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ABSTRACT

We analyze a model of neuronal mechanisms underlying amphibia’s prey-catching behavior,
integrating hypotheses generated within different areas of Neuroscience and studying how the
efficacy of visual prey-like dummies to release toad’s prey-catching actions depends on
parallel distributed processes occurring at multiple levels of temporal abstraction. First, in the
scale of 100’s of msecs, changes in neuronal activity caused by the stimulus characteristics
and its current spatial-temporal relationship with the toad, as well as nervous signals related to
actions’ expected consequences (e.g., mouth mechanoreceptors activation after a snapping);
second, signals generated during learning events happening at a temporal scale of minutes to
hours; third,  signals related to the course of actions, within an undetermined time scale that
may last for several hours; and fourth, signals generated by changes in motivational factors
(e.g., hunger, daily and yearly cycles) occurring at a much slower time scale. In addition, we
analyze how in this knowledge representation, the course of actions (plan) is episodic, goal-
oriented and can be modulated by learning, or by changes in the agent’s motivational state.
This modulation is the outcome of accommodating information of new situations (a non
catchable prey-like stimulus) into the dynamics of underlying neuronal mechanisms, in order
to change the way the toad (agent) normally responds to that domain of interaction (stop
yielding prey-catching behaviors towards that specific stimulus), without affecting its
performance when similar situations appear in its immediate surroundings (prey-catching
behaviors to real prey remain unchanged).

Key words: Prey-catching Behavior, Reinforcement Learning, Stimulus Specific Habituation,
Neuronal Networks, Behavior-based Robotics, Distributed Artificial Intelligence.

Running title: Multiple temporal scales in neural net models.
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1.- INTRODUCTION

Knowledge representation at different levels of temporal abstraction, and its relationship to
planing and learning are key issues in Distributed Artificial Intelligence, and in behavior-
based robotics (Sutton and Barto, 1998; Beer et al, 1990). In particular when the aim is to
build agents that could incorporate (“learn”) into their control (planing) system different
aspects (“knowledge”) of the relationship they maintain with other agents or with an uncertain
environment, i.e., their “ecology” (Arkin et al, 2000). Some work in the field of behavior-
based robotics have shown the benefits of exploiting models of behavior proposed by
neuroethologists (Beer et al, 1990; Mataric, 1990), or computational neuroscientists
(Rosenblath and Payton, 1989; Arkin, 1989).

In our previous work (Arkin et al., 2000), we used Schema Theory as an interlingua to
implement a model of the agent-environment interactions of the Praying Mantis (Cervantes-
Pérez et al, 1993a) into the control system of a robotic hexapod, Hermes II, that displays
visually guided behaviors, such as prey-acquisition, mating, predator-avoidance, obstacle-
avoidance, and the “chantlitaxia” behavior.

Continuing our interplay of modeling biological data and robotic implementations, in this
paper, we analyze a series of theoretical models of those neuronal mechanisms underlying the
activation and modulation of the amphibia’s prey-catching behavior. Our aim is to show how
the amphibia’s visuomotor system is a good example of a biologically implemented control
system of a goal-oriented behavior, where knowledge of environmental characteristics, and of
the course of actions needed to be executed to achieve the goal, is represented within the
structural and functional complexity of neuronal networks carrying out processes that occur at
multiple temporal scales. Of course, in a future stage these models would be used to continue
our efforts to provide the basis for determining the means by which a robot could “discover”
its own ecological niche within the world where it “lives” (McFarland, 1994).

Frogs and toads have been valuable biological models to the study of visomotor coordination,
not only for getting an in-depth understanding of the neurobiological basis of behavior
(Grüsser and Grüsser-Cornehls, 1976; Ewert, 1980; Ingle, 1982; Fite, 1973), but also for
inspiring control schemas in mobile robotics (Arkin, 1989; Arkin et al., 2000). They live
within complex and uncertain three dimensional environments rich in different modes of
sensory signals, however, their behavior is mainly guided by visual information. They have a
limited behavioral repertoire, and their  survival chances depend on their ability for
displaying, at every moment, the most appropriate action to cope with diverse environmental
situations. Grüsser and Grüsser-Cornehls (1976) classified the amphibia’s visually guided
behaviors in seven categories: a) orienting, in general; b) prey-catching; c) avoidance and
hiding; d) eye responses (e.g., accommodation and ocular movements); e) vegetative
responses of short latency (e.g., breathing and heart beating); f) vegetative responses of long
latency (e.g., circadian rhythms); and g) changes on skin color to changes in illumination, or
in the background.

Among these behavioral patterns, prey-catching (“food ingestion”) is essential for survival,
and it can be studied under lab conditions at different levels of analysis. In ethological studies,
using different types of dummies, it has been shown that these animals’ response to domains
of interaction representing potential prey is determined by different factors whose processing
runs at multiple temporal scales:
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a) stimulus characteristics, e.g., form, size and the spatial temporal relationship between the
amphibia and the prey (Grüsser and Grüsser-Cornehls, 1976; Ewert, 1976; Ingle, 1982);

b) previous experiences with the stimulus, e.g., learning and conditioning, (Ewert and Ingle,
1971; Ewert and Kehl, 1978; Finkestädt, 1989); and

c) motivational factors, e.g., season of the year, food deprivation and maintenance within the
lab prior to the experiments execution (Cervantes-Pérez, et al., 1993b; Ewert and Siefert,
1974;  Ewert, 1980; Ingle, 1983).

In addition, anatomical studies have shown topographical maps among Retina, Optic Tectum
and Pretectum, as well as great connectivity between these two structures receiving direct
projection from retinal cells and the rest of the animals’ brain (Grüsser-Cornhels, 1984; Fite
and Scalia, 1976; Székely and Lázár, 1976); whereas electrophysiological analyses have
shown great correlation between the levels of activity in tectal cell T5(2) and pretectal cell
TH-3, and the probability that the current visual stimulus fit into the prey or predator
categories, respectively (Ewert, 1984). Moreover, Ewert (1976, 1980) has shown that in
animals with pretectal ablation, T5(2) cells activity also resembles the toads’ overall behavior,
responding indiscriminately to any moving object traversing their visual field.

Our own group has developed, based on the leaky integrator neuron model, a series of
neuronal networks models to study how the retino-tectal-pretectal interactions might underlie
some characteristics of prey-catching facilitation (Lara et al, 1982; Cervantes-Pérez and
Arbib, 1990), prey-predator discrimination (Cervantes-Pérez et al, 1985), and prey-catching
stimulus specific habituation (Lara and Arbib, 1985; Cervantes-Pérez et al, 1991).

