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Abstract  

Nature has always been a source of inspiration in the 
development of robotic systems. As such, the study of 
animal behavior (ethology) and the study of the 
underlying neural structure responsible for behavior 
(neuroethology) have inspired many robotic designs. In 
general, neuroethological based systems tend to be more 
complex than ethological ones thus being more expensive 
to compute, a common problem to both simulation and 
robotic experimentation. To overcome this problem, it is 
necessary either to incorporate very powerful hardware or, 
particularly in the case of mobile robots, embed the robot 
via wireless communication into remote distributed 
computational system where expensive computation can 
take place. While the first approach simplifies the overall 
robotic architecture it results in bulky and expensive 
robots. The second approach results in smaller and less 
expensive robots, although involving more complex 
architectures. The work presented in this paper discusses 
the second approach that of embedding mobile robots to 
distributed computational systems. We describe our 
current work in conducting neuroethological robotic 
experimentation using the MIRO (Mobile Internet 
Robotics) system linked to the NSL/ASL neural 
simulation system. In optimizing overall system 
performance, communication between the robot and the 
computing system is managed by an Adaptive Robotic 
Middleware (ARM).  

1. Introduction 
Many different approaches have been proposed in 

recent years in controlling autonomous robots. Lately, one 
of most popular has been that of behavioral based robotics 
[4], both in terms of technological as well as biologically 
inspired robotics, such as those imitating animal 
“ethology”. In addition to the study of animal behavior 
“neuroethological” intends to model neural structure as 
related to behavior. It should be noted that there exist 
many robot architectures that do incorporate some kind of 
neural processing, although most of them are of the 
artificial neural type involving non-biological training 

capabilities [26]. Yet, there are important motivations 
behind the design of “neuroethological” robots. One 
reason is in providing inspiration for future robotics 
architectures, as has happened before with neural 
architectures. Another important reason involves 
neuroscientific experimentation where currently most 
work is done in terms of simulation. By providing with an 
experimentation platform many issues that over simplified 
in simulation can be further analyzed by providing with 
embodiment. 

One important concern with neuroethological robotic 
experimentation involves how to achieve real-time 
performance considering the expensive nature of 
neuroscientific processing. One approach to overcoming 
this challenge is to have “super-robots” in analogy to 
supercomputers, something that usually results in 
prohibitively expensive and bulky robotic systems. A 
second approach is to incorporate simpler and less 
expensive robotic hardware although embedding it to an 
inexpensive network of computers. Under such a 
computing architecture time-consuming processing will 
be done remotely outside the robotic hardware, with the 
robot sending sensory input and receiving motor 
commands via wireless communication. Such an 
approach reduces the robot’s physical size, power 
requirements as well as cost. A number of robotic 
architectures embedded into the Internet have already 
been proposed [25] involving a large number of 
applications [10]. These efforts, most of them involving 
teleoperation, have highlighted the potential of the 
Internet when linking remote robotic devices to humans 
or other computational resources in a distributed fashion. 
Yet, to take advantage of such embedded architectures it 
is first necessary to overcome restrictions in wireless 
transmission bandwidth, unreliable communication or 
even complete failures.  

In this paper we discuss our current work on embedded 
robotics, where (1) at the application level biologically 
inspired neural based behaviors make it possible to 
experiment with neuroethological robot architectures, 
while, (2) at the systems level adaptive middleware 
support the embedded robotic system in a transparent 
fashion.  



2. Biologically inspired Mobile Robots 
Through experimentation and simulation scientists are 

able to get an understanding of the underlying biological 
mechanisms involved in living organisms. These 
mechanisms, both behavioral and structural, serve as 
inspiration in the development of neural-based 
autonomous robot architectures. Some examples of 
animals having inspired robotic systems are frogs and 
toads [1], praying mantis [12], cockroaches [9], and 
hoverflies [14] among others. To address the underlying 
complexity in building such biologically inspired neural 
based robotics systems we usually distinguish among two 
different levels of modeling, behavior and neural 
networks [2]. 

