a catastrophic failure in SLAM algorithms. Such 
failures become evident when a robot returns to a previously 
mapped region after a long excursion, the so-called 
loop-closure problem [8], [9]. 

Appearance-based methods and multi-hypothesis 
techniques address the data association problem. Appearance 
signatures and image similarity metrics related to color, shape 
and texture have been developed for recognizing places in 
topological mapping [10], and recently, appearance measures 
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have been applied also to detect loops in metric SLAM 
approaches [11]. Multi-hypothesis techniques, on the other 
hand, generate multiple data association hypotheses when 
new features are observed although adding computational 
overhead. Later, a single hypothesis becomes selected as 
more sensor data arrive. Examples of these techniques 
include multi-hypothesis Kalman filter (MHT) [12] and 
particle filter-based algorithms like FastSLAM [13]. 

Similar to SLAM algorithms having been developed for 
robots, animals such as rats and primates also rely on correct 
data association to solve spatial tasks in goal-oriented 
behaviors. Place recognition in rats is based on information 
stored in internal space representations often referred to as 
cognitive maps [14] that are located in an area of the brain 
known as hippocampus [15]. According to [16], a cognitive 
map is built gradually by means of an extensive exploration 
of the environment attaching topological and metric 
information based on the animal’s orientation and its 
estimation of distances to recognized objects. 

Neurophysiological studies suggest that spatial learning in 
rodents is achieved by neurons in the hippocampus, known as 
place cells, codifying information about physical locations in 
the environment [15]. Experimental work has shown that the 
representation encoded by place cells integrates visual cues 
with kinesthetic feedback information in order to recognize 
places already visited thus distinguishing among perceptually 
similar places [17]. 

These biological studies offer the attractive prospect of 
taking inspiration from animals such as rats to incorporate in 
mobile robots adaptive navigation behavioral models. Taking 
inspiration from the rat’s hippocampus, several robotic 
navigation models have been proposed such as [18] that 
builds space representations from visual cues; [19] that 
combines kinesthetic with visual information based on 
hippocampal representation; and [20] that also integrates both 
kinds of information. In general, most of these models were 
tested in virtual simulations with very limited experimental 
work on real robots or any sort of linkage to topological or 
metric maps built during robot exploration. 

Over the past months we have developed a navigation 
model based on the neurophysiology of the rat hippocampus 
that allows an actual robot to learn reward locations in 
different mazes, while building a topological map of the 
environment as well as returning home autonomously by 
means of Hebbian [21] and reinforcement learning [22]. This 
model relies on purely kinesthetic information to identify 
places in the environment and has been tested in different 
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learning and mapping experiments, with partial results 
reported in [23] and [24]. In this paper we present our latest 
work in the integration of kinesthetic and visual information 
derived from artificial landmarks placed in the environment 
to improve the data association process involved in the robot 
spatial cognition. In this way, Section II of the paper presents 
place recognition and target learning processes in rats, 
Section III presents the place recognition and target learning 
model description, Section IV describes the robot 
experimentation and results, and we conclude in Section V. 

II. PLACE RECOGNITION AND TARGET LEARNING IN RATS 
Place recognition and target learning in rats have been 

clearly demonstrated through what is considered a “classical” 
neurophysiological experiment devised by Morris in 1981 
[25]. Under this experiment, normal rats and rats with 
hippocampal lesions were independently placed in a circular 
tank filled with an opaque mixture of milk and water. They 
were required to swim until they located the platform, upon 
which they could stand and escape from the cold water. 
During the complete experiment, the platform remained at the 
same location in the tank. During the training phase, rats 
started from the same position in the periphery of the tank, 
whereas in the testing phase, rats started from different 
positions. In the case where the platform was visible, all rats 
were able to find it and escape during test trials. In a different 
set of experiments, the platform was submerged inside the 
tank, and visual cues were placed outside the tank around the 
arena. In this case, rats with hippocampal lesions were unable 
to find the platform, whereas normal rats found it during all 
test trials, taking direct routes to the platform although they 
had never swum from those starting positions. 

An important contribution of the Morris experiment is the 
distinction between reference memory and spatial memory. 
When the platform is visible, rats just needed to swim 
towards the platform by employing their reference memory. 
However, when the platform was hidden, rats needed to relate 
the location of the platform to the location of external 
landmarks, thus using their spatial memory. The dependence 
of this capability on the existence of an unlesioned 
hippocampus provided a confirmation of O'Keefe and Nadel 
hypothesis [15] of a cognitive map located in the mammalian 
hippocampus. In SLAM terminology, we could argue that a 
data association process is employed by rats with unlesioned 
hippocampus to recognize the location of the hidden platform 
in the Morris experiment. 

