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 Abstract - In this paper we present a model designed on the 
basis of the neurophysiology of the rat hippocampus to control 
the navigation of a real robot. The model allows the robot to 
learn reward locations dynamically moved in different 
environments, to build a topological map, and to return home 
autonomously. We describe robot experimentation results from 
our tests in a T-maze, an 8-arm radial maze and an extended 
maze. 
 

 Index Terms - Affordances, mapping, path integration, rat 
hippocampus, reinforcement learning. 
 

I.  INTRODUCTION 

 Robot localization and navigation requires an internal 
representation of the environment. Simultaneous localization 
and mapping (SLAM) is the problem of building a map of the 
environment based on the robot position and simultaneously 
localizing the robot within the map built. 

The approaches that have been proposed to solve the 
SLAM problem relied on the construction of different kinds of 
maps: topological, metric, feature based and hybrid maps. 

Topological approaches represent the robot environment 
by using graphs, which are compact and efficient 
representations for solving tasks as path planning. They are 
used mainly in indoor environments, where clear distinctive 
places can be found. A known problem of the topological 
approach is place recognition in complex environments due to 
the lack of metric information to discriminate between two 
places that look alike. 

The most common metric representations of the 
environment are occupancy grids, which maintain stochastic 
estimates of the occupancy state of each cell and where object 
locations are defined in a Cartesian coordinate frame. This 
technique provides very rich representations of the 
environment used for obstacle avoidance and path planning, 
but do not provide consistent global maps estimates when 
working in large environments [1]. 

Feature based techniques represent the environment with 
parametric features such as lines, cylinders, corners, etc. The 
location of the features besides other information such as 
geometry or color can be used to represent and maintain the 
map. Feature maps are suitable in environments where it is 
possible to distinguish geometric features. The map obtained 
could be a sparse representation of the environment that does 
not provide information to performed detailed navigation. 

In the past few years various studies have presented 

implementations of maps combining different approaches; 
e.g., in [2] local perceptual maps are built as occupancy grids 
in local regions of the environment, and a topological map is 
built to describe the structure of the large scale space. In [3] 
higher level topological maps derived from images are 
combined with lower level metric maps. Ref. [4] proposes the 
construction of a graph of coordinate frames, where nodes 
represent local frames (metric maps) and edges represent the 
transformation between adjacent frames. Ref. [5] uses features 
to build a topological map with metric information associated 
with the edges. Ref. [1] presents a metric map structure that 
combines feature maps with occupancy grids. 

Currently, the main challenges in SLAM research include 
map consistency through closing loops [1], [2], [4], data 
association [1], [5], perceptual ambiguity [2], and dynamic 
environments [6].  

On the other hand, the navigation strategies of animals 
such as rats and primates also relies on internal representations 
of the environment often referred to as cognitive maps [7], 
which are located in the brain region called hippocampus [8]. 
Experimental work has shown the existence of neurons called 
place cells in the rat hippocampus, which codify information 
about physical locations of the animal. Studies on the rat brain 
have provided inspiration in implementing those biological 
findings to allow adaptive navigation behavior in mobile 
robots coping with unknown environments. In this way, 
several robotic navigation models have been developed such 
as [9], [10], [11], [12], [13], [14], [15]. 

In this paper we present a navigation model based on the 
neurophysiology of the rat hippocampus that allows an actual 
robot to learn reward locations in different mazes, to build a 
topological map of the environment and to return home 
autonomously. This model was tested in different learning and 
mapping experiments. We do not pretend to compare our 
results with those obtained by classical SLAM approaches 
because until now we have been concerned in understanding 
nature to allow the model’s capability of adaptive learning in 
small and controlled environments, but our next goal is to 
work in proposing an alternative solution to some of the 
SLAM challenges previously mentioned: the map consistency 
and the data association. Section II of the paper presents the 
model description, Section III discusses the robotic 
architecture and experimentation results, and we conclude in 
Section IV. 