In here, we analyze extended versions of our models, where we incorporate other hypotheses
of how stimulus specific habituation and changes in motivational factors modulate the
efficacy of visual prey dummies to elicit toads’ prey-catching behavior. The aim is to seek an
in-depth understanding of the computational properties associated to those neuronal
mechanisms subserving toads’ overall behavior, in terms of interacting dynamical systems
processing events that occur at multiple temporal scales rather that in terms of neuronal
plasticity. In addition, as a second goal, we set forth the basis for building an abstract model
of an agent (toad) that stores information of certain domains of interaction (visual prey-like
stimuli), coming from an uncertain environment (its ecology), within the dynamics of
neuronal processes that occur at multiple temporal scales. Moreover, in this knowledge
representation scheme, we study the course of actions (plan) as episodic, goal-oriented and
plastic enough to be modulated by learning, or by changes in the agents’ motivational state.
Finally, we also aim to establish a link between the neuroethological studies of toad’s
visuomotor coordination and the Theory of Reinforcement Learning, seeking to gain access to
the mathematical framework associated to the Markov Decision Processes to better analyze
the temporally extended actions (planing) embedded in the toad’ prey-catching ethogram.
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2.- ACTIVATION OF PREY-CATCHING MOTOR ACTIONS: A FAST TEMPORAL SCALE

In the wild, at the twilight time of the day toads begin to explore the immediate surrounding
in search of potential prey; thus, prey-catching can be looked at as a goal-oriented behavior,
where the goal is being fed. These animals present their whole prey-catching repertoire under
laboratory conditions; that is, when a prey-like stimulus is presented in the toad’s visual field,
they display one of the following prey-catching actions:

• Orienting.- If the stimulus is located at the lateral visual field, the toad orients towards the
stimulus, and brings it into the binocular part of its visual field.

• Approaching.- When the stimulus rests in the binocular visual field, but a little bit too far
to be caught, the toad moves forward trying to bring it into reaching distance.

• Following.- If the stimulus is in the frontal visual field but getting away, the toad moves in
the same direction as the stimulus, trying to maintain it within reaching distance.

• Binocular Fixation.- Once the stimulus is within the snapping zone, the toad carries out a
binocular fixation process to better estimate its three-dimensional relative position.

• Snapping (Attacking).- When the stimulus remains within reaching distance, and binocular
fixation has taken place, the toad snaps at it, and brings it into its mouth.

• Swallowing.- If a prey is captured, and hence inside the toad’s mouth, the corresponding
mechanoreceptors get stimulated, signaling the completion of a sub-goal: food has been
ingested.

This ethogram description is similar to that of Ewert’s (1980), but it includes the Following
motor action, and we left out the wiping-mouth response (see also Roche-King and Comer,
1996). It does not represent a fixed sequence of actions, rather, it is a repertoire flexible
enough to allow the animals to properly interact with moving prey-like objects in a complex
three-dimensional environment full of uncertainty. All toad’s prey-catching responses are
episodic, occur in a time-scale of hundreds of milliseconds, and their outcome generates new
situations with high probability of eliciting another prey-catching response; that is, they
conform a sequence of temporally extended actions that leads towards the completion of the
overall goal of being fed.

In Cervantes-Pérez et al. (1985), we developed a neural model of the interactions among
elements of the Retina, the Optic Tectum and the Thalamic Pretectal region (Tectum and
Pretectum henceforth), to study how these neural mechanisms could underlie, among other
things, prey-recognition in amphibians. The main hypotheses embedded in the model were:

a) Topographical maps from the Retina to Tectum and Pretectum, and from Pretectum to
Tectum. Retinal ganglion cells project retinotopically to Tectum (R2, R3 and R4), and to
Pretectum (R3 and R4) (Witpaard and Keurs, 1975; Fite and Scalia, 1976; Székely and
Lázár, 1976, Ewert, 1976; Grüsser and Grüsser-Cornehls, 1976), whereas pretectal cells
project, also retinotopically, to Tectum (Fite and Scalia, 1976; Ewert, 1980, Ingle, 1982).

b) The Optic Tectum (principal visual center in the amphibian’s brain) is organized in
columns, comprised by different types of processing elements (see Figure 1): the Large
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Pear-shaped cell (LP), the Small Pear-shaped cell (SP), the Stellate neuron (SN), the
Pyramidal cell (PY), the only one having projecting axons outside the tectal circuit, and,
finally, the glomerulus (GL), representing the convergence in the superficial tectal layers
of axon terminals coming from the Retina and other brain structures, and dendrite
arborizations of tectal cells  (Székely and Lázár, 1976; Schwippert et al, 1995). GL
receives signals from ganglion cells R2, and activates LP and SP cells, which, in turn,
receive inputs from ganglion cells R2, and send axons back to GL forming positive
feedback loops that tend to recruit tectal activity when a prey-like stimulus is present in
the animal’s visual field. LP also excites the SN cell, postulated to be the only inhibitory
tectal cell (Székely and Lázár, 1976), which forms negative feedback loops with the LP
and SP to keep tectal activation in control, specially when the stimulus disappears from
the animal’s visual field. Finally, the efferent PY cell integrates the overall tectal activity
with the inputs it receives from ganglion cells R2, R3, and R4. PY cell is equivalent to the
T5(2) cells of Ewert’s (1980), whose level of activation correlates quite well with the
probability of a toad displaying a prey-catching response towards a visual stimulus in its
visual field.

c) Prey-recognition is due to tectal integration of retinal excitation and pretectal inhibition.
Animals with pretectal ablations loose their capability of avoiding predators, attacking any
stimulus that moves into its visual field. Even the hand of the researcher that feeds them
becomes a potential prey (Ewert, 1980). Thus, it has been postulated that pretectal cells
(TP in Figure 1) modulates tectal activation through an inhibitory effect upon LP, SP and
PY cells, specially when the animal is confronted with predator-like stimuli. According to
data from Schwippert et al. (1995), about superficial tectal layers receiving a direct
projection from pretectum, in here we also consider a pretectal inhibition upon GL. This
interaction is the basis for prey-predator discrimination; that is, stimuli that produce low
tectal activation with high pretectal responses signal “danger” (predators), whereas the
ones producing the opposite effect signal “food” (prey) (Ewert, 1976, 1980, 1984; Ingle,
1973, 1980).

PLACE FIGURE 1 HERE

In modeling the neural mechanisms underlying these phenomena we considered the weighted
spatial-temporal summation property of a neuron, and its nonlinear capability of mapping
changes in its membrane potential to the corresponding changes in its firing rate. We used the
leaky-integrator model for the dynamics of the membrane potential m(t):
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where,
t – membrane time constant;
xi and vj – excitatory inputs and weights, respectively;
yi  and wj – inhibitory inputs and weights, respectively; and
M0 – resting potential.

The cells’ firing rate were related to their membrane potentials through a nonlinear function
of either threshold, linear, or saturation form:
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Where, ß, ?, ?0, ?1 are threshold parameters.

A neural network, based on the leaky integrator model, is represented by a set of first order
differential equations with non-linearities. Thus, taking into account the connectivity shown in
Figure 1, the model of the Retino-Tectal-Pretectal (RTP) Column is:
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In Figure 2, we show a computer simulation of the dynamics of the RTP neural circuit when a
prey-like stimulus is presented in the corresponding visual field. GL is the first element in
increasing its level of activity (it is modeled as a functional unit with zero threshold),
followed by LP an SP, being LP the one that first reaches membrane potentials above
threshold. GL level of activity is recruited every time LP or SP get activated, through the
positive feedback loops. Once LP output gets activated, SN membrane potential begins to
increase, and when it goes above threshold its inhibitory effect upon LP and SP diminishes
the overall tectal activity. When LP and SP cells are active, and the stimulus is still in the
visual field, PY membrane potential goes above threshold, signaling that the visual stimulus
fits the prey-category. Because the dummy is a prey-like stimulus, the pretectal TP cell shows
a low level of activity, which will be increased in habituated animals through H(t) (see
below).