In a previous version of our model [23], [24], when the 
robot was located at a certain decision point in a maze from 
where the goal could be perceived, the robot was able to 
follow a direct route to the goal. Technically in this case, the 
robot took advantage of its reference memory to reach the 
goal. Later on, we restricted goal perception to nearby robot 
locations; yet, the robot was able to learn the route to the goal 
when starting from a unique departure position during all 
training and testing trials. In this case, the robot recognized 

places previously visited, learned routes to these places, and 
distinguished between perceptually similar places due to path 
integration and reinforcement learning capabilities. 

When the robot was tested to find the goal starting from 
different departure positions in the maze, path integration 
became an unreliable method to recognize previously visited 
places. Thus, we took inspiration from Morris experiment to 
extend our previous model and robot capabilities with spatial 
memory. We developed a landmarks processing module to 
manage visual cues placed around the maze while updating 
the place representation module accordingly. In this way, the 
robot can relate the location of landmarks to the location of 
the goal and the rest of the maze where landmarks can be 
perceived. The basic spatial cognition model and the newly 
added extensions are described in the next section. 

III. A MODEL OF SPATIAL COGNITION 
The rat-inspired model of spatial cognition comprises a 

number of modules: affordances, motivation, path 
integration, landmarks, learning, place representation, and 
action selection as shown in Fig. 1. A detailed description of 
the affordances, motivation, path integration, learning and 
action selection model components were presented in [23], 
[24]. In this section we quickly overview these modules and 
provide a detailed description of our newly developed 
landmark processing module and the improved place 
representation module. 

A. Model Architecture 
Sensory inputs to the model include affordances, 

motivation, kinesthesia, and landmarks. Affordances 
represent possible turns the rat can execute at any given time 
from -180° to +180° in 45° intervals and are coded by a linear 
array of cells called the affordances perceptual schema (AF). 
Determination of affordances is based on a local coordinate 
system that is relative to the rat’s head (see Fig. 2(a)). 

 
Fig. 1. The modules of the spatial cognition model and their interaction. r= 
immediate reward; PI= kinesthetic information pattern; LP= landmarks 
information pattern; AF= affordances perceptual schema; PC= place 
information pattern; r̂ = effective reinforcement; EX= expectations of 
maximum reward over a sequence of nodes and their corresponding 
directions (DX); and resulting DIR= rat direction, ROT= rat rotation, DIS= 
rat displacement. 



 
 

 

                    
Fig. 2. (a) Local coordinate system used in the model to determine 
affordances. (b) Global coordinate system used in the world graph layer of 
the model to build the topological map of the environment. This system is 
relative to the departure location (the base of the T in the figure). 
 

The animal’s motivation is related to its need to eat, i.e. the 
hunger drive. The Fixed Critic (FC) module of the model 
computes the hunger value and immediate reward (r) the 
animal gets by the presence of food. 

Kinesthetic information relates to magnitude and direction 
of rat movement, and is used by the path integration module 
to update the position of the rat’s point of departure each time 
it moves relative to its current location. 

Goal oriented behavior is achieved by using reinforcement 
learning by means of an Actor-Critic architecture [22] 
composed of an Adaptive Critic (AC) and Actor units. AC 
estimates the future reward value of any particular place or 
location (PC) and computes the effective reinforcement 
signal ( r̂ ) that supports the learning process. 

At a given location, the choice to turn in a specific 
direction is determined by the action selection schema (SS) 
by means of four signals corresponding to available 
affordances, a random rotation, rotations that have not been 
explored from the current rat’s location (curiosity), and the 
global expectation of maximum reward. In this way, SS 
determines the motor outputs for the rat in terms of: direction 
of the rat’s head (DIR) from 0° to 315° in 45° intervals, 
necessary rotation to point in the desired direction (ROT), and 
moving displacement (DIS). While returning to the departure 
point after having finished a training trial in an experiment, 
SS implements a backwards reinforcement over the nodes in 
the path followed by the rat. The return process and the 
backwards reinforcement are documented in detail in [26]. 