II.  MODEL DESCRIPTION 

Our model is composed of layers of neurons that 
implement Hebbian [16] and reinforcement learning [17] in 
order to allow the expression of goal-oriented behavior. Fig. 1 
shows the different layers in the model. We discuss the model 
components in the following subsections. 
 

A. Sensory Inputs 
The sensory inputs to the model are composed of 

affordances, kinesthetic information and the internal drive 
of the rat. 

The notion of affordances for movement represents all 
possible motor actions that a rat can execute through the 
immediate sensing of its environment; e.g., visual sighting of 
a corridor – go straight ahead, sensed branches in a maze – 
turn. In our model, affordances for movement are coded in a 
linear array of cells called perceptual schema (PS) that 
represents possible turns from -180o to +180o in 45o intervals. 
In this way, when the rat is in the center of an 8-arm radial 
maze, it is able to visually sense eight different arms and 
consequently perceive eight different affordances. 
Determination of the affordances for movement is based on a 
local coordinate system that is relative to the rat’s head (see 
Fig. 2 Left). 

The activation level of the neurons in PS is computed 
through en exponential equation. For a specific affordance 
(aff), the activation level of neuron i is determined as follows: 
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where d is a constant value representing the width of the 
exponential, and a is a constant that depends on the relative 
direction of the affordance: from -180° to +180°, a= 4+9m 
with m from 0 to 8. 

Every available affordance has the form shown in (1); e.g. 
the information picked up by the PS when the rat is in the 
center of an 8-arm radial maze is a sum of all available 
affordances and the value of each of its neurons is computed 
using (2). 

 
 

Fig. 1. The layers of the hippocampus-based navigation model. FDL stands for 
Feature Detector Layer. 

                    
Fig. 2. (Left) Local coordinate system used in the model to determined the 

relative affordances for movement. (Right) Global coordinate system used in 
WGL to build the map-based representation of the external environment; e.g., 
a T-maze. This global system is relative to the departure location (the base of 

the T in the figure). 
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The second kind of sensory input to the model is 
determined by kinesthetic information; i.e. rat internal body 
signals generated during rat’s locomotion (the magnitude and 
direction of movement). These signals are used by rats to 
carry out the path integration process, by which kinesthetic 
information allows them to update the position of their point 
of departure each time they move in relation to their current 
position. In this way, path integration allows the animal to 
return home. As can be seen in Fig. 1, the model includes a 
path integration module composed of a dynamic remapping 
layer (DRL), and a path integration feature detector layer 
(PIFDL). 

DRL generates a dynamic remapping perceptual schema 
(DRPS) defined as a two-dimensional array of neurons, whose 
activation level is computed similarly to the activation level of 
the neurons in PS. Initially, DRPS codifies the position of the 
departure location (the environmental anchor). Then, DRPS is 
updated each time the rat moves by displacing the anchor 
position in the same magnitude but in opposite direction to the 
rat’s movement. Every neuron in DRPS is randomly 
connected to 50% of the neurons in PIFDL. Connection 
weights between layers are randomly initialized and 
normalized between 0 and 1. The activation level Aj of neuron 
j in PIFDL is computed by adding the products between each 
input value Ii coming from neuron i in DRPS and the 
corresponding connection weight wij as follows: 
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We used Hebbian learning to update the connection 
weights between layers, modeling the association between the 
activation of a group of neurons in DRPS, the activation of a 
specific set of neurons in PIFDL and the inhibition of others 
as follows: 

jijiij GwIw α=∆ ,                                                            (4) 

where α is the learning rate, and Gj is a new activation value 
of neuron j that depends on the number of the place occupied 
by the original activation level Aj within the hierarchy of 
activation levels in PIFDL. Weights are normalized between 0 



