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Abstract-- This article aims to present a stereo vision based 
algorithm developed for robot navigation. This algorithm has 
to analyze the minimum information to find obstacles and 
goals. 
The algorithm works in an indoor environment with walls, 
doors and obstacles. It first calculates the displacement of the 
relevant pixels of the pictures, calculate the distances of those 
points and then applies a filter to find the doors of the room in 
which the robot is. Another algorithm permits the robot to 
navigate with that information.  
In a robotic context the algorithm has to be fast but efficient. 
The algorithm steps are: get pictures from 2 cameras; 
calculate contrasts of those pictures; find relevant points 
where to calculate displacements and 3-dimensional 
information; calculate displacement for those points; convert 
displacements into a top view of the environment; find angles 
where there probably is a door; determine the angle of the 
goal and goe toward. 
 
Index terms—Robot navigation, stereo vision, optic flow, 
indoor environment 
 

I. INTRODUCTION 
 
The goal of the project is to create an autonomous robot 
able to navigate in an office-type environment using stereo-
vision. The article describes basic stereo vision algorithms; 
it then explains the algorithm developed as part of this 
work. 

II. STEREO VISION 

A. Stereo vision concept 
In Stereo vision with two parallel cameras intersection lines 
from the cameras to an object at an infinite distance will 
appear on the same corresponding pixel in the two cameras 
while an object close to the cameras will appear at two 
different pixel locations. As shown in figure 1, the nearer 
the object, the bigger its displacement between pictures. 

                                                           
 

 
Fig. 1: Stereo vision with two parallel cameras 

Distance computation can be done resolving using the 
following equation based on the diagram in figure 2: 
 

d = tan(α1) * a 

d = tan(α2) * b 

a + b = cameraDistance 

 
 Fig. 2: Stereo vision object distance computation 

To calculate the angle α1 or α2 we compute a proportional 
relation with the pixel abscise, i.e. the pixel displacement 
between the two cameras. 



A good approximation is an invert-relation between this 
displacement and the distance of the object. In the 
algorithm we use that relation: 

ntdisplacemeconstd /=   
Many animals like mammals use stereo-vision to know 
distances to obstacles, food, danger, etc.  

B. Optic flow 
Some animals interpret visual information in different 
ways. Optic flow is the comparison between two pictures 
from the same eye (or camera) at two different times, when 
the animal or robot is moving [1][2][4]. For example 
insects like bees analyze moving pictures in each eye to 
calculate distance to obstacles (fig. 3). Another example is 
chicken that move their head rapidly back and forward to 
generate optic flow to produce three-dimensional 
information (fig. 4).  

 
Fig. 3: Bees optic flow generation 

 

 
Fig. 4: Chicken optic flow generation 

C. Algorithm comparison 
To compute three-dimensional information with optic flow 
we compare two images from one camera at two different 
times. Typically the camera movement is perpendicular to 
the camera view direction but the movement can also be 
parallel to the camera view direction. The advantage is that 
we can compute three-dimensional information with only 
one camera. In an animal context it is possible to compute 
three-dimensional information from eyes where vision does 
not cross (one eye sees the left, and the other one sees the 
right). In a robotic context we have to know how the robot 
moves between the two images to compute the optic flow. 

For example if we think the robot moved right but it did a 
little rotation it can disturb all the calculations. Furthermore 
if an object is moving in the scene it can be wrongly 
interpreted as three-dimensional information. If all the optic 
flows between two pictures are parallel it does not mean 
that they will be horizontal. Indeed if the robot is in an 
irregular surface, camera altitude or angle could have 
changed easily between continuous pictures as the robot 
moves. That forces us to look for optic flows in all 
directions. 
With stereo vision we get two pictures at the same time 
from two cameras. With that method we do not have any 
problem with moving objects in the scene. Knowing 
exactly the distance of the two cameras we can easily 
convert the displacement generated into distance 
information. Another advantage is that displacements are 
always parallel and in the same direction because cameras 
do not move with respect to each other. We only have to 
look for displacements in one direction.  

III. EXPLANATION OF IMAGE PROCESS AND NAVIGATION 
The whole process cycle is made of 6 steps: 

• Contrast calculation for left and right pictures: 
generates 2 contrasts images. 