PLACE FIGURE 2 HERE

Having a model expressed as a set of first order nonlinear differential equations allowed us, in
Cervantes-Pérez and Arbib (1990), to conduct stability and parameter dependency analyses
that, in combination with computer simulations, served to identify a set of parametric
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conditions under which the retino-tectal-pretectal interactions might underlie Prey-Catching
Facilitation. A behavioral phenomenon studied by Ingle (1973, 1975), where frogs were
stimulated once with a small visual object during a sub-threshold duration of 0.3 seconds
(time period during which the stimulus did not produce a frog’s prey-catching response),
followed by a resting period of 3.2 seconds, and a second presentation of the dummy, where
the frogs displayed an attack within the sub-threshold duration period.

Assuming a resting state when no stimulus is present (all tectal cells membrane potential at
their resting level) and neuroethological correlates (Ingle, 1973, 1975; Ewert, 1976, 1980), we
identified a set of relations among tectal neural parameters under which a tectal column model
would follow an appropriate trajectory (state sequence), in order to underlie prey-catching
facilitation. In Figure 3, we show how a sub-threshold presentation of a prey-like stimuli
starts a process of cooperation/competition between positive (i.e., R2? GL? LP;
R2? GL? SP) and negative (i.e., R2? LP? SN; R2? SP? LP? SN? SP) feedback loops,
and generates an LP decaying oscillation that, in turn, produces a GL and SP residual activity
(a short-term memory process) that is responsible for facilitating PY response during the
second stimulus presentation. Here, we follow Ewert’s (1980) results of PY response being
highly correlated with the probability of a stimulus to yield a prey-catching response. It was
also observed that when the excitatory effects of the positive feedback loops were increased,
keeping the ones of negative feedback loops constant, all cells in the tectal column model
could present: much longer oscillations (see Figure 4a), or continuous responses of all cells,
which means that prey-catching facilitation for sub-threshold stimuli could even occur for
longer time periods between the first and second stimulus presentation. When these
oscillations are much stronger, there will be a kind of “epileptic” response when the PY cell
gets activated in the absence of a visual stimulus (see Figure 4b).  On the contrary, if negative
feedback loops are dominant, prey-catching facilitation does not occur and both stimulus
presentations are processed as independent events (see Figure 5).

PLACE FIGURE 3 HERE

PLACE FIGURE 4 HERE

PLACE FIGURE 5 HERE

Thus, based on these analysis, we may conclude that information about prey and predators, in
the amphibians’ visuomotor system, is distributed among different structures (e.g., Retina,
Tectum, and Pretectum), and that its processing is carried out in parallel. Also, that the
knowledge used during prey and predator recognition is represented within these neuronal
circuits in a spatial-temporal way; that is, to signal whether the visual stimulus fits into the
prey or predator category, it is important not only what neurons got activated, but also what
was the temporal course of their activation. Finally, It should be pointed out that that PY cells
response, related to the activation of a prey-catching action, is generated in a temporal scale of
100’s of milliseconds (see Figure 2).



Neuronal Multiple Temporal Scales Cervantes-Pérez et al 9

21/06/00

3.- LEARNING DYNAMICS: TIME-VARYING TEMPORAL SCALES

Toads are capable of modifying the way they interact with some of the stimuli that appear in
the uncertain environment where they live. As a good example of that, we have the stimulus
specific prey-catching habituation, one of the simplest form of learning where the tendency to
respond to a specific prey-like stimulus declines, and eventually disappears, when the
stimulus remains in the visual field despite the toad’s efforts to catch it (Ewert and Kehl,
1978; Cervantes-Pérez et al., 1991). That is, the probability, p(s’,a’), assigned to prey-
catching action, a’, in an environmental situation, s’, is not a time-invariant mapping, but
rather it has its own dynamics. It depends on the stimulus characteristics and the spatial-
temporal relationship between toad and prey, and changes according to information processes
working at multiple temporal scales (e.g.,  the efficacy of a specific stimulus to yield a prey-
catching response decreases as the habituation experiment progresses). This learning process
has adaptive significance in that animals should not respond forever to non-catchable prey;
rather, they should be able to learn to “abandon” a given task when their efforts do not
produce the proper result (“reward”), so they would be able to properly interact with other
key-stimuli that may appear in the environment, specially with those signaling food or danger.

In Cervantes-Pérez et al.(1991), we presented data from a series of behavioral experiments,
conducted with a group of toads Bufo marinus horribilis under a setup that allowed the
animals to display their whole repertoire when interacting with a worm-like dummy, a
horizontal black rectangle, in a white background, with its longest axis parallel to the
direction of motion). Toads were placed within a plastic cage, in front of a TV set where the
image of the stimulus was played back. In Figure 6 we show the results obtained with six
animals, trained with a worm-like stimulus of cm4.05.1 × , moving at 4.1cm/sec, and at a
height of 2cm from the substrate where toads were located. The main hypotheses derived from
results obtained under this paradigm were:

a) Prey-catching response to visual prey-like objects decreases with repetitive stimulation,
until it eventually disappears. There are differences in the temporal evolution of the
response displayed by individual toads; however, as the experiment progresses, all
animals showed, first, quantitative changes (prey-catching response frequency decreases),
and, second, at the end of the training a qualitative change takes place (toads stop
attacking the stimulus).

PLACE FIGURE 6 HERE

b) Prey-catching habituation is stimulus specific. Once toads had been habituated to a given
parametric configuration (i.e., worm-like stimulus of 1.5 x 0.4 cm, moving at 4.1 cm/sec),
and after a 40min resting period, a change in the horizontal dimension, from 1.5cm to
5.5cm, was enough for leading the toad to elicit prey-catching actions towards the new
configuration of the stimulus (see Figure 7).

PLACE FIGURE 7 HERE

c) Spontaneous recovery takes longer than the acquisition of habituation (see Table 1). All
toads trained under this paradigm took different times to habituate, ranging from few
minutes to almost 2 hours (see Figure 6), but it took them days to “forget” the training.
Some animals were retrained after the 11th day of the first training event. The first four
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animals, retrained after 11, 13, 20, and 45 days respectively, did not respond to the same
stimulus configuration used during the habituation process; whereas another one, re-
trained after 49 days, responded during 28min with a maximum frequency of 22
responses/min (for a detailed description refer to Cervantes-Pérez et al.(1991)). In Ewert
and Kehl’s (1978) experiments on the habituation of the orienting behavior, toads
habituated in 5 minutes, and recovered in half an hour.

PLACE TABLE 1 HERE

To explore how habituation might be implemented in the amphibia’s visuomotor system, in
this section the RTP model is extended to include an Habituation Column (HC) model (see
Figure 8).

