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Abstract 

Through experimentation and simulation scientists are 
able to get an understanding of the underlying biological 
mechanisms involved in living organisms. These 
mechanisms, both structural and behavioral, serve as 
inspiration in the modeling of neural based architectures 
as well as in the implementation of robotic systems. 
Among these, we are particularly motivated in studying 
animals such as toads, frogs, salamanders and praying 
mantis that rely on visuomotor coordination. In order to 
deal with the underlying complexity of these systems, we 
have developed the NSL/ASL simulation system to enable 
modeling and simulation at different levels of granularity. 

1 Introduction 

The study of biological systems comprises a cycle of 
biological experimentation, computational modeling and 
robotics experimentation, as depicted in Figure 1. This 
cycle serves as framework for the study of the underlying 
neural mechanisms responsible for behavior in animals 
and serving as inspiration in designing autonomous robot 
architectures.  
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Figure 1: The above diagram depicts a framework for the 
study of living organisms through cycles of biological 
experimentation, computational modeling, and robotics 
experimentation. 

Some examples of biologically inspired robotic systems 
studied in such a way are the computational frog (rana 

computatrix) [1], the computational praying mantis [4], 
the computational cockroach [5], and the computational 
hoverfly [9].  
To address the underlying complexity in building such 
biologically inspired neural based systems we distinguish 
among behavior and structure:  
1. At the behavioral level, neuroethological data from 

living animals is gathered to generate single and 
multi-animal systems to study the relationship 
between a living organism and its environment, 
giving emphasis to aspects such as cooperation and 
competition between them. Examples of behavioral 
models include the praying mantis Chantlitlaxia 
("search for a proper habitat") [7] and the frog and 
toad prey acquisition and predator avoidance models 
[10]. We describe behavior in terms of perceptual and 
motor schemas [3] decomposed and refined in a 
recursive fashion. Schemas are mainly characterized 
as perceptual or motor schemas, decomposed and 
refined in a recursive fashion. Schema hierarchies 
represent a distributed model for action-perception 
control. Behaviors, and their corresponding schemas, 
are simulated via the Abstract Simulation Language 
ASL [15]. 

2. At the structural level, neuroanatomical and 
neuronphysiological data are used to generate 
perceptual and motor neural network models 
corresponding to schemas developed at the 
behavioral level. These models try to explain the 
underlying mechanisms for sensorimotor integration. 
Examples of neural network models are tectum and 
pretectum-thalamus responsible for discrimination 
among preys and predators [6], the prey acquisition 
and predator avoidance neural models [8] and the 
toad prey acquisition with detour behavior model 
involving adaptation and learning [11]. Neural 
networks are simulated via the Neural Simulation 
Language NSL [16]. 



2 Modeling Levels 

As an example, we consider the rana computatrix model, 
in terms of behaviors, schemas and neural networks, 
inspired on biological studies of frogs.  

2.1 Behaviors 
Two of the most important behaviors in animals are prey 
acquisition and predator avoidance, as described next. 

2.1.1 Prey Acquisition. In Figure 2 we show a frog 
approaching a moving prey (worm).  
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Figure 2: The figure shows a prey acquisition behavior 
for a frog. (Note that the light colored arrows represent 
visual direction, while dark colored arrows represent 
moving direction. The frog is represented as a square, 
while the prey is represented as a horizontal rectangle. 
Moving sequences are numbered.) 

2.1.2 Prey Acquisition with Detour. In Figure 3 we 
show a frog with a barrier interposed in front of a prey. 
The barrier is made of fenceposts having gaps of similar 
width between adjacent posts. 
 

 
Figure 3: Frog in a prey and barrier setup. 

Different experiments were carried out [12] with such a 
setup. With a 10cm wide barrier, as shown in Figure 4, 
frogs that started from a far enough distance (15-25cm) in 
front of the barrier (and with the worm 10cm behind the 
barrier) showed reliable detour behaviors after the first 
trial. They produced an immediate approach movement 
towards one of the edges of the barrier. 

 
Figure 4: The figure shows the frog immediately 
detouring around a 10cm wide barrier in front of a prey. 
The dots represent the frog's trajectory from its initial 
location as it finally reaches the prey.  

With a 20cm wide barrier, as shown in Figure 5, a frog 
that has not been yet exposed to the barrier tends to go 
towards a fencepost gap in the direction of the prey. The 
frog initially approaches the fence trying to make its way 
through the gaps. During the first trials the frog advances 
straight towards the prey thus bumping into the barrier. 
Since the frog is not able to go through a gap it backs-up 
about 2cm and then reorients towards one of the 
neighboring gaps, eventually perceiving the edge of the 
barrier and approaching towards the prey.  

