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Abstract 
The study of animal behavior has inspired many 
robotic designs.  In general, there are two ways to 
design a biologically inspired robot: (1) 
incorporate powerful hardware into the robot, so it 
can internally process all tasks; and, (2) have a 
distributed architecture delegating time-
consuming processes to a remote computational 
server, allowing reduction of robot’s hardware 
complexity. There are advantages and 
disadvantages to these two approaches. In 
particular, we have developed MIRO, a 
distributed architecture supported by a neural 
model to control biologically inspired mobile 
robots, with wireless communications.  The goal 
within this architecture is to reduce robot 
complexity, size, cost and energy consumption by 
utilizing off-board computational resources. In 
this paper we discuss our approach to overcoming 
communication challenges arising from such a 
distributed wireless architecture. This includes the 
addition of a middleware layer to manage 
communication in a transparent way to the 
application layer.   

1. Introduction 
There are many ways of controlling autonomous 
robots; one of the most popular is based in a 
behavioral model, including those inspired in 
biological studies [1]. The study of sensory guided 

behavior in live animals has become of 
importance not only to scientists in neurosciences 
but also in robotics and distributed artificial 
intelligence. Researchers are using functional 
principles generated by these studies in 
constructing autonomous systems performing 
complex behaviors [2]. There have been 
experimental studies with amphibians (toads), 
insects (mantis), canines (domestic dogs) [3] and 
rodents (rats) [4]. These animals have multiple 
forms of sensory input, including in particular 
vision, of particular interest to our project. 
These animals react both to fixed and mobile 
objects. Within the fixed group we find, for 
example, a water deposit or a rock. Within the 
mobile group stand out predators, preys as well as 
animals from their same species, including same 
or opposite gender.  Objects usually influence the 
animal’s way of acting which, in general, is 
focused on increasing its survival opportunities, 
for example, approaching a prey or a water 
deposit, while moving away from predators, in 
addition to object avoidance. Thus, it is necessary 
to bear in mind the time – space relationship 
between the animal and the object in order to 
understand and take correct decisions when 
designing a robot [2]. While there exists different 
biologically inspired behavioral robot 
implementations [5], these systems tend to lack 
adaptation and learning capabilities, such as those 
implemented by neural networks [6]. 

 
Figure 1. MIRO architecture consisting of multiple autonomous robots linked via wireless communication to 

their own instance of the distributed computational system. 



 

2. MIRO System 
MIRO (Mobile Internet Robot Laboratory) is a 
robotic architecture integrating fixed and mobile 
computational resources. With MIRO robots 
behave as sensors and actuators in a distributed 
architecture where each robot is connected to its 
own computational system instance (see figure 1). 
Processing is distributed between robot and 
remote computational system, where more 
computational resources, such as neural libraries, 
can be better exploited. In our current version, 
each robot incorporates a local camera, with 
additional aerial cameras for visualization of the 
actual experiment from different perspectives, 
something offering a number of advantages: (a) 
more robust event detection, validating crossed 
information (increases confidence) and (b) the 
information ranks can be estimated by 
triangulation [7]. 

 
Figure 2. MIRO model computing cycle. 

 
The robot computational process (See figure 2) 
starts when the robot sends information from its 
sensors to the remote computational system (See 
figure 3), mainly in the form of visual input. A 
remote vision module receives images from 
different cameras, doing a color based 
segmentation to identify perceived objects. This 
module also formats and sends the images to a 
remote web client for real time monitoring 
purposes. Given the information obtained from 
the received images, the distributed system 
determines the behavior. The movement module 
sends instructions back to the robot.  This process 
continues indefinitely or until one specific task is 
executed. 

 
Figure 3. MIRO architecture.  It shows vision and 
movement modules to interact with the robot, the 

cameras and remote web client. 

3. Distributed Communication 
Challenges 
The main system challenge with the MIRO 
architecture has to do with the always changing 
network and environment conditions (failures, 
disconnections, reduced connectivity).  The most 
important issue in the design of camera-based 
networks is the managing of video information 
flow.  The key for handling large amounts of 
information produced by cameras is optimizing 
available local computational resources, including 
interconnection protocols, network access with 
QoS and energy consumption. Depending on 
available bandwidth and user requirements the 
approach should involved transmission of (a) 
complete video streams; or (b) segmented images 
with different transmission rates.  The knowledge 
of the actual network state is critical in evaluating 
the video transmission model to be used at a given 
time [7]. 
With the purpose of reducing the size of the 
information flow through the network, the 
multimedia objects can be converted or reduced 
before transmission. Some techniques such as 
scaling (redefining image size), color reduction, 
including reduction close to black and white, are 
used to reduce image size.  These can be sent 
directly to the application or can be first formatted 
for transmission, all done in a dynamic fashion 
[8]. 
We have to deal with different scenarios in order 
to control the network conditions without 
affecting the application execution.  In each 
scenario there are different issues that we need to 
control so that an experiment can be carried out 
successfully. 
The different modeling levels contemplated in 
MIRO architecture are: Application Level, Data 
Links, Communications and Physical Level (See 
figure 4).  Here we describe the situations that can 
be presented in each scenario and how can it be 
solved. 