PLACE FIGURE 8 HERE

We start by taking into account Lara and Arbib’s (1985) habituation model, where they
explained prey-catching habituation, following Sokolov’s (1960) original proposition, in
terms of building a model of the activity produced by a stimulus presentation that, when it
becomes “familiar” due to repetitive exposure, acts to suppress its efficacy to elicit prey-
catching responses. In addition to their MO unit, we postulate, and here we hypothesized, that
the beginning of this modeling process is triggered by a Failure Unit (FU) that gets activated
when the expected consequences associated to the response generated by the RTP column at
time, t, do not appear in the situation detected at, t+1, (e.g., mouth mechanoreceptors
activation after a snapping response has been elicited). In case the expected consequences
occur, the FU controls the time period in which the model of the stimulus is “forgotten”. The
FU could be modeled as a neuronal circuit storing all patterns resulting from combining
environmental situations and the actions they could possibly activate, as well as the
corresponding expected consequences of executing such actions, according to the animals’
ethogram description, and used them as a content addressable memory. However, in here, it is
enough to model it as a logic unit:



 >>

=
otherwise

NCpy
if
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z
0&0

0
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where, NC means “No expected consequence occurred”. Thus, the MO unit dynamics is
represented as:
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where,
z -  FU output,
?m -  MO unit threshold,
r(t) -  input from the retina, here it is considered as constant for a given stimulus, which
when multiplied by z forms an activity-gated input, instead of a direct input,
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t m -  acquisition time constant, and
a m -  a variable that regulates the recovery time constant.

FU is active (z=1), when a prey-catching response was executed and its expected
consequences failed to occur. Thus, the modeling process starts and, m(t)? r+m0 as t? 8 ,
with a time constant tm. Otherwise, in case everything goes well (z=0), m(t)? m0 as t? 8 ,

with a bigger time constant, 
m

m

α
τ

, that accounts for a slower evolution of m(t) to its resting

level (i.e., “forgetting” the model of the stimulus takes longer than its acquisition). This
mechanism might account for some aspects of stimulus specific habituation in successive
training sessions separated by intermediate recovery intervals, described by Ewert (1984) and
modeled in a similar way by Wang (1993). That is, during subsequent trials toads will take
less time to habituate, because the MO level of activity will be closer to the retinal signal
level, thus, the build up phase of habituation will start sooner.

The habituation process does not initiate with a single failure trial, rather it requires that the
output of the MO unit resembles the retinal signal yielded by the stimulus presentation. So, it
is required that the toad attempts several times to catch the stimulus without success, before
the building up of habituation begins. This task is accomplished by the Comparison Unit
(CO), which is also modeled as a logic unit:

( ) ( )
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=
otherwise

trtm
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c
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0

That is, the CO is maintained activated until the MO output is equal to the signal coming from
the retina, and the dynamics of the habituation unit is modeled similarly to the MO unit:
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and,
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where,
c -  CO output,
?h -  habituation unit threshold,
h(t) -  habituation intensity,
t h -  acquisition time constant, and
a h -  a variable that regulates the rate of spontaneous recovery.

When CO becomes inactive (c=0), the output of MO, m(t), matches the retinal signals, r(t), it
means that a prey-like stimulus has been in the animal’s visual field for certain time, despite
its efforts to catch it. Thus, the building up of prey-catching habituation starts: h(t)? hmax,, as
t? 8 , with a time constant th. Here, hmax is a value big enough to ensure that the level of
pretectal inhibition acting upon tectum highly decrease the probability of the stimulus fitting
the prey-category. In this way, the release of any prey-catching response will be stopped.
Otherwise, with CO active (c=1), meaning that a new potential prey has arrived into the
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animal’s visual field, spontaneous recovery begins to take place; that is, the habituation unit

moves towards its  resting potential, h(t)? h0, as t? 8 , with a time constant, 
h

h

α
τ

, that

accounts for a slower evolution.

Finally, because the habituation process acts upon the pretectum only after the model created
by MO matches the retinal input (i.e., c=0), the output unit, H, of the habituation column
model is represented as a logic unit:

( )




=
=

=
1
0

0 cif
cifth

H

In Figure 9 we show a computer simulation of a stimulus specific habituation process. Each
stimulus presentation activates the Failure Unit modifying the MO unit membrane potential.
During this period CO remains active, c=1, keeping the habituation unit membrane potential
at its resting level, h0. Once the MO unit reaches the same activation level as the signal
coming from the retina, the CO output becomes inactive, c=0, the habituation unit membrane
potential starts increasing towards its maximum level, hmax, and every time there is a stimulus
presentation the H unit sends an excitation to the pretectal TP neuron, increasing its inhibitory
effect upon tectal neurons to reduce the probablity of the stimulus fitting the prey-category.

PLACE FIGURE 9 HERE

To show the dynamics of the habituation tectal column when after an habituation process we
present a different prey-like stimulus in the animal’s visual field, in Figure 10 we show a
computer simulation of such an experiment. A non-catchable stimulus is presented (the
dynamics is similar to that described for Figure 9) until the habituation unit activity reaches its
maximum level, hmax, then, the stimulus is replaced by a stimulus that resembles a catchable
prey. At this point, the Failure Unit stops responding, so the MO membrane potential starts
going down to its resting level, although with a much slower time constant controlled by am.
CO becomes active once again and inhibits the H unit, thus, the level of activation in the cells
of RTP column model would be closely related to the stimulus efficacy to yield prey-catching
responses. Finally, the habituation unit membrane potential, h(t), starts also decreasing
towards its resting potential, h0, in a similar fashion as the MO unit; that is, with a much
slower time constant controlled by ah. It must be pointed out that the dynamics of those cells
in the RTP model at the begining of the habituation experiment would be similar to that
described in Figure 2; whereas, once the habituation unit activation makes pretectal inhibition
strong enough to stop tectal neurons from getting activated by the visual stimulus, these
elements dynamics would be similar to that described in Figure 14 (see next section).

PLACE FIGURE 10 HERE

Prey-catching stimulus specific habituation is a learning from interactions process whose
characteristics seem to be universal, they appear in studies:

a) with different species, including humans, e.g., habituation in the turning behavior of
nematodes (Rankin and Broster, 1992), habituation of a defensive withdrawal reflex
in Aplysia (Carew et al., 1972), escape reactions habituation in ground living birds
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to the sight of other birds flying above (Tingbergen, 1951), rats short-term and
long-term startle habituation to different tones (Leaton, 1976), and habituation in
baby’s orienting response to a face (MacKenzie, Tootell, and Davis, 1980);

b) at different levels of analysis, e.g., behavioral (see a)), lesion experiments of brain
structures (Ewert, 1980; Finkestäd, 1989), and at the cellular level (Kandel, 1976;
Byrne, 1982); and

c) experimental (see a) and b)), and theoretical approaches, e.g., Lara and Arbib
(1985) posed a neuronal model of amphibia’s prey-catching orienting response;
Wang (1993) developed a model of the possible neuronal mechanisms subserving
short-term and long-term habituation in toads prey-catching orienting response;
Staddon and Higa (1996) developed a two-unit cascade-integrator model to study
how the interactions of two inhibitory processes, with different time scales, might
be the basis for habituation, recovery, rate-sensitivity and the effects of variable
inter-stimulus intervals in the nematode Caernorhabditis elegans.