 
Figure 5: The figure shows the frog approaching a 20cm 
barrier in front of a prey. Initially the frog directly 
approaches the center of the barrier, requiring successive 
trials to manage the detour around it. (Numbers indicate 
the succession of movements.)    



After 2 or 3 trials, the "trained" frog is already detouring 
around the 20cm barrier without bumping into the barrier, 
as shown in Figure 6. The behavior involves a synergy of 
both forward and lateral body (sidestep) movements in a 
very smooth and continuous single movement. 

 
Figure 6: The figure shows the frog immediately 
detouring, after 3 trials, around a 20cm wide barrier in 
front of a prey.   

2.1.3 Predator Avoidance. In Figure 7 we show a 
predator avoidance behavior in a frog with a moving 
predator. 
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Figure 7: The figure shows a predator avoidance behavior 
for a frog. (Predator is represented as a vertical rectangle.) 

2.1.4 Predator Avoidance with Prey. In Figure 8 we 
show a combination of prey acquisition and predator 
avoidance behaviors in a frog with both a moving prey 
and predator. At first the predator is outside the visual 
field of the frog and the frog directly approaches the prey. 
Once the predator enters the visual field, the frog moves 
directly opposite to the predator without reacting any 

longer to the prey. 
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Figure 8: Prey acquisition and predator avoidance 
behaviors for a frog. Initially the predator is outside the 
visual field of the frog. Once it enters the frog visual field, 
it reacts moving opposite to it. 

2.2 Schemas 
In order to model behavior we introduce the schema 
computational model. Schemas define a hierarchical 
distributed model for action-perception control, as shown 
in Figure 9. 
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Figure 9: The ASL/NSL computational model is based on 
hierarchical interconnected schemas. A schema at a higher 
level (level 1) is decomposed (dashed lines) into additional 
interconnected (solid arrow) subschemas (level 2). This is 
known as schema assemblages. At the lowest level 
schemas are implemented by neural networks or other 
processes. 

At the higher abstraction levels, the detailed schema 
implementation is left unspecified, only specifying what 
behavior is to be achieved. At a lower level, schemas are 
implemented with neural networks or other processes.  
Each schema incorporates its own structure and control 
mechanisms. Its interface consists of multiple 



unidirectional, input and output control/data ports having 
a body where schema behavior is specified, as shown in 
Figure 10.  
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Figure 10: Each schema may contain multiple input, 
din1,...,dinn, and output, dout1,...,doutm, ports for 
unidirectional communication. 

Communication is in the form of asynchronous message 
passing, hierarchically managed, internally, through 
anonymous port reading and writing, and externally, 
through dynamic port connections and relabelings. When 
doing connections, output ports from one schema are 
connected to input ports from other schemas, and when 
doing relabelings, ports of similar type (input or output) 
belonging to schemas at different levels in the hierarchy 
are linked to each other. This hierarchical port 
management enables the development of distributed 
architectures where schemas may be designed in a top-
down and bottom-up fashion implemented independently 
and without prior knowledge of the complete model or 
their final execution environment, encouraging 
component reusability.  
For example, Figure 11 shows the schema model 
hierarchy corresponding to the frog behaviors previously 
described [12].  
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Figure 11: Schema model hierarchy for the frog’s prey 
acquisition, predator and static object avoidance behaviors 
previously described. 

The diagram shows a single schema level (level 1) 
implementing the different behaviors being modeled, such 
as prey, approach predator avoid and static object avoid. 
Additional schemas include visual and tactile input, 
moving stimulus selector (when more than one prey 
exists), prey, predator and static object recognizers 
together with the four types of motor actions: forward, 
orient, sidestep and backward. The main neural schemas 
used as neural network implementations are Retina [14], 
Maximum Selector [13], Tectum and PreTectum-

Thalamus [6], as well as the neural motor heading maps.  
For example, let's consider the Moving Stimulus Selector 
module at the schema level. The NSL/ASL language 
specification for the module's port interface is shown in 
Figure 12.  
nslModule MovingStimulusSelector(int size){ 
 public NslDinDouble1 in(size);  
 public NslDoutDouble1 out(size); 
 // body 
} 

Figure 12: NSL/ASL language specification for the 
Moving Stimulus Selector module and ports. 

This specification for the Moving Stimulus Selector 
module is very similar to an object-class description in 
Java. The module defines an input port "in" having "size" 
elements of "double" values, i.e. an array of numerical 
values. The output of the module is specified by an input 
port "out" having "size" elements of double values. While 
Moving Stimulus Selector specifies the structure of the 
schema, its actual implementation in its body is left to the 
MaxSelector module as will be shown next. 

2.3 Neural Networks 
Neural schemas provide their implementation in terms of 
neural networks processing, as shown in Figure 13. 
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Figure 13: Neural schema hierarchy showing task 
delegation to neural networks processing. 