and 1. 
The third kind of sensory input to the model is the internal 

drive of the rat, which is related to its need to eat: the hunger 
drive. In general, drives d can be appetitive or aversive. The 
idea is that each appetitive drive spontaneously increases with 
every time step towards dmax (input value), while aversive 
drives are reduced towards 0, both according to a factor αd 
(input value) intrinsic to the animal. An additional increase 
occurs if an incentive I(d,x,t) is present such as the sight of 
food. Drive reduction a(d,x,t) takes place after food ingestion. 
If the animal is at place x at time step t, and the value of drive 
d at that time step t is d(t), then the value of d for the animal at 
time step t+1 will be 
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The amount of reward the animal gets by the presence of 
food is dependent on its current motivational state. If the rat is 
extremely hungry, the presence of food might be very 
rewarding, but if not, it will be less rewarding. In this way, the 
reward value depends on the current value of the animal’s 
drive d(t) and its corresponding maximum value, according to: 

max/)()( dtdtr =                                                            (6) 
 

B. The Place Cell Layer and the World Graph Layer 
The pattern of kinesthetic information generated by 

PIFDL is the input to the place cell layer (PCL). The 
connection pattern between these two layers is the same as the 
one carried out between DRPS and PIFDL. The pattern of 
activity generated in PCL represents a single place or location 
in the environment. 

The topological map is implemented by the world graph 
layer (WGL). Nodes represent distinctive places in the 
environment and store patterns of activity generated in PCL. If 
the current pattern in PCL is not recognized as stored in the 
map and the affordances sensed by the rat changed, then a 
new node is created and linked to the previous active node 
that represents the place currently visited by the rat. Each 
node can store eight different activity patterns, one for each 
direction, assuming that the animal can orient itself in eight 
directions and can experiment different views from the same 
place. The arcs in the graph are associated with the orientation 
of the rat’s head when the animal went from one node to the 
next one. The determination of the direction of the rat’s head 
is based on a global coordinate system, which is relative to the 
departure location in the exploration process (see Fig. 2 
Right). 

As we will describe in Section III, in the experiments 
tested the rat learns to find food locations in different mazes. 
To allow this goal oriented behavior we used reinforcement 
learning through an actor-critic architecture [17]. While the 
core ideas of reinforcement learning come from theories of 
animal classical conditioning, the influence of concepts from 
artificial intelligence and control theory has produced a 

collection of computationally powerful learning architectures. 
Among Temporal-Difference Learning methods (such as Q-
Learning), we decided to use the actor-critic architecture in 
our bio-inspired model since it has been related to the nervous 
system, specifically to the circuits of the basal ganglia and 
associated brain structures [18]. An actor-critic architecture 
processes expected values of future reinforcements through its 
components: an adaptive critic unit and actor units.  The 
output of the critic unit is a prediction of the value of future 
reinforcement. In our model this predicted value is used to 
generate a reinforcement signal that is transmitted to WGL in 
order to reinforce eight actors (one per each rat’s orientation) 
associated to every node in the map. The critic unit is 
implemented as a module of the model (not shown in Fig. 1) 
that supports the operation in WGL. This module receives the 
activity pattern registered in PCL as input and computes p(t), 
the prediction value of future reinforcement at time t, using 
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where vi is the connection weight between neuron i in PCL 
and the critic unit. The weights added correspond to the most 
active neurons in PCL (we considered n= 5 neurons). The 
connection weights to the critic unit are initialized to 0 and 
updated according to 

iii xtrtvtv )(ˆ)()1( β+=+ ,                                        (8) 
where β is the learning rate; ix  is the eligibility trace of the 
activity level of each neuron in PCL; and )(ˆ tr  is the temporal 
difference error between any two adjacent predictions and is 
computed using 

)1()()()(ˆ −−+= tptptrtr γ .                                     (9) 
The reinforcement learning process starts by updating 

ix values associated to the most active neurons in PCL. If the 
rat perceives food from its current location, the eligibility 
trace is increased, otherwise is decreased.  