 
Figure 4. Multiple modeling levels in the MIRO 

architecture. 

3.1 Application Level 
The application level considers three different 
scenarios. 

• Application interruption.  This can be 
caused by an application exception, such as a lack 
of communication signal.  In this case the 
application would not be able to resolve the 
problem.  For example, in such situation, the robot 
middleware could include an emergency behavior 
directing the robot towards certain location while 
it receives a communication signal with new 
application instructions. As the application 
recovers robot experiments can proceed. 

• No I/O commands (command 
interruption) or unrecognized commands.  This 
occurs when incoming commands are not 
recognized by the robot.  For example, when 
performing a biological behavior such as moving 
towards a prey, an interruption in received action 
commands from its server could cause the robot to 
continue with a previous behavior for some time 
while communication is reestablished. 
Additionally, the robot could execute an 
emergency behavior to direct itself towards a 
specific location while communication with the 
application is reestablished. 

3.2 Data Link 
The data link problems involve two possible 
scenarios: 

• Transmission package loss.  When either 
or both the application and the robot are receiving 
incomplete information. Possible solutions: 

a) middleware could verify if previous links 
have been established, otherwise, it could 
try using different channels or package 
destination address should be corrected. 

b) either the robot or the application have to 
take the correct decisions according to 
the received information, its quantity and 
type, avoiding a behavior interruption. 

The second scenario appears when 
• Communication protocol incoherence.  A 

possible solution could be to: 
a) introduce protocol status verification 

during initialization, such as a series of 
test commands. 

3.3 Communication Level 
The most important considerations appear when 
we have: 

• Incompatible communication channels or 
frequencies.  In order to avoid different 
communication channels: 

a) scanning can be done over the 
frequencies or permitted channels, to 
quickly find a connection. 

b) robot can send the server a signal 
indicating it’s turned on; this signal 
should always use the same channel so 
that the server can identify the robot is 
ready and send the channel or frequency 
in which they are going to be 
communicating. 

• Limited communication bandwidth, high 
communication traffic, or extensive 
communications delay.  This can be solved 

a) select a different channel with less 
traffic. 

b) use multimedia compression methods 
before the transmission. 

c) establish parameters to offer QoS 
according to traffic, modifications in 
quality, compression, size, colors, and 
even transmission rate would be done. 

3.4 Physical Level 
Physical risks could affect correct experiment 
execution, such as: 

• Robot mechanical failure or 
communication device failure.  It’s important that 
the devices are in good condition for doing the 
experiment. 

• Device power failure. 
a) the transmission rate and command 

reception can be lower, in order to use 
less power. 

b) If power consumption reaches a certain 
level, the completion probability of the 
experiment can be evaluated.  See table 1 
as an example of power consumption at 
different resolutions. 

 



 
Table 1. Average power consumption of the video 

capture using different configurations [9]. 

 

4. Middleware 
In order to deal with the always changing network 
and environment conditions, an adapting robotic 
middleware has been designed managing 
communication between the robot and the 
computational system. The middleware needs to 
adapt to changing fixed and mobile network 
conditions in an application transparent way.  
In general, middleware is a connectivity software 
consisting of a group of services to manage 
interaction between multiple processes executing 
in different devices in the network.  The use of 
middleware has certain benefits for an application, 
among them modularly, separation of 
components, and hiding of network complexity to 
the application. 
In order to take advantage of this architecture it is 
necessary to overcome restrictions on wireless 
transmission (bandwidth, communication failures 
and even total disconnections. In the presence of 
communication’s fluctuations, it is the 
middleware’s responsibility to determine how, 
when, and which information should be modified 
in order to better respond to such situations.  The 
communication layer should be able to 
reconfigure by itself, adapting to changes on the 
communications environment.  This aspect is very 
important in real time applications [10]. 
The middleware should also be able to add and 
remove communication service components 
during application execution without interrupting 
operation.  It needs to distinguish and handle 
different kind of messages and communication 
protocols among different objects [11]. It should 
be integrated with the different hardware devices 
and methods for processing sensorial information 
and controlling output, including handling of 
computational vision and cognitive tasks [12]. 
Middleware solutions, such as CORBA (Common 
Object Request Broker Architecture) and RMI 
(Remote Method Invocation), have incorporated 
designs that separate functional aspects of a 
system from mechanisms used for its 
interconnection.  Separating the functional aspects 
of a system from policies for interconnection 
control simplifies error detection and correction, 
as well as makes reutilization feasible [13]. 