Habituation is in itself a phenomenon that offers a rich framework, in behavioral complexity,
experimental data and theoretical models, with phases that occur in different neuronal circuits
working at multiple temporal scales: the acquisition phase takes from minutes to hours,
whereas the spontaneous recovery may take from minutes to days (Leaton, 1976; Ewert, 1984;
Cervantes-Pérez et al, 1991; Wang, 1993). It also must be pointed out that, in many cases,
there seems to be a time-varying dynamics involved:

a) in Cervantes-Pérez et al (1991), it took different time periods for each animal to
habituate, and to recover (see Figure 6 and Table 1);

b) toads trained under different scenarios required different times, e.g., under our
paradigm toads took from minutes to hours to habituate, and days to recover; in
Ewert and Kehl’s (1978) experiments toads habituated in 5 minutes and recovered
in half an hour; and

c) the number of trials also varies when using different type of stimuli, e.g., when a
toad catches a bee, its sting at the toad’s tongue is enough to prevent it from
catching bees in the future (Ewert, 1980).

Thus, and here we hypothesized, it seems that the expected, and the unexpected, consequences
of some behaviors (e.g., snapping in our case, and the bee sting in Ewert’s case) might have a
bigger effect on the building up of habituation than others (e.g., prey-catching orienting in
Ewert and Kehl’s experiments).
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4.- COURSE OF ACTIONS DEVELOPMENT: TEMPORALY EXTENDED ACTIONS

When toads search for food, there seems to be a plan embedded in the prey-catching
ethogram: “explore the immediate surroundings until a prey appears in the visual field, then
modify the spatial-temporal relationship with the stimulus so it gets and stays within the
reaching zone, and catch it”, and the course of actions to fulfill this plan develops in a time-
scale that involves the execution of many basic prey-catching actions, without specifying a
particular time at which it should stop (that will depend on when the toad has caught enough
prey).

In Figure 11 we show all processing elements involved in the agent-environment interaction
during the elicitation of the amphibia’s prey-catching behavior. The agent is the animal’s
visuomotor system (Retina, Habituation Column, HC, Pretectal-Tectal interactions, PTC,
Motor Centers and Muscular System); whereas the environment is formed by the immediate
surroundings, and those brain structures, not belonging to the visuomotor system, carrying out
information processes whose outcome modulates the way in which amphibia respond to
visual stimuli (failure of expected consequences, FU, and motivational state, MOT). The basis
for this being that these processes can not be directly modified by the visuomotor system, but
rather they are affected by changes in environmental conditions (e.g., seasonal cycles, lack of
prey, etc.).

PLACE FIGURE 11 HERE

Considering that toads interact with visual prey at a discrete time-scale, ,...2,1,0=t , at each
step, the current environmental situation, pct Ss ∈  (where, SS pc ⊂ , the set of all situations
related to prey-catching behavior being a subset of all possible environmental situations S),
activates a motor action from the animal’s repertoire, pct Aa ∈ , (with, AApc ⊂ , all actions in
the prey-catching ethogram being a subset of the animal’s global repertoire A), according to a
mapping, p, where a given situation, st, might activate an action, at, with probability, p(st, at).
Toads not always perform when placed in a lab scenario, sometimes they just sit there and do
nothing. Each action, at, is associated to an expected consequence that, if everything goes
well, will be reflected in the environment’s transition into, st+1. That is, in the case of prey-
catching behavior: orienting brings the stimulus into the frontal part of the visual field;
following keeps the stimulus at a giving distance; approaching reduces the distance between
the toad and the prey; binocular fixation generates the estimation of depth; and snapping takes
the prey into the toad’s mouth stimulating the mechanoreceptors. In addition, some structures
in the toad’s brain (represented by FU in Figure 11), and here we hypothesized, are
monitoring for these expected consequences to occur (e.g., activation of the mouth
mecanoreceptors, F), in order to generate the proper “reward” signal, rt+1.

According to the prey-catching ethogram, each action’s expected consequences define a new
situation with high probability of eliciting another prey-catching action, in such a way that the
temporally extended course of actions (“Plan”) ends up by executing a snapping and a
swallowing, to signal that, partially, the goal has been achieved. That is, capturing one prey
does not mean that been fed has been completed, but rather that an episode towards its
completion has been  carried out. Thus, an exploring phase starts all over again to initiate the
next episode. This episodic behavior keeps on going until the nutrients level (an accumulative
“reward” signal, represented by, Q, in Figure 11) reaches a certain level that would indicate
the completion of the goal. At this point the probability of displaying prey-catching responses
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would decrease, so the elicitation of other behavioral patterns can be favored (e.g., in search
of a hiding place, which would allow the toad “to go back home”).

Thus, the course of actions comprises the execution of a non determined number of prey-
catching responses, and the completion of a series of short-term expected consequences (e.g.,
orienting to a prey bring it into the frontal part of the visual field), which should lead the toads
to reach intermediate-term expected consequences (e.g., food ingestion), until a longer-term
expected consequence is achieved (e.g., being fed). Thus, the course of actions during toads
prey-catching behavior occurs in a temporal scale slower than that described for the prey-
catching actions activation.

Additionally, the course of actions can be modulated by learning. When there is a sequence of
situations activating the animal’s prey-catching actions, ( )( ) ( )ntnttttt asasas ++++ ,,...,,,, 11 , with a
sequence of rewards, ,,...,, 121 ++++ nttt rrr signaling the failure of expected consequences, then, a
build up of habituation takes place. This learning  phenomenon changes the course of actions
(plan), highly reducing those situations’ probability of eliciting a prey-catching response. The
outcome of these changes keep the animal from attacking a non-catcahable prey, and allows
its interaction with other key-stimuli that may appear in the immediate surrounding. In this
way, an environmental situation, st, including both external and internal signals, contains all
relevant information to activate a toad’s prey-catching response, ay. That is, our state
description has the Markov property (Sutton and Barto, 1998); thus, given that, Spc and Apc are
finite, the dynamics in the toad’s visuomotor system might be described as using a one-step
model of the environment, where the transitions dynamics can be represented by one-step
state-transitions probabilities,

{ },,'Pr 1' aassssp ttt
a
ss ==== +

and one-step expected “rewards”,
{ },,1 aassrEr ttt

a
s === +

for all, Sss ∈', , and, Aa ∈ , and assuming here that, 0' =a
ssp  for pcAa ∉ .

Identifying this property in the amphibia’s prey-catching behavior, opens the possibility of a
fruitful exchange between scientists working in understanding the neuroethological basis of
this behavior, and those developing the Theory of Reinforcement Leraning (Sutton and Barto,
1998). The former ones gain access to a mathematical framework (i.e., Markov and Semi-
Markov Decision Processes) for analyzing, and testing, hypotheses related to sensorimotor
coordination and temporally extended behaviors; whereas for the later ones, there is a corpus
of experimental data and theoretical models (e.g., Schema-Theoretic, and neuronal networks)
of how an agent (amphibian) represents knowledge of its world (prey-recognition as spatial-
temporal patterns of neuronal activity within networks working at multiple temporal scales),
and how it uses it to select the most appropriate action to cope with dynamic environmental
situations (learning to stop responding to non-catchable prey).
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5.- CHANGES IN MOTIVATIONAL FACTORS: SLOWER TEMPORAL SCALES

Prey-catching behavior elicitation is also modulated by signals coming from changes in
internal processes attributable to the animal’s motivation (i.e., changes due to an alteration in
the animal’s internal state). Some of them work like internal clocks, e.g., Ewert (1980)
described seasonal effects on toads’ prey-catching behavior; while others result from the
animals’ interactions with the environment. Ewert (1980) describes how prey-odors increase
the animals response towards prey-like objects. Cervantes-Pérez et al.(1993b) reported that
the way animals are handled in the lab, before the experiments take place, modifies the
efficacy of visual dummies to yield toads’ prey-catching responses; in one hand, toads with a
high level of motivation to display predatory actions discriminate well between worm-like and
square stimuli when they are moved at medium velocities (4.4 cm/sec); however, they present
similar responses to both stimuli when moved at lower (2.2 cm/sec) and higher velocities (8.8
cm/sec). On the other hand, both stimuli were as effective to elicit prey-catching actions in
animals with low level of motivation when moved at any of these velocities.

