
MIRO: MIDDLEWARE FOR CONTROLLING BIOLOGICALLY INSPIRED
MOBILE ROBOTS

Rodrigo Cerón

CANNES Laboratory
Instituto Tecnológico Autónomo de México

Río Hondo # 1, Tizapán San Ángel
México, D. F., 01000

MÉXICO
rodrigo@cannes.itam.mx

Alfredo Weitzenfeld
Department of Computer Engineering

Instituto Tecnológico Autónomo de México
Río Hondo # 1, Tizapán San Ángel

México, D. F., 01000
MÉXICO

alfredo@itam.mx

Abstract
The study of animal behavior has inspired many
robotic designs. In general, there are two ways to
design a biologically inspired robot: (1)
incorporate powerful hardware into the robot, so it
can internally process all tasks; and, (2) have a
distributed architecture delegating time-
consuming processes to a remote computational
server, allowing reduction of robot’s hardware
complexity. There are advantages and
disadvantages to these two approaches. In
particular, we have developed MIRO, a
distributed architecture supported by a neural
model to control biologically inspired mobile
robots, with wireless communications. The goal
within this architecture is to reduce robot
complexity, size, cost and energy consumption by
utilizing off-board computational resources. In
this paper we discuss our approach to overcoming
communication challenges arising from such a
distributed wireless architecture. This includes the
addition of a middleware layer to manage
communication in a transparent way to the
application layer.

1. Introduction
There are many ways of controlling autonomous
robots; one of the most popular is based in a
behavioral model, including those inspired in
biological studies [1]. The study of sensory guided

behavior in live animals has become of
importance not only to scientists in neurosciences
but also in robotics and distributed artificial
intelligence. Researchers are using functional
principles generated by these studies in
constructing autonomous systems performing
complex behaviors [2]. There have been
experimental studies with amphibians (toads),
insects (mantis), canines (domestic dogs) [3] and
rodents (rats) [4]. These animals have multiple
forms of sensory input, including in particular
vision, of particular interest to our project.
These animals react both to fixed and mobile
objects. Within the fixed group we find, for
example, a water deposit or a rock. Within the
mobile group stand out predators, preys as well as
animals from their same species, including same
or opposite gender. Objects usually influence the
animal’s way of acting which, in general, is
focused on increasing its survival opportunities,
for example, approaching a prey or a water
deposit, while moving away from predators, in
addition to object avoidance. Thus, it is necessary
to bear in mind the time – space relationship
between the animal and the object in order to
understand and take correct decisions when
designing a robot [2]. While there exists different
biologically inspired behavioral robot
implementations [5], these systems tend to lack
adaptation and learning capabilities, such as those
implemented by neural networks [6].

Figure 1. MIRO architecture consisting of multiple autonomous robots linked via wireless communication to

their own instance of the distributed computational system.

2. MIRO System
MIRO (Mobile Internet Robot Laboratory) is a
robotic architecture integrating fixed and mobile
computational resources. With MIRO robots
behave as sensors and actuators in a distributed
architecture where each robot is connected to its
own computational system instance (see figure 1).
Processing is distributed between robot and
remote computational system, where more
computational resources, such as neural libraries,
can be better exploited. In our current version,
each robot incorporates a local camera, with
additional aerial cameras for visualization of the
actual experiment from different perspectives,
something offering a number of advantages: (a)
more robust event detection, validating crossed
information (increases confidence) and (b) the
information ranks can be estimated by
triangulation [7].

Figure 2. MIRO model computing cycle.

The robot computational process (See figure 2)
starts when the robot sends information from its
sensors to the remote computational system (See
figure 3), mainly in the form of visual input. A
remote vision module receives images from
different cameras, doing a color based
segmentation to identify perceived objects. This
module also formats and sends the images to a
remote web client for real time monitoring
purposes. Given the information obtained from
the received images, the distributed system
determines the behavior. The movement module
sends instructions back to the robot. This process
continues indefinitely or until one specific task is
executed.

Figure 3. MIRO architecture. It shows vision and
movement modules to interact with the robot, the

cameras and remote web client.

3. Distributed Communication
Challenges
The main system challenge with the MIRO
architecture has to do with the always changing
network and environment conditions (failures,
disconnections, reduced connectivity). The most
important issue in the design of camera-based
networks is the managing of video information
flow. The key for handling large amounts of
information produced by cameras is optimizing
available local computational resources, including
interconnection protocols, network access with
QoS and energy consumption. Depending on
available bandwidth and user requirements the
approach should involved transmission of (a)
complete video streams; or (b) segmented images
with different transmission rates. The knowledge
of the actual network state is critical in evaluating
the video transmission model to be used at a given
time [7].
With the purpose of reducing the size of the
information flow through the network, the
multimedia objects can be converted or reduced
before transmission. Some techniques such as
scaling (redefining image size), color reduction,
including reduction close to black and white, are
used to reduce image size. These can be sent
directly to the application or can be first formatted
for transmission, all done in a dynamic fashion
[8].
We have to deal with different scenarios in order
to control the network conditions without
affecting the application execution. In each
scenario there are different issues that we need to
control so that an experiment can be carried out
successfully.
The different modeling levels contemplated in
MIRO architecture are: Application Level, Data
Links, Communications and Physical Level (See
figure 4). Here we describe the situations that can
be presented in each scenario and how can it be
solved.

Figure 4. Multiple modeling levels in the MIRO

architecture.

3.1 Application Level
The application level considers three different
scenarios.

• Application interruption. This can be
caused by an application exception, such as a lack
of communication signal. In this case the
application would not be able to resolve the
problem. For example, in such situation, the robot
middleware could include an emergency behavior
directing the robot towards certain location while
it receives a communication signal with new
application instructions. As the application
recovers robot experiments can proceed.

• No I/O commands (command
interruption) or unrecognized commands. This
occurs when incoming commands are not
recognized by the robot. For example, when
performing a biological behavior such as moving
towards a prey, an interruption in received action
commands from its server could cause the robot to
continue with a previous behavior for some time
while communication is reestablished.
Additionally, the robot could execute an
emergency behavior to direct itself towards a
specific location while communication with the
application is reestablished.

3.2 Data Link
The data link problems involve two possible
scenarios:

• Transmission package loss. When either
or both the application and the robot are receiving
incomplete information. Possible solutions:

a) middleware could verify if previous links
have been established, otherwise, it could
try using different channels or package
destination address should be corrected.

b) either the robot or the application have to
take the correct decisions according to
the received information, its quantity and
type, avoiding a behavior interruption.

The second scenario appears when
• Communication protocol incoherence. A

possible solution could be to:
a) introduce protocol status verification

during initialization, such as a series of
test commands.

3.3 Communication Level
The most important considerations appear when
we have:

• Incompatible communication channels or
frequencies. In order to avoid different
communication channels:

a) scanning can be done over the
frequencies or permitted channels, to
quickly find a connection.

b) robot can send the server a signal
indicating it’s turned on; this signal
should always use the same channel so
that the server can identify the robot is
ready and send the channel or frequency
in which they are going to be
communicating.

• Limited communication bandwidth, high
communication traffic, or extensive
communications delay. This can be solved

a) select a different channel with less
traffic.

b) use multimedia compression methods
before the transmission.

c) establish parameters to offer QoS
according to traffic, modifications in
quality, compression, size, colors, and
even transmission rate would be done.

3.4 Physical Level
Physical risks could affect correct experiment
execution, such as:

• Robot mechanical failure or
communication device failure. It’s important that
the devices are in good condition for doing the
experiment.

• Device power failure.
a) the transmission rate and command

reception can be lower, in order to use
less power.

b) If power consumption reaches a certain
level, the completion probability of the
experiment can be evaluated. See table 1
as an example of power consumption at
different resolutions.

Table 1. Average power consumption of the video

capture using different configurations [9].