With a middleware layer, implementation 
languages, operation systems and computer 
architectures are hidden to the application 
developer.  This allows the application to operate 
without worrying about implementation details 
[14]. The middleware also hides information 
required to support QoS needs in real-time 
applications, such as delay, jitter and 
synchronization parameters. 
 
Given the characteristics provided by middleware 
architecture and the need of MIRO for adaptation 
to changing communications conditions, we 
designed a middleware module connected to 
different modules and devices and at different 
interaction levels (See figure 5). 

 
Figure 5. The adaptive MIRO architecture adds a 

middleware layer to overcome communication 
restrictions. 

 
The middleware should control the link and 
communications level allowing manual and 
automatic monitoring and controlling of all the 
aspects all ready established. 
Among the functionality required by the 
middleware, we find: 

• Manual robot control channel or 
frequency selection. 

• Change image characteristics. 
• Traffic monitoring. 
• Bandwidth monitoring. 
• Monitoring the robots energy level. 
• Executing a specific behavior. 
• Autonomous execution. 

The system manual control interface (See figure 
6) it’s divided in three main areas: communication 
parameters, monitoring and robot control.  In the 
left side of the screen we can change the image 
resolution, the frame rate or even the 
communication frequency or channel.  At the 
right, we see a graph displaying the networks 
traffic, in addition to available bandwidth and 
robot’s energy level.  Finally, at the bottom, we 
can see the Robot’s Control Panel, were the user 



can select the kind of movement and magnitude, 
and specific task or make the robot stop. 
 

 
Figure 6. Manual control and monitor screen. 

 

5. Experiments and Results 
A middleware layer is being developed, to allow 
the dynamic images adaptation to changing 
network conditions.  Parameters were established 
in order to determine traffic between the video 
capture server and its client through Internet.  
When a fixed or mobile remote client wants to 
watch images arriving to the video server, it 
synchronizes its clock with the server.  It 
determines the compression level, quality, size 
and image transmission rate through the network. 
This result in a new set of parameters dynamically 
made according to the network state. 
 

 
(1) 

 
(2) 

Figure 7. Different image resolution, changed by 
observing traffic in the network that 

communicates the remote web client with the 
computational server. 

The work is divided into manual and automatic 
controlling and monitoring.  Presently, tests have 
been made with manual parameter changes.  It 
starts with the network conditions monitoring 
allowing manual verification (See figure 7).  Once 
manual tests are finished the monitoring of current 
conditions of the data link and the 
communications level are done in order to 
automatically execute appropriate actions.  This 
induce the dynamical adaptation changing 
network conditions to efficiently communicate the 
remote computational server with the robot and 
the remote web client. 
In Table 2 we can see the delay in milliseconds 
for different transmission configurations and 
parameter combinations. 
 

 
Table 2. Delays in milliseconds in the 

transmission from de computational server to the 
web client, using different configurations.  Using 

(a) 160x140 and (b) 360x240 sizes. 

 
If we consider the distance between the camera 
and the objects we can see that the closer the 
camera gets an object, the better the object 
resolution sent to the model.  We tried different 
image compressions using different distances and 
we observed that the limit distance for the model 
to stop recognizing objects is 4 meters between 
the camera and the object.  If it uses no 
compression, we can see objects some additional 
centimeters. 
These results were obtained sending images to the 
model.  The images were segmented in colors so it 
can recognize objects.  When the objects were 
more than 4 meters from the camera, the system 
can’t send information to the model because it 
don’t recognize any object.  If the model doesn’t 
receive information, it sends instructions to robot 
so it can get closer to its objective. 



6. Conclusions 
Based on the obtained results, we can observe 
how the remote web client can receive images 
captured by the server with different parameter 
values.  The performance metric is given by the 
visual perception of the final user.  In addition, we 
consider another metric, that one provided by the 
model in the distributed system.  We determine 
the resolution values by which the model stops 
recognizing objects.  We calculated the time it 
takes to complete a full model cycle. 
The relation between image resolution and 
object’s size captured by the camera is given by 
the distance between the camera and the objects, 
so we are determining, based on this fact, how 
image resolution can affect object recognition 
depending on the distance to the objects. 
In the future, we plan to migrate the system to 
digital cameras, to improve performance in object 
recognition.  We are looking towards automatic 
adaptation in network information flow. 
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