B. Landmarks Processing 
Spatial information used by rats to navigate in the 

environment includes location of goal related to the 
landmarks. Experiments with rodents employing colored 
cylinders as landmarks [17] suggested that the location of 
food is coded relative to each landmark independently, 
computing the distance and direction of food from each 
landmark. Considering these findings, we also used colored 
cylinders as landmarks in the environment. Colors of 
cylinders are used to estimate the distance and relative 
orientation of each visible landmark to the rat. The dynamics 
of the landmarks processing module is shown in Fig. 3. 
Distance and orientation of each visible landmark from the rat 
are represented by two linear arrays of cells in a landmark 
perceptual schema (LPS). Each array PS represents distance 
or orientation in terms of a Gaussian function using (1): 

 
Fig. 3. Landmarks processing module of the spatial cognition model. FDL 
stands for Feature Detector Layer; w= connection weights; L1= landmark 1 
information pattern; Ln= landmark n information pattern; LP= landmarks 
pattern representing an egocentric view from the rat. 
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where f is the width of the Gaussian, h is its height, and a 
corresponds to its medium position. The medium position of 
the orientation Gaussian corresponds to the relative rotation 
of the rat to the landmark from -180° to +180° in 45° 
intervals. The medium position of the distance Gaussian is 
determined by the proportion between the estimations of the 
current distance and the maximum distance to the landmark. 

Every neuron in LPS is randomly connected to 50% of the 
neurons in a particular landmark feature detector layer 
(LFDL). Connection weights between layers are randomly 
initialized and normalized between 0 and 1. The activation 
level Aj of neuron j in LFDL is computed by adding the 
products between each input value Ii coming from neuron i in 
LPS and the corresponding connection weight wij as 
described in (2): 
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i
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=
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1
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We apply Hebbian learning to update connection weights 
between layers in order to associate the activation of groups 
of neurons in LPS with the activation of groups of neurons in 
LFDL. In this way, we have incorporated into the model 
groups of neurons in LFDL that respond to specific landmark 
information patterns represented by LPS. The application of 
the Hebb rule is shown in (3): 

jijiij LwIw α=∆ , (3) 

where α is the learning rate, and Lj is a new activation value of 
neuron j between 0 and 1 that depends on the magnitude of 
the original activation level Aj within the hierarchy of 
activation levels in LFDL. Updated weights are then 
normalized between 0 and 1. 

One LPS layer and one LFDL layer is added to the model 
for each landmark in the environment. Then, all LFDL layers 
are combined into a single landmarks layer (LL) following 
the same connectivity pattern used to define the connections 
between a LPS and a LFDL, i.e. each LFDL is randomly 
connected to 50% of the neurons in LL. The activation level 
of cells in LL is computed as in any LFDL using (2), and the 
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connection weights between layers are updated also as in 
LFDL using (3). The activity pattern (LP) in LL represents in 
this way an egocentric view from the animal. 

C. Place Representation and Recognition 
Two layers in the model called Place Cell Layer (PCL) and 

World Graph Layer (WGL) carry out place representation 
and recognition processes. The dynamics of these layers is 
shown in Fig. 4. To represent a place, neurons in PCL behave 
like place cells in the rat hippocampus, i.e. their activation 
level are determined by the combination of kinesthetic 
information and landmarks information. We apply Hebbian 
connections between the path integration module and PCL 
and also between the landmarks processing module and PCL. 

The topological map is implemented by WGL. Nodes 
represent distinctive places and arcs between nodes are 
associated with the direction of the rat’s head when the 
animal moves from one node to the next one. Determination 
of the direction of the rat’s head is based on a global 
coordinate system (see Fig. 2(b)). The model assumes that the 
animal can orient itself to eight directions at any given place. 
The eight activation patterns generated by PCL are stored in 
Actor units. Thus, every node in the map can be connected to 
eight Actor units, one for each direction. Every connection is 
associated with a weight that represents the expectation of 
finding a reward when orienting to the specific direction at 
the current location. 

To determine whether or not the rat recognizes a place, 
WGL searches the current activation pattern produced by 
PCL (PC) within the Actor units belonging to all nodes in the 
map. This search involves the computation of the similarity 
degree SD between PC and every k stored pattern patK as 
described by (4). 
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where n is the total amount of neurons in PCL, i is the index 
used in any activation pattern, and min is a function that 
computes the minimum value between its two arguments. The 
stored pattern having the biggest SD and exceeding a 
threshold value close to 1 is considered the winner pattern 
together with its corresponding Actor unit. If there is no 
winner, PC is stored in a new Actor unit associated to the 
current rat’s direction. 