• Relevant points calculation in the left picture: 
generates a Point’s array where we will 
calculate displacements. 

• Displacement calculation between relevant 
points of left picture and best corresponding 
point in right picture: generates a Point’s array 
representing for each relevant point in the 
displacement vector. 

• Top-view conversion of displacements 
(converted in distances from the robot): 
generates an array containing for each relevant 
point its distance from the robot. 

• Finding doors: generates a curve representing 
distance function derivative. 

• Navigation: defines angle and distance the robot 
has to move to. 

A. Contrast calculation 
1) Why to calculate contrasts? 

Different materials reflect light in different ways. If we get 
two images of the same object from two different angles we 
can get different colors and different intensities of the same 
portion of an object. Furthermore if we use cameras with 
automatic regulation of light intensity we can get different 
settings for the two angles. In that case it is very difficult to 
compare effectively the two images to find the 
displacements between each other.  
If we take pictures of a single object (without moving the 
camera) changing light position and intensity, the contrasts 
pictures won’t vary much. That’s why we use contrasts to 
attenuate those light problems. 
Furthermore in a monochrome area of a picture it is 
impossible to compute displacements. We can only 
calculate it where some contrast exists. That’s why we also 



use contrasts to determine where we can efficiently 
calculate displacements. 

2) Algorithm 
The algorithm we use to calculate contrast in a point 
computes the sum of the difference in red, green and blue 
between that point and the surrounding points. The result is 
the intensity of a grey point. Points with a strong contrast 
will appear light while others dark (in our paper we will 
invert black and white to make it more visible). We can 
note that this algorithm does not normalize the contrast 
because it will not affect the process. That is why we 
simply do the sum of differences and not the average of 
differences.  
Contrasts are computed for pictures of the 2 cameras. In 
each point we use that formula:  
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The resulting image after this computation is shown in 
figure 5.  

 
Fig. 5: Contrast calculation 

B. Relevant points where to calculate displacements 
The relevant points to calculate displacements are defined 
as the points that contain more disparity (in the left 
contrasts picture). To do this we calculate the standard 
deviation between the point intensity around the one we are 
interested in. A constant minimum value defines if a point 
is relevant or not.  
These points are relevant for two reasons. The first one is 
that if there are not many changes in the picture, the 
displacement calculation will not be accurate. The second 
reason is that the robot has to know where obstacles and 

contrasts making it interesting to analyze those parts 
picture. In another way a partition of the picture without 
much contrast can be a wall (without enough texture) and
is not interesting to calculate the displacement in each point 
of the wall. 

doors are. An object or a door will appear with high 
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Fig. 6: Relevant points calculation (from the left 

We can see in figure 6 that there are relevant points 
f the 
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C. Displacement calculation 
O  the displacements we try 
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(crosses in the right side of the figure) in every part o
picture where there are some changes. We can note that 
there are no relevant points near the borders (and more at
the left) of the picture because we can not calculate the 
displacement in those areas. Indeed the corresponding ar
in the other picture could be away from the visual angle 
because from the right camera perspective, we see object
more towards the right.  

nce we know where to calculate
for each point to find the area in the right image that best 
corresponds to that area in the left image. For each point 
(X+x,Y+y) of the right image around the point (X,Y) we a
interested in calculating the difference between the left and 
right image and consider like displacement the vector (x, y) 
that minimize that difference (one vector per relevant 
point).  
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In the particular case of stereo-vision (and not optic flow), 
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we know that the two cameras are in the same horizontal 
line. For that reason we know that the displacements are 
horizontal, and we let y=0 in the formula. Furthermore an
object appears always more towards the left in the right 
camera picture than in the left one. That is why we only 
have to look for displacements in one direction: x will mo
from the negative value of some parameter to 0.  
Another parameter defines the size of the window
permits us to compares areas in the two pictures (in the 
formula, i and j will move between the negative and 
positive parameter window). This is shown in figure 



 
Fig. 7: Displacement calculation 

 
Fig. 8: Results of displacement calculation (in the left 

contrasts picture) 

We can see in figure 8 that our algorithm gives us good 
results. In the picture we see very clearly that the closest 
points generate the biggest displacements. An important 
problem with the algorithm is that it is not able to calculate 
displacements in areas where there is not much contrast.  