As previously mentioned, the actor modules are 
associated to the map nodes and represent the expectations of 
finding reinforcement in orienting to a certain direction at the 
current location. Every actor is implemented in a map node as 
a pair of “weight – eligibility trace”. The reinforcement 
process is carried out in the actors when the reinforcement in 
the critic unit has finished, and consists on increasing the 
eligibility trace associated to the current rat’s head direction in 
the active node in the map. Then, the actor weights are 
updated for all map nodes using: 
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where )1( +twd
k is the actor weight associated to node k and 

direction d at time t+1, α is the learning rate, and )(ted
k is the 

eligibility trace of actor d in node k at time t. 
At a given location, the choice of the rat to turn to a 

specific direction is influenced by a general rewarding signal 



generated through the expectations of future reward d
kw of the 

actors. This rewarding signal is computed by the motivational 
schema in the model considering information that proceeds 
from the WGL. In this layer three nodes in the map are 
considered: the active one and two more in sequence. For each 
node the expectation of reinforcement values associated to the 
directions of the arcs pointing to other nodes are reviewed and 
the direction with the highest expectation value is selected. 
The different directions selected over the sequence of nodes as 
well as the corresponding expectation of reinforcement values 
are stored and sent to the motivational schema. 
 

C. Motor Outputs 
The mission of the motivational schema (MS) is to 

compute the input (iss) to the action selection schema (SS) 
by adding four perceptual schemas representing the 
affordances (aff), the food (tf), the global expectation of future 
reinforcement (ger), and the curiosity level (cl).  

The food perceptual schema (tf) codifies the rotation the 
animal has to carry out to orient to food when it is visible 
from current location. When food is not visible, the rotation 
magnitude is determined randomly between available 
affordances. In this way, a random component is induced to 
the process of choosing a direction to orient to. 

Through cl the model considers the fact that the animal 
may go to places that are not yet represented in the map when 
it is not motivated to go towards a previously experienced 
place. In this perceptual schema an exponential term like the 
one shown in (1) is added, corresponding to each available 
affordance associated to the direction of an arc not represented 
in the active map node. 

MS uses the expectation of reinforcement values and the 
corresponding directions selected by WGL over the sequence 
of nodes to generate an expectation of future reward 
perceptual schema efr. The rotation the rat has to execute to 
orient to each direction is computed and added as an 
exponential term in this perceptual schema with strength 
depending on the expectation of reinforcement value 
associated with the direction, as follows: 
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where efri is the activity level of neuron i in efr, fj is the 
expectation of reinforcement value corresponding to direction 
j (the height of the exponential), d and a were defined in (1). 

There can be at most three exponential terms associated to 
the three nodes in the sequence. In order to generate a global 
expectation of reinforcement signal (ger) that will influence 
the next behavior of the rat, the center of mass is computed. If 
there is no available affordance coinciding with the center of 
mass, it is moved to the neuron that corresponds to the 
selected direction from the active map node. 

SS determines the next direction of the rat’s head, from 0° 
to 315°, by considering the highest activation value in the 

perceptual schema that receives as input (iss), the required 
rotation to point to the next direction, and the displacement. If 
the next direction is different from the current one, the 
displacement is set to 0 giving the rat the opportunity to 
perceive a different view from the same place. When the rat is 
returning to the departure point after having finished a trial in 
a experiment, SS computes the next rat’s direction from the 
built map. This return process was documented in [19]. 

 

III. ROBOTIC ARCHITECTURE AND EXPERIMENTATION RESULTS 

We tested the model using a Sony AIBO ERS-210 4-
legged robot having a local camera. The model was designed 
and implemented using the NSL system [20] and can interact 
with a virtual or real environment through a visual processing 
module that takes as input the image perceived by either a 
simulated rat or a real robot, and a motor control module that 
executes rotations and/or translations on the rat or robot. We 
have used three different virtual and physically built 
experimental environments: a T-maze, an 8-arm radial maze 
and an extended maze. Different color papers were pasted 
over the walls of the mazes to simplify the recognition of the 
junctions, the food, the walls and the end of corridors, which 
is necessary to compute affordances and estimate distances. 