 
Fig. 4. Place representation module of the model. PI= kinesthetic information 
pattern; LP= landmarks information pattern; w= connection weights; PC= 
place information pattern; AF= affordances perceptual schema; r̂ = effective 
reinforcement signal; EX= expectations of maximum reward over a sequence 
of nodes and their corresponding directions (DX). 

Either a winner pattern is detected or a new one is created, 
WGL activates or creates a node in the map depending on the 
current available affordances. If they are different from those 
perceived at time t-1 and a new Actor unit was created, then, a 
new node is created and linked to the active node through an 
arc associated with the current rat’s direction. The new node 
becomes the active one, and the Actor unit just created is 
connected to it. Fig. 5(a) illustrates this case. If affordances 
did not change from t-1 to t and a new Actor unit was created, 
the model provides a representation of all similar places in an 
entire corridor of the environment. Thus, WGL computes the 
average between the activation pattern of the new Actor unit 
and the pattern currently stored in the Actor unit of the active 
node that is associated to the current rat’s direction (see Fig. 
5(b)). On the other hand, if there was a winner Actor unit and 
there exists an arc from the active node pointing to the node 
connected to that Actor unit, this node becomes the new 
active one (Fig. 5(c)). In case there is not such arc, a new arc 
is created to link the active node to the node associated to the 
winner Actor unit, and this is the new active node (Fig. 5(d)). 

IV. ROBOT EXPERIMENTATION AND RESULTS 
The rat cognitive model was designed and implemented 

using the NSL system [27]. The system can interact with a 
virtual or real robotic environment through an external visual 
processing module that takes as input the image perceived by 
the robot, and a motor control module that executes rotations 
and/or translations on the robot. We tested the model with a 
Sony AIBO ERS-210 4-legged robot. As sensory capabilities, 
we only used the 2D vision system of the robot, whose view 
field covers about 50° in the horizontal plane and 40° in the 
vertical plane. Using its local camera, the robot takes at each 
step three non-overlapping snapshots (0°, +90°, -90°). 

The experimental environment consists of the maze shown 
in Fig. 6(a). Three colored cylinders representing landmarks 
are placed outside the maze. Colored papers pasted over the 
walls inside the maze are used just to compute affordances, 
since we are using only the robot head camera to detect 
obstacles in our experiment. 

    

    
Fig. 5. The activation/creation of nodes in the map. Dotted lines illustrate new 
components, and the crossed node is the active one. nA= new Actor unit; nN= 
new node; cD= current rat’s direction; A= existing Actor unit; wA= winner 
Actor unit. (a) The creation of a new node. (b) The average between the 
activation patterns of two Actor units. (c) The activation of an existing node. 
(d) The connection between two existing nodes. 



 
 

 

The objective of the overall experiment is considered as 
two-fold: (i) to test the place recognition process carried out 
by the robot, and (ii) to test the learning of the correct route to 
the goal. As we mentioned in Section II, the spatial task we 
implemented is inspired on Morris experiment [25]. We 
decided not to implement open-field navigation in order to 
exploit the affordances module of the model. 

In every training trial of our experiment the robot starts 
from the fixed position TD shown in Fig. 6(a), and explores 
the maze until it finds the goal or the end of a corridor, then it 
returns to the departure location. The robot is programmed to 
recognize the goal just one step away from it. While the robot 
returns, the backwards reinforcement process takes place. 
According to the model, the robot needs to find the goal in 5 
training trials to learn the route that leads towards it from TD 
(i.e., to increase the expectations of reward associated to the 
directions of the arcs linking the correct route). The map built 
by the robot during the training phase is shown in Fig. 6(b). It 
is composed of 15 nodes, and some of them represent more 
than one location in the maze. 

After training, we placed the robot at different departure 
positions (D1, D2 and D3) during testing trials. Fig. 7(a) 
shows D1, D2, D3 and three examples of routes followed by 
the robot in locating the goal. We should point out that for all 
three starting positions the robot found the goal successfully 
during a single test. The updated map of the environment 
after completing the testing phase is shown in Fig. 7(b). As 
can be seen, the robot is able to recognize all nodes belonging 
to the correct route to the goal (black nodes), and to follow it 
as soon as it finds a place associated to any of these nodes. In 
the testing trials starting at D1 and D2, the robot followed the 
correct route when it found node 7 in the map, and in the trial 
starting at D3, it did so when it found node 3. 