In addition, it has been postulated that these motivational effects may influence the activation
dynamics produced by the presence of a prey-like stimulus over the neuronal elements of the
retino-tectal-pretectal interactions (Ewert, 1980; Ingle, 1983; Ewert, 1991; Cervantes-Pérez et
al, 1993b). Here, we analyze how these signals varying in a much slower temporal scale
might modulate the RTP model dynamical characteristics, in order to show how changes in
motivational factors may affect the nonlinear mappings embedded in the model to associate
prey-like stimuli with proper prey-catching actions (e.g., toads yield prey-catching behaviors
towards a prey when they are hungry, but not when they are satiated).

To simplify the analysis, we include a variable, Q=?(tp(t),Mj), to represent the overall
outcome of integrating the pretectal activation dynamics, tp(t), due to the presence of a visual
stimulus at time t, with changes in the animal’s motivational state, Mj (j=1,2,… ), formed by
the responses of different sources of motivational changes, e.g., hunger, circadian cycles, etc.
(see Figure 12). The hypothesis being that changes in motivational factors would modulate
the pretectal inhibitory effect upon Tectum when a visual stimulus appears in the toad’s visual
field; sometimes increasing it (e.g., during the animal’s periods of sexual activity of
hibernation, or in satiated animals), and others doing just the opposite (e.g., during the
summer, or in hungry animals).

It must be pointed out that neither of these effects is observable at the temporal scale of
executing basic prey-catching actions; rather, they vary at a much slower multiple temporal
scales (e.g., seasonal changes occur as yearly cycles, whereas the effects described by
Cervantes and coworkers happened within periods of 14 and 17 hours). Thus, when analyzing
visuomotor coordination experiments, the values of the variables associated to these
modulating sources would be considered as constant parameters. In addition, we also outline a
Dependency Analysis on Q, to show how it affects the efficacy of a visual prey-like stimulus
to yield toads’ prey-catching actions varies depending on the integration of the retinal level of
activation it produces (R in Figure 12) with internally generated signals due to changes in
motivational factors (i.e., toads Central Nervous System internal state), represented by Mj in
Figure 12. In this way, neuronal circuits working at different multiple temporal scales (i.e., the
RTP model and those generating Mj values) would be offered as the basis for a plausible
explanation of why at different times toads respond differently to the very same
environmental situation (e.g., hungry animals would catch a worm, while satiated animals
would not).
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PLACE FIGURE 12 HERE

Considering Q, and that PY cell does not participates in modifying the tectal internal activity,
that is, considering only the neuronal elements (GL, LP, SP, and SN) responsible for
producing and maintaining the tectal level of activation, we may define the following two
vectors:

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )TT tsntsptlptgltxtxtxtx ,,,,,, 4321 ==x

( ) ( ) ( ) ( ) ( )( )TT snhspflpfglhyyyy ,,,,,, 4321 ==y

with h and f as defined in Section 2, so that the RTP model, in the absence of retinal input,
could be expressed as:
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in matrix notation,

( ) ( ) Qtt qwywxx ij ++−=&τ .

In addition, taking into account that h(gl), f(lp), f(sp), and h(sn) are piecewise linear functions,
our analysis of the dynamical repertoire displayed by the RTM column model can be
simplified by separating the overall system into a set of eight linear systems of first order
differential equations, that collectively describe the nonlinear dynamics of the whole neuronal
network. For example, in the situation where all neurons membrane potentials reach above
threshold values (i.e., when h(gl)=ßglgl, f(lp)=1, f(sp)=1, h(sn)=ßsnsn), the network dynamics
is described by:

( )
( )
( )
( )

( )
( )
( )
( )

( )

( )
Q

w
w
w

tx

tx

w
ww
www

ww

tx
tx
tx
tx

tx
tx
tx
tx

q

q

q



















+





































+



















−=



















0
1
1

000
00

0
00

3

2

1

44

11

24

4313

423212

3121

4

3

2

1

44

33

22

11

β

β

τ
τ
τ
τ

&
&
&
&

with, 
i

i τ
σ 1= , this expression reduces to:

( ) ( )
( )

( )

















+

++

+



















−
−

−
−

=

244

33

2322

131211

4

443331133

442221122

1

000
0

0
000

w
Qw

Qww
Qwww

t
ww
ww

t
q

q

q

σ
σ

σ
σ

σ
βσσβσ
βσσβσ

σ

xx&



Neuronal Multiple Temporal Scales Cervantes-Pérez et al 18

21/06/00

which is a linear system of first differential equations:

( ) ( ) aAxx += tt& .

Accordingly, the state space of all membrane potentials can be split into eight different
regions, each one described by a linear system. Each system has a unique equilibrium point,
ei, (1,2,… ,8) which is asymptotically stable (Cervantes-Pérez, 1985; Cervantes-Pérez and
Arbib, 1990). Thus, we can study the RTP neuronal network dynamics around the equilibrium
points. First, we determine their location in state space. Following our example (region 8):
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which has been calculated by solving:

( ) 0aAetx =+= i&

m is a constant vector that appears in all equilibrium solutions, and Q acts as a modulating
parameter. Then, we analyze the network stability by determining the eigenvalues ?i (i=1,… 4)
of matrix A, by solving the characteristic equation, 0AI =−λ . Thus, for region 8:

44332211 ,,, σλσλσλσλ −=−=−=−= .

Because all membrane time constants are positive, all eigenvalues of matrix A are real and
negative: Re?i<0; so, the RTP neuronal model is asymptotically stable around the equilibrium
solution e8,  that is, x(t)? e8, as t? 8  for each initial state x(0) (Ogata, 1970; Shinners, 1978).
Similar results are obtained for all other regions.

In our analysis, all equilibrium solutions, ei  (i=1,2,… ,8), and their stability are extremely
important for two reasons. First, because they are the basis for defining the repertoire of
dynamic behaviors that may be displayed by the RTP model. That is, when they are located
within their corresponding linear region, as actual points, the global activity of the neuronal
network can converge to it; but if they fall outside their corresponding linear region, as virtual
points, none of the trajectories of the global nonlinear system can converge to it (Ogata,
1970). Second, because their location in state space depends on the value of Q, the RTP
dynamic behavior elicited by a given environmental situation would be modulated by changes
in motivational factors Mj, whose processing occurs in neuronal mechanisms working at
multiple slow temporal scales.