At this level, neural networks are simple processing units 
interconnected among each other to provide large-scale 
computation. Each neuron is defined by its membrane 
potential value mp depending on its previous history and 
current input sm while its output value mf is defined by a 
non-linear threshold function over its membrane potential, 
as shown in Figure 14.  
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Figure 14: Simple neural element as basic component at 
the neural network level. 

One of the neural models used for simulation is the leaky 
integrator model [2], where the membrane potential is 
described by the following equation, 

? ? ? ? ? ?tstmp
dt

tdmp ????  (1) 



The firing rate of the neuron is described in terms of a ?  
function, usually in the form of a non-linear function also 
known as a threshold function, such as a ramp, step, 
saturation or sigmoid, 

? ? ? ?? ?tmptmf ??  (2) 
The MaxSelector neural network is are shown in Figure 
15. 
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Figure 15: The neural network shown corresponds to the 
architecture of the MaxSelector model, where upi and vp 
represent neural membrane potentials, ufi and vf represent 
neural firing rates, ini represent inputs to the network, and 
all w's represent connection weights. After many iterations 
the network stabilizes producing a single "winner", i.e. a 
single active cell.  

The set of equations describing the MaxSelector model 
are as follows, 

? ? ? ? ? ? imiui
i

u shvgwufwu
dt

tdu ?????? 1?
 (3) 

? v

dv
dt

? ? v ? wn f ui? ?
i ? 1

n

? ? h2
  (4) 

f (ui ) ?
1 ui ? 0
0 ui ? 0
? ?
? ?
? ?  (5) 

g(v) ?
v v ? 0
0 v ? 0

? ?
? ?
? ?  (6) 

The specification for the MaxSelector neural schema is 
shown in Figure 16. Besides additional variable 
definitions, the module includes a "simRun" method that 
is continuously executed and contains the neural 
dynamics for the module. 
nslModule MaxSelector(int size){ 
 public NslDinDouble1 in(size);  
 public NslDoutDouble1 out(size); 
 //..other variable not shown here 
 public void simRun() { 
  up = nslDiff(up,tau,-up+wu*up 
   -wm*vp-h1+in); 
  uf = nslStep(up); 
  vp = nslDiff(vp,tau, 
   -vp+wn*nslSum(up)-h2); 
  out = vf = nslRamp(vp); 
 } 
} 

Figure 16: Schema diagram for the Moving Stimulus 
Selector module. 

Let’s consider the schema model previously shown in 
Figure 11. In Figure 17 we show the activity fields 
corresponding to prey acquisition behavior shown in 
Figure 2.  

 
Figure 17: The figure shows the activity fields (from the 
top) for the prey acquisition behavior: (i) 
“PreTectumThalamus” without activation since no 
predator is perceived, (ii) “Tectum” with activation 
centered on the prey location, (iii) “Motor Heading 
Map” (MHM) adding together the two previous 
activities, and (iv) Winner-Take-All field showing 
the direction of maximum activity (as in Figure 15). 

We omit the fields for Figures 4, 5 and 6, corresponding 
to prey acquisition with detour behavior. In Figure 18 we 
show the activity fields corresponding to predator 
avoidance behavior shown in Figure 7. 

 
Figure 18: The figure shows the activity fields (from the 
top) for the predator avoidance behavior: (i) 
“PreTectumThalamus” with activation centered on 
the predator location, (ii) “Tectum” without 
activation since no prey is present, (iii) “Motor 
Heading Map” (MHM) adding together the two 
previous activities, and (iv) Winner-Take-All field 
showing the direction of maximum activity. 



In Figure 19 we show the activity fields corresponding to 
predator avoidance behavior shown in Figure 8. 

 
Figure 19: The figure shows the activity fields (from the 
top) for the predator avoidance with prey behavior: 
(i) “PreTectumThalamus” with activation 
corresponding to predator location, (ii) “Tectum” 
with activation corresponding to prey location, (iii) 
“Motor Heading Map” (MHM) adding together the 
two previous activities, and (iv) Winner-Take-All 
field showing the direction of maximum activity.  

3 Discussion 

The work presented here overviews modeling and 
simulation of biologically inspired neural based robotic 
systems. As the complexity of these systems grows, it 
becomes necessary to have powerful simulation tools that 
let the developer follow good software practices including 
modularity and top-town and bottom-up designs. This 
becomes critical when dealing with such complex neural 
systems. For more than a decade, in collaboration with the 
University of Southern California we have been 
developing the NSL/ASL simulation system to support 
such capabilities in addition to efficient processing 
through distributed computation. In terms of robotic 
modeling, and in collaboration with the Georgia Institute 
of Technology, we are working to experiment with frog 
and praying mantis models under simulated as well as real 
robot environments.  
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