The experiment carried out in the T-maze and in the 8-
arm radial maze is inspired on the reversal task implemented 
by O’Keefe [21]. Our goal was not the replication of this 
experiment but to use it to validate our model by comparing 
our results with those obtained by O’Keefe qualitatively, and 
to extend the experiment into more complex robotic mazes. 

O’Keefe divided the experiment in two phases: training 
and testing. The training phase was carried out in the T-maze 
and the testing phase was carried out combining trials in the 
T-maze with trials in the radial maze. We decided for 
simplicity to implement the reversal task in both the T-maze 
and the radial maze separately. We have also implemented it 
within an extended maze. The following subsections describe 
the robot experimentation results obtained in the three mazes. 

 

A. Experiment I: T-Maze 
In every experiment’s trial in the T-maze, the rat 

navigates from the base of the T to either one of the two arm 
extremes, and then it returns to the departure location 
autonomously. At each step, the rat takes three pictures of the 
environment in different angles: 0°, +90º and -90º. During the 
experiment, the rat builds the map shown in Fig. 3(a). It is 
composed of seven nodes, each one created when the rat 
sensed a change in the available affordances and did not 
recognize the information pattern generated by PCL. Some of 
the nodes represent more than one place in the maze as can be 
seen in Fig. 3(b). 

Table I summarizes the rat performance. During the 
training phase, the food is placed in the left arm of the maze 
and the rat turns left in every trial increasing the expectation 
of reward for the left arm. When the testing phase begins, the 



food is moved to the right arm. The curiosity of the rat for that 
arm and the sight of food make the rat explore it. In the 
following trials, the rat goes through an unlearning process, 
where the expectation of reward for the left arm is the 
dominant influence in its behavior although it is decreasing 
continuously, while the expectation of reward for the right 
arm increases. When both levels of expectation are similar, the 
rat turns left or right randomly due to the noise level, starting 
a relearning process. From trail 32 the expectation of reward 
for the right arm is bigger than the one for the left arm, 
making the rat turn right consistently. After finishing a trial, 
the rat returns home [19]. Fig. 4 shows pictures of the robot’s 
behavior and a “shortened” video is in [22]. 
 

B. Experiment II: 8-Arm Radial Maze 
In the 8-arm maze shown in Fig. 5 the rat navigates from 

the 270° arm to any other arm extreme in every experiment’s 
trial. Fig. 6 (a) presents the map built by a rat/robot during the 
experiment. We divided the experiment in three phases: 
training, pre-testing and testing. Table II summarizes the robot 
performance. Fig. 5 shows pictures of the robot’s behavior 
and a video can be found in [22]. 

In terms of learning, our results match qualitatively with 
those obtained by O’Keefe experimenting with normal rats 
despite some variations done to the original experiment. As in 
O’Keefe’s rats, the orientation of our rats after the training 
phase did not shift in a smooth manner but randomly as shown 
in Fig. 6 (b, c). 

 
 
 
 
 
 

 
Fig. 3. (a) The map built by the rat during the reversal task in the T-maze. 
Nodes are numbered in order of creation. Arcs between nodes show the 

orientation of the rat when it moved from one node to the next one. (b) The T-
maze locations are labeled with letters and associated to the nodes of the map. 
 
 
 
 
 
 
 
 
 
 

Fig. 4. (a) A typical trial in the training phase: the food is at left (L) and the 
robot is approaching it. (b) A trial during the unlearning process: the food is at 

right (R) and the robot is approaching the end of L. (c) A trial during the 
relearning process: the food is at right and the robot is approaching it. 

 
TABLE I. THE PERFORMANCE OF THE RAT DURING THE T-MAZE EXPERIMENT. 