As shown in Fig. 7(b), the robot added four new nodes to 
the map (16, 17, 18 and 19). Considering for example the trial 
starting at D2, in its way to node 7, the robot did not recognize 
nodes 14, 12 and 10 corresponding to places already visited 
although not belonging to the learnt route. Why did the robot 
recognize node 7 and not node 10? The robot visited during 
training the location associated to node 7 oriented to 90°, 0° 
and 180°. Thus, there are three Actor units connected to node 
7, one for each direction, storing the combination of the 
kinesthetic pattern and the landmarks pattern produced by 
PCL at that moment. In the test, the robot visited again this 
location with similar orientation of 180°. The activation 
pattern produced by PCL at this time is very similar to the one 
stored in Actor unit 180° of node 7 since the robot perceived 
the same configuration of landmarks. Note that kinesthetic 
information could vary due to different departure points in 
this testing trial.  

On the other hand, the robot visited the location associated 
to node 10 oriented to 0° during training; thus, there is one 
Actor unit connected to node 10, corresponding to direction 
0° and storing the activation pattern produced by PCL at that 
moment. In the test, the robot visited this location oriented to 

180°, and the activation pattern produced by PCL at this time 
is different from the one stored in the Actor unit 0° of node 10 
because the robot perceived a distinct configuration of 
landmarks. Thus, a new Actor unit is created corresponding 
to direction 180° and connected to a new node 17, which is 
created and linked to existing node 13 (see Fig. 7(b)), since 
affordances changed from time t-1 to t and there was not an 
arc from the active node 13 in direction 180°. Node 17 is the 
new active node in the map. The creation of nodes 16, 18 and 
19 is due to similar reasons. The robot’s behavior is shown in 
a “shortened” video found in [28]. 

 

 
 

 
 

Fig. 6 (a) The physical maze used in the spatial cognition experiment. AIBO 
robot is located at the training starting position (TD), and the path to the goal 
is marked with an arrow. Landmarks are labeled as L1, L2, L3. (b) The map 
built by the robot during the training phase of the experiment. Nodes are 
identified by numbers and arcs are associated to the robot’s direction when it 
went from one node to the next one. 
 

 
 

 
 

Fig. 7. (a) Routes followed by the robot in three testing trials starting from 
locations D1, D2 and D3. (b) The map updated by the robot during the testing 
phase. Black nodes belong to the learnt route and were followed by the robot 
to reach the goal during tests. 
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V. DISCUSSION AND CONCLUSIONS 
In this paper we have presented a robotic navigation model 

based on the neurophysiology of the rat’s brain. We have 
shown that the robot, after having explored the maze, having 
built a map of the environment, and having learnt the route to 
reach the goal starting from a fixed location, is able to 
recognize places already visited, distinguishing between 
similar places, and using the acquired knowledge to find the 
goal when starting from different locations in the maze. 

The spatial cognition capability assigned to the robot is due 
to the combination of kinesthetic and landmarks information 
used to define every place in the explored environment. 
Based on its kinesthetic information, the robot can distinguish 
between visually similar places; e.g., places where none of 
the landmarks can be perceived. On the other hand, 
landmarks information allows the robot to recognize places 
already visited in a specific direction when it starts a test trial 
from a new departure position. 

When the robot finds a node belonging to a learnt route to 
the goal, it is able to follow the rest of that route until it 
reaches the target by using local information stored in the 
topological map, i.e. the expectations of reward computed 
during training and associated to the direction of the arcs 
linking the nodes of the route. As shown in Fig. 7(a), when 
the robot started from D1 and D2, it explored the environment 
randomly until it found node 7 in the map (see Fig. 7(b)). 
Once the robot found this node, the rest is a direct path to the 
goal; however, the previous random exploration could last 
several minutes (approximately 1 to 4 in the simple maze 
presented) because of the intensive neuronal process the 
model uses. 

Considering the robot’s qualitative behavior, we can say 
that our results are similar to those obtained by Morris. 
Although we did not implement open field navigation, in both 
experiments, the rat and the robot demonstrated a place 
learning strategy enabling them to find the goal 
independently of the starting location during tests. In our 
case, the goal is not hidden as in Morris experiment; however, 
we simulated this fact by not allowing the robot to perceive 
the goal unless it is one step away. 

At this point our experimental environment has been 
simplified to test the basic bio-inspired model in providing a 
robot with spatial cognition and goal-oriented navigation 
capabilities. With the work presented in this paper we are 
beginning to address some of the SLAM challenges 
previously mentioned in Section I: data association and 
perceptual ambiguity. A future goal is to test the model using 
more complex and dynamic mazes, i.e. environments having 
physical configuration that can change during the exploration 
process. 
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