In Cervantes-Pérez et al (1993b) we showed that toad’s motivational state might modulate the
level of pretectal inhibition upon tectum, modifying the efficacy of a worm-like stimulus to
elicit prey-catching behaviors, but that it was not enough to consider only changes in the
characteristics of tp cell’s activation (e.g., changes in the threshold, ?tp). Our results allowed
us to suggest that there might be other  modulation effects acting at the level of the tectal
input. Therefore, the effects of the Mj over the pretectal inhibitory effect upon tectum could
occur in any of the following forms:
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1. The Mjs could act as a constant input that modifies the tp cell resting potential, getting it
closer or further from the cell’s threshold, ?tp (see Figure 13a). Thus, when a visual
stimulus appears in the animal’s visual field, there would be three characteristics in the tp
cell activation dynamics that would change: the latency of the tp cell response, its
duration, and its intensity (lk and Ik, correspondingly in Figure 13a). This will also delay
the generation of f(tp), modifying in this way its synchronicity with those retinal signals at
the moment of arriving at the Optic Tectum. In this case, Q= f(tp), representing a
inhibition upon tectal activation (i.e., Q<0).

2. The Mjs could affect the intensity of f(tp) acting upon tp’s axon (see Figure 13b). Thinking
in a possible neuronal mechanism similar to that of Presynaptic Inhibition (Rudomin,
1990), if the frequency of the Mj is too low compared to the one of f(tp) then, Q=f(tp); but,
if Mj’s frequency gets bigger values then its effect would be equivalent to a multiplication
by a parameter k, which varies between 0 and 1 (i.e., Q= k*f(tp), for 0<k<1). Finally, if
Mj’s frequency gets bigger than f(tp), it would completely block tp cell’s output, and Q=0.
In summary, under this circumstances Q=0, and there would be changes only in the
intensity of the pretectal cell response.

3. The Mjs might counteract pretectal inhibition at the level of tecatl input (see Figure 13c).
If the interaction between the Mjs and f(tp) takes place at Tectum then, Q=Mj-f(tp). For Mj
with excitatory effects, it would be possible that pretectal inhibition upon tectal elements
could be counteracted, or even surpassed by the action of a motivational source Mj (i.e.,
Q=0). Again, the intensity of the pretectal cell response would be modulated, although in
this case, Q might even become positive, increasing the probability for a stimulus to fit the
prey-category.

PLACE FIGURE 13 HERE

To understand how tectal integration of signal generated by neuronal mechanisms working at
multiple temporal scales might modulate the action-selection mechanisms in the toads
visuomotor system, we carried out computer simulations for Q<0, Q=0 and Q>0. Figure 2
shows the situation for Q=0, a prey-like stimulus is presented for 0.5 sec, the tectal elements
GL, LP, SN, SP and PY become activated, in that order. LP, SN and SP present oscillatory
behavior during the time they remain active. Here, we assume that, once PY gets activated, a
prey-catching action is produced and the stimulus is captured, so it disappears from the toad’s
visual field. In Figure 14 we show a computer simulation of a situation when Q<0 (Q=-0.3),
assuming a direct effect of motivational center upon Tectum, the presence of a visual prey-
like object increases the level of activity in GL, LP, SP and PY without eliciting any prey-
catching response. Thus, the prey-like stimulus would follow its way and will eventually
disappear from the animal’s visual field. Because LP is the only input to SN, this cell remains
in its resting conditions during the whole process.

PLACE FIGURE 14 HERE

On the contrary, when Q>0, the presence of the same stimulus generates great activity among
the tectal elements of the RTP neuronal circuit. In Figure 15a we show the results of a
computer simulation where Q=0.02, and in Figure 15b when Q=0.06. It can be observed that
the level of activation in the RTP column model increases; furthermore, there is an oscillatory
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behavior presented by LP, SP and SN neurons that gets stronger for higher values of Q, which
causes an almost sustained strong response in GL and a longer period of activity in PY(even
after several time simulation units after the stimulus has disappeared fro the animal’s visual
field. The later being postulated as the trigger of prey-catching actions, then, this would mean
that motivated animals would display faster and stronger responses towards prey-like stimuli
during long periods of time. In addition, as Q increases, GL and SP not only reach a stronger
level of activation, but they remain active during a longer period of time. These functional
units act as a short-term memory mechanism: in highly motivated animals, the presence of a
prey-like stimulus would facilitate toad’s responses to subsequent stimuli.

PLACE FIGURE 15 HERE

Finally, it must be pointed out that the idea of sensory-motor coordination being modulated by
changes in motivational factors was already put in practice in Arkin et al (2000), where we
included three motivational variables: hunger, sex-drive, and fear. There, the first two were
considered to increase linearly with time, and to reset to zero when the robot makes contact
with a prey, or a mate; at that time it is assumed that the robot has eaten or mated. Hunger
was also assumed to increase more rapidly than sex-drive. In the case of fear, its level remains
equal to zero until a predator appears in the robot’s visual field, then, the corresponding
variable is set to a predetermined high value, and reset to zero once the predator is no longer
visible. Thus, in order for the robot to properly cope with specific environmental situations, in
the Action-Selection algorithm the state of the variable with the greatest current value is
integrated with the level of activity produced by the current situation. If there is an associated
stimulus (i.e., a prey for the hunger variable), then the robot executes the corresponding
behavior, otherwise, this process is repeated with the motivational variable with the next
greatest value, and so on. In case there is not a prey, or a predator, or a mate, or an object that
signals a hiding place, then, the robot keeps on exploring the surroundings. Thus, as a sequel
of our work, the challenge remains to design control algorithms that include more realistic
models of how motivational variables, changing over time at multiple temporal scales, affect
the efficacy of visual stimuli to yield proper behaviors.
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7.- CONCLUSIONS

In one hand, we have analyzed how the neuronal mechanisms underlying amphibia’s prey-
catching behavior are organized into functional units of interconnected cells, distributed along
different brain structures, and with retinotopic mappings and dynamical features essential for
generating a set of neuronal signals at multiple temporal levels of abstraction. For example,
the RTP model’s cooperation/competition processes between positive and negative feedback
loops provide a scenario for the appearance of oscillatory dynamic behaviors, which have
been offered as the basis for short-term memory processes underlying the modulation of prey-
catching behavior, by stimulus specific habituation and changes in motivational factors. This
modulation could be described as the outcome of accommodating information of new
situations (a non catchable prey-like stimulus) into the dynamics of the proper neural
mechanisms (TP cell inhibitory effect upon tectal elements), in order to modulate the way
amphibia normally respond to a specific stimulus (stop yielding prey-catching behaviors),
without affecting its performance when similar situations appear in its immediate
surroundings (prey-catching behaviors to real prey should remain unchanged). That is, we
have posed that, once an amphibian is engaged into capturing prey, the elicitation of prey-
catching actions not only depends on the activity caused by the stimulus characteristics and
the current spatial-temporal relationship between both animals, but rather on its integration
with other signals generated by inner parallel processes occurring at multiple temporal scales
(e.g., learning, and motivation).

On the other hand, seeking to establish a fruitful interactive exchange between scientist
working in Neuroscience and those concerned with building computer based sensory guided
automata, we tried to make our analysis amenable to those communities of Distributed
Artificial Intelligence and Behavior-based Robotics. We presented our analysis in terms of an
agent (toad) that stores, within the dynamics of neuronal processes working at multiple
temporal scales, information of certain domains of interaction (prey-like stimuli) that may
appear in the uncertain environment where they live (its ecology). Specifically, we studied
stimulus specific habituation in toads as a Reinforcement Learning Problem, where toads
ethograms can be looked at as conforming a set of behavioral systems embedding planning
processes flexible enough to allow to modulate the execution of a sequence of episodes
(temporally extended actions), to optimize the probability of the animal achieving overall
goals, and immediate sub-goals.