At the behavioral level, neuroethological data from 
living animals is gathered to generate single and multi-
animal systems to study the relationship between a living 
organism and its environment, giving emphasis to aspects 
such as cooperation and competition between them. 
Examples of behavioral models include the praying 
mantis Chantlitaxia  ("search for a proper habitat") [11] 
and the frog and toad (rana computatrix) prey acquisition 
and predator avoidance models [15]. We describe 
behavior in terms of perceptual and motor schemas [3] 
decomposed and refined in a recursive fashion. Schema 
hierarchies represent a distributed model for action-
perception control. Behaviors, and their corresponding 
schemas, are processed via the Abstract Simulation 
Language ASL [29]. For example, in Arkin et al. [5] we 
describe a praying mantis prey-predator model as a basis 
for ecological robotics, designed and implemented 
exclusively at the behavior level using finite state 

automata [6]. 
At the structural level, neuroanatomical and 

neurophysiological data are used to generate perceptual 
and motor neural network models corresponding to 
schemas developed at the behavioral level. These models 
try to explain the underlying mechanisms for 
sensorimotor integration. Examples of neural network 
models are tectum and pretectum-thalamus responsible 
for discrimination among preys and predators [11], the 
prey acquisition and predator avoidance neural models 
[13] and the toad prey acquisition with detour behavior 
model involving adaptation and learning [16]. Neural 
networks are processed via the Neural Simulation 
Language NSL [32]. Models that involve neural networks 
are usually limited in scope as in [19], while more 
complex models [33] are simplified in terms  of their 
inherent neural complexity. For example, let us consider 
the toad´s “prey-predator” visuomotor coordination model 
described in Weitzenfeld et al. [30], with schema and 
neural level components shown in Figure 2. The diagram 
shows two levels of modeling granularity. At the schema 
level, blocks correspond to schemas or behavior agents 
representing animal or robot behavior. At the neural level, 
blocks represent neural networks, some having a direct 
correspondence to brain regions [31]. One of the main  
concerns with neural networks has been the expensive 
nature of computation. For example, a “typical” retina 
model [27] may consist of more than 100,000 neurons and 
half a million interconnections requiring many hours of 
simulation. This has lead to a number of distributed neural 
processing architectures [34]. 
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Figure 1. Toad’s prey-predator visuomotor coordination model architecture with schema and neural level modules. 
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Figure 2. MIRO embedded robotic architecture consisting of multiple autonomous robots linked to their own instance of the 

distributed neural computational system. All such instances are connected to Internet for remote monitoring. 
 

3. Embedded Distributed Architecture 
As part of our current work in the design of embedded 

distributed architecture we have developed the MIRO 
(Mobile Internet Robotics) system as shown in Figure 2. 
The architecture consists of multiple robots, each one 
connected to its own particular copy or instance of the 
neural computational system where communication is 
done in a wireless fashion. Processing is distributed 
among the actual robotic hardware and the remote 
computational system.  Although it would be possible in 
principle to share robot “intelligence” among multiple 
robots, we keep a fully autonomous robot architecture in 
providing with truly neuroethological experimentation. 
Other application could easily take advantage of 
information sharing (see [7] for a discussion on 
distributed versus centralized robotic systems). Under our 
MIRO architecture: (i) time-consuming processes are 
carried out in the (neural) computational system, 
implemented using the distributed NSL/ASL system 
while (ii) sensory input, motor output and other limited 
tasks are carried out in the robot hardware.  

A typical computation cycle involves the robot initially 
sending sensory input (visual and tactile) data to the 
neural computational system. The neural computational 
system would then process the sensory input cycling 
through its neural modules while finally sending motor 
output back to the robot. These cycles continue 
indefinitely or until some specific task is completed. In 
such a way, the computational system provides the robot’s 
“intelligence”, while the robot does limited processing.  

The major challenge in the distributed architecture 
relates to the always-changing network and environment 
conditions (such as transient failures, disconnections, or 
reduced connectivity).  

For such purpose we have developed an Adaptive 
Robotic Middleware (ARM) framework managing 
communication between the robot and neural 
computational system in adapting to changing conditions, 
primarily that of communication, a major concern when 
video is involved. 

The great advantage of a middleware approach is that it  
provides with transparent mechanisms in enhance 
application response at run -time [20][21][28]. Most 
current middleware frameworks dynamically add and 
remove components at run time without interrupting 
system operation with communication services usually 
tailored to static conditions [18][22][23][24]. This 
approach is not well suited for highly mobile 
environments, where resource and power constraints, 
together with security issues (authentication, authorization 
and communication secrecy or integrity) pervade the 
application. In such environments, the communication 
framework must be able to automatically reconfigure 
itself in order to respond to changes in the communication 
environment, a critical aspect in an embedded real-time 
architecture. 