Trial # Chosen arm Phase Process 
1 – 10 Left Training Learning 
11 Right Testing Curiosity drive 
12 – 19 Left Testing Unlearning 
20 – 31 Left or right randomly Testing Relearning 
32 – … Right Testing Relearning 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. (a) A typical trial in the training phase: the food is at 180° arm and the 
robot is approaching it. (b) A trial in the pre-testing phase: the food has been 
removed from the maze and the robot chooses any arm not yet visited. (c) A 

trial in the testing phase: the food is at 0° arm and the robot is approaching the 
180° arm. (d) The robot is approaching the new reward arm (0°). 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. (a)The map built by a rat/robot during the reversal task in an 8-arm 
radial maze. (b) Average performance of four simulated rats during the pre-

testing and testing phases reported by our model. (c) Average performance of 
four real and normal rats during the testing phase reported by O’Keefe in [21]. 
In (b) and (c) rats turn randomly to different arms between the original turn (-

90°) and the reversed turn (+90°). 
 

TABLE II. THE PERFORMANCE OF THE RAT IN AN 8-ARM RADIAL MAZE. 
Trial # Chosen arm Phase Process 

1 – 5 180° Training Learning 
6 – 10 315°, 45°, 90°, 225°, 

135° or 0° randomly 
Pre-testing Randomness and 

curiosity drives 
11 – 12 180° Pre-testing Unlearning 
13 – 17 180° or 0° randomly Testing Relearning 
18 – 22 0° Testing Relearning 

 

C. Experiment III: Extended Maze 
We decided to extend the reversal task by considering a 

maze where the food was not visible by the rat at the first 
choice point but at the second one. To try this, we designed 
and built the maze shown in Fig. 7. 

Since the rat does not see food at the first choice point, we 
had to extend the model to propagate the reinforcement from 
the goal location back towards the departure place in the map 
built while the rat returns from a trial. If the goal is reached by 
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the end of a trial, the eligibility trace of the actor 
corresponding to the arc direction of each map node in the 
path is increased, otherwise is decreased. Considering the map 
built by the rat in Fig. 7 (d, e), and supposing that it has 
reached the goal place in the training phase, the reinforcement 
process consists on increasing the following eligibility traces 
in sequence: actor 90° in node 6, actor 90° in node 5, actor 
180° in node 4, actor 180° in node 3, actor 90° in node 2, and 
actor 90° in node 1. Table III summarizes the rat/robot 
behavior, related pictures are shown in Fig. 7 (a, b, c), and a 
video can be found in [22]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. (a) A trial in the training phase: the robot is approaching the food in the 
180° arm. (b) A trial during the testing phase (unlearning process): the food is 
at 0° arm, but the robot still searches for it at the previous reward arm. (c) A 
trial during the relearning process: the robot is approaching the new reward 

location. (d) The map built by the robot. (e) The actors whose eligibility traces 
were reinforced positively during the training phase. 

 

TABLE III. THE PERFORMANCE OF THE RAT IN THE EXTENDED MAZE. 
Trial # Chosen 

arm (1st 
choice 
point) 

Chosen arm 
(2nd choice 

point) 

Phase Process 

1 – 15 180° or 0° 
randomly 

If the 1st choice 
was 0°, the 2nd 
one is 90° or 
270° randomly. 
If the 1st choice 
was 180°, the 
2nd one is 90°. 

Training Positive path 
reinforcement 
during at 
least five 
trials 180° – 
90° (the path 
to food) 

16 180° 270° Testing Curiosity 
17 – 18 180° 90° Testing Unlearning 
19 – 23 180° – 90° or 0° – 270° Testing Relearning 
24 – 32 0° 270° Testing Relearning 

 

IV.  CONCLUSIONS 
 

In this paper we have presented the adaptive learning and 
mapping capabilities of a robotic navigation model based on 
the physiology of the rat’s brain. We have shown that the 
rat/robot is able to learn the locations of food dynamically 
moved in different mazes, and to build a topological map of 
the environment. We plan to work in validating the 
consistency of the maps built by the model through solving 
cyclic mazes and recognizing places already visited. To do 

this, we will merge information about spatial landmarks with 
kinesthetic information to identify the places of the 
environment. In the medium term we hope to propose a bio-
inspired alternative solution to some of the SLAM challenges. 
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