Thus, it is our intention that our study stimulates an exchange of data, models and analytical
mathematical frameworks that may lead to a better understanding of the biological
phenomena and, at the same time, to the inspiration of alternative models of knowledge
representation, learning and planning that might be useful within Behavior-based Robotics
and Distributed Artificial Intelligence.
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FIGURE CAPTIONS

Figure 1.- Retino-Tectal-Pretectal (RTP) Column Model. This model includes the output of
retinal ganglion cells R2, R3, and R4. R3 and R4 impinge upon the thalamic pretectal cell TP;
R2 upon the tectal glomerulus, GL, and the large, LP, and small, SP, pear-shaped cells; and
R2, R3 and R4 upon the PY cell, which is the only efferent element in the tectum. There is an
inhibitory effect from TP cell upon tectum (i.e., upon all tectal elements, but the SN cell), and
a cooperation/competition process among positive (i.e., GL and the LP and SP cells), and
negative (i.e., SN and LP and SP cells) feedback loops. The level of tectal activity is
controlled by the SN cell, the only tectal element not receiving external input, which exerts an
inhibitory effect upon LP and SP cells (adapted from Cervantes-Pérez et al. 1985).

Figure 2.- Computer simulation of the dynamics presented by the neuronal elements of the
RTP column model when processing a prey-like stimulus. GL is the first unit in getting
activated, then LP, followed by SN and SP. When LP and SP are active, and the stimulus is
still in the visual field, then, PY cell gets activated signaling that the stimulus fits the prey-
category.

Figure 3.- Computer Simulation of Prey-Catching Facilitation in a Tectal Column model.
During the first presentation of a prey-like object (square of 2×2 deg with a velocity of
8deg/sec), during a sub-threshold duration (0.3 sec), there is and oscillatory behavior in all
cells, but no PY response. After an intervening delay of 3.2 sec, the residual GL and SP
activity left after the first stimulation allows the network to elicit a PY response during a
second sub-threshold duration presentation (adapted from Cervantes-Pérez and Arbib, 1990).

Figure 4.- Computer simulation of an oscillatory behavior in the Tectal Column model. When
recurrent axons from LP and SP produce a strong GL residual activity: a) the network might
present alternating periods of activity in LP, SP and SN, with no PY activation; and b) or,
when positive feedback loop gets much stronger than the negative feedback loop, there could
be sustained SP and SN responses with a strong PY activation (adapted from Cervantes-Pérez
and Arbib, 1990).

Figure 5.- Computer simulation of a strong SN inhibitory effect. When SN inhibitory effect
upon LP and SP cells is strong enough to avoid, after the first stimulus presentation, that GL
residual activity elicits a response from either SP or LP cells, Prey-Catching Facilitation
would not take place (adapted from Cervantes-Pérez and Arbib, 1990).

Figure 6.- Prey-catching stimulus specific habituation in toads Bufo-Marinus horribilis. Each
graph corresponds to an animal’s response to a worm-like stimulus (i.e., horizontal black
rectangle moving at 4.1 cm/sec, in a white background with its longest axis parallel to the
direction of motion). As the experiment progresses, the frequency (vertical axis) of prey-
catching responses towards the stimulus decreases, followed by a qualitative change: toads
stop eliciting prey-catching actions towards the stimulus used during the experiment (adapted
from Cervantes-Pérez et al., 1991).

Figure 7.- Prey-catching habituation in toads is stimulus specific. See text for explanation.

Figure 8.- Neuronal Network Model for the Habituation Column. FU (Failure Unit), gets
activated when the expected consequence of executing a prey-catching action fails to occur;
MO (MOdeling unit), creates a model of the input coming from the Retina; CO (Comparison



Neuronal Multiple Temporal Scales Cervantes-Pérez et al 24

21/06/00

unit), which triggers the habituation process, once the MO output matches the input coming
from the Retina; h (habituation unit), builds up the level of habituation due to the presence of
a prey-like stimulus despite the toad’s efforts to catch it; and H (Habituation column output),
send an excitation signal to TP cell, in order to modulate the level of pretectal inhibition upon
tectal elements.

Figure 9.- Computer simulation of the Habituation Column Model Dynamics. It is assumed
that every stimulus presentation yields a prey-catching action whose expected consequence
fails to occur. This activates the Modeling Unit until its output matches the input coming from
the Retina. At this point, the building up of prey-catching habituation begins, and the intensity
of the signal sent by the Habituation Output unit to the TP cell (see Figure 8) increases to a
maximum as the stimulus remains in the visual field despite toad’s efforts to capture it.

Figure 10.- Computer simulation of the stimulus specificity of habituation. When an animal
has been habituated to a stimulus A and a catchable stimulus B appears in the visual field, the
Modeling Unit output differs from the retinal signal. Thus, the Comparison Unit stays active
all the time, inhibiting the Habituation Output unit. Therefore, a prey-catching action can be
activated once again, while the Modeling and the Habituation units begin to return to their
resting levels, following a much slower time constant.

Figure 11.- The agent-environment interaction in amphibia’s prey-catching behavior. See text
for explanation.

Figure 12.- Modulation of the RTP column model. Q represents the modulation function that
integrates signals coming from the TP pretectal neuron, already modulated by the Habituation
Column, with signals coming from motivational centers Mj’s. Thus, the combination of Q and
the retinal input R determine whether, under current situation, the stimulus in the animal’s
visual field fits the prey-category.

Figure 13.- Alternative modulation schemes for changes in motivational factors. See text for
explanation.

Figure 14.- Computer simulation of a situation when Q<0. In this case, Q=-0.3, only GL
becomes activated, whereas all other RTP elements reach only sub-threshold membrane
potentials.

Figure 15.- Computer simulations of situations with Q>0. The stimulus configuration is the
same as in Figure 14. As motivation increases the value of Q (Figure 15a) Q=0.02, and Figure
15 b, Q=0.06), the oscillatory behavior of LP, SP and SN gets stronger, which yields a better
PY cell response, improving the stimulus efficacy to elicit toad’s prey-catching responses. In
addition, GL remains active for a longer time period (4 sec in Figure 15a, and up to 8sec in
Figure 15b), which may facilitate the elicitation of prey-catching responses by sub-threshold
stimuli that may appear subsequently.
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TABLES DESCRIPTION

Table 1. Spontaneous Recovery after prey-catching stimulus specific habituation. FR-
Frequency Response;  IT-  Inhibition Time. See Text for explanation.
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Table 1.- Spontaneous recovery after a Stimulus Specific Habituation training
Worm-like

Stimulus (cm)
Inter-stimulation

period (days) Effect Response
Frequency

Time to reach
Habituation

1.5 x 0.4 11 No Response
“ 13 No Response
“ 20 No Response
“ 45 No Response
“ 49 Response 22 responses/min 28 min
“ 56 No Response
“ 58 No Response
“ 64 Response
“ 95 No Response
“ 95 Response 1.8 responses/min 10 min
“ 133 Response 7 responses/ min 115 min