In such a way, the middleware architecture allows 
specification of communication requirements in a high 
level manner that can be later associated with low-level 
specific architectural implementations using a 
comprehensive set of basic communication protocols. The 
middleware is responsible in determining  how, when  and 
what information should be modified in order to match 
communication fluctuations. For example, bandwidth 
adaptation enables information delivery in a manner 
sensitive to the resources available, and may entail the use 
of techniques such as media conversion and compression 
to achieve the desired results. 
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Figure 3. A.  Approach to prey with single 10cm barrier with immediate detour.  B.  Approach to prey with single 
20cm barrier: first trial with toad in front of 20cm barrier (numbers indicate the succession of the movements). The 
toad directly approaches de center of the barrier requiring successive trials to manage the detour around it.  C.  
Approach to prey with single 20cm barrier. After 3 trials the toad detours directly around the 20cm barrier.  
Arrowheads indicate the position and orientation of the toad following a single continuous movement after which the 
toad pauses. In diagrams D-F we see corresponding simulated results. 

4. Experiments and Results  
We have prototyped the MIRO robot architecture with 

a number of experiments involving prey acquisition 
predator avoidance. For example, in Figure 3 we show 
(left) three different experiments involving a toad and a 
barrier in front of a prey, where fencepost gaps interposed 
[17] together with simulation results (right) for the 
corresponding experiments. The original simulations were 
developed in the NSL C++ system and then ported to the 
newer NSL Java system, currently linked to the MIRO 
robotic architecture. To monitor system results, Internet-
linked aerial cameras as well as the robot cameras were 
included, as show in Figure 4 (left). Note that one of the 
key advantages of the MIRO distributed architecture is 

that neural behaviors can be visualized at the same time as 
the actual experiments it perfo rming, as shown in Figure 4 
(right). Obviously there is an additional penalty to pay in 
performance but it is well worth during model 
development or fine-tuning. 

In Figures 5 we show sample output for one of the 
experiments, involving prey acquisition with a 10cm 
barrier showing direct detour. The experiment was carried 
out on a single Lego-based robot connected in a wireless 
fashion to the MIRO system. A wireless camera was 
added on top of the robot transmitting video in a wireless 
fashion to remote video capture devices. Initial 
experiment control, experiment monitoring and model 
visualization we all carried out from Internet via a client-
server architecture involving applets and servlets.

 
Figure 4. Left: Internet aerial view of autonomous robot and robot’s camera view of “blue” prey -like stimulus. Right: NSL frames 
showing results from different visual and neural modules in a basic prey acquisition robot experiment (without barrier). 
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Figure 5. Results from prey acquisition experiment for 10cm barrier with direct detour around barrier. 

 

5. Discussion  
The work presented in the paper overviews the 

challenges and complexity in modeling autonomous 
robots inspired by biological systems in terms of both 
behavior and neural structure. One of the motivations 
behind this work is to provide neuroscientists with robotic 
experimentation capabilities as well as prototyping new 
robotic architectures. One primary concern with neural 
processing is the extensive nature of computation, a 
crucial concern with real time robotics. To improve on 
performance and reduce the size and cost of robots, we 
have developed an embedded distributed robot 
architecture supported by adaptive middleware managing 
overall architecture and communication.  

While most time -consuming tasks can take advantage 
of the distributed robotic system by processing them 
remotely, there are a number of issues that arise from such 
a distributed architecture, such as what happens when 
communication between the robot and computational 
system actually fails or becomes extremely slow or 
unreliable. The robot could respond in many ways, simply 
waiting without doing anything until communication is 
restored, ending its mission, or performing other more 
limited tasks that may put it back in action. Additionally 
the robot could actively search for a location where 
communication can be reestablished.  

As part of the process of robot experimentation we 
have taken models previously simulated under NSL where 
their correctness is first tested. After that, the models are 
prototyped under the MIRO robot architecture to test their 
behavior under real world conditions. The MIRO 
architecture has proven quite beneficial providing real-
time monitoring capabilities of both external as well as 
internal robot behavior. Among the interesting aspects that 
have emerged from the robot experiments is the problem 
of “losing” the prey once the robot directs itself around 
the barrier. While this can be solved by a “pan” control on 
the camera, where the camera can always “look” into the 
prey, it raises an interesting number of issues such a 
recalling prey positions from memory such as with 
memory saccade models [8]. 

Until now we have experimented with single robot 
neuroethological models, such as prey acquisition and 
predator avoidance. We are currently working on multi-
robot experimentation with self-made robots, where each 
robot instantiates its own prey, robot or predator behavior.  