D. Top view transformation 
Once we have the displacements we convert each one into a 
distance from the robot (an inverse relation). If we calculate 
optic flows in a 360° (with 10 steps of 36 degrees in our 
example) we can compute the complete room where the 
robot is. Figure 9 shows what the robot can see with those 
10 steps: 

 
Fig. 9: What the robot at best can see 

We have seen before that the algorithm permits to calculate 
displacements for each relevant point. We then convert 

each relevant point (position in X) into an angle to be able 
to remember information of 10 displacement calculations 
and have distances all around the robot. Figure 10 shows 
the result of the algorithm. 

 
Fig. 10: Image computed from the two cameras pictures 

with 10 steps of 36 degrees 

In those pictures we see that our algorithm permits to 
reconstitute the environment room, even if it generates 
some wrong points (for example the point closest to the 
robot do not correspond to a wall). The picture generated 
gives us good enough map information to be able to 
navigate.  

E. Finding doors  
In the algorithm we consider there is a door where the 
displacements have important changes. We generate a 
curve representing the changes in displacements calculated 
as the difference between the moving averages of two 
consecutive points. For each point x of the displacements 
curve we calculate the point Changes(x) of the changes 
curve as: 
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If we execute the algorithm in a room with one door the 
simulation gives the result shown in figure 11 (the center 
curve is a polar representation of the changes curve). We 
can see that the two sides of the door generate important 
values in the changes curve.  
We have seen in figure 10 that the distances computation 
can give some undesired points. We use moving averages 
to identify these undesired points. These points are then 
taken out from further calculation. Indeed an undesired 
point will probably be far away from the others points, 
tending to generate high values in the resulting curves. 



 
Fig. 11: Changes in the optic flow curve 

F. Navigation 
A very simple navigation algorithm was developed to test 
the previous algorithm. It first computes three-dimensional 
information in 360 degrees to find a door. When it finds a 
door it only computes three dimensional information with 
angles that permit to see the door but not in 360 degrees 
(see figure 12).  
To find a door, the algorithm looks for the two highest 
values of the changes curve and considers the door 
direction as the average of the angles corresponding to 
those two highest values.  
It then goes towards the door (a constant value defines how 
much it advances). When the robot passes a door it sees 
another one and does the same.  

 
Fig. 12: The diagram shows intermediate steps as the 

robot goes from a room to another one 

In our example with 4 rooms and 3 doors the robot goes 
successfully from the first to the last room and then goes 
back to the first one as shown in figures 13 and 14. 

 
Fig. 13: Navigation till the last room 

 
Fig. 14: The robot goes back to the first room 

IV. CONCLUSION 
The stereo vision algorithm developed is interesting due to 
its simplicity and performance. The time it needs to 
compute is compatible with real time robotic context. We 
have developed it in a simulator with Java 3D. We have to 
test it in a real environment with true images and will 
probably have to adjust it. In the current model, obstacles in 
the room are not considered. This work is still in progress 
and many additional issues need to be addressed such as 
how to identify hard to recognize doors and distinguish 
them from other objects in the environment. 
In the future we would have to change door recognition in 
order not to interpret an obstacle as a door (an obstacle 
generates strong changes in displacements curve). For 
example, we can consider that a door is between two areas 
with strong changes in optic flows but with distances 
further apart. Furthermore the robot should avoid those 
obstacles, something that can be done by using repulsion 
vector fields. We also need to determine how to interpret 
three-dimensional information as obstacles.  
The navigation algorithm is still very simple. It just looks 
for doors and goes where it finds one. Although it works 
well in our simplified simulated environment, we would 
need to test it and extend it in more complex scenarios. For 



example if the robot enters a room and there is another door 
on the same wall we can not know if it will go to each 
room.  
Some more complex algorithms exist. Many of them use 
landmarks to do an abstract map of the environment [5]. In 
our example we could do a landmark each time the robot 
passes a door and memorize them with angle information 
between the doors of a room.  
Many algorithms also use neural networks to navigate. We 
could try to reproduce biological comportments to do an 
algorithm that learns the map to navigate efficiently [3]. 
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