4. Middleware
In order to deal with the always changing network
and environment conditions, an adapting robotic
middleware has been designed managing
communication between the robot and the
computational system. The middleware needs to
adapt to changing fixed and mobile network
conditions in an application transparent way.
In general, middleware is a connectivity software
consisting of a group of services to manage
interaction between multiple processes executing
in different devices in the network. The use of
middleware has certain benefits for an application,
among them modularly, separation of
components, and hiding of network complexity to
the application.
In order to take advantage of this architecture it is
necessary to overcome restrictions on wireless
transmission (bandwidth, communication failures
and even total disconnections. In the presence of
communication’s fluctuations, it is the
middleware’s responsibility to determine how,
when, and which information should be modified
in order to better respond to such situations. The
communication layer should be able to
reconfigure by itself, adapting to changes on the
communications environment. This aspect is very
important in real time applications [10].
The middleware should also be able to add and
remove communication service components
during application execution without interrupting
operation. It needs to distinguish and handle
different kind of messages and communication
protocols among different objects [11]. It should
be integrated with the different hardware devices
and methods for processing sensorial information
and controlling output, including handling of
computational vision and cognitive tasks [12].
Middleware solutions, such as CORBA (Common
Object Request Broker Architecture) and RMI
(Remote Method Invocation), have incorporated
designs that separate functional aspects of a
system from mechanisms used for its
interconnection. Separating the functional aspects
of a system from policies for interconnection
control simplifies error detection and correction,
as well as makes reutilization feasible [13].

With a middleware layer, implementation
languages, operation systems and computer
architectures are hidden to the application
developer. This allows the application to operate
without worrying about implementation details
[14]. The middleware also hides information
required to support QoS needs in real-time
applications, such as delay, jitter and
synchronization parameters.

Given the characteristics provided by middleware
architecture and the need of MIRO for adaptation
to changing communications conditions, we
designed a middleware module connected to
different modules and devices and at different
interaction levels (See figure 5).

Figure 5. The adaptive MIRO architecture adds a

middleware layer to overcome communication
restrictions.

The middleware should control the link and
communications level allowing manual and
automatic monitoring and controlling of all the
aspects all ready established.
Among the functionality required by the
middleware, we find:

• Manual robot control channel or
frequency selection.

• Change image characteristics.
• Traffic monitoring.
• Bandwidth monitoring.
• Monitoring the robots energy level.
• Executing a specific behavior.
• Autonomous execution.

The system manual control interface (See figure
6) it’s divided in three main areas: communication
parameters, monitoring and robot control. In the
left side of the screen we can change the image
resolution, the frame rate or even the
communication frequency or channel. At the
right, we see a graph displaying the networks
traffic, in addition to available bandwidth and
robot’s energy level. Finally, at the bottom, we
can see the Robot’s Control Panel, were the user

can select the kind of movement and magnitude,
and specific task or make the robot stop.

Figure 6. Manual control and monitor screen.

5. Experiments and Results
A middleware layer is being developed, to allow
the dynamic images adaptation to changing
network conditions. Parameters were established
in order to determine traffic between the video
capture server and its client through Internet.
When a fixed or mobile remote client wants to
watch images arriving to the video server, it
synchronizes its clock with the server. It
determines the compression level, quality, size
and image transmission rate through the network.
This result in a new set of parameters dynamically
made according to the network state.

(1)

(2)

Figure 7. Different image resolution, changed by
observing traffic in the network that

communicates the remote web client with the
computational server.

The work is divided into manual and automatic
controlling and monitoring. Presently, tests have
been made with manual parameter changes. It
starts with the network conditions monitoring
allowing manual verification (See figure 7). Once
manual tests are finished the monitoring of current
conditions of the data link and the
communications level are done in order to
automatically execute appropriate actions. This
induce the dynamical adaptation changing
network conditions to efficiently communicate the
remote computational server with the robot and
the remote web client.
In Table 2 we can see the delay in milliseconds
for different transmission configurations and
parameter combinations.

Table 2. Delays in milliseconds in the

transmission from de computational server to the
web client, using different configurations. Using

(a) 160x140 and (b) 360x240 sizes.

If we consider the distance between the camera
and the objects we can see that the closer the
camera gets an object, the better the object
resolution sent to the model. We tried different
image compressions using different distances and
we observed that the limit distance for the model
to stop recognizing objects is 4 meters between
the camera and the object. If it uses no
compression, we can see objects some additional
centimeters.
These results were obtained sending images to the
model. The images were segmented in colors so it
can recognize objects. When the objects were
more than 4 meters from the camera, the system
can’t send information to the model because it
don’t recognize any object. If the model doesn’t
receive information, it sends instructions to robot
so it can get closer to its objective.

6. Conclusions
Based on the obtained results, we can observe
how the remote web client can receive images
captured by the server with different parameter
values. The performance metric is given by the
visual perception of the final user. In addition, we
consider another metric, that one provided by the
model in the distributed system. We determine
the resolution values by which the model stops
recognizing objects. We calculated the time it
takes to complete a full model cycle.
The relation between image resolution and
object’s size captured by the camera is given by
the distance between the camera and the objects,
so we are determining, based on this fact, how
image resolution can affect object recognition
depending on the distance to the objects.
In the future, we plan to migrate the system to
digital cameras, to improve performance in object
recognition. We are looking towards automatic
adaptation in network information flow.

References

[1] Arkin, R., “Behavior – Based Robotics” MIT
Press, Mayo 1998.
[2] Arkin, R., Cervantes – Perez, F., Weitzenfeld,
A., “Ecological Robotics: A Schema – Theoretic
Approach”, AAAI Fall Symposium, 1996,
Boston, Ma.
[3] Arkin, R., Fujita, M., Takagi, T., Hasegawa,
R., “Ethological Modeling and Architecture for an
Entertainment Robot”, ICRA, 2001.
[4] Mataric, M., “Navigating with Rat Brain: A
Neurobiologically – Inspired Model for Robot
Spatial Representation”, Proc. 1° International
Conference on Simulation of Adaptive Behavior,
1990.
[5] Ali, K., Arkin, R., “Implementing Schema –
Theoretic Models of Animal Behavior in Robotics
Systems”, Coimbra, 1998.
[6] Weitzenfeld, A., Arkin, R., Cervantes – Perez,
F., Olivares, R., Corbacho, F., “A Neural Schema
Architecture for Autonomous Robots”, Proc. Of
International Symposium on Robotics and
Automation, 1998, Saltillo, Coahuila, Mexico.
[7] Obraczka, K., Manduchi, R., Garcia – Luna –
Aceves, J. J., “Managing the Information Flow in
Visual Sensor Networks”, ISWPMC, 2002.
[8] Kreller, B., Sang – Bum Park, A., Meggers, J.,
Forsgren, G., Kovacs, E., Rosinus, M., “UMTS: A
Middleware Architecture and Mobile API
Approach”, IEEE Personal Communications,
April 1998.

[9] Weitzenfeld, A., Gutierrez-Nolasco, S.,
Venkatasubramanian, N., “Controlling Mobile
Robots with Distributed Neuro – Biological
Systems”, Proc. AINS 2003, Menlo Park,
California.
[10] Pal, P., Loyall, J, Schantz, R., Zinky, J.,
Shapiro, R., Megquier, J., “Using QDL to Specify
QoS Aware Distributed (QuO) Application
Configuration”, ISORC, 2000.
[11] Gutierrez – Nolasco, S.,
Venkatasubramanian, N., “A Composable
Reflective Communication Framework”,
Workshop on Reflective Middleware RM, 2000.
[12] Utz, H., Sablatnög, S., Enderle, S.,
Kraetzschmar, G., “Miro – Middleware for
Mobile Robot Applications”, IEEE Transactions
on Robotics and Automation, June 2002. (Note:
this is a different system to ours)
[13] Astley, M., Agha, G., “Customization and
Composition of Distributed Objects: Middleware
Abstractions for Policy Management”, Proc. 6°
International Symposium on the FSE, November
1998, Orlando, Florida.
[14] Loyall, J., Schantz, R., Zinky, J., Bakken, D.,
“Specifying and Measuring Quality of Service in
Distributed Object Systems”, IEEE, Proc. ISORC,
April 1998, Kyoto, Japan.

	MIRO: MIDDLEWARE FOR CONTROLLING BIOLOGICALLY INSPIRED MOBIL
	Abstract
	1. Introduction
	2. MIRO System
	3. Distributed Communication Challenges
	3.1 Application Level
	3.2 Data Link
	3.3 Communication Level
	3.4 Physical Level

	4. Middleware
	5. Experiments and Results
	6. Conclusions
	References