In general, the MIRO architecture and the Adaptive 
Robotic Middleware are currently at the prototype stage 
and have not yet been completed. We expect that once we 
complete and integrate these two architectures we will be 
able to incorporate more complex neuroethological 
models as currently done. 

Acknowledgements  
We thank the UC MEXUS CONACYT Advanced 

Network Services Collaborative Grant: “MIRO: Adaptive 
Middleware for a Mobile Internet-based Robot 
Laboratory” as well as the "Asociación Mexicana de 
Cultura, A.C." and the different students at the CANNES 
Laboratory at ITAM who participate in this project. 

References  
[1] Arbib, M.A., Levels of Modeling of Mechanisms of Visually 

Guided Behavior, Behavior Brain Science 10:407-465, 
1987. 

[2] Arbib, M.A., The Metaphorical Brain 2, Wiley, 1989. 
[3] Arbib, M.A., Schema Theory, in the Encyclopedia of 

Artificial Intelligence, 2nd Edition, Editor Stuart Shapiro, 
2:1427-1443, Wiley, 1992. 

[4] Arkin, R.C., Behavioral based Robotics, MIT Press, 1998. 
[5] Arkin, R.C., Ali, K., Weitzenfeld, A., and Cervantes-Perez, 

F., Behavior Models of the Praying Mantis as a Basis for 
Robotic Behavior, in Journal of Robotics and Autonomous 
Systems, 32 (1) pp. 39-60, Elsevier, 2000. 

[6] Arkin, R.C., Cervantes -Perez, F., and Weitzenfeld, A., 1997, 
"Ecological Robotics: A Schema-Theoretic Approach", 
"Intelligent Robots: Sensing, Modelling and Planning", eds. 
R.C.Bolles, H.Bunke, and H.Noltemeier, pp 377-393, 
World Scientific.  

[7] Balch, T. and Arkin, R.C., Communication in Reactive 
Multiagent Robotic Systems, Autonomous Robots, 1, pp 1-
25, 1994.  

[8]  Dominey, P., and Arbib, M.A., A cortico-subcortical model 
for generation of spatially accurate sequential saccades, 
Cerebral Cortex, 2, pp 153-175, 1992,  



[9] Beer, R. D., Intelligence as Adaptive Behavior: An 
Experiment in Computational Neuroethology, San Diego, 
Academic Press, 1990. 

[10] Goldberg, K., and Siegwert, R., (eds), Beyond Webcams: 
An Introduction to Online Robots, MIT Press, 2002. 

[11] Cervantes -Perez, F., Lara, R., and Arbib, M.A., A neural 
model of interactions subserving prey -predator 
discrimination and size preference in anuran amphibia, 
Journal of Theoretical Biology, 113, 117-152, 1985. 

[12] Cervantes -Perez, F., Franco, A., Velazquez, S., Lara, N., 
1993, A Schema Theoretic Approach to Study the 
'Chantitlaxia' Behavior in the Praying Mantis, Proceeding 
of the First Workshop on Neural Architectures and 
Distributed AI: From Schema Assemblages to Neural 
Networks, USC, October 19-20, 1993. 

[13] Cervantes-Perez, F., Herrera, A., and García, M., 
Modulatory effects on prey -recognition in amphibia: a 
theoretical 'experimental study', in Neuroscience: from 
neural networks to artificial intelligence, Editors P. 
Rudoman, M.A. Arbib, F. Cervantes-Perez, and R. Romo, 
Springer Verlag Research Notes in Neural Computing, Vol 
4, pp. 426-449, 1993. 

[14] Cliff, D., Neural Networks for Visual Tracking in an 
Artificial Fly, in Towards a Practice of Autonomous 
Systems: Proc. of the First European Conference on 
Artificial Life (ECAL 91), Editors, F.J., Varela and P. 
Bourgine, MIT Press, pp 78-87, 1992. 

[15] Cobas, A., and Arbib, M.A., Prey-catching and Predator-
avoidance in Frog and Toad: Defining the Schemas, J. 
Theor. Biol 157, 271-304, 1992. 

[16] Corbacho, F., and Arbib M. Learning to Detour , Adaptive 
Behavior, Volume 3, Number 4, pp 419-468, 1995. 

[17] Corbacho, F., and Weitzenfeld, Learning to Detour, in The 
Neural Simulation Language, A System for Brain 
Modeling, MIT Press, 2002. 

[18] Costa F.M., and Blair G.S., Integrating Meta-information 
Management and Reflection in Middleware, in Proceedings 
of the International Symposium on Distributed Objects and 
Applications (DOA’00), September 2000. 

[19] Fagg, A., King, I., Lewis, A., Liaw, J., Weitzenfeld, A., 
1992, A Testbed for Sensorimotor Integration, Proceedings 
of IJCNN '92, Baltimore, MD, 1:86-91. 

[20] Gutierrez -Nolasco, S., and Venkatasubramanian, N., “A 
Composable Reflective Communication Framework”, in 
Proceedings of the IFIP/ACM Workshop on Reflective 
Middleware, April 2000. 

[21] Gutierrez -Nolasco, S., and Venkatasubramanian, N., A 
Reflective Middleware Framework for Communication in 
Dynamic Environments, Proc of the International 
Symposium on Distributed Objects and Applications 
(DOA'02), October 2002. 

[22] Kon F., Roman M., Liu P., Mao J., Yamane T., Magalhães 
L.C., and Campbell R.H., Monitoring, Security and 
Dynamic Configuration with the Dynamic TAO Reflective 
ORB, in Proceedings of the IFIP/ACM International 
Conference on Distributed Systems Platforms and Open 
Distributed Processing, Springer Verlag  (1795):121-143, 
April 2000. 

[23] Loyall J., Schantz R., Zinky J., and Bakken D., Specifying 
and Measuring Quality of Service in Distributed Object 
Systems, in Proceedings of the First International 

Symposium on Object-Oriented Real-Time Distributing 
Computing (ISORC’98), April 1998. 

[24] Pal P.P., Loyall J., Schantz R., Zinky J., Shapiro R., and 
Megquier J., Using QDL to specify QoS aware Distributed 
(QuO) Application Configuration, in Proceedings of the 
Third IEEE International Symposium on Object-Oriented 
Real-Time Distributed Computing (ISORC’00), March 
2000. 

[25] Sukhatme, G.S., and Mataric, M.J., Embedding Robots Into 
the Internet, Communication of the ACM, 43(5) pp 67-73, 
Special issue on Embedding the Internet, D. Estrin, R. 
Govidian, and J. Heidemann, eds., May 2000. 

[26] Sutton, R., and Barto, A., Reinforcement Learning: An 
Introduction, MIT Press, 1998. 

[27] Teeters, J.L., and Arbib, M.A., A model of the anuran 
retina relating interneurons to ganglion cell responses, 
Biological Cybernetics , 64, 197-207, 1991. 

[28] Venkatasubramanian N.,  Deshpande M., Mohapatra S., 
Gutierrez-Nolasco S., and Wickramasuriya J., Design and 
Implementation of a Composable Reflective Middleware 
Framework, in Proceedings of the IEEE International 
Conference on Distributed Computer Systems (ICDCS-21), 
April 2001. 

[29] Weitzenfeld, A., ASL: Hierarchy, Composition, 
Heterogeneity, and Multi-Granularity in Concurrent 
Object-Oriented Programming, Proceedings of the 
Workshop on Neural Architectures and Distributed AI: 
From Schema Assemblages to Neural Networks, USC, 
October 19-20, 1993. 

[30] Weitzenfeld A., 2000, "A Multi-level Approach to 
Biologically Inspired Robotic Systems", en Proc of NNW 
2000 10 th International Conference on Artificial Neural 
Networks and Intelligent Systems, Prague, Czech Republic, 
Julio 9-12. 

[31] Weitzenfeld, A., Arbib, M., 1991, A Concurrent Object-
Oriented Framework for the Simulation of Neural 
Networks, Proceedings of ECOOP/OOPSLA '90, 
Workshop on Object-Based Concurrent Programming, 
Ottawa, Canada, OOPS Messenger, 2(2):120-124, April. 

[32] Weitzenfeld, A., Arbib, M., Alexander, A., The Neural 
Simulation Language: A System for Brain Modeling, MIT 
Press, July 2002. 

[33] Weitzenfeld, A., Cervantes, F., Sigala, R., 2001, NSL/ASL: 
Simulation of Neural based Visuomotor Systems, in Proc. 
of IJCNN 2001 International Joint Conference on Neural 
Networks, Washington DC, July 14-19. 

[34] Weitzenfeld A., Gutiérrez, S., 2000, "ASL/NSL: A Multi-
level Computational Model for Distributed Neural 
Simulation", in Proc of SCSC 2000 Summer Computer 
Simulation Conference, Vancouver, Canada, July 16